CONVERGENCE OF SEQUENCES OF FUNCTIONS HAVING SOME GENERALIZED PAWLAK PROPERTIES

Abstract

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ has the property $\mathcal{M}_{1}\left(\mathcal{M}_{2}\right)$ if the restricted function $f \upharpoonright D(f)\left(f \upharpoonright D_{a p}(f)\right)$ is monotone. $\left(D(f)\right.$ [$\left.D_{a p}(f)\right]$ denotes the set of all discontinuity points [the set of all approximate discontinuity points] of f.) In this article I investigate the uniform, pointwise and transfinite limits of sequences of functions with the property $\mathcal{M}_{i}, i=$ 1,2 .

Let \mathbb{R} be the set of all reals. Denote by μ the Lebesgue measure in \mathbb{R} and by μ_{e} the outer Lebesgue measure in \mathbb{R}. For a set $A \subset \mathbb{R}$ and a point x we define the upper (lower) outer density $D_{u}(A, x)\left(D_{l}(A, x)\right)$ of the set A at the point x as

$$
\begin{gathered}
\limsup _{h \rightarrow 0^{+}} \frac{\mu_{e}(A \cap[x-h, x+h])}{2 h} \\
\left(\liminf _{h \rightarrow 0^{+}} \frac{\mu_{e}(A \cap[x-h, x+h])}{2 h} \text { respectively }\right) .
\end{gathered}
$$

A point x is said an outer density point (a density point) of a set A if $D_{l}(A, x)=$ 1 (if there is a Lebesgue measurable set $B \subset A$ such that $D_{l}(B, x)=1$).

The family T_{d} of all sets A for which the implication

$$
x \in A \Longrightarrow x \text { is a density point of } A
$$

holds, is a topology called the density topology ([1, 6]). The sets $A \in T_{d}$ are measurable ([1]).

Let T_{e} be the Euclidean topology in \mathbb{R}. A continuous function $f:\left(\mathbb{R}, T_{d}\right) \rightarrow$ $\left(\mathbb{R}, T_{e}\right)$ is said to be approximately continuous ($[1,6]$).

[^0]For a function $f: \mathbb{R} \rightarrow \mathbb{R}$ denote by $C(f)$ the set of all continuity points of f and by $C_{a p}(f)$ the set of all approximate continuity points of f. Moreover let $D(f)=\mathbb{R} \backslash C(f)$ and $D_{a p}(f)=\mathbb{R} \backslash C_{a p}(f)$.

In [3] R. Pawlak introduced and investigated the following property of functions:

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ has the property $\mathcal{B}_{1}^{* *}$ if the restricted function $f \upharpoonright D(f)$ is continuous.

In this paper I investigate similar properties \mathcal{M}_{1} and \mathcal{M}_{2} defined as follows:
a function $f: \mathbb{R} \rightarrow \mathbb{R}$ has the property $\mathcal{M}_{1}\left(f \in \mathcal{M}_{1}\right)$ if the restricted function $f \upharpoonright D(f)$ is monotone.
a function $f: \mathbb{R} \rightarrow \mathbb{R}$ has the property $\mathcal{M}_{2}\left(f \in \mathcal{M}_{2}\right)$ if the restricted function $f \upharpoonright D_{a p}(f)$ is monotone.

Since for arbitrary function $f: \mathbb{R} \rightarrow \mathbb{R}$ we have $C(f) \subset C_{a p}(f)$, the inclusion $\mathcal{M}_{1} \subset \mathcal{M}_{2}$ holds.

Remark 1. If $f \in \mathcal{M}_{1}$, then f is of Baire class 1 .
Proof. Fix a real a and observe that for each point $x \in C(f)$ with $f(x)<a$ there is an open interval $I(x) \ni x$ such that $f(t)<a$ for each point $t \in I(x)$. The restricted function $f \upharpoonright D(f)$ is monotone and the set $D(f)$ is an F_{σ}-set, so the set $\{x \in D(f) ; f(x)<a\}$ is an F_{σ}-set as the intersection of the set $D(f)$ and a straight semiline. Thus the set

$$
\{x \in \mathbb{R} ; f(x)<a\}=\{x \in D(f) ; f(x)<a\} \cup \bigcup_{x \in C(f), f(x)<a} I(x)
$$

is an F_{σ}-set. In the same way we can prove that the set $\{x \in \mathbb{R} ; f(x)>a\}$ is an F_{σ}-set. So f is of the first class of Baire.

Remark 2. If $f \in \mathcal{M}_{2}$, then f is measurable (in the sense of Lebesgue).
Proof. Denote by \mathbb{Z} the set of all integers and by $\operatorname{int}_{d}(A)$ the density interior of A; i.e., the union of all subsets of A which belong to T_{d}. For each positive integer n and each integer $k \in \mathbb{Z}$ let

$$
I_{k, n}=\left(\frac{k-1}{2^{n}}, \frac{k+1}{2^{n}}\right) .
$$

Since

$$
C_{a p}(f)=\bigcap_{n \geq 1} \bigcup_{k \in Z} \operatorname{int}_{\mathrm{d}}\left(f^{-1}\left(I_{k, n}\right)\right)
$$

the set $C_{a p}(f)$ is measurable. For each $a \in \mathbb{R}$ and each point $x \in C_{a p}(f)$ with $f(x)<a$ there is a set $U(x) \in T_{d}$ such that

$$
x \in U(x) \subset f^{-1}((-\infty, a))
$$

So the union

$$
B(a)=\bigcup_{x \in C_{a p}(f) \cap f^{-1}((-\infty, a))} U(x) \in T_{d}
$$

and consequently the set

$$
\left\{x \in C_{a p}(f) ; f(x)<a\right\}=B(a) \cap C_{a p}(f)
$$

is measurable. So the restricted function $f \upharpoonright C_{a p}(f)$ is measurable. The set $D_{a p}(f)=\mathbb{R} \backslash C_{a p}(f)$ is also measurable and the restricted function $f\left\lceil D_{a p}(f)\right.$ is monotone, so it is measurable. Thus f is measurable.

However there are functions $f \in \mathcal{M}_{2}$ which do not have the Baire property. For example, if $A \subset \mathbb{R}$ is a residual G_{δ}-set of measure zero, then there is a decomposition of the set A in disjoint subsets $B, C \subset A$ without the Baire property. The function

$$
f(x)=x \text { on } B \text { and } f(x)=0 \text { otherwise on } \mathbb{R}
$$

belongs to \mathcal{M}_{2} but it does not have the Baire property.
For each measurable function $f: \mathbb{R} \rightarrow \mathbb{R}$ there is a function $g: \mathbb{R} \rightarrow \mathbb{R}$ of Baire class 2 such that the set $\{x ; f(x) \neq g(x)\}$ is of measure zero. In the next example we show that there are functions $f \in \mathcal{M}_{2}$ such that for each function $h: \mathbb{R} \rightarrow \mathbb{R}$ of Baire class 1 the set $\{x ; f(x) \neq h(x)\}$ is of positive measure.

Example 1. ([2]). Let $\left(I_{n}\right)$ be an enumeration of all open intervals with rational endpoints and let $\left(A_{n}\right)$ be a sequence of pairwise disjoint nowhere dense perfect sets of positive measure such that

$$
A_{2 n-1} \cup A_{2 n} \subset I_{n} \text { for } n=1,2, \ldots
$$

Put

$$
f(x)= \begin{cases}1 & \text { for } x \in \operatorname{int}_{\mathrm{d}}\left(A_{2 n-1}\right), n \geq 1 \\ -1 & \text { for } x \in \operatorname{int}_{\mathrm{d}}\left(A_{2 n}\right), n \geq 1 \\ 0 & \text { otherwise on } \mathbb{R}\end{cases}
$$

Then

$$
C_{a p}(f)=\bigcup_{n \geq 1}\left(\operatorname{int}_{\mathrm{d}}\left(A_{2 n-1}\right) \cup \operatorname{int}_{\mathrm{d}}\left(A_{2 n}\right)\right) \cup \operatorname{int}_{\mathrm{d}}\left(f^{-1}(0)\right)
$$

and

$$
f(x)=0 \text { for } x \in D_{a p}(f)
$$

so $f \upharpoonright D_{a p}(f)$ is monotone and $f \in \mathcal{M}_{2}$.
However for each index n and for each set A of measure zero we have

$$
\operatorname{int}_{\mathrm{d}}\left(A_{n}\right) \backslash A \neq \emptyset, \text { so } f^{-1}(1) \cap I_{n} \neq \emptyset \neq f^{-1}(-1) \cap I_{n}
$$

Consequently, for each function $g: \mathbb{R} \rightarrow \mathbb{R}$ with $f \upharpoonright(\mathcal{R} \backslash A)=g \upharpoonright(\mathbb{R} \backslash A)$ we have $C(g)=\emptyset$ and a such g is not of the first Baire class.

Theorem 1. The classes \mathcal{M}_{1} and \mathcal{M}_{2} are uniformly closed.
Proof. Let a sequence of functions $f_{n} \in \mathcal{M}_{1}$ (resp. $f_{n} \in \mathcal{M}_{2}$) uniformly converges to a function f. Without loss of the generality we can suppose that all restricted functions $f_{n} \upharpoonright D\left(f_{n}\right)$ (resp. $f_{n} \upharpoonright D_{a p}\left(f_{n}\right)$) are either decreasing or increasing. Fix $x \in \mathbb{R}$ and observe that if there is a subsequence $\left(n_{k}\right)$ with $x \in C\left(f_{n_{k}}\right)$ (resp. $\left.x \in C_{a p}\left(f_{n_{k}}\right)\right)$), then from the uniform convergence of $\left(f_{n}\right)$ it follows that $x \in C(f)$ (resp. $\left.x \in C_{a p}(f)\right)$. So if $x \in D(f)$ (resp. $x \in D_{a p}(f)$), then there is an index $n(x)$ such that $x \in D\left(f_{n}\right)$ (resp. $x \in D_{a p}\left(f_{n}\right)$) for $n \geq n(x)$. For $n \geq 1$ let

$$
B_{n}=\bigcap_{k \geq n} D\left(f_{k}\right)\left(\text { resp. } B_{n}=\bigcap_{k \geq n} D_{a p}\left(f_{k}\right)\right) .
$$

Then $B_{n} \subset B_{n+1}$ for $n \geq$ and

$$
D(f) \subset \bigcup_{n \geq 1} B_{n}\left(\text { resp. } D_{a p}(f) \subset \bigcup_{n \geq 1} B_{n}\right)
$$

The restricted functions $f_{n} \upharpoonright B_{k}, n \geq k$ and $k \geq 1$, are monotone and the sequence $\left(f_{n}\right)$ uniformly converges to f, so the restricted functions $f \upharpoonright B_{k}$ are monotone for $k \geq 1$. Now for $n \geq 1$ we put

$$
A_{n}=B_{n} \cap D(f)\left(\text { resp. } A_{n}=B_{n} \cap D_{a p}(f)\right)
$$

and observe that

$$
D(f)=\bigcup_{n \geq 1} A_{n}\left(\text { resp. } D_{a p}(f)=\bigcup_{n \geq 1} A_{n}\right)
$$

and $f \upharpoonright D(f)$ (resp. $\left.f \upharpoonright D_{a p}(f)\right)$ are monotone. So $f \in \mathcal{M}_{1}$ (resp. $f \in \mathcal{M}_{2}$).
Theorem 2. Suppose that a sequence of functions $f_{n} \in \mathcal{M}_{1}$ pointwise converges to a function $f: \mathbb{R} \rightarrow \mathbb{R}$. Then there are disjoint sets A_{1}, A_{2} such that:
(1) $A_{1} \cup A_{2}=\mathbb{R} \backslash \bigcup_{n \geq 1} \bigcap_{k \geq n} C\left(f_{k}\right)$;
(2) for each point $x \in A_{1}$ for infinitely many indices $n_{i}(x)$ we have $x \in$ $C\left(f_{n_{i}(x)}\right)$ and for infinitely many indices $k_{j}(x)$ we have $x \in D\left(f_{k_{j}(x)}\right)$;
(3) the restricted function $f \backslash A_{2}$ is monotone.

Proof. Since $f_{n} \in \mathcal{M}_{1}$, the restricted functions $f_{n} \upharpoonright D\left(f_{n}\right), n \geq 1$, are monotone. Without loss of the generality we can suppose that all $f_{n} \upharpoonright D\left(f_{n}\right)$ are nondecreasing. For $n \geq 1$ let $B_{n}=\cap_{k \geq n} D\left(f_{k}\right)$ and let $A_{2}=\cup_{n \geq 1} B_{n}$. Since the restricted functions $f_{k} \upharpoonright B_{n}, k \geq n$, are nondecreasing, each function $f \upharpoonright B_{n}$, $n \geq 1$, is also nondecreasing. Consequently, the restricted function $f\left\lceil A_{2}\right.$ is also nondecreasing. If

$$
A_{1}=\mathbb{R} \backslash\left(\bigcup_{n \geq 1} \bigcap_{k \geq n} C\left(f_{k}\right) \cup A_{2}\right),
$$

then the set A_{1} satisfies all requirements.
In next examples we show that there are sequences of functions from \mathcal{M}_{1} convergent to functions f for which $f\left\lceil A_{1}\right.$ are not monotone and we show that there are sequences of functions from \mathcal{M}_{1} convergent to functions f which are not of the first class of Baire.

Example 2. For $n \geq 1$ and $k=1,2,3$ let $I_{n, k}=\left(k-\frac{1}{2^{n}}, k+\frac{1}{2^{n}}\right)$ and

$$
\begin{aligned}
& f_{3 n-2}(x)= \begin{cases}1 & \text { if } x \in\{1,3\} \\
2 & \text { if } x=2 \\
0 & \text { if } x \in \mathbb{R} \backslash\left(\{1\} \cup I_{n, 2} \cup I_{n, 3}\right) \\
\text { linear } & \text { on the components of } I_{n, k} \backslash\{k\}, k=2,3,\end{cases} \\
& f_{3 n-1}(x)= \begin{cases}1 & \text { if } x \in\{1,3\} \\
2 & \text { if } x=2 \\
0 & \text { if } x \in \mathbb{R} \backslash\left(\{2\} \cup I_{n, 1} \cup I_{n, 3}\right) \\
\text { linear } & \text { on the components of } I_{n, k} \backslash\{k\}, k=1,3\end{cases}
\end{aligned}
$$

and

$$
f_{3 n}(x)= \begin{cases}1 & \text { if } x \in\{1,3\} \\ 2 & \text { if } x=2 \\ 0 & \text { if } x \in \mathbb{R} \backslash\left(\{3\} \cup I_{n, 1} \cup I_{n, 2}\right) \\ \text { linear } & \text { on the components of } I_{n, k} \backslash\{k\}, k=1,2 .\end{cases}
$$

Then for $n \geq 1$ we obtain

$$
D\left(f_{3 n-2}\right)=\{1\}, D\left(f_{3 n-1}\right)=\{2\}, D\left(f_{3 n}\right)=\{3\}
$$

and consequently $f_{3 n-k} \in \mathcal{M}_{1}$ for $k=0,1,2$. Moreover the sequence $\left(f_{n}\right)$ pointwise converges to

$$
f(x)= \begin{cases}0 & \text { for } x \neq 1,2,3 \\ 2 & \text { for } x=2 \\ 1 & \text { for } x \in\{1,3\}\end{cases}
$$

and for the set A_{1} defined in last theorem we have $A_{1}=\{1,2,3\}$ and $f \upharpoonright A_{1}$ is not monotone.

Example 3. Enumerate all rationals in a sequence $\left(a_{n}\right)$ such that $a_{n} \neq a_{m}$ for $n \neq m$. For $n \geq 1$ let

$$
f_{n}(x)= \begin{cases}1 & \text { if } x=a_{k}, k \leq n \\ 0 & \text { otherwise on } \mathbb{R}\end{cases}
$$

Then the functions $f_{n} \in \mathcal{M}_{1}$ for $n \geq 1$ and the sequence $\left(f_{n}\right)$ pointwise converges to Dirichlet's function which is not of the first Baire class.

Theorem 3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function. If there is a residual G_{δ} set A such that the restricted function $f \upharpoonright A$ is of Baire class 1 and $f \upharpoonright(\mathbb{R} \backslash A)$ is monotone, then there is a sequence of functions $f_{n} \in \mathcal{M}_{1}$ pointwise convergent to f.

Proof. Since $f\left\lceil A\right.$ is of the first class of Baire and A is a residual G_{δ}-set, there is of Baire class 1 function $g: \mathbb{R} \rightarrow \mathbb{R}$ such that $f \upharpoonright A=g \upharpoonright A$. There are continuous functions $g_{n}: \mathbb{R} \rightarrow \mathbb{R}$ with $g=\lim _{n \rightarrow \infty} g_{n}$ and closed sets A_{n} such that $A_{n} \subset A_{n+1}$ and $\mathbb{R} \backslash A=\cup_{n} A_{n}$. For $n \geq 1$ let

$$
f_{n}(x)= \begin{cases}f(x) & \text { for } x \in A_{n} \\ g_{n}(x) & \text { for } x \in \mathbb{R} \backslash A_{n}\end{cases}
$$

Then evidently $f=\lim _{n \rightarrow \infty} f_{n}$ and $f_{n} \in \mathcal{M}_{1}$ for $n \geq 1$.
Theorem 4. Assume that a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is the pointwise limit of a sequence of functions $f_{n} \in \mathcal{M}_{2}$. Let

$$
A=\bigcup_{n \geq 1} \bigcap_{k \geq n} C_{a p}\left(f_{k}\right), B=\bigcup_{n \geq 1} \bigcap_{k \geq n} D_{a p}\left(f_{k}\right) \text { and } E=\mathbb{R} \backslash(A \cup B)
$$

Then $\mu(B \cup E)=0$, the restricted function $f \upharpoonright B$ is monotone, the restricted function $f\left\lceil A\right.$ is the limit of a sequence of approximately continuous $f_{n} \upharpoonright A$, and for each point $x \in E$ there are infinite subsequences $\left(n_{i}(x)\right)$ and $\left(k_{j}(x)\right)$ of indices such that $x \in C_{a p}\left(f_{n_{i}(x)}\right)$ and $x \in D_{a p}\left(f_{k_{j}(x)}\right)$ for $i, j=1,2, \ldots$.

Proof. The required properties of the sets A and E are evident. We will prove that the restricted function $f\lceil B$ is monotone. For this observe that without loss of the generality we can suppose that all restricted functions $f_{n} \upharpoonright D_{a p}\left(f_{n}\right)$ are nondecreasing. For $n \geq 1$ let $B_{n}=\cap_{k \geq n} D_{a p}\left(f_{k}\right)$. Then the restricted functions $f_{k} \upharpoonright B_{n}, k \geq n$, are nondecreasing and consequently, $f \upharpoonright B_{n}$ and $f \upharpoonright B$ are the same.

For functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ let $E(f \neq g)=\{x ; f(x) \neq g(x)\}$.
Theorem 5. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a measurable function. If there is a function $g: \mathbb{R} \rightarrow \mathbb{R}$ of the second class of Baire such that $\mu(E(f \neq g))=0$ and the restricted function $f \upharpoonright E(f \neq g)$ is monotone, then there are functions $f_{n} \in \mathcal{M}_{2}$, $n \geq 1$, with $f=\lim _{n \rightarrow \infty} f_{n}$.
Proof. By Preiss' theorem from [4] there are approximately continuous functions $g_{n}: \mathbb{R} \rightarrow \mathbb{R}$ with $g=\lim _{n \rightarrow \infty} g_{n}$. For $n \geq 1$ let

$$
f_{n}(x)= \begin{cases}g_{n}(x) & \text { for } x \in \mathbb{R} \backslash E(f \neq g) \\ f(x) & \text { otherwise on } \mathbb{R}\end{cases}
$$

Then $f_{n} \in \mathcal{M}_{2}$ for $n \geq 1$ and $f=\lim _{n \rightarrow \infty} f_{n}$.
Now let ω_{1} denote the first uncountable ordinal number and let $f_{\alpha}: \mathbb{R} \rightarrow \mathbb{R}$, where $\alpha<\omega_{1}$, be a transfinite sequence of functions. We will say that a transfinite sequence $\left(f_{\alpha}\right)_{\alpha<\omega_{1}}$ converges to a function $f: \mathbb{R} \rightarrow \mathbb{R}\left(\lim _{\alpha<\omega_{1}} f_{\alpha}=f\right)$ if for each point $x \in \mathbb{R}$ there is a countable ordinal $\alpha(x)$ such that for each countable ordinal $\alpha>\alpha(x)$ the equality $f_{\alpha}(x)=f(x)$ is true ([5]).
Theorem 6. If a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is the transfinite limit of a sequence of functions $f_{\alpha} \in \mathcal{M}_{1}$, where $\alpha<\omega_{1}$, then $f \in \mathcal{M}_{1}$.

Proof. First we observe that if $x \in D(f)$, then there is a countable ordinal $\beta(x)$ such that $x \in D\left(f_{\alpha}\right)$ for all countable ordinals $\alpha>\beta(x)$. Of course, if $x \in D(f)$, then there is a sequence $\left(x_{n}\right)$ of points $x_{n} \neq x$ such that

$$
\lim _{n \rightarrow \infty} x_{n}=x \text { and } \lim _{n \rightarrow \infty} f\left(x_{n}\right) \neq f(x)
$$

For x and each index n there are countable ordinals $\beta(x)$ and $\beta\left(x_{n}\right)$ such that

$$
f_{\alpha}(x)=f(x) \text { for } \alpha>\beta(x) \text { and } f_{\alpha}\left(x_{n}\right)=f\left(x_{n}\right) \text { for } \alpha>\beta\left(x_{n}\right)
$$

So, if β is a countable ordinal larger than $\beta(x)$ and $\beta\left(x_{n}\right)$ for $n \geq 1$, then

$$
f_{\beta}(x)=f(x) \neq \lim _{n \rightarrow \infty} f\left(x_{n}\right)=\lim _{n \rightarrow \infty} f_{\beta}\left(x_{n}\right)
$$

and consequently $x \in D\left(f_{\beta}\right)$.
Now assume to the contrary that $f \notin \mathcal{M}_{1}$. Then there are points $x, y, z \in$ $D(f)$ with
$x<y<z$ and either $f(y)>\max (f(x), f(z))$ or $f(y)<\min (f(x), f(z))$.
There is a countable ordinal β such that for each countable ordinal $\alpha>\beta$ we have

$$
x, y, z \in D\left(f_{\alpha}\right) \text { and } f_{\alpha}(t)=f(t) \text { for } t \in\{x, y, z\}
$$

Then for all countable ordinals $\alpha>\beta$ we obtain that $f_{\alpha} \notin \mathcal{M}_{1}$. This contradicts the hypothesis.

Theorem 7. Assume that the continuum hypothesis HC holds. For each function $f: \mathbb{R} \rightarrow \mathbb{R}$ there is a transfinite sequence of functions $f_{\alpha}: \mathbb{R} \rightarrow \mathbb{R}$ having the property \mathcal{M}_{2} such that $\lim _{\alpha<\omega_{1}} f_{\alpha}=f$.

Proof. The proof of Theorem 7 is the same as the proof of Theorem 5 in [2], where functions f_{α} are constructed such that $f_{\alpha} \upharpoonright D_{a p}\left(f_{\alpha}\right)=0$ (therefore they have the property \mathcal{M}_{2}) and $\lim _{\alpha<\omega_{1}} f_{\alpha}=f$.

References

[1] A. M. Bruckner, Differentiation of real functions, Lectures Notes in Math. 659, Springer-Verlag, Berlin 1978.
[2] Z. Grande, Convergence of sequences of functions having property M, in preparation.
[3] R. J. Pawlak, On some class of functions intermediate between the class \mathcal{B}_{1}^{*} and the family of continuous functions, Tatra Mt. Math. Publ., 19 (2002), 135-149.
[4] D. Preiss, Limits of approximately continuous functions, Czechoslovak Math. J., 96 (1971), 371-372.
[5] W. Sierpiński, Sur les suites transfinies convergent de fonctions de Baire, Fund. Math., 1 (1920), 134-141.
[6] F. D. Tall, The density topology, Pacific J. Math., 62 (1976), 275-284.

[^0]: Key Words: Measurability, monotone functions, density topology, sequences of functions, uniform convergence, pointwise convergence

 Mathematical Reviews subject classification: 26B05, 26A15
 Received by the editors April 5, 2004
 Communicated by: B. S. Thomson

