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Abstract

Let I be an admissible (i.e., proper and containing all finite subsets
of N+) ideal of subsets of the set N+ of positive integers. The concept
of I-convergence of sequences in metric spaces generalizes the concept
of statistical convergence and also the usual concept of convergence of
sequences.

In this paper we investigate some problems concerning the sets of
I-cluster points and, in particular, the sets of statistical cluster points
of sequences in metric spaces which are known to be closed sets.

In the first part of the paper we give a sufficient condition on a se-
quence x = (xn)∞n=1 in a boundedly compact metric space which ensures
the connectedness of the set of all statistical cluster points of x.

If Γx(I) denotes the set of all I-cluster points of the sequence x and
M is a set of sequences in a metric space X such that, for each x ∈ M ,
Γx(I) 6= ∅, then the assignment x 7→ Γx(I) gives a map M → F where
F is the set of all non-empty closed subsets of the space X or M → C
where C is a suitable subset of F .

In the second part of the paper we study the continuity of this map
with respect to the sup-metric on M and some standard hypertopolo-
gies on C (the Vietoris topology, the Fell topology, the proximal topology
and the topology given by the Hausdorff metric). We obtain some pos-
itive results in the case of locally compact and, particularly, boundedly
compact metric spaces.
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1 Introduction.

Let (X, %) be a metric space. The notion of a statistically convergent sequence
of points of a metric space can be defined using the asymptotic density of
subsets of the set of positive integers N+ = {1, 2, . . .} (cf. [7]). For any
A ⊆ N+ and n ∈ N+ let

A(n) := cardA ∩ {1, 2, . . . , n}

and we define lower and upper asymptotic density of the set A by the formulas

d(A) := lim inf
n→∞

A(n)
n

, d(A) := lim sup
n→∞

A(n)
n

.

If d(A) = d(A) =: d(A), then the common value d(A) is called the asymptotic
density of the set A and

d(A) = lim
n→∞

A(n)
n

.

Obviously all three densities d(A), d(A) and d(A) (if they exist) lie in the unit
interval [0, 1].

The notion of statistical convergence was originally defined for sequences
of numbers in the paper [4] and also in [11]. The idea of statistical convergence
can be easily generalized to sequences of points of a metric space (see [7]).

We say that a sequence x = (xn)∞1 of points of a metric space (X, %)
statistically converges to a point ξ ∈ X if for each ε > 0 we have d(A(ε)) = 0,
where

A(ε) := {n ∈ N+ : %(xn, ξ) ≥ ε}

and in such a situation we write ξ = lim stat x or in more detail ξ = lim stat xn.
The notion of statistical convergence was further generalized in the paper

[8] using the notion of an ideal of subsets of the set N+. We say that a non-
empty family of sets I ⊆ P(N+) is an ideal on N+ if I is hereditary (i.e.,
B ⊆ A ∈ I ⇒ B ∈ I) and additive (i.e., A,B ∈ I ⇒ A ∪ B ∈ I). An ideal
I on N+ for which I 6= P(N+) is called a proper ideal. A proper ideal I is
called admissible if I contains all finite subsets of N+. If not otherwise stated
in the sequel I will denote an admissible ideal.

Recall the generalization of statistical convergence from [8].
Let I be an admissible ideal on N+ and x = (xn)∞1 be a sequence of points

in a metric space (X, %). We say that the sequence x is I-convergent (or I-
converges) to a point ξ ∈ X, and we denote it by I - lim x = ξ, if for each
ε > 0 we have

A(ε) = {n ∈ N+ : %(xn, ξ) ≥ ε} ∈ I.
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This generalizes the notion of usual convergence, which can be obtained when
we take for I the ideal If of all finite subsets of N+. A sequence is statistically
convergent if and only if it is Id-convergent, where Id := {A ⊆ N+ : d(A) = 0}
is the admissible ideal of the sets of zero asymptotic density.

Many other types of I-convergence are obtained by specifying the ideal.
Here we mention just two other types of I-convergence introduced in the paper

[9]. Let g : N+ → R+; and
∞∑

n=1
g(n) = +∞. Then it is easy to verify that

Ig := {A ⊆ N+ :
∑
n∈A

g(n) < +∞}

is an ideal on N+. For the special case when g(n) = 1
n for n = 1, 2, . . . the

ideal Ig is denoted Ic in [8].

Let us consider an infinite sequence e : N+ → R+ with
∞∑

n=1
e(n) = +∞ and

lim
n→∞

e(n)∑
k<n

e(k)
= 0.

Then we define the Erdös-Ulam ideal by

Ie = {A ⊆ N+ : lim
n→∞

∑
{e(k) : k < n, k ∈ A}∑

k<n

e(k)
= 0}.

Statistical convergence and its generalization I-convergence, enable us to
introduce notions of statistical limit point and a statistical cluster point of a se-
quence, or their generalizations I-limit point and I-cluster point, respectively
(cf. [6], [8], [9], [10]).

Since statistical convergence is in fact Id-convergence we recall those no-
tions for I-convergence only.

Definition. Let (X, %) be a metric space and x be a sequence in X.

(a) A point ξ ∈ X is called an I-limit point of a sequence x if there is a set
K = {k1 < k2 < . . .} ∈ P(N+) \ I such that lim

n→∞
xkn

= ξ. The set of

all I-limit points of a sequence x will be denoted Λx(I) or just Λx for
statistical convergence.

(b) A point ξ ∈ X is called an I-cluster point of a sequence x if for any
ε > 0, {n ∈ N+ : %(xn, ξ) < ε} /∈ I. The set of all I-cluster points of x
will be denoted Γx(I) or just Γx for statistical convergence.
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In the papers [6], [7], [8] some basic properties of the sets Λx and Γx were
studied. It was proved in [8] that the set Γx(I) is closed in (X, %) for any
admissible ideal I. Note that if I is an admissible ideal, then any convergent
sequence in (X, %) is I-convergent. In this paper we will study some topological
properties of the sets Γx(I), in particular, we will study connectedness of the
set Γx(I) and also some topological properties of the mapping x 7→ Γx(I).

2 Basic Topological Properties of the Sets Γx(I).

Let (X, %) be a metric space and x = (xn)∞1 be a sequence in X. We denote
by s(X) the set of all sequences in X and bs(X) is the set of all bounded
sequences from s(X). For any x ∈ s(X) let Lx denote the set of all limit
points ξ (accumulation points) of the sequence x; i.e., ξ ∈ Lx if there exists an
infinite set K = {k1 < k2 < . . .} ⊆ N+ such that lim

n→∞
xkn

= ξ or equivalently

lim
n→∞

%(xkn , ξ) = 0. When I is an admissible ideal then obviously we have

Λx(I) ⊆ Γx(I) ⊆ Lx. (1)

The following examples show that the inclusions in (1) can be strict.

Example 2.1. a) Let X = R (with the usual euclidean metric). We decom-
pose the set N+ into countably many disjoint sets

Np := {2p−1(2k − 1) : k ∈ N+}, (p = 1, 2, . . .).

It is obvious that N+ =
∞⋃

p=1
Np and it can be easily shown that the asymptotic

density of Np is d(Np) = 1
2p (p = 1, 2, . . .). Let us define the sequence x =

(xn)∞1 with general term xn = 1
p if n ∈ Np (p = 1, 2, . . .). This is well-

defined since the sets Np are pairwise disjoint. One can show easily that Lx =
Γx(Id) = {0, 1, 1

2 , . . .} and Λx(Id) = {1, 1
2 , . . .}. Therefore Λx(I) ( Γx(I).

b) Let us take X = R and xn = (−1)n−1 (n = 1, 2, . . .). Then one can
show easily that Lx = Γx(Id) = Λx(Id) = {−1, 1}.

c) Let X = R and define xn = 1 if n = k2 for some k ∈ N+ and xn = 0
otherwise. Then Λx(Id) = Γx(Id) = {0} and Lx = {0, 1} and so we have
Γx(Id) ( Lx.

d) The sets Λx(I), Γx(I) can be empty when diam X = sup
α,β∈X

%(α, β) =

+∞. In such spaces we can inductively define the sequence (xn)∞1 with
%(xi, xj) ≥ 1 for i 6= j. Then Lx = ∅ and consequently due to (1) we get
Λx(I) = Γx(I) = ∅.
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e) Let (r1, r2, . . .) be an injective sequence of all rationals of [0, 1] and let

X = R. Using the partition of N+ =
∞⋃

p=1
Np from a) we can define a sequence

(xn)∞1 taking xn = rp if n ∈ Np (n = 1, 2, . . .). Then Lx = [0, 1] = Γx(Id) and
Λx(Id) = {r1, r2, . . .}.

Considering the previous examples the following question arises. When
can one claim the set Γx(I) is a connected set? We know that the set Γx(I) is
always a closed set, but the foregoing examples show that for some sequences
it can be a connected set and for other sequences it is not a connected set. The
problem of connectedness of Lx was studied in [1] and the following theorem
was proved.

Theorem A. Let (X, %) be a metric space and x = (xn)∞1 ∈ s(X) be a
sequence satisfying the condition

lim
n→∞

%(xn, xn+1) = 0. (2)

Then the set Lx is a connected set in X.

It seems that the set Γx(I) has a more complicated structure, since con-
dition (2) above is not sufficient to ensure the connectedness of the set Γx(I)
as the following example shows.

Example 2.2. Let us take X = R, I = Id. Fridy showed in [5] the following
Cauchy-type characterization of statistically convergent sequences:

A sequence x = (xn)∞1 is statistically convergent if and only if

∀ε > 0 ∃Nε ∈ N+ : d({n : |xn − xNε | < ε}) = 1 (C)

So if (C) is satisfied, then x statistically converges to a point ξ and therefore
Γx(Id) = {ξ} which is a connected set. We are going to construct a sequence
satisfying condition (2) and also a condition weaker than (C); namely,

∀ε > 0 ∃Nε ∈ N+ : d({n : |xn − xNε
| < ε}) = 1 (C∗)

and nevertheless the set Γx(Id) is disconnected.

Let A :=
∞⋃

k=2

Ak with Ak = {kk2
+ 1, kk2

+ 2, . . . , k(k+1)2 − (k + 1)} (k =

2, 3, . . .). It can be seen easily that d(A) = 1.
Let us also define the sets

B1 := {1, 2, 3, . . . , 222
},

Bk := {k(k+1)2 − k, k(k+1)2 − (k − 1), . . . , k(k+1)2 − 1, k(k+1)2}



570 J. Činčura, T. Šalát, M. Sleziak and V. Toma

(k = 2, 3, . . .). The blocks Ak, Bk taken in the natural order of N+ form the
sequence

B1, A2, B2, A3, B3, . . .

Since d(A) = 1 we have at once that d(B) = 0 with B :=
∞⋃

k=1

Bk. Let us take

A∗1 :=
∞⋃

k=2

A2k−1, A∗2 :=
∞⋃

k=1

A2k.

Then it is easy to see that d(A∗1) = d(A∗2) = 1 Now we can define a sequence
x := (xn)∞1 by

xn =

{
0, if n ∈ B1 ∪A∗2
1, if n ∈ A∗1.

Between the blocks A2k, A2k+1 there is the block B2k with 2k+1 elements. The
values of x are elements of the interval [0, 1] and we make the equidistant parti-
tion of the interval [0, 1] into the intervals: [0, 1

2k+2 ], [ 1
2k+2 , 2

2k+2 ], . . . , [ 2k+1
2k+2 , 1].

If n ∈ B2k, then n = (2k)(2k+1)2 − r for some 0 ≤ r ≤ 2k and we put
xn := 2k−r+1

2k+2 . We continue the same way from 2k+2
2k+3 to 1

2k+3 when defining
xn for n ∈ B2k+1. If k ≥ 2 and k(k+1)2 < n < (k + 1)(k+1)2 + 1, then xn = xl

where l = (k + 1)(k+1)2 + 1.
The sequence (xn)∞1 defined in that way satisfies condition (2). We show

that it satisfies also condition (C∗). For an arbitrarily chosen ε > 0 let us
choose Nε such that Nε ∈ A∗1 or Nε ∈ A∗2. In both cases we have

d({n : |xn − xNε
| < ε}) = 1

since if Nε ∈ A∗1, then |xn − xNε | < ε is satisfied for all elements of A∗1 and
similarly when Nε ∈ A∗2.

Obviously Γx(Id) = {0, 1} and this is a disconnected set.

The previous example shows that the condition (2) must be strengthened
to ensure the connectedness of Γx(I).

The following theorem was inspired by the papers [1] and [12].
Recall that a metric space (X, %) is called boundedly compact if each closed

bounded subset of (X, %) is compact.

Theorem 2.1. Let (X, %) be a boundedly compact metric space. Let x =
(xn)∞1 ∈ bs(X) satisfy the condition

∃c > 1 : lim
n→∞

M (c)
n = 0 (3)
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where M
(c)
n := max{%(xk, xn) : n ≤ k ≤ [cn]} and [cn] is the integer part of

cn. Then Γx(Id) is a connected set.

Proof. Condition (3) obviously implies (2) and condition (2) ensures by The-
orem A the connectedness of Lx. So it suffices to prove that the assumptions
of Theorem 2.1 imply

Lx = Γx(Id) (4)

Taking into consideration (1) it is sufficient to prove

Lx ⊆ Λx(Id) (4’)

To prove (4’) let us choose α ∈ Lx. Then there exists a set

K = {k1 < k2 < . . .} ⊆ N+,

such that lim
n→∞

xkn
= α. If we consider the set

H(K) =
⋃

k∈K

{k, k + 1, . . . , [ck]} ⊆ N+,

a simple estimate gives

H(K)([ck])
[ck]

≥ [ck]− k

[ck]
→ 1− 1

c
> 0 (if k →∞)

Therefore d(H(K)) > 0. To finish the proof of (4’) it suffices to show that

lim
n→∞

n∈H(K)

xn = α. (5)

As xkn
→ α there exists an n0 ∈ N+ such that for every n ≥ n0 we have

%(xkn , α) <
ε

2
. (6)

We can suppose n0 to be so large that

∀n ≥ kn0 : M (c)
n <

ε

2
. (7)

Let us choose l ∈ H(K), l ≥ kn0 . Then there is n ≥ n0 such that

l ∈ {kn, kn + 1, . . . , [ckn]}.



572 J. Činčura, T. Šalát, M. Sleziak and V. Toma

So we have l ≥ kn ≥ kn0 and following (7) we get

%(xl, xkn) <
ε

2
. (8)

Using the triangle inequality we get from (6) and (8)

%(xl, α) ≤ %(xl, xkn
) + %(xkn

, α) <
ε

2
+

ε

2
= ε.

Therefore %(xl, α) < ε for l ≥ kn0 and we have proved (5).

Remark. Assumptions of Theorem 2.1 allowed us to prove the equality Lx =
Λx(Id) but this equality is neither necessary nor sufficient to ensure the con-
nectedness of Γx(I) as can be seen from the Example 2.1 b), e).

3 Properties of the Mapping ΓI : x 7→ Γx(I).

Let (X, %) be a metric space, let s(X) be the set of all sequences in X and I
be an admissible ideal on the set N+. If we assign to any sequence x ∈ s(X)
the set Γx(I) of all its I-cluster points, then we obtain a mapping of s(X) to
P(X). In [8] it is proved that for any admissible ideal I on N+ the set Γx(I)
is closed in (X, %) for each x ∈ s(X). Denote by cs(X) the set of all x ∈ s(X)
with Γx(I) 6= ∅ and by F the set of all non-empty closed subsets of (X, %).
Then for any non-empty subset M ⊆ cs(X) the assignment x 7→ Γx(I) defines
a mapping ΓI : M → F . In this section we want to investigate the continuity
of the mapping ΓI with respect to suitable topologies on M and on F . It
seems to be natural to endow the set M with the sup-metric σ defined by

σ(x, y) = min{sup
n≥1

%(xn, yn), 1}

or, equivalently,
σ(x, y) = sup

n≥1
%(xn, yn)

provided that all sequences in M are bounded. The set F can be endowed
with some standard hyperspace topology; e.g., the Vietoris topology, the Fell
topology or the proximal topology. If all Γx(I) for x ∈ M are bounded, then
it is natural to use the Hausdorff metric.

In what follows by F we always denote the set of all non-empty closed sets
of a given metric space (X, %). Recall that I denotes an admissible ideal on
N+.

First we need to know for which sequences x ∈ s(X) the set Γx(I) is
non-empty.



Sets of Statistical Cluster Points and I-Cluster Points 573

Lemma 3.1. Let (X, %) be a metric space and K be a compact subset of X.
Then for every x ∈ s(X) with {n ∈ N+ : xn ∈ K} /∈ I we have K∩Γx(I) 6= ∅.

Proof. Suppose that K ∩Γx(I) = ∅. Then any point p ∈ K does not belong
to Γx(I) and therefore for any p ∈ K there exists εp > 0 such that

Ap = {n ∈ N+ : %(xn, p) < εp} ∈ I.

Since K is compact there exists a finite number of points p1, . . . , pm ∈ K such

that K ⊆
m⋃

i=1

Bεpi
(pi) where Bεpi

(pi) = {t ∈ X; %(pi, t) < εpi}. Obviously, we

have A = {n ∈ N+ : xn ∈ K} ⊆
m⋃

i=1

Api
. Since

m⋃
i=1

Api
∈ I, we obtain that

A ∈ I.

We start by considering the case of boundedly compact metric spaces
(X, %). (The euclidean spaces Rn, n ∈ N+, are of such type.) Denote by
bs(X) the set of all bounded sequences in (X, %). Obviously, for every ε > 0
and p ∈ X the closed ball Dε(p) = {t ∈ X : %(p, t) ≤ ε} is a compact set in
(X, %). Consequently, according to Lemma 3.1, for every sequence x ∈ bs(X)
we have Γx(I) 6= ∅ (i.e., bs(X) ⊆ cs(X)) and Γx(I) is compact (it is closed
and bounded). Hence, the assignment x 7→ Γx(I) defines a mapping ΓI of the
set bs(X) to the set K(X) of all non-empty compact subsets of (X, %). If we
endow the set bs(X) with the sup-metric σ(x, y) = sup

n≥1
%(xn, yn) and the set

K(X) with the Hausdorff metric %H defined by

%H(A,B) = max{sup
a∈A

%(a,B), sup
b∈B

%(b, A)}

(where, as usual, %(a,B) = inf
d∈B

%(a, d)), then we obtain the following.

Theorem 3.1. Let (X, %) be a boundedly compact metric space. Then the
mapping

ΓI : (bs(X), σ) → (K(X), %H), x 7→ Γx(I)

is uniformly continuous (even lipschitzian).

Proof. Let δ > 0, x = (xn)∞1 ∈ bs(X), y = (yn)∞1 ∈ bs(X) and σ(x, y) < δ.
We want to prove that this implies %H(Γx(I),Γy(I)) ≤ 2δ. To show this it
suffices to verify that for each t ∈ Γx(I) we have %(t, Γy(I)) ≤ 2δ and for each
u ∈ Γy(I) we obtain %(u, Γx(I)) ≤ 2δ. Let t ∈ Γx(I). Then

D2δ(t) = {v ∈ X : %(t, v) ≤ 2δ}
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is a compact subset of X. Since t ∈ Γx(I), we have

A = {n ∈ N+ : %(t, xn) < δ} /∈ I.

By the triangle inequality we get for n ∈ A:

%(yn, t) ≤ %(yn, xn) + %(xn, t) < δ + δ = 2δ.

But then
B = {n ∈ N+ : yn ∈ D2δ(t)} ⊇ A

and therefore B /∈ I. Using Lemma 3.1 we obtain that there exists a point
t′ ∈ D2δ(t) ∩ Γy(I) and this yields %(t,Γy(I)) ≤ 2δ.

Similarly we can show that %(u, Γx(I)) ≤ 2δ. Hence,

%H(Γx(I),Γy(I)) ≤ 2δ.

Remark. One can ask a natural question whether the mapping ΓI from
Theorem 3.1 is surjective. We show that this is true for suitable choice of I;
e.g., for I = Id.

Let K ⊆ X be a non-empty compact subset in (X, %). Then (K, %|K×K) is
a separable metric space and hence there exists a countable set M ⊆ K dense
in K; i.e., M = K. Let M = {α1, α2, . . . , αp, . . .} and Np := {2p−1(2k − 1) :

k ∈ N+}. Then N+ =
∞⋃

p=1
Np (see Example 2.1) and we can define a sequence

x = (xn)n≥1 by
xn = αp if n ∈ Np (n = 1, 2, . . .)

Then x ∈ bs(X) and Γx(Id) = K.
Similarly, if I = If is the ideal of all finite subsets of N+, K ∈ K(X)

and M = {α1, α2, . . . , αp, . . .} is a countable dense subset of K, then for the
sequence x ∈ bs(X) such that

x = (α1, α1, α2, α1, α2, α3, . . .)

we have Γx(If ) = K.

We next recall the definition of Vietoris topology on the set F of all non-
empty closed subsets of a metric space (X, %).

For any subset U of X put

U− := {A ∈ F : A ∩ U 6= ∅} and U+ := {A ∈ F : A ⊆ U}.

Then the family S−V := {U− : U is open in X} is a subbase of the lower Vi-
etoris topology on F denoted by τ−V , the family S+

V := {U+ : U is open in X}
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is a subbase of the upper Vietoris topology on F denoted by τ+
V and SV =

S−V ∪ S+
V is a subbase of the Vietoris topology on F which is denoted by τV .

It is well known (see e.g., [3, p. 371]) that the family K(X) of all non-empty
compact subsets of (X, %) considered as a subspace of (F , τV ) is metrizable
by the Hausdorff metric on K(X). Thus applying Theorem 3.1 we obtain the
next assertion.

Theorem 3.2. If (X, %) is a boundedly compact metric space, then the map-
ping

ΓI : (bs(X), σ) → (F , τV ); x 7→ Γx(I)

is continuous.

Boundedly compact metric spaces are locally compact and from Lemma 3.1
it easily follows that for locally compact metric spaces the following statement
holds.

Proposition 3.1. Let (X, %) be a locally compact metric space and x ∈ s(X).
Then Γx(I) 6= ∅ if and only if there exists a compact set K ⊆ X with

{n ∈ N+ : xn ∈ K} /∈ I.

Consider the set cs(X) of all sequences in (X, %) with Γx(I) 6= ∅ together
with the sup-metric σ defined by σ(x, y) = min{1, sup

n≥1
%(xn, yn)}. Then the

following theorem completes in a certain sense Theorem 3.2.

Theorem 3.3. Let (X, %) be a locally compact metric space. Then

ΓI : (cs(X), σ) → (F , τ−V ); x 7→ Γx(I)

is a continuous mapping.

Proof. It suffices to prove that for every open subset U in (X, %) the set
ΓI−1(U−) is open in (cs(X), σ). Let x ∈ ΓI−1(U−). Then Γx(I)∩U 6= ∅ and
we can choose a point t ∈ Γx(I) ∩ U . Since (X, %) is a locally compact space
there exists ε > 0 such that

Dε(t) = {v ∈ X : %(v, t) ≤ ε}

is a compact set with Dε(t) ⊆ U . Let 0 < δ ≤ ε
2 , δ < 1 and y ∈ cs(X)

satisfying σ(x, y) < δ. Since t ∈ ΓI(x) we have

A = {n ∈ N+ : %(xn, t) < δ} /∈ I.
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Using the triangle inequality we get %(yn, t) ≤ %(yn, xn) + %(xn, t) < δ + δ ≤ ε
for any n ∈ A and it follows that A ⊆ B = {n ∈ N+ : yn ∈ Dε(t)} /∈ I.

Since Dε(t) is a compact, set we get (using Lemma 3.1) Γy(I)∩Dε(t) 6= ∅
and because of Dε(t) ⊆ U also Γy(I) ∩ U 6= ∅. Hence y ∈ ΓI−1(U−) and,
consequently, the open ball Bδ(x) is contained in ΓI−1(U−). Hence ΓI−1(U−)
is open in (cs(X), σ).

Remark. Using the language of set-valued mappings Theorem 3.3 can be
alternatively formulated as follows. If (X, %) is a locally compact metric space,
then the set-valued mapping of s(X) to (X, %) given by x 7→ Γx(I) is lower
semicontinuous.

Problem. Let (X, %) be a locally compact metric space. Is the mapping
ΓI : (cs(X), σ) → (F , τ+

V ); x 7→ Γx(I) continuous? (Equivalently, is the map-
ping ΓI : (cs(X), σ) → (F , τV ) continuous?)

We next study the continuity of ΓI with respect to the Fell topology and
the proximal topology on the set F . We start with the definitions (see [2]).

Let (X, %) be a metric space. Put

S+
F := {U+ : X \ U is a compact set in (X, %)}.

Then the family S+
F ∪ S−V is a subbase of the Fell topology on F denoted by

τF . Since S+
F ⊆ S+

V , we have τF ⊆ τV .
The notion of proximal topology is defined as follows. For any U ⊆ X put

U++ := {F ∈ F : there exists ε > 0 with Sε(F ) ⊆ U},

where Sε(F ) := {a ∈ X : %(a, F ) < ε} is the open ε-neighborhood of the set
F . Put

S+
P := {U++ : U is open in (X, %)}.

Then the family S+
P ∪ S−V is a subbase of the proximal topology on F denoted

by τP .
Recall that metrics % and %′ in the set X are called equivalent if they

induce the same topology on X. It is well known that equivalent metrics on
X can induce non-equivalent sup-metrics σ, σ′ on s(X) and different proximal
topologies on F . On the other hand, the Fell topology depends only on the
topology of (X, %).

The following property determines the class of metric spaces which contains
the class of all boundedly compact spaces (and is contained in the class of all
locally compact metric spaces).
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A metric space is (X, %) is said to have nice closed balls provided whenever
D is a closed ball in X that is a proper subset of X, then D is compact.
Clearly, every boundedly compact metric space has nice closed balls. The
converse is not true; e.g., every infinite metric space with the zero-one metric
has nice closed balls without being boundedly compact. For locally compact
spaces the following statement holds (see [2]).

Theorem B. For any metric space (X, %) the following assertions are equiv-
alent:

(a) (X, %) is locally compact space.

(b) There is a metric %′ on X equivalent to % such that (X, %′) has nice
closed balls.

Proposition 3.2. Let a metric space (X, %) have nice closed balls, σ be the
sup-metric on cs(X) defined by σ(x, y) = min{1, supn≥1 %(xn, yn)}, U be an
open set in (X, %), and x ∈ cs(X). If %(Γx(I), X \ U) = r > 0, then there
exists δ > 0 such that for any y ∈ cs(X) with σ(x, y) < δ we have

%(Γy(I), X \ U) ≥ r

2
.

Proof. Let 0 < δ ≤ r
6 , δ < 1, σ(x, y) < δ and t ∈ Γy(I). Then

A = {n ∈ N+ : %(t, yn) <
r

6
} /∈ I.

For every n ∈ A we have

%(t, xn) ≤ %(t, yn) + %(yn, xn) <
r

6
+

r

6
=

r

3

and therefore A ⊆ B = {n ∈ N+ : %(t, xn) ≤ r
2} /∈ I.

Since D r
3
(t) 6= X ( diam X ≥ r), it is a compact set and this together with

B /∈ I yields that D r
3
(t) ∩ Γx(I) 6= ∅. Hence there exists u ∈ Γx(I) with

%(t, u) ≤ r
3 . For any v ∈ X \ U we get

r ≤ %(u, v) ≤ %(u, t) + %(t, v).

Then
%(t, v) ≥ %(u, v)− %(t, u) ≥ r − r

3
=

2
3
r >

r

2
.

Consequently %(Γy(I), X \ U) ≥ r
2 .
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Corollary. Let a metric space (X, %) have nice closed balls. Then, using the
notation of Proposition 3.2 we obtain:

(a) If Γx(I) ∈ U++, then there exists δ > 0 such that for each y ∈ cs(X)
with σ(x, y) < δ we have Γy(I) ∈ U++.

(b) If X \U is compact in (X, %), then Γx(I) ∈ U+ implies there exists δ > 0
such that for each y ∈ cs(X) with σ(x, y) < δ we have Γy(I) ∈ U+.

Combining Proposition 3.1, the above Corollary and Theorem 3.3 we obtain
the next assertion.

Theorem 3.4. Let (X, %) be metric space which has nice closed balls and σ be
the sup-metric on the set cs(X) given by σ(x, y) = min{1, supn≥1 %(xn, yn)}.
Then the mappings

ΓI : (cs(X), σ) → (F , τF ); x 7→ Γx(I)
ΓI : (cs(X), σ) → (F , τP ); x 7→ Γx(I)

are continuous.

Theorem 3.4 and Theorem B yield the following consequence.

Corollary. Let (X, %) be a locally compact metric space. Then there exists a
metric %′ on X equivalent to % such that the mappings

ΓI : (cs(X), σ′) → (F , τF ); x 7→ Γx(I)
ΓI : (cs(X), σ′) → (F , τP ); x 7→ Γx(I)

where σ′ is the sup-metric and τP the proximal topology corresponding to %′,
are continuous.

Let (X, %) be a metric space, A ⊆ cs(X) and B ⊆ F . We conclude this
section by studying the continuity of the mapping ΓI : A → B where A is
endowed with the Fréchet metric instead of the sup-metric and B is endowed
with the Hausdorff metric or one of the hypertopologies considered above.

Recall that if (X, %) is a metric space, M ⊆ s(X), then the Fréchet metric
ϕ on M is defined by

ϕ(x, y) =
∞∑

n=1

2−n min{1, %(xn, yn)}.

We start with the case of the Hausdorff metric. Let (X, %) be a metric
space cbs(X) be the set of all bounded sequences in (X, %) with Γx(I) 6= ∅,
bF the set of all non-empty closed bounded subsets in (X, %) and %H be the
Hausdorff metric on bF . Then we have the following.
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Theorem 3.5. If a metric space (X, %) contains at least two different points,
M is an arbitrary subset of cbs(X) containing all stationary sequences (i.e.,
constant up to finite number of terms), then the mapping

ΓI : (M,ϕ) → (bF , %H); x 7→ Γx(I)

is discontinuous at any point x ∈ M .

Proof. Let x ∈ M , t ∈ Γx(I) and v ∈ X with v 6= t. Put ε0 = %(v, t) > 0 and
choose an arbitrary δ > 0. Then there exists k ∈ N+ such that

∑
n≥k

2−n < δ.

Define a sequence y = (yn)∞1 by

yj =

{
xj if j ≤ k

v if j > k

Then we have
ϕ(x, y) ≤

∑
n>k

2−n < δ

and consequently, y ∈ Bδ(x). Obviously Γy(I) = {v} and

%H(Γx(I),Γy(I)) = %H(Γx(I), {v}) ≥ sup
u∈Γx(I)

%(u, {v}) ≥ %(t, v) = ε0.

This yields that ΓI is discontinuous at x.

The method used in the proof of Theorem 3.5; namely, the fact that for
any x ∈ M , v ∈ X and δ > 0 there exists y ∈ M such that ϕ(x, y) < δ and
Γy(I) = {v}, can be readily used to show that the following assertion holds.

Theorem 3.6. Let (X, %) be a metric space containing at least two different
points, M be a subset of cs(X) containing all stationary sequences and τ be
any of topologies τ−V , τV , τF , τP on F . Then the mapping

ΓI : (M,ϕ) → (F , τ); x 7→ Γx(I)

is discontinuous at any x ∈ M .
In the case of τ+

V the mapping ΓI : (M,ϕ) → (F , τ+
V ); x 7→ Γx(I) is dis-

continuous at any x ∈ M such that Γx(I) 6= X.

Remark. Obviously, the discontinuity with respect to τ−V implies the discon-
tinuity with respect to τV , τF , τP .
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