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CONVERGENCE OF SEQUENCES OF
FUNCTIONS HAVING SOME

GENERALIZED PAWLAK PROPERTIES

Abstract

A function f : R → R has the property M1 (M2) if the restricted
function f�D(f) (f�Dap(f)) is monotone. (D(f) [Dap(f)] denotes the
set of all discontinuity points [the set of all approximate discontinuity
points] of f .) In this article I investigate the uniform, pointwise and
transfinite limits of sequences of functions with the property Mi, i =
1, 2.

Let R be the set of all reals. Denote by µ the Lebesgue measure in R and
by µe the outer Lebesgue measure in R. For a set A ⊂ R and a point x we
define the upper (lower) outer density Du(A, x) (Dl(A, x)) of the set A at the
point x as

lim sup
h→0+

µe(A ∩ [x− h, x + h])
2h

(lim inf
h→0+

µe(A ∩ [x− h, x + h])
2h

respectively).

A point x is said an outer density point (a density point) of a set A if Dl(A, x) =
1 (if there is a Lebesgue measurable set B ⊂ A such that Dl(B, x) = 1).

The family Td of all sets A for which the implication

x ∈ A =⇒ x is a density point of A

holds, is a topology called the density topology ([1, 6]). The sets A ∈ Td are
measurable ([1]).

Let Te be the Euclidean topology in R. A continuous function f : (R, Td) →
(R, Te) is said to be approximately continuous ([1, 6]).
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For a function f : R → R denote by C(f) the set of all continuity points of
f and by Cap(f) the set of all approximate continuity points of f . Moreover
let D(f) = R \ C(f) and Dap(f) = R \ Cap(f).

In [3] R. Pawlak introduced and investigated the following property of
functions:

A function f : R → R has the property B∗∗1 if the restricted function
f�D(f) is continuous.

In this paper I investigate similar propertiesM1 andM2 defined as follows:

a function f : R → R has the property M1 (f ∈ M1) if the restricted
function f�D(f) is monotone.

a function f : R → R has the property M2 (f ∈ M2) if the restricted
function f�Dap(f) is monotone.

Since for arbitrary function f : R → R we have C(f) ⊂ Cap(f), the
inclusion M1 ⊂M2 holds.

Remark 1. If f ∈M1, then f is of Baire class 1.

Proof. Fix a real a and observe that for each point x ∈ C(f) with f(x) < a
there is an open interval I(x) 3 x such that f(t) < a for each point t ∈ I(x).
The restricted function f�D(f) is monotone and the set D(f) is an Fσ-set, so
the set {x ∈ D(f); f(x) < a} is an Fσ-set as the intersection of the set D(f)
and a straight semiline. Thus the set

{x ∈ R; f(x) < a} = {x ∈ D(f); f(x) < a} ∪
⋃

x∈C(f), f(x)<a

I(x)

is an Fσ-set. In the same way we can prove that the set {x ∈ R; f(x) > a} is
an Fσ-set. So f is of the first class of Baire.

Remark 2. If f ∈M2, then f is measurable (in the sense of Lebesgue).

Proof. Denote by Z the set of all integers and by intd(A) the density interior
of A; i.e., the union of all subsets of A which belong to Td. For each positive
integer n and each integer k ∈ Z let

Ik,n =
(k − 1

2n
,
k + 1
2n

)
.

Since
Cap(f) =

⋂
n≥1

⋃
k∈Z

intd(f−1(Ik,n)),
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the set Cap(f) is measurable. For each a ∈ R and each point x ∈ Cap(f) with
f(x) < a there is a set U(x) ∈ Td such that

x ∈ U(x) ⊂ f−1((−∞, a)).

So the union
B(a) =

⋃
x∈Cap(f)∩f−1((−∞,a))

U(x) ∈ Td

and consequently the set

{x ∈ Cap(f); f(x) < a} = B(a) ∩ Cap(f)

is measurable. So the restricted function f�Cap(f) is measurable. The set
Dap(f) = R \ Cap(f) is also measurable and the restricted function f�Dap(f)
is monotone, so it is measurable. Thus f is measurable.

However there are functions f ∈M2 which do not have the Baire property.
For example, if A ⊂ R is a residual Gδ-set of measure zero, then there is a
decomposition of the set A in disjoint subsets B,C ⊂ A without the Baire
property. The function

f(x) = x on B and f(x) = 0 otherwise on R

belongs to M2 but it does not have the Baire property.
For each measurable function f : R → R there is a function g : R → R of

Baire class 2 such that the set {x; f(x) 6= g(x)} is of measure zero. In the next
example we show that there are functions f ∈M2 such that for each function
h : R → R of Baire class 1 the set {x; f(x) 6= h(x)} is of positive measure.

Example 1. ([2]). Let (In) be an enumeration of all open intervals with
rational endpoints and let (An) be a sequence of pairwise disjoint nowhere
dense perfect sets of positive measure such that

A2n−1 ∪A2n ⊂ In for n = 1, 2, . . . .

Put

f(x) =


1 for x ∈ intd(A2n−1), n ≥ 1
− 1 for x ∈ intd(A2n), n ≥ 1
0 otherwise on R.

Then
Cap(f) =

⋃
n≥1

(intd(A2n−1) ∪ intd(A2n)) ∪ intd(f−1(0))
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and
f(x) = 0 for x ∈ Dap(f),

so f�Dap(f) is monotone and f ∈M2.
However for each index n and for each set A of measure zero we have

intd(An) \A 6= ∅, so f−1(1) ∩ In 6= ∅ 6= f−1(−1) ∩ In.

Consequently, for each function g : R → R with f�(R \ A) = g�(R \ A) we
have C(g) = ∅ and a such g is not of the first Baire class.

Theorem 1. The classes M1 and M2 are uniformly closed.

Proof. Let a sequence of functions fn ∈ M1 (resp. fn ∈ M2) uniformly
converges to a function f . Without loss of the generality we can suppose that
all restricted functions fn�D(fn) (resp. fn�Dap(fn)) are either decreasing or
increasing. Fix x ∈ R and observe that if there is a subsequence (nk) with
x ∈ C(fnk

) (resp. x ∈ Cap(fnk
))), then from the uniform convergence of (fn) it

follows that x ∈ C(f) (resp. x ∈ Cap(f)). So if x ∈ D(f) (resp. x ∈ Dap(f)),
then there is an index n(x) such that x ∈ D(fn) (resp. x ∈ Dap(fn)) for
n ≥ n(x). For n ≥ 1 let

Bn =
⋂
k≥n

D(fk) (resp. Bn =
⋂
k≥n

Dap(fk)).

Then Bn ⊂ Bn+1 for n ≥ and

D(f) ⊂
⋃
n≥1

Bn (resp. Dap(f) ⊂
⋃
n≥1

Bn).

The restricted functions fn�Bk, n ≥ k and k ≥ 1, are monotone and the
sequence (fn) uniformly converges to f , so the restricted functions f�Bk are
monotone for k ≥ 1. Now for n ≥ 1 we put

An = Bn ∩D(f) (resp. An = Bn ∩Dap(f))

and observe that

D(f) =
⋃
n≥1

An (resp. Dap(f) =
⋃
n≥1

An),

and f�D(f) (resp. f�Dap(f)) are monotone. So f ∈M1 (resp. f ∈M2).

Theorem 2. Suppose that a sequence of functions fn ∈ M1 pointwise con-
verges to a function f : R → R. Then there are disjoint sets A1, A2 such
that:
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(1) A1 ∪A2 = R \
⋃

n≥1

⋂
k≥n C(fk);

(2) for each point x ∈ A1 for infinitely many indices ni(x) we have x ∈
C(fni(x)) and for infinitely many indices kj(x) we have x ∈ D(fkj(x));

(3) the restricted function f�A2 is monotone.

Proof. Since fn ∈ M1, the restricted functions fn�D(fn), n ≥ 1, are mono-
tone. Without loss of the generality we can suppose that all fn�D(fn) are
nondecreasing. For n ≥ 1 let Bn = ∩k≥nD(fk) and let A2 = ∪n≥1Bn. Since
the restricted functions fk�Bn, k ≥ n, are nondecreasing, each function f�Bn,
n ≥ 1, is also nondecreasing. Consequently, the restricted function f�A2 is
also nondecreasing. If

A1 = R \ (
⋃
n≥1

⋂
k≥n

C(fk) ∪A2),

then the set A1 satisfies all requirements.

In next examples we show that there are sequences of functions from M1

convergent to functions f for which f�A1 are not monotone and we show that
there are sequences of functions from M1 convergent to functions f which are
not of the first class of Baire.

Example 2. For n ≥ 1 and k = 1, 2, 3 let In,k = (k − 1
2n , k + 1

2n ) and

f3n−2(x) =


1 if x ∈ {1, 3}
2 if x = 2
0 if x ∈ R \ ({1} ∪ In,2 ∪ In,3)
linear on the components of In,k \ {k}, k = 2, 3,

f3n−1(x) =


1 if x ∈ {1, 3}
2 if x = 2
0 if x ∈ R \ ({2} ∪ In,1 ∪ In,3)
linear on the components of In,k \ {k}, k = 1, 3

and

f3n(x) =


1 if x ∈ {1, 3}
2 if x = 2
0 if x ∈ R \ ({3} ∪ In,1 ∪ In,2)
linear on the components of In,k \ {k}, k = 1, 2.
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Then for n ≥ 1 we obtain

D(f3n−2) = {1}, D(f3n−1) = {2}, D(f3n) = {3},

and consequently f3n−k ∈ M1 for k = 0, 1, 2. Moreover the sequence (fn)
pointwise converges to

f(x) =


0 for x 6= 1, 2, 3
2 for x = 2
1 for x ∈ {1, 3},

and for the set A1 defined in last theorem we have A1 = {1, 2, 3} and f�A1 is
not monotone.

Example 3. Enumerate all rationals in a sequence (an) such that an 6= am

for n 6= m. For n ≥ 1 let

fn(x) =

{
1 if x = ak, k ≤ n

0 otherwise on R.

Then the functions fn ∈ M1 for n ≥ 1 and the sequence (fn) pointwise
converges to Dirichlet’s function which is not of the first Baire class.

Theorem 3. Let f : R → R be a function. If there is a residual Gδ set A such
that the restricted function f�A is of Baire class 1 and f�(R\A) is monotone,
then there is a sequence of functions fn ∈M1 pointwise convergent to f .

Proof. Since f�A is of the first class of Baire and A is a residual Gδ-set,
there is of Baire class 1 function g : R → R such that f�A = g�A. There are
continuous functions gn : R → R with g = limn→∞ gn and closed sets An such
that An ⊂ An+1 and R \A = ∪nAn. For n ≥ 1 let

fn(x) =

{
f(x) for x ∈ An

gn(x) for x ∈ R \An.

Then evidently f = limn→∞ fn and fn ∈M1 for n ≥ 1.

Theorem 4. Assume that a function f : R → R is the pointwise limit of a
sequence of functions fn ∈M2. Let

A =
⋃
n≥1

⋂
k≥n

Cap(fk), B =
⋃
n≥1

⋂
k≥n

Dap(fk) and E = R \ (A ∪B).
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Then µ(B ∪ E) = 0, the restricted function f�B is monotone, the restricted
function f�A is the limit of a sequence of approximately continuous fn�A, and
for each point x ∈ E there are infinite subsequences (ni(x)) and (kj(x)) of
indices such that x ∈ Cap(fni(x)) and x ∈ Dap(fkj(x)) for i, j = 1, 2, . . ..

Proof. The required properties of the sets A and E are evident. We will
prove that the restricted function f�B is monotone. For this observe that
without loss of the generality we can suppose that all restricted functions
fn�Dap(fn) are nondecreasing. For n ≥ 1 let Bn = ∩k≥nDap(fk). Then the
restricted functions fk�Bn, k ≥ n, are nondecreasing and consequently, f�Bn

and f�B are the same.

For functions f, g : R → R let E(f 6= g) = {x; f(x) 6= g(x)}.

Theorem 5. Let f : R → R be a measurable function. If there is a function
g : R → R of the second class of Baire such that µ(E(f 6= g)) = 0 and the
restricted function f�E(f 6= g) is monotone, then there are functions fn ∈M2,
n ≥ 1, with f = limn→∞ fn.

Proof. By Preiss’ theorem from [4] there are approximately continuous func-
tions gn : R → R with g = limn→∞ gn. For n ≥ 1 let

fn(x) =

{
gn(x) for x ∈ R \ E(f 6= g)
f(x) otherwise on R.

Then fn ∈M2 for n ≥ 1 and f = limn→∞ fn.

Now let ω1 denote the first uncountable ordinal number and let fα : R → R,
where α < ω1, be a transfinite sequence of functions. We will say that a trans-
finite sequence (fα)α<ω1 converges to a function f : R → R ( limα<ω1 fα = f)
if for each point x ∈ R there is a countable ordinal α(x) such that for each
countable ordinal α > α(x) the equality fα(x) = f(x) is true ([5]).

Theorem 6. If a function f : R → R is the transfinite limit of a sequence of
functions fα ∈M1, where α < ω1, then f ∈M1.

Proof. First we observe that if x ∈ D(f), then there is a countable ordinal
β(x) such that x ∈ D(fα) for all countable ordinals α > β(x). Of course, if
x ∈ D(f), then there is a sequence (xn) of points xn 6= x such that

lim
n→∞

xn = x and lim
n→∞

f(xn) 6= f(x).

For x and each index n there are countable ordinals β(x) and β(xn) such that

fα(x) = f(x) for α > β(x) and fα(xn) = f(xn) for α > β(xn).
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So, if β is a countable ordinal larger than β(x) and β(xn) for n ≥ 1, then

fβ(x) = f(x) 6= lim
n→∞

f(xn) = lim
n→∞

fβ(xn),

and consequently x ∈ D(fβ).
Now assume to the contrary that f /∈M1. Then there are points x, y, z ∈

D(f) with

x < y < z and either f(y) > max(f(x), f(z)) or f(y) < min(f(x), f(z)).

There is a countable ordinal β such that for each countable ordinal α > β
we have

x, y, z ∈ D(fα) and fα(t) = f(t) for t ∈ {x, y, z}.
Then for all countable ordinals α > β we obtain that fα /∈M1. This contra-
dicts the hypothesis.

Theorem 7. Assume that the continuum hypothesis HC holds. For each func-
tion f : R → R there is a transfinite sequence of functions fα : R → R having
the property M2 such that limα<ω1 fα = f .

Proof. The proof of Theorem 7 is the same as the proof of Theorem 5 in [2],
where functions fα are constructed such that fα�Dap(fα) = 0 (therefore they
have the property M2) and limα<ω1 fα = f .
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