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CONVERGENCE OF SEQUENCES OF
FUNCTIONS HAVING SOME
GENERALIZED PAWLAK PROPERTIES

Abstract

A function f : R — R has the property M; (Mz) if the restricted
function fID(f) (fIDap(f)) is monotone. (D(f) [Dap(f)] denotes the
set of all discontinuity points [the set of all approximate discontinuity
points] of f.) In this article I investigate the uniform, pointwise and
transfinite limits of sequences of functions with the property M;, i =
1,2.
Let R be the set of all reals. Denote by u the Lebesgue measure in R and
by pe the outer Lebesgue measure in R. For a set A C R and a point = we

define the upper (lower) outer density D, (A,z) (D;(A4,z)) of the set A at the
point x as

) pe(AN [z — h,z+ h))
lim sup
h—0t 2h

(lim inf pe(AN [z — b,z + h))
h—0*t 2h

respectively).

A point z is said an outer density point (a density point) of aset A if D;(A,z) =
1 (if there is a Lebesgue measurable set B C A such that D;(B,z) = 1).
The family Ty of all sets A for which the implication

r € A = x is a density point of A

holds, is a topology called the density topology ([1, 6]). The sets A € T, are
measurable ([1]).

Let T, be the Euclidean topology in R. A continuous function f : (R, Ty) —
(R, T.) is said to be approximately continuous ([1, 6]).
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For a function f : R — R denote by C(f) the set of all continuity points of
f and by Cyp(f) the set of all approximate continuity points of f. Moreover
let D(f) =R\ C(f) and Dy, (f) =R\ Cop(f).

In [3] R. Pawlak introduced and investigated the following property of
functions:

A function f : R — R has the property Bi* if the restricted function
fID(f) is continuous.

In this paper I investigate similar properties M; and M5 defined as follows:

a function f : R — R has the property My (f € My) if the restricted
function f]D(f) is monotone.

a function f : R — R has the property Ms (f € May) if the restricted
function f[Dgp(f) is monotone.

Since for arbitrary function f : R — R we have C(f) C Cgp(f), the
inclusion M; C Mj holds.

Remark 1. If f € My, then f is of Baire class 1.

PRrROOF. Fix a real a and observe that for each point x € C(f) with f(z) < a
there is an open interval I(x) > x such that f(¢) < a for each point t € I(x).
The restricted function f[D(f) is monotone and the set D(f) is an F,-set, so
the set {x € D(f); f(z) < a} is an F,-set as the intersection of the set D(f)
and a straight semiline. Thus the set

{z eR; f(z) <a} ={z e D(f); f(z) <a}U U I(x)
zeC(f), f(z)<a

is an F,-set. In the same way we can prove that the set {z € R; f(z) > a} is
an F,-set. So f is of the first class of Baire.

Remark 2. If f € My, then f is measurable (in the sense of Lebesgue).

PROOF. Denote by Z the set of all integers and by intq(A) the density interior
of A; i.e., the union of all subsets of A which belong to T,;. For each positive
integer n and each integer k € 7Z let

Ikn:

)

(k‘—l k+1)
an 7 9n :

Since

Cap(f) = () U inta(f ™" (Tx.n)),

n>1kez
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the set Cyp(f) is measurable. For each a € R and each point z € Cy,(f) with
f(z) < a there is a set U(x) € Ty such that

z € U(z) € f7((~00,a)).

So the union
B(a) = U U(z) € Ty
Iecap(f)mfil((fooﬁa))

and consequently the set

{z € Cop(f); f(z) < a} = Bla) N Cap(f)

is measurable. So the restricted function f[Cg,(f) is measurable. The set
Dyp(f) =R\ Cqp(f) is also measurable and the restricted function f[Dg,(f)
is monotone, so it is measurable. Thus f is measurable. O

However there are functions f € My which do not have the Baire property.
For example, if A C R is a residual Gs-set of measure zero, then there is a
decomposition of the set A in disjoint subsets B,C C A without the Baire
property. The function

f(z) =2 on B and f(x) = 0 otherwise on R

belongs to My but it does not have the Baire property.

For each measurable function f : R — R there is a function g : R — R of
Baire class 2 such that the set {z; f(z) # g(x)} is of measure zero. In the next
example we show that there are functions f € Ms such that for each function
h:R — R of Baire class 1 the set {z; f(z) # h(z)} is of positive measure.

Example 1. ([2]). Let (I,) be an enumeration of all open intervals with
rational endpoints and let (A4,) be a sequence of pairwise disjoint nowhere
dense perfect sets of positive measure such that

Ao, 1 UAy, C I, fOI‘TL:].,2,....

Put
1 for x € intd(Agn_l), n>1
fx)=< —1 forx€intq(A2,), n>1
0 otherwise on R.
Then

Cap(f) = | (inta(Azn_1) Uinta(Az,)) Uinta(f~'(0))

n>1
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and
f(z) =0 for z € Dyy(f),

50 fIDap(f) is monotone and f € M.
However for each index n and for each set A of measure zero we have

intq(A,)\A#0, so f71A)NI, #0# f~H(=1)N1,.

Consequently, for each function g : R — R with f[(R\ A) = g[(R\ A) we
have C'(g) = () and a such g is not of the first Baire class.

Theorem 1. The classes M1 and Mo are uniformly closed.

PRrROOF. Let a sequence of functions f, € My (resp. f, € M3) uniformly
converges to a function f. Without loss of the generality we can suppose that
all restricted functions f,,[D(f,) (resp. frnlDap(fn)) are either decreasing or
increasing. Fix « € R and observe that if there is a subsequence (nj) with
x € C(fn,) (vesp. © € Cop(fny))), then from the uniform convergence of (f,,) it
follows that « € C(f) (resp. © € Cqp(f)). Soif x € D(f) (resp. x € Dqyp(f)),
then there is an index n(x) such that x € D(f,) (resp. = € Dgy(fn)) for
n > n(x). Forn > 1 let

B, = m D(fy) (vesp. B, = ﬂ Dap(fr))-
k>n k>n
Then B,, C B,,41 for n > and
D(f) c U By, (resp. Dap(f) C U By).
n>1 n>1

The restricted functions f,[Bg, n > k and &k > 1, are monotone and the
sequence (fy,) uniformly converges to f, so the restricted functions f|Bj are
monotone for £ > 1. Now for n > 1 we put

A, =B,N D(f) (I‘esp, A, =B,N Dap(f))
and observe that

D(f) = |J An (vesp. Dap(f) = | 4n),

n>1 n>1

and f[D(f) (vesp. f[Dap(f)) are monotone. So f € M (resp. f € Ms). O

Theorem 2. Suppose that a sequence of functions f, € My pointwise con-
verges to a function f : R — R. Then there are disjoint sets Ay, As such
that:
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(1) A1 U Az =R\ U,51 Ngsn C(fk);

(2) for each point x € Ay for infinitely many indices n;(x) we have x €
C(fn,()) and for infinitely many indices k;j(x) we have x € D(fi;(x));

(8) the restricted function f[As is monotone.

PROOF. Since f,, € My, the restricted functions f,[D(f,), n > 1, are mono-
tone. Without loss of the generality we can suppose that all f,[D(f,) are
nondecreasing. For n > 1 let B, = N>, D(fx) and let Ay = Up>1B,,. Since
the restricted functions fi[B,,, k > n, are nondecreasing, each function f[B,,
n > 1, is also nondecreasing. Consequently, the restricted function f[As is
also nondecreasing. If

Ar=R\(J M ¢ U 42),
n>1k>n

then the set A; satisfies all requirements. O

In next examples we show that there are sequences of functions from M
convergent to functions f for which f[A; are not monotone and we show that
there are sequences of functions from M convergent to functions f which are
not of the first class of Baire.

Example 2. Forn >1and k=1,2,3let I, , = (k — %,kJr 2%) and

1 if 2 € {1,3}
2 ifx=2
3n—2(T) = .
fan-2l@) =19 if z € R\ ({1} ULy UL,3)
linear on the components of I, ; \ {k}, k= 2,3,
1 if z € {1,3}
2 ife=2
n—1\T) =
Jana(@) =1 if € R\ ({2} UL1UI,3)
linear on the components of I, , \ {k}, k=1,3
and
1 if 2 € {1,3}
2 ife=2
n\T) =
fan(@) =1 if 2 € R\ ({3} U1 UI.2)

linear on the components of I, , \ {k}, k =1,2.
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Then for n > 1 we obtain

D(fSn—Q) = {1}a D(f?m—l) = {2}, D(fSn) = {3}7

and consequently f3,_r € Mj for k = 0,1,2. Moreover the sequence (f,)
pointwise converges to

0 forx+#1,2,3
flz)=492 forz=2
1 for z € {1,3},

and for the set A; defined in last theorem we have Ay = {1,2,3} and f[A; is
not monotone.

Example 3. Enumerate all rationals in a sequence (a,) such that a, # a,
for n # m. For n > 1 let

1 ife=ar, E<n
fn(x) = .
0 otherwise on R.

Then the functions f,, € Mj for n > 1 and the sequence (f,) pointwise
converges to Dirichlet’s function which is not of the first Baire class.

Theorem 3. Let f : R — R be a function. If there is a residual G5 set A such
that the restricted function flA is of Baire class 1 and f](R\ A) is monotone,
then there is a sequence of functions f, € My pointwise convergent to f.

PrOOF. Since f[A is of the first class of Baire and A is a residual Gs-set,
there is of Baire class 1 function g : R — R such that f]|A = g[A. There are
continuous functions g, : R — R with ¢ = lim,,_. ¢, and closed sets A,, such
that A, C A,y1 and R\ A=U,A,. Forn >1 let

) f(x) forxec A,
fn(x>_{gn(x) for x € R\ A,.

Then evidently f = lim,,_,o f» and f, € My for n > 1.

Theorem 4. Assume that a function f : R — R is the pointwise limit of a
sequence of functions f, € M. Let

A=J ) Cap(f): B=J ) Dap(fr) and E =R\ (AUB).

n>1k>n n>1k>n
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Then u(B U E) = 0, the restricted function f|]B is monotone, the restricted
function f[A is the limit of a sequence of approximately continuous f,[A, and
for each point x € E there are infinite subsequences (n;(z)) and (k;(z)) of
indices such that x € Cup(fn,(2)) and € Dap(fr;(x)) fori,j =1,2,....

PROOF. The required properties of the sets A and E are evident. We will
prove that the restricted function f[B is monotone. For this observe that
without loss of the generality we can suppose that all restricted functions
fnlDap(fn) are nondecreasing. For n > 1 let B, = Ng>nDap(fr). Then the
restricted functions fi[B,, k > n, are nondecreasing and consequently, f[B,
and f[B are the same. O

For functions f,g: R — R let E(f # g) = {x; f(x) # g(x)}.

Theorem 5. Let f : R — R be a measurable function. If there is a function
g : R — R of the second class of Baire such that u(E(f # g)) = 0 and the
restricted function f[E(f # g) is monotone, then there are functions f, € Ma,
n>1, with f =lim,_ fn.

PROOF. By Preiss’ theorem from [4] there are approximately continuous func-
tions g, : R — R with g = lim,, . g,. For n > 1 let

£(@) = {gm) for z € R\ B(f # 9)

f(z)  otherwise on R.

Then f,, € My forn > 1 and f = lim,, . fn. O

Now let wy denote the first uncountable ordinal number and let f, : R — R,
where o < wq, be a transfinite sequence of functions. We will say that a trans-
finite sequence (fq)a<w, converges to a function f: R — R (limy<y, fo = f)
if for each point € R there is a countable ordinal a(z) such that for each
countable ordinal o > «(z) the equality f,(z) = f(z) is true ([5]).

Theorem 6. If a function f: R — R is the transfinite limit of a sequence of
functions f, € M1, where a < wy, then f € M.

PROOF. First we observe that if € D(f), then there is a countable ordinal
B(x) such that € D(f,) for all countable ordinals o > 3(x). Of course, if
x € D(f), then there is a sequence (x,,) of points x,, # x such that

lim x,, =z and nh_{& flzn) # f(2).

n—oo

For x and each index n there are countable ordinals #(z) and S(x,,) such that

fa(z) = f(x) for a > B(z) and fo(z,) = f(z,) for a > B(z,).
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So, if 3 is a countable ordinal larger than 8(z) and B(x,) for n > 1, then
Ja(e) = () # 1 f(z,) = lim fo(e,).

and consequently = € D(f3).
Now assume to the contrary that f & M;. Then there are points z,y, z €
D(f) with

x <y < z and either f(y) > max(f(z), f(2)) or f(y) < min(f(x), f(2)).

There is a countable ordinal  such that for each countable ordinal o > 3
we have

z,y,2 € D(fa) and fo(t) = f(t) for t € {z,y,z}.

Then for all countable ordinals & > /3 we obtain that f, & M;. This contra-
dicts the hypothesis. O

Theorem 7. Assume that the continuum hypothesis HC holds. For each func-
tion f : R — R there is a transfinite sequence of functions f, : R — R having
the property Ma such that lima<y, fo = f-

PROOF. The proof of Theorem 7 is the same as the proof of Theorem 5 in [2],
where functions f, are constructed such that fo[Dgp(fa) = 0 (therefore they
have the property Ms) and limg<y, fo = f-
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