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Abstract

Measure theoretic Dirichlet forms on compact subsets of the real line
are introduced. Using the technique of Dirichlet–Neumann–bracketing,
estimates of the eigenvalue counting functions of the associated measure
geometric Laplacians are obtained.

1 Introduction.

In [2], a class of generalized second order differential operators of the form
∆µ,ν = d

dµ
d
dν is introduced. These operators are given as the second derivative

w.r.t. two atomless finite Borel measures µ and ν with compact supports
L := supp µ and K := supp ν, such that L ⊆ K ⊆ R. This means that the
functions in the domain of these operators are defined on the set K (which
also can be a closed interval; i.e., a “fractal” of Hausdorff dimension equal
to 1) while the function driving the diffusion is given only on a subset L ⊆
K (which, of course, also can be all of K). Thus, the operator ∆µ,ν has
an interpretation as a measure geometric Laplacian on L2(K, µ). Moreover,
this approach generalizes the well-known notion of the Sturm–Liouville– (or,
Krein–Feller–) operator of the form d

dµ
d
dx which is introduced for example in

[7].
In the present paper, the Dirichlet form, which is associated with the oper-

ator ∆µ,ν , is constructed. To this end, in Section 2, we recall the definition and
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some fundamental properties of ∆µ,ν which can be found in [2]. We introduce
the first derivative d

dν on the space

Dν
1 := {f : K → R : ∃f ′ ∈ L2(K, ν) : f(x) = f(a) +

∫ x

a

f ′(y)dν(y), x ∈ K}.

Iterating this procedure w.r.t. a second measure µ, the operator ∆µ,ν = d
dµ

d
dν

is introduced on L2(K, µ). We restrict ourselves to the case where homo-
geneous Dirichlet– or, Neumann–boundary–conditions are satisfied, and we
define the corresponding eigenvalue counting functions Nµ,ν

D (·) and Nµ,ν
N (·).

The asymptotic behavior of these eigenvalue counting functions is determined
in [3].

In Section 3, we recall the definition of a Dirichlet form, and we introduce
the eigenvalues of a Dirichlet form. Following [8], we present the technique of
the Dirichlet–Neumann–bracketing which gives a relation between the eigen-
value counting functions of two Dirichlet forms with domains which are related
by a directed inclusion; i.e., the domain of one form has to be a closed subspace
of the domain of the other form.

In Section 4, we prove that

Eν(f, g) :=
∫ b

a

∇νf(x)∇νg(x)dν(x) = 〈∇νf,∇νg〉ν , f, g ∈ Dν
1 ,

defines a Dirichlet form on L2(K, µ).
In Section 5, we show that the Dirichlet form (Eν ,Dν

1 ) has the same eigen-
values as the measure geometric Neumann Laplacian ∆µ,ν

N . Moreover, we con-
struct a second Dirichlet form, which is in the same correspondence with the
Dirichlet Laplacian ∆µ,ν

D . Applying the techniques introduced in Section 3, we
obtain estimations of the eigenvalue counting functions Nµ,ν

D (·) and Nµ,ν
N (·).

In Section 6, we restrict ourselves to the case where ν and µ are the same
and, in addition, self similar measures. In this special case, we can extend
the notion of a “variational fractal”, which has been introduced in [13] for
certain connected fractals, to generalized Cantor sets, which are disconnected
fractals. In particular, we obtain that the eigenvalue counting function behaves
in this case asymptotically like x1/2. Using other methods, this result was also
obtained in [4].

2 Definition and Fundamental Properties of the Measure
Geometric Laplacian.

Let [a, b] ⊂ R1 be a closed interval and ν be an atomless finite Borel measure
on [a, b] with compact support K := supp ν and a, b ∈ K. Further, let L2 :=
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L2(K, ν) be the separable Hilbert space with scalar product 〈f, g〉 :=
∫ b

a
fg dν.

Without loss of generality we assume that ν(K) = 1.
Let

Dν
1 := {f :K→ R : ∃f ′ ∈ L2(K, ν) : f(x) = f(a) +

∫ x

a

f ′(y)dν(y), x ∈ K}. (1)

By standard measure theoretic arguments, it follows that Dν
1 ⊂ C(K) ⊂

L2(K, ν); i.e., every function f in Dν
1 is continuous on K. Moreover, the

function f ′ defined in (1) is unique in L2(K, ν). Thus, for any f ∈ Dν
1 , we can

define the ν-derivative of f by setting

∇νf =
df

dν
:= f ′.

Note that in the case K = [a, b] and ν = λ, where λ denotes the normalized
Lebesgue measure on [a, b], Dν

1 coincides with the Sobolev space W 1,2.
In order to define the second derivative, we repeat the above construction

with respect to another measure. Let K and ν be as above.
Now let µ be a second atomless, normalized Borel measure on [a, b] with

compact support L := supp µ and a, b ∈ L. Furthermore, we assume that
L ⊂ K and, if K \ L 6= ∅, we agree upon the following notation.
LC := [a, b]\L is open in R and therefore a countable union of pairwise disjoint
open intervals with endpoints in L. From L = L ∩K = K \ LC we obtain for
some ci and di, i = 1, 2, . . .

L = K \
( ∞∑

i=1

(ci, di)
)

with a < ci < di < b, ci, di ∈ L, i = 1, 2, . . . .. (2)

Furthermore, let L2(L, µ) (and L2(K, µ), resp.) denote the separable Hilbert
space of all square µ–integrable functions on L (and K, resp.), both equipped
with the scalar product 〈f, g〉µ :=

∫ b

a
fg dµ. Setting

Dµ,ν
2 :={f ∈Dν

1 : ∃f ′′∈ L2(L, µ) :∇νf(x)=∇νf(a) +
∫ x

a

f ′′(y)dµ(y), x ∈ K}, (3)

the following properties are easy to show:

Proposition 2.1. (i) Dµ,ν
2 ⊂ Dν

1 ⊂ C(K) ⊂ L2(K, µ) ∩ L2(K, ν).

(ii) If L 6= K, then according to the notation of (2), for any f ∈ Dµ,ν
2

∇νf(x) ≡ ∇νf(ci), x ∈ (ci, di) ∩K, i = 1, 2, . . . ;

i.e., for any function f ∈ Dµ,ν
2 the ν–derivative ∇νf is uniquely deter-

mined on all of K by its values on the subset L.
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(iii) Under the same assumptions as made in (ii), we have for any f ∈ Dµ,ν
2 :

f(x) = f(ci) +∇νf(ci) · ν([ci, x)), x ∈ (ci, di) ∩K, i = 1, 2, . . . ;

i.e., every function f ∈ Dµ,ν
2 itself is uniquely determined on all of K by

its values on L.

(iv) The function f ′′ defined by (3) is unique in L2(L, µ).

We define the µ-ν-Laplacian of f ∈ Dµ,ν
2 by

∆µ,νf = ∇µ
(
∇νf

)
=

d

dµ

( df

dν

)
:=

{
f ′′ on L

0 on K \ L

where f ′′ is given by (3). Note that for f ∈ Dµ,ν
2 the function ∇νf is ν-unique

and continuous on K and therefore unique on K. From Proposition 2.1, (iv)
it follows that

∆µ,ν : Dµ,ν
2 ⊆ L2(K, µ) → L2(K, µ)

is well defined.

Remark 2.2. As Dµ,ν
2 is the set of all functions f : K → R such there exist

functions f ′ ∈ L2(K, ν) and f ′′ ∈ L2(L, µ) with f(x) = f(a) +
∫ x

a
f ′(y) dν(y),

x ∈ K, and f ′(y) = f ′(a) +
∫ y

a
f ′′(z) dµ(z), y ∈ K, we infer by Fubini’s

theorem the following representation of f ∈ Dµ,ν
2 .

f(x) = f(a) +∇νf(a) · ν([a, x)) +
∫ x

a

ν([y, x))∆µ,νf(y) dµ(y), x ∈ K.

We now introduce Dirichlet and Neumann boundary conditions, respec-
tively:

Dµ,ν
2,D :={f ∈ Dµ,ν

2 : f(a) = f(b) = 0} (4)

and

Dµ,ν
2,N :={f ∈ Dµ,ν

2 : ∇νf(a) = ∇νf(b) = 0}. (5)

The restriction of ∆µ,ν on Dµ,ν
2,D (or Dµ,ν

2,N , resp.) is called Dirichlet-µ-ν-
Laplacian (or Neumann-µ-ν-Laplacian, resp.) and we denote it by ∆µ,ν

D (or
∆µ,ν

N , resp.). In [2] is shown that ∆µ,ν
D and ∆µ,ν

N are negative symmetric op-
erators on L2(K, µ). Moreover, the eigenvalues of ∆µ,ν

D (or ∆µ,ν
N , resp.) have

finite multiplicities. They form a countable sequence which has no accumula-
tion point except −∞. Thus, we are allowed to define the eigenvalue counting
function of −∆µ,ν

D/N given by

Nµ,ν
D/N (x) := #

{
κk ≤ x : κk is eigenvalue of −∆µ,ν

D/N

}
(6)
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– counting according to multiplicities. Further, in [2] is obtained that the
domains Dν

1 , Dµ,ν
2 , Dµ,ν

2/D and Dµ,ν
2/N defined by (1), (3), (4) and (5) are dense

subspaces of L2(K, µ).

Remark 2.3. By Hµ,ν , we denote the space of the ∆µ,ν-harmonic functions;
i.e.,

Hµ,ν := {f ∈ Dµ,ν
2 : ∆µ,νf ≡ 0}.

It is easy to see that dimR Hµ,ν = 2 and Dµ,ν
2 = Dµ,ν

2,D ⊕Hµ,ν .

In the following theorem, we state that every boundary value problem has
a unique solution. This solution is given with respect to a kernel, which is
given in terms of the measure ν.

Theorem 2.4 (see [2]). For any function f ∈ L2(K, µ) and for any boundary
values u(a) and u(b), the equation

∆µ,νu = f

has a solution u ∈ Dµ,ν
2 . Further, u is unique in L2(K, µ) and has the repre-

sentation

u(x) = u(a)ν([x, b)) + u(b)ν([a, x))−
∫ b

a

gν(x, y)f(y) dµ(y), x ∈ K,

where gν(., .) denotes the ν-Green function, which is given on K ×K by

gν(y, x) = gν(x, y) :=

{
ν([a, x))ν([y, b)) for x ≤ y

ν([a, y))ν([x, b)) for x > y.

3 Dirichlet Forms and Dirichlet-Neumann-Bracketing.

In this section, we recall the definition of a Dirichlet form and present the
technique of the so-called Dirichlet-Neumann-bracketing which goes back to
Métivier [12] and Lapidus [10]. A general survey on Dirichlet forms can be
found, for example, in [5] or [11].

Let X be a compact set, and let τ be a Borel measure on X.

Definition 3.1. Let F be a dense subspace of the Hilbert space L2(X, τ)
equipped with the scalar product

〈u, v〉L2(X,τ) :=
∫

X

uv dτ,
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and let E be a positive definite symmetric bilinear form on F .
Then we call the pair (E ,F) a Dirichlet form on L2(X, τ) if the following
properties hold:
(i) For any α > 0, we define

Eα(u, v) := E(u, v) + α〈u, v〉L2(X,τ).

Then (F , Eα) has to be a Hilbert space for any α > 0.
(ii) (Markov property:) For any u ∈ F we define the function ū by

ū(x) :=


1 if u(x) > 1,

0 if u(x) < 0,

u(x) otherwise.

Then ū has to be in F and E(ū, ū) ≤ E(u, u).

Remark 3.2. If (F , E1) is a Hilbert space, it is every (F , Eα), α > 0 (see, for
example, [11]).

Now we formulate the eigenvalue problem associated with a Dirichlet form.

Definition 3.3. Let (E ,F) be a Dirichlet form on L2(X, τ). If for a function
u ∈ F

E(u, v) = λ〈u, v〉L2(X,τ), ∀ v ∈ F ,

then we call λ an eigenvalue of the form (E ,F), and u is a corresponding
eigenfunction.

Following [8], we introduce the technique of of the Dirichlet-Neumann-
bracketing.

Let (E ,F) be a Dirichlet form on L2(X, τ) such that the eigenvalues of
(E ,F) form a sequence of real, nonnegative numbers with finite multiplicities
which have no accumulation point except +∞. (For example, it is sufficient
that for some fixed α > 0 the natural inclusion (F , Eα) ↪→ L2(X, τ) is a
compact operator, see [8].) Then, the eigenvalue counting function N(x; E ,F)
of (E ,F)

N(x; E ,F) := #{i ≥ 1 : λi ≤ x}

is well defined, where {λi}∞i=1 denotes the increasing sequence of the eigenval-
ues of (E ,F), according to multiplicities. These eigenvalues are given by the
following Maximum–Minimum–principle (see Reed and Simon, [15]).
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Proposition 3.4. Let {λi}∞i=1 denote the sequence of the eigenvalues of (E ,F)
as introduced above and fix α > 0. Then

(λi + α)−1/2 = di−1 (Sα(F)) ,

where Sα(B) is defined by

Sα(B) := {u ∈ B ∩ F : Eα(u, u) ≤ 1}, B ⊂ L2(X, τ),

and di = di(Sα(B)), i ≥ 0 is given by

di := inf
{

sup
x∈Sα(B)

inf
y∈Y

||x− y||L2(X,τ)

/
Y ⊆ L2(X, τ) is a subspace

with dimY = i
}

.

Remark 3.5. If B ⊆ Y, where Y is a n-dimensional subspace of L2(X, τ),
then it follows that di(Sα(B)) = 0 for i ≥ n.

From Proposition 3.4 we conclude that

N(x; E ,F) = #{i ≥ 0 : di (Sα(F)) ≥ (x + α)−1/2}.

Now we introduce the technique of the Dirichlet-Neumann-bracketing.
Let (E ′,F ′) be another Dirichlet form on L2(X, τ) such that F ′ ⊆ F is a closed
subspace, and E ′ is given by E ′ := E|F ′×F ′ . The following property gives a
relation between the eigenvalue counting functions N(x; E ,F) and N(x; E ′,F ′)
(for the proof we refer to [8]):

Proposition 3.6. If dim(F/F ′) < ∞, then for any x ≥ 0.

N(x; E ′,F ′) ≤ N(x; E ,F) ≤ N(x; E ′,F ′) + dimF/F ′.

4 The ν-Dirichlet Form.

Suppose we are given two measures ν and µ with supp µ = L ⊂ K = supp ν
as in Section 2. Furthermore, as above, Dν

1 denotes the space of all functions
possessing a ν-derivative in L2(K, ν). We define the following nonnegative
symmetric bilinear form Eν on Dν

1 .

Eν(f, g) :=
∫ b

a

∇νf(x)∇νg(x)dν(x) = 〈∇νf,∇νg〉ν , f, g ∈ Dν
1 .

Then the following holds.
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Theorem 4.1. (Eν ,Dν
1 ) is a Dirichlet form on L2(K, µ).

Proof. We have to show:

(i) Dν
1 ⊂ L2(K, µ) is a dense subspace.

(ii) (Dν
1 , Eν

1 ) is a Hilbert space.

(iii) The Markov property holds.

(i) The density of Dν
1 in L2(K, µ) is proved in [2], Corollary 6.4.

(ii) Obviously, Eν
1 defines a scalar product on Dν

1 , therefore (Dν
1 , Eν

1 ) is a
pre-Hilbert space. It remains to show that Dν

1 is complete w.r.t. to the norm√
Eν
1 . Let (un) ⊂ Dν

1 be a Cauchy sequence w.r.t.
√
Eν
1 ; i.e.,

||∇νun −∇νum||2|L2(K,ν) + ||un − um||2|L2(K,µ) → 0, n,m →∞.

As L2(K, ν) and L2(K, µ) are Hilbert spaces, there exist functions f ∈ L2(K, ν)
and u ∈ L2(K, µ) such that

||∇νun − f ||2|L2(K,ν) → 0, n →∞,

and
||un − u||2|L2(K,µ) → 0, n →∞.

Because of ∫
K

∣∣∣∣∫ x

c

(f(z)−∇νun(z)) dν(z)
∣∣∣∣ dµ(x)

≤
∫

K

∫
K

|f(z)−∇νun(z)| dµ(x)dν(z) → 0, n →∞,

we obtain ∫
K

∣∣∣∣u(x)− u(c)−
∫ x

c

f(z)dν(z)
∣∣∣∣ dµ(x)

= lim
k→∞

∫
K

∣∣∣∣unk
(x)− unk

(c)−
∫ x

c

∇νunk
(z)dν(z)

∣∣∣∣ dµ(x) = 0.

Hence,

u(x) = u(c) +
∫ x

c

f(z)dν(z) (7)

holds for µ-almost every x and for µ-almost every c in K; i.e., (7) holds in
L2(K, µ). Thus, we conclude that u is in Dν

1 with ∇νu = f and therefore
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Eν
1 (un, u) → 0 as n →∞.

(iii) Choose u ∈ Dν
1 ; i.e., there exists a function ∇νu ∈ L2(K, ν) with

u(x) = u(a) +
∫ x

a

∇νu(y)dν(y), x ∈ K.

Setting ū = 0 ∨ u ∧ 1, we define the function ∇ν ū in L2(K, ν) by

∇ν ū(y) :=

{
∇νu(y) y ∈ A := K ∩ {0 ≤ u(y) ≤ 1}
0 y ∈ B := K \A

Obviously,

ū(x) = ū(a) +
∫ x

a

∇ν ū(y)dν(y), x ∈ K,

and therefore we infer ū ∈ Dν
1 . The definition of ∇ν ū yields immediately

Eν(ū, ū) ≤ Eν(u, u).

Remark 4.2. As in the classical Lebesgue case we have the Gauß-Green-
formula (see [2], Proposition 3.1.):∫ b

a

(∆µ,νf, g) dµ = (∇νf) g
∣∣b
a
− Eν(f, g) f ∈ Dµ,ν

2 , g ∈ Dν
1 . (8)

Remark 4.3. From Dν
1 ⊆ C(K) we obtain that C0(K) ∩ Dν

1 is dense in Dν
1

w.r.t. the norm
√
Eν
1 and dense in C0(K) w.r.t. the norm || · ||∞. Hence, the

form (Eν ,Dν
1 ) is a regular Dirichlet form on L2(K, µ). Moreover, it is easy to

see that (Eν ,Dν
1 ) is local. From the theory of Dirichlet forms it follows (see,

for example, [11]) that there exists an associated strong Markovian process
with almost surely continuous paths on L. In the special case of the operator
d

dµ
d
dx ; i.e., ν is just given by Lebesgue measure, these operators have already

been studied. The corresponding stochastic processes are the so-called quasi-,
or gap-diffusions (see, for exp, [7], [9]).

Remark 4.4. Obviously, the functions φν
C , C ∈ R, defined by φν

C(x) :=
C · ν([a, x)), x ∈ K, are in Dν

1 , their ν-derivative is given by ∇νφν
C ≡ C.

Hence, Eν(φν
C , φν

C) = C2; i.e., the form (Eν ,Dν
1 ) is non vanishing.

5 Application of the Dirichlet-Neumann-Bracketing.

In the present section, we show that the eigenvalue problem for the ν-Dirichlet
form (Eν ,Dν

1 ) and the eigenvalue problem for the negative Neumann-µ-ν-
Laplacian −∆µ,ν

N are equivalent. Moreover, we define another Dirichlet form
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which is in the same correspondence with the Dirichlet-µ-ν-Laplacian ∆µ,ν
D .

The aim of this construction is to get from Proposition 3.6 estimations for the
eigenvalue counting functions of the Laplacian Nµ,ν

N (·) and Nµ,ν
D (·) introduced

in (6).
Let (Eν ,Dν

1 ) be the ν–Dirichlet form defined in Section 4.

Proposition 5.1. For any λ ∈ R and any function u ∈ Dν
1

Eν(u, v) = λ〈u, v〉µ, for every v ∈ Dν
1 ,

(i.e., u is an eigenfunction of (Eν ,Dν
1 ) to the eigenvalue λ) if and only if

u ∈ Dµ,ν
2,N and ∆µ,νu = −λu

(i.e., u is a Neumann-eigenfunction of ∆µ,ν to the eigenvalue − λ).

In order to prove this proposition we make use of the following lemma.

Lemma 5.2. For any x ∈ K let gν,x(y) := gν(x, y), where gν(x, y) is the
ν-Green function given in Theorem 2.4. Then:

(i) gν,a ≡ gν,b ≡ 0

(ii) For any x ∈ K, gν,x is in Dν
1 and

Eν(gν,x, f) = f(x)− f(a)φν
a(x)− f(b)φν

b (x), f ∈ Dν
1 ,

where φν
a and φν

b are special µ-ν-harmonic functions given by

φν
a(x) := ν([x, b)) and φν

b (x) := ν([a, x)).

(iii) Eν(gν,x, gν,x) = gν(x, x), x ∈ K.

Proof. (i) This assertion follows immediately from the definition of gν(x, y).

(ii) Obviously, it holds that ∇νν([a, ·)) ≡ 1 and ∇νν([·, b)) ≡ −1, therefore
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we have for fixed x ∈ K: gν,x ∈ Dν
1 and

Eν(gν,x, f) =
∫ b

a

∇νgν,x(y)∇νf(y) dν(y)

=
∫ x

a

∇ν
[
ν([a, y))ν([x, b))

]
∇νf(y) dν(y)

+
∫ b

x

∇ν
[
ν([a, x))ν([y, b))

]
∇νf(y) dν(y)

=ν([x, b))
∫ x

a

∇νf(y)dν(y)− ν([a, x))
∫ b

x

∇νf(y) dν(y)

=ν([x, b))
[
f(x)− f(a)

]
− ν([a, x))

[
f(b)− f(x)

]
=f(x)− f(a)φν

a(x)− f(b)φν
b (x).

(iii) From (i), (ii) and the symmetry of gν(x, y) we obtain

Eν(gν,x, gν,x) =gν,x(x)− gν,x(a)φν
a(x)− gν,x(b)φν

b (x)

=gν,x(x)− gν,a(x)φν
a(x)− gν,b(x)φν

b (x)
=gν,x(x) = gν(x, x).

Proof of Proposition 5.1. First, we assume that Eν(u, v) = λ〈u, v〉µ for
every v ∈ Dν

1 , and we choose v = gν,x, x ∈ K fixed. According to Lemma 5.2
(ii) the function gν,x is in Dν

1 , and

u(x)− u(a)ν([x, b))− u(b)ν([a, x)) =Eν(gν,x, u) = λ〈u, gν,x〉µ,

=λ

∫ b

a

u(y)gν(x, y)dµ(y).

This is true for any x ∈ K. Hence we infer from Theorem 2.4 that u is in Dµ,ν
2

and ∆µ,νu = −λu on L2(K, µ). Moreover, (8) yields

λ〈u, v〉µ = Eν(u, v) = (∇νu) v|ba − 〈∆µ,νu, v〉µ
=(∇νu) v|ba + λ〈u, v〉µ, ∀v ∈ Dν

1 .

From this we obtain ∇νu(a) = ∇νu(b) = 0; i.e., u ∈ Dµ,ν
2,N .

The converse is an immediate consequence of formula (8).

Now we define the closed subspace of Dν
1 by

Dν
1,D := {f ∈ Dν

1 : f(a) = f(b) = 0},
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and we consider the restriction of Eν to this subspace Eν
0 := Eν

|Dν
1,D×Dν

1,D
.

Analogous to Proposition 5.1, we have the following.

Proposition 5.3. (i) (Eν
0 ,Dν

1,D) is a Dirichlet form on L2(K, µ).

(ii) For any λ ∈ R, u ∈ Dν
1,D

Eν
0 (u, v) = λ〈u, v〉µ, for every v ∈ Dν

1,D,

(i.e., u is an eigenfunction of (Eν
0 ,Dν

1,D) to the eigenvalue λ) if and only
if

u ∈ Dµ,ν
2,D and ∆µ,νu = −λu

(i.e., u is a Dirichlet–eigenfunction of ∆µ,ν to the eigenvalue − λ).

Proof. Note that Dν
1 = Dν

1,D⊕Hµ,ν , whereHµ,ν is the space of µ-ν-harmonic
functions introduced in Remark 2.3. From dimHµ,ν = 2 we obtain that Dν

1,D

is dense in L2(K, µ) because Dν
1 is dense in L2(K, µ). The rest of the proof is

a simple modification of the proofs of Theorem 4.1 and Proposition 5.1.

From Proposition 5.1 and Proposition 5.3, we obtain for any x ≥ 0:

Nµ,ν
N (x) = N(x; Eν ,Dν

1 ) (9)

and

Nµ,ν
D (x) = N(x; Eν

0 ,Dν
1,D), (10)

where N(x; E ,F) denotes the eigenvalue counting function of the Dirichlet
form (E ,F). In particular, we conclude the following.

Corollar 5.4. The eigenvalues of −∆µ,ν
N (or −∆µ,ν

D , respectively) are given
by the Maximum-Minimum-principle stated in Proposition 3.4 where one has
to set F = Dν

1 (or F = Dν
1,D, respectively) and Eα = Eν

α.

Finally, we get from Proposition 3.6, Remark 2.3 and the equalities (9) and
(10) the following estimation.

Proposition 5.5. For any real number x ≥ 0

Nµ,ν
D (x) ≤ Nµ,ν

N (x) ≤ Nµ,ν
D (x) + 2.

Remark 5.6. The last proposition is a crucial tool in determining the spectral
asymptotics of the Dirichlet-and Neumann-Laplacians in the case of self similar
measures (see [3]).
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6 Self-Similar Measures and Variational Fractals.

In this section we restrict ourselves to the case where ν and µ are the same and,
in addition, self similar measures. This makes it possible to extend the notion
of a “variational fractal” to a certain class of disconnected fractal subsets of
the real line. For the definition of self-similar sets and self-similar measures,
we refer the reader to [1] and [6].

Let K be the unique self similar set with respect to a finite family of
affine contractions S = {S1, . . . , SN} from [a, b] to [a, b] with contraction ra-
tios r1, . . . , rN such that the images Si[a, b] and Sj [a, b] intersect in at most
one point for i 6= j. Without loss of generality, we assume that a, b ∈ K.
Furthermore, we are given a vector of weights ρ = (ρ1, . . . , ρN ); i.e., ρi ∈
(0, 1), i = 1 . . . N ,

∑N
i=1 ρi = 1. Then there exists a unique self similar mea-

sure µ = µ(S, ρ) with respect to S and ρ; i.e.,

µ(A) =
N∑

i=1

ρiµ(S−1
i A)

for any Borel set A in [a, b].
Now we assume that ν = µ = µ(S, ρ); i.e, the measures are equal and

given as a self similar measure w.r.t. a family of contractions S and weights
ρ as described above. In this case, the eigenvalue counting function behaves
asymptotically under both, Dirichlet and Neumann boundary conditions, as
follows (see [4] for the proof):

Nµ,µ
D/N (x) � x1/2, x →∞; (11)

i.e., there exist positive constants C1, C2 and x0, such that

C1x
1/2 ≤ Nµ,µ

D/N (x) ≤ C2x
1/2, x ≥ x0.

Now we introduce the notion of a variational fractal which goes back to
Mosco (see [13]).

Definition 6.1. A triple (K, µ, E) is called a variational fractal if the following
is satisfied.

(i) E is a strongly local, regular, non vanishing Dirichlet form on L2(K, µ)
with domain F .

(ii) E satisfies the scaling property; i.e., there exists a constant σ < 1, s.t.

E(u, u) =
N∑

i=1

[µ(SiK)]σ E(u ◦ Si, u ◦ Si), u ∈ F . (12)
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Proposition 6.2. (K, µ, Eµ) with the previous properties is a variational frac-
tal with σ = −1.

Proof. According to Theorem 4.1, Remark 4.3 and Remark 4.4 we only have
to show the scaling property. By the self similarity of the measure µ we have
µ Si[a, b] = ρiµ ◦ S−1

i Si[a, b], i = 1 . . . N , and therefore we obtain

Eµ(f, g) =
∫ b

a

(∇µf)(∇µg)dµ =
N∑

i=1

∫ Sib

Sia

(∇µf) (∇µg) dµ

=
N∑

i=1

ρi

∫ Sib

Sia

(∇µf) (y) (∇µg) (y)dSiµ(y)

=
N∑

i=1

ρi

∫ b

a

(∇µf) (Siy) (∇µg) (Siy)dµ(y).

Note that ∇µf(Si(y)) = ρ−1
i ∇µ(f ◦ Si)(y), i = 1 . . . N . Hence, we obtain

Eµ(f, g) =
N∑

i=1

ρ−1
i

∫ b

a

∇µ (f ◦ Si) (y)∇µ (g ◦ Si) (y)dµ(y),

which yields the assertion.

Remark 6.3. In [14], Posta proved that the eigenvalue counting function
of the Laplacian which is associated with the Dirichlet form of a variational
fractal behaves asymptotically like xν/2, where ν = 2

1−σ and σ is the exponent
in the scaling property (12). This coincides with our result (11).

Remark 6.4. Obviously, the notion of a variational fractal does not make
sense if µ and ν are different measures, even not if supp µ = supp ν.
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[9] U. Küchler, Some asymptotic properties of the transition densities of one-
dimensional quasidiffusions, Publ. RIMS, Kyoto Univ., 16, No. 1 (1980),
245–268.

[10] M. L. Lapidus, Fractal drum, inverse spectral problems for elliptic opera-
tors and a partial resolution of the Weyl-Berry conjecture, Trans. Amer.
Math. Soc., 325, No. 2 (1991), 465–529.
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