SOME CLASSES OF STRONGLY QUASICONTINUOUS FUNCTIONS

Abstract
Some classes of strongly quasicontinuous functions are investigated.

Let \mathbb{R}, \mathbb{Q} and \mathbb{N} be the set of all real, rational and positive integer numbers, respectively. For a set $A \subset \mathbb{R}$ denote by $\operatorname{Int} A$ and $\mathrm{Cl} A$ the interior and the closure of A, respectively. Recall that a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is quasi-continuous at a point $x \in \mathbb{R}$ if for each $\varepsilon>0$ and for each neighborhood U of x there is a nonempty open set $G \subset U$ such that $f(G) \subset(f(x)-\varepsilon, f(x)+\varepsilon)([3])$. Denote by $Q(f)(C(f))$ the set of all quasi-continuity (continuity) points of f. It is well-known that the set $Q(f) \backslash C(f)$ is of the first category but it need not be measurable or of measure zero (e.g., if T is a closed nowhere dense set of positive measure and $S \subset T$ is dense in T and nonmeasurable (of measure zero), then for its characteristic function χ_{S} the set $Q\left(\chi_{S}\right) \backslash C\left(\chi_{S}\right)$ is nonmeasurable (of positive measure).

Let $\ell_{e}(\ell)$ denote the outer Lebesgue measure (Lebesgue measure) in \mathbb{R}. Let

$$
\begin{aligned}
& d_{u}(A, x)=\limsup _{h \rightarrow 0^{+}} \ell_{e}(A \cap(x-h, x+h)) / 2 h \\
& \left(d_{l}(A, x)=\operatorname{liminin}_{h \rightarrow 0^{+}} \ell_{e}(A \cap(x-h, x+h) / 2 h)\right.
\end{aligned}
$$

the upper (lower) outer density of $A \subset \mathbb{R}$ at a point $x \in \mathbb{R}$.
Z. Grande in [1] introduced properties $A(x)$ and $B(x)$ of functions:

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ has property $A(x)$ at a point $x \in \mathbb{R}$ if there exists an open set U such that $d_{u}(U, x)>0$ and the restricted function $f \upharpoonright(U \cup\{x\})$ is continuous at x. We will write $f \in A(x)$ if f has the property $A(x)$ at a point x.

[^0]A function $f: \mathbb{R} \rightarrow \mathbb{R}$ has property $B(x)$ at $x \in \mathbb{R}$ (abbreviated $f \in B(x)$) if for $\varepsilon>0$ we have $d_{u}(\operatorname{Int}\{y:|f(y)-f(x)|<\varepsilon\}, x)>0$.

Denote by $A(f)$ the set $\{x \in \mathbb{R}: f \in A(x)\}$ and by $B(f)$ the set $\{x \in \mathbb{R}$: $f \in B(x)\}$. Z. Grande has shown that $C(f) \subset A(f) \subset B(f) \subset Q(f)$ and that the measure of $B(f) \backslash C(f)$ is zero.

Definition 1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function and let $r \in[0,1)$. We put
$A_{r}(f)=\left\{x \in \mathbb{R}:\right.$ there is an open set U such that $d_{u}(U, x)>r$ and $f \upharpoonright(U \cup\{x\})$ is continuous at $x\}$,
$A_{r}^{l}(f)=\left\{x \in \mathbb{R}:\right.$ there is an open set U such that $d_{l}(U, x)>r$ and $f \upharpoonright(U \cup\{x\})$ is continuous at $x\}$,
$B_{r}(f)=\{x \in \mathbb{R}:$ for each $\varepsilon>0$ there is an open set U such that $d_{u}(U, x)>r$ and $\left.f(U) \subset(f(x)-\varepsilon, f(x)+\varepsilon)\right\}$,
$B_{r}^{l}(f)=\{x \in \mathbb{R}:$ for each $\varepsilon>0$ there is an open set U such that $d_{l}(U, x)>r$ and $\left.f(U) \subset(f(x)-\varepsilon, f(x)+\varepsilon)\right\}$.
Evidently, $A_{r}^{l}(f) \subset A_{r}(f) \subset B_{r}(f)$ and $A_{r}^{l}(f) \subset B_{r}^{l}(f) \subset B_{r}(f)$ for each $r \in[0,1)$. Further, $A_{r}(f) \subset A_{s}(f), B_{r}(f) \subset B_{s}(f), A_{r}^{l}(f) \subset A_{s}^{l}(f)$, and $B_{r}^{l}(f) \subset B_{s}^{l}(f)$ for $0 \leq s<r<1$. Thus, the sets $A_{r}(f) \backslash C(f), A_{r}^{l}(f) \backslash C(f)$, $B_{r}(f) \backslash C(f)$ and $B_{r}^{l}(f) \backslash C(f)$ are sets of first category and of measure zero. We shall show that $B_{r}(f) \subset A_{s}(f)$ and $B_{r}^{l}(f) \subset A_{s}^{l}(f)$ for $0 \leq s<r<1$.

Lemma 1. Let $0 \leq \beta<1, a>0, x \in \mathbb{R}$ and let A be a measurable set. If $\ell(A \cap(x-a, x+a))>\beta$, then there is $c \in(0, a)$ such that for each $b \in(0, c)$

$$
\ell(A \cap((x-a, x-b) \cup(x+b, x+a)))>\beta .
$$

Proof. Put $\ell(A \cap(x-a, x+a))=\alpha>\beta$. Then there is $c>0$ such that $\alpha-2 c>\beta$. Since $2 c<\alpha \leq 2 a$, we have $c<a$. Let $0<b<c$. Then $\alpha=\ell(A \cap(x-a, x+a))=\ell(A \cap((x-a, x-b) \cup(x+b, x+a)))+\ell(A \cap$ $(x-b, x+b)) \leq \ell(A \cap((x-a, x-b) \cup(x+b, x+a)))+2 b$. Therefore $\ell(A \cap((x-a, x-b) \cup(x+b, x+a))) \geq \alpha-2 b>\beta$.

Theorem 1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function and let $0 \leq s<r<1$. Then $B_{r}(f) \subset A_{s}(f)$ and $B_{r}^{l}(f) \subset A_{s}^{l}(f)$.

Proof. The inclusion $B_{r}(f) \subset A_{s}(f)$:
Let $x \in B_{r}(f)$. Then for each $n \in \mathbb{N}$ there is an open set A_{n} such that $d_{u}\left(A_{n}, x\right)>r$ and $f\left(A_{n}\right) \subset(f(x)-1 / n, f(x)+1 / n)$. There is a sequence $\left(h_{i}^{n}\right)_{i}$ such that $0<h_{i+1}^{n}<h_{i}^{n}, \lim _{i \rightarrow \infty} h_{i}^{n}=0$ and $\ell\left(A_{n} \cap\left(x-h_{i}^{n}, x+h_{i}^{n}\right)\right) /\left(2 h_{i}^{n}\right)>r$.

Let $v_{0}=h_{1}^{1}$. Since $\ell\left(A_{1} \cap\left(x-v_{0}, x+v_{0}\right)\right)>2 r v_{0}$, according to Lemma 1 there is $c_{1} \in\left(0, v_{0}\right)$ such that $\ell\left(A_{1} \cap\left(\left(x-v_{0}, x-b\right) \cup\left(x+b, x+v_{0}\right)\right)\right)>2 r v_{0}$ for each $b \in\left(0, c_{1}\right)$. Let $j \in \mathbb{N}$ be such that $h_{j}^{2}<c_{1} / 2$ and let $v_{1}=h_{j}^{2}$. Assume that we have positive numbers $v_{0}, v_{1}, \ldots, v_{n}$ such that $0<v_{i}<v_{i-1} / 2, v_{i} \in$ $\left\{h_{1}^{i+1}, h_{2}^{i+1}, \ldots, h_{k}^{i+1}, \ldots\right\}$ and $\ell\left(A_{i} \cap\left(\left(x-v_{i-1}, x-v_{i}\right) \cup\left(x+v_{i}, x+v_{i+1}\right)\right)>\right.$ $2 r v_{i-1}$ for each $i \in\{1,2, \ldots, n\}$. Since $v_{n}=h_{j}^{n+1}$ for some $j \in \mathbb{N}$, so $\ell\left(\left(A_{n+1} \cap\right.\right.$ $\left.\left(x-v_{n}, x+v_{n}\right)\right)>2 r v_{n}$ and according to Lemma 1 there is $c_{n+1} \in\left(0, v_{n}\right)$ such that $\ell\left(\left(A_{n+1} \cap\left(\left(x-v_{n}, x-b\right) \cup\left(x+b, x+v_{n}\right)\right)\right)>2 r v_{n}\right.$ for each $b \in\left(0, c_{n+1}\right)$ There is $k \in \mathbb{N}$ such that $h_{k}^{n+2}<c_{n+1} / 2$ and put $v_{n+1}=h_{k}^{n+2}$.

Now put $V_{n}=A_{n} \cap\left(\left(x-v_{n-1}, x-v_{n}\right) \cup\left(x+v_{n}, x+v_{n-1}\right)\right)$ and $V=$ $\bigcup_{n=1}^{\infty} V_{n}$. Then V is an open set. We shall show that $d_{u}(V, x)>s$. We see that $V \cap\left(x-v_{n}, x+v_{n}\right)=\bigcup_{i=1}^{\infty}\left(V_{i} \cap\left(x-v_{n}, x+v_{n}\right)\right)=\bigcup_{i=n+1}^{\infty} V_{i}$ and therefore $\ell\left(V \cap\left(x-v_{n}, x+v_{n}\right)\right)=\sum_{i=n+1}^{\infty} \ell\left(V_{i}\right) \geq \ell\left(V_{n+1}\right)>2 r v_{n}$. This yields $\frac{\ell\left(V \cap\left(x-v_{n}, x+v_{n}\right)\right)}{2 v_{n}}>\frac{2 r v_{n}}{2 v_{n}}=r$ and thus $d_{u}(V, x) \geq r>s$.

Now we shall show that $f \upharpoonright(V \cup\{x\})$ is continuous at x. Let $\varepsilon>0$. Choose $n \in \mathbb{N}$ with $1 / n<\varepsilon$. If $y \in V \cap\left(x-v_{n}, x+v_{n}\right)$, then $y \in V_{j}$ for some $j \geq n$. Then $f(y) \in f\left(V_{j}\right) \subset f\left(A_{j}\right) \subset(f(x)-1 / j, f(x)+1 / j) \subset(f(x)-\varepsilon, f(x)+\varepsilon)$; i.e., $f \upharpoonright(V \cup\{x\})$ is continuous at x.

The inclusion $B_{r}^{l}(f) \subset A_{s}^{l}(f)$:
Let $x \in B_{r}^{l}(f)$. Then for each $n \in \mathbb{N}$ there is an open set A_{n} such that $\beta_{n}=d_{l}\left(A_{n}, x\right)>r$ and $f\left(A_{n}\right) \subset(f(x)-1 / n, f(x)+1 / n)$. Since $r / \beta_{n}<1$, for each $n \in \mathbb{N}$ there is $k_{n}>2$ such that

$$
\frac{k_{n}-1}{k_{n}+1}>\max \left\{\sqrt{\frac{r}{\beta_{n}}}, \sqrt{\frac{r}{\beta_{n+1}}}\right\}
$$

Put $\eta_{n}=\frac{\beta_{n}-r}{k_{n}}>0$. Evidently $\beta_{n}-\eta_{n}>r$. Since $d_{l}\left(A_{n}, x\right)>\beta_{n}-\eta_{n}$, there is $h_{n}>0$, such that $\ell\left(A_{n} \cap(x-h, x+h)\right)>2\left(\beta_{n}-\eta_{n}\right) h$ for each $h \in\left(0, h_{n}\right]$.

We can assume that $h_{n+1}<h_{n} / 2$. Put $p_{0}=h_{1}$. According to Lemma 1 there is $c_{1} \in\left(0, p_{0}\right)$ such that $\ell\left(A_{1} \cap\left(\left(x-p_{0}, x-b\right) \cup\left(x+b, x+p_{0}\right)\right)\right)>$ $2\left(\beta_{1}-\eta_{1}\right) p_{0}$ for each $b \in\left(0, c_{1}\right)$. Further, since $d_{l}\left(A_{1}, x\right)<\beta_{1}+\eta_{1}$, there is $p_{1}<\min \left\{c_{1}, h_{2}\right\}$ such that $\ell\left(A_{1} \cap\left(\left(x-p_{1}, x+p_{1}\right)\right)<2\left(\beta_{1}+\eta_{1}\right) p_{1}\right.$.

Assume that we have positive numbers $p_{0}, p_{1}, \ldots, p_{n}$ such that for each $i \in\{1,2, \ldots, n\}$

$$
\begin{aligned}
& p_{i}<\min \left\{p_{i-1}, h_{i+1}\right\}, \\
& \ell\left(\left(A_{i} \cap\left(x-p_{i}, x+p_{i}\right)\right)<2\left(\beta_{i}+\eta_{i}\right) p_{i}\right. \text { and } \\
& \ell\left(A_{i} \cap\left(\left(x-p_{i-1}, x-p_{i}\right) \cup\left(x+p_{i}, x+p_{i-1}\right)\right)\right)>2\left(\beta_{i}-\eta_{i}\right) p_{i-1}
\end{aligned}
$$

Since $p_{n}<h_{n+1}, \ell\left(A_{n+1} \cap\left(x-p_{n}, x+p_{n}\right)\right)>2\left(\beta_{n+1}-\eta_{n+1}\right) p_{n}$ and according to Lemma 1 there is $c_{n+1} \in\left(0, p_{n}\right)$ such that for each $b \in\left(0, c_{n+1}\right)$

$$
\ell\left(A_{n+1} \cap\left(\left(x-p_{n}, x-b\right) \cup\left(x+b, x+p_{n}\right)\right)>2\left(\beta_{n+1}-\eta_{n+1}\right) p_{n}\right.
$$

Further there is $p_{n+1}<\min \left\{c_{n+1}, h_{n+2}\right\}$ such that

$$
\ell\left(A_{n+1} \cap\left(\left(x-p_{n+1}, x+p_{n+1}\right)\right)<2\left(\beta_{n+1}+\eta_{n+1}\right) p_{n+1}\right.
$$

Then $p_{n+1}<p_{n}$ and $\ell\left(A_{n+1} \cap\left(\left(x-p_{n}, x-p_{n+1}\right) \cup\left(x+p_{n+1}, x+p_{n}\right)\right)>\right.$ $2\left(\beta_{n+1}-\eta_{n+1}\right) p_{n}$. Put $V_{n}=A_{n} \cap\left(\left(x-p_{n-1}, x-p_{n}\right) \cup\left(x+p_{n}, x+p_{n-1}\right)\right)$ and $V=\bigcup_{n=1}^{\infty} V_{n}$. Then V is an open set. We shall show that $d_{l}(V, x)>s$. Let $0<h<h_{1}$. Since $0<p_{j+1} \leq p_{j}$ and $\lim _{j \rightarrow \infty} p_{j}=0$, there is $n \in \mathbb{N}$ such that $p_{n}<h \leq p_{n-1}$. Then $h>\frac{k_{n}+1}{k_{n}-1} p_{n}$ or $h \leq \frac{k_{n}+1}{k_{n}-1} p_{n}$.
a) Let $h>\frac{k_{n}+1}{k_{n}-1} p_{n}$. Then $k_{n} h-h-k_{n} p_{n}-p_{n}=\left(k_{n}-1\right) h-\left(k_{n}+1\right) p_{n}>$ $\left(k_{n}-1\right) \frac{k_{n}+1}{k_{n}-1} p_{n}-\left(k_{n}+1\right) p_{n}=0$. Further, $h \leq p_{n-1}<h_{n}$ and hence

$$
\begin{aligned}
2\left(\beta_{n}-\eta_{n}\right) h< & \ell\left(\left(A_{n} \cap(x-h, x+h)\right)=\ell\left(A_{n} \cap\left(x-p_{n}, x+p_{n}\right)\right)\right. \\
& \quad+\ell\left(A_{n} \cap\left(\left(x-h, x-p_{n}\right) \cup\left(x+p_{n}, x+h\right)\right)\right. \\
< & 2\left(\beta_{n}+\eta_{n}\right) p_{n}+\ell\left(A_{n} \cap\left(\left(x-h, x-p_{n}\right) \cup\left(x+p_{n}, x+h\right)\right)\right) .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \ell\left(A_{n} \cap\left(\left(x-h, x-p_{n}\right) \cup\left(x+p_{n}, x+h\right)\right)>2\left(\beta_{n}-\eta_{n}\right) h-2\left(\beta_{n}+\eta_{n}\right) p_{n}\right. \\
= & 2 r\left(h-p_{n}\right)+2 k_{n}^{-1}\left(k_{n} \beta_{n} h-\beta_{n} h+r h-k_{n} p_{n}-\beta_{n} p_{n}+r p_{n}-r k_{n} h+r k_{n} p_{n}\right) \\
= & 2 r\left(h-p_{n}\right)+2 k_{n}^{-1}\left(\beta_{n}-r\right)\left(k_{n} h-h-k_{n} p_{n}-p_{n}\right)>2 r\left(h-p_{n}\right) .
\end{aligned}
$$

Further we see that $\ell\left(V_{n+1}\right)=\ell\left(A_{n+1} \cap\left(\left(x-p_{n}, x-p_{n+1}\right) \cup\left(x+p_{n+1}, x+p_{n}\right)\right)>\right.$ $2\left(\beta_{n+1}-\eta_{n+1}\right) p_{n}>2 r p_{n}$. Therefore we obtain

$$
\begin{aligned}
\ell(V \cap(x-h, x+h)) & \geq \ell\left(V \cap\left(\left(x-h, x-p_{n+1}\right) \cup\left(x+p_{n+1}, x+h\right)\right)\right. \\
& =\ell\left(V_{n+1}\right)+\ell\left(A_{n} \cap\left(\left(x-h, x-p_{n}\right) \cup\left(x+p_{n}, x+h\right)\right)\right. \\
& >2 r p_{n}+2 r\left(h-p_{n}\right)=2 r h .
\end{aligned}
$$

b) Now let $h \leq \frac{k_{n}+1}{k_{n}-1} p_{n}$. We see that

$$
\begin{aligned}
& \frac{k_{n}-1}{k_{n}+1}\left(\beta_{n+1}-\eta_{n+1}\right)=\frac{k_{n}-1}{k_{n}+1} \cdot \frac{\left(k_{n+1}-1\right) \beta_{n+1}+r}{k_{n+1}} \\
> & \frac{k_{n}-1}{k_{n}+1} \cdot \frac{k_{n+1}-1}{k_{n+1}+1} \beta_{n+1}>\sqrt{\frac{r}{\beta_{n+1}}} \cdot \sqrt{\frac{r}{\beta_{n+1}}} \cdot \beta_{n+1}=r .
\end{aligned}
$$

This yields

$$
\begin{aligned}
\ell(V \cap((x-h, h+h)) & \geq \ell\left(V_{n+1}\right) \\
& =\ell\left(A_{n+1} \cap\left(\left(x-p_{n}, x-p_{n+1}\right) \cup\left(x+p_{n+1}, x+p_{n}\right)\right)\right. \\
& >2\left(\beta_{n+1}-\eta_{n+1}\right) p_{n} \geq 2\left(\beta_{n+1}-\eta_{n+1}\right) \frac{k_{n}-1}{k_{n}+1} h>2 r h .
\end{aligned}
$$

Therefore for each $h \in\left(0, h_{1}\right)$ we have $\ell(V \cap(x-h, x+h))>2 r h$; i.e., $d_{l}(V, x) \geq r>s$. Similarly as above we can prove that $f \upharpoonright(V \cup\{x\})$ is continuous at x.

Theorem 2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function and let $0 \leq s<r<1$. Then

and each of inclusions can be proper.
Proof. The inclusions follow from previous remarks and Theorem 1. The following examples show that the inclusions can be proper.

Proposition 1. Let $r, s \in[0,1)$. Then there is a function $f: \mathbb{R} \rightarrow[0,1]$ such that f is continuous at each point different from zero and $0 \in A_{r}(f) \backslash B_{s}^{l}(f)$.
Proof. Put $a_{n}=\frac{1}{(4 n)!}, b_{n}=\frac{1}{(4 n-1)!}, c_{n}=\frac{1}{(4 n-2)!}$ and $d_{n}=\frac{1}{(4 n-3)!}$. Then $0<d_{n+1}<a_{n}<b_{n}<c_{n}<d_{n} \leq 1$. Put $A=\bigcup_{n=1}^{\infty}\left(\left(a_{n}, b_{n}\right) \cup\left(-b_{n},-a_{n}\right)\right)$ and $B=\bigcup_{n=1}^{\infty}\left(\left(c_{n}, d_{n}\right) \cup\left(-d_{n},-c_{n}\right)\right)$. Then A and B are open disjoint sets and $\mathrm{Cl} A \cap \mathrm{Cl} B=\{0\}$. Hence there is a continuous function $g: \mathbb{R} \backslash\{0\} \rightarrow[0,1]$ such that $g(x)=0$ for $x \in B$ and $g(x)=1$ for $x \in A$. Now let $f: \mathbb{R} \rightarrow[0,1]$ be such that $f(x)=g(x)$ for $x \neq 0$ and $f(0)=0$. We shall show that f is our function.

We have $A \cap\left(0, b_{n}\right)=\bigcup_{i=n}^{\infty}\left(a_{i}, b_{i}\right)$ and therefore

$$
\ell\left(A \cap\left(-b_{n}, 0\right)\right)=\ell\left(A \cap\left(0, b_{n}\right)\right) \geq \ell\left(\left(a_{n}, b_{n}\right)\right)=\frac{1}{(4 n-1)!}-\frac{1}{(4 n)!}=\frac{4 n-1}{(4 n)!}
$$

and

$$
\frac{\ell\left(\left(A \cap\left(-b_{n}, b_{n}\right)\right)\right.}{2 b_{n}} \geq \frac{((4 n-1)!)(4 n-1)}{(4 n)!}=\frac{4 n-1}{4 n}
$$

Since $\lim _{n \rightarrow \infty} b_{n}=0$, we obtain

$$
d_{u}(A, 0) \geq \lim _{n \rightarrow \infty} \frac{\ell\left(\left(A \cap\left(-b_{n}, b_{n}\right)\right)\right.}{2 b_{n}} \geq \lim _{n \rightarrow \infty} \frac{4 n-1}{4 n}=1
$$

Similarly we can show that $d_{u}(B, 0)=1$. Evidently, f is continuous at each point different from zero. The set B is open, $d_{u}(B, 0)=1>r$ and $f(x)=0$ for $x \in B \cup\{0\}$, thus $0 \in A_{r}(f)$.

Now let U be an open set such that $d_{l}\left((U, 0)>s\right.$. Then $d_{u}(\mathbb{R} \backslash U, 0)<$ $1-s \leq 1$. If $A \cap U=\emptyset$ then $d_{u}(A, 0) \leq d_{u}(\mathbb{R} \backslash U, 0)<1$, a contradiction, Therefore $A \cap U \neq \emptyset$ and this yields $0 \notin B_{s}^{l}(f)$.

Lemma 2. Let $0 \leq \alpha<1$. Then there are disjoint closed intervals $I_{i}^{n}, J_{i}^{n} \subset$ $(-1,0) \cup(0,1), i, n \in \mathbb{N}$, such that:
(i) $d_{l}\left(\bigcup_{n=1}^{\infty} \operatorname{Int} I_{i}^{n}, 0\right) \geq \alpha \cdot 2^{-i}$ for each $i \in \mathbb{N}$,
(ii) $d_{l}\left(\bigcup_{n=1}^{\infty} \operatorname{Int} J_{i}^{n}, 0\right) \geq(1-\alpha) 2^{-i}$ for each $i \in \mathbb{N}$,
(iii) $\mathrm{Cl}\left(\bigcup_{n=1}^{\infty} \bigcup_{i=1}^{\infty} I_{i}^{n}\right) \cap \mathrm{Cl}\left(\bigcup_{n=1}^{\infty} \bigcup_{i=1}^{\infty} J_{i}^{n}\right)=\{0\}$.

Proof. There are disjoint closed intervals $K_{i}^{n}, L_{i}^{n} \subset\left(\frac{1}{n+1}, \frac{1}{n}\right), 1 \leq i \leq n$, such that $\ell\left(K_{i}^{n}\right)=\frac{\alpha \cdot 2^{-i}}{n(n+1)}$ and $\ell\left(L_{i}^{n}\right)=\frac{(1-\alpha) \cdot 2^{-i}}{n(n+1)}$ for each $i, 1 \leq i \leq n$ (For $\alpha=0$ we require that $\ell\left(K_{i}^{n}\right)>0$ and $\left.\ell\left(L_{i}^{n}\right)=\frac{2^{-i}}{n(n+1)}\right)$. If $I=[a, b]$ is an interval, denote by $-I$ the interval $[-b,-a]$. Put $I_{i}^{k}=(-1)^{k+1} K_{i}^{i+[(k-1) / 2]}$ and $J_{i}^{k}=(-1)^{k+1} L_{i}^{i+[(k-1) / 2]}$ for $i, k \in \mathbb{N}$, where $[x]$ is the integer part of x. Then all intervals I_{i}^{k}, J_{i}^{k} are mutually disjoint. We shall show that they satisfy (i), (ii), and (iii). (i): Let $\varepsilon>0$ and $i \in \mathbb{N}$. Choose $p \in \mathbb{N}$ such that $p \geq i$ and $1 / p<\varepsilon$. Let $0<h<1 / p$. Then there is $n \in \mathbb{N}, n \geq p$, such that $1 /(n+1) \leq h<1 / n$. We see that

$$
\bigcup_{k=1}^{\infty} I_{i}^{k} \cap(0, h) \supset \bigcup_{k=1}^{\infty} I_{i}^{k} \cap(0,1 /(n+1))=\bigcup_{k=n+1}^{\infty} K_{i}^{k}
$$

and therefore

$$
\begin{aligned}
\ell\left(\bigcup_{k=1}^{\infty} I_{i}^{k} \cap(0, h)\right) & \geq \ell\left(\bigcup_{k=n+1}^{\infty} K_{i}^{k}\right)=\sum_{k=n+1}^{\infty} \ell\left(K_{i}^{k}\right)=\sum_{k=n+1}^{\infty} \frac{\alpha \cdot 2^{-i}}{k(k+1)} \\
& =\alpha \cdot 2^{-i} \sum_{k=n+1}^{\infty} \frac{1}{k(k+1)}=\frac{\alpha \cdot 2^{-i}}{n+1}
\end{aligned}
$$

Similarly we can show that $\ell\left(\bigcup_{k=1}^{\infty} I_{i}^{k} \cap(-h, 0)\right) \geq \frac{\alpha \cdot 2^{-i}}{n+1}$ and hence $\ell\left(\bigcup_{k=1}^{\infty} I_{i}^{k} \cap\right.$
$(-h, h)) \geq 2 \frac{\alpha \cdot 2^{-i}}{n+1}$. Since $0<h<1 / n$, we obtain

$$
\frac{\ell\left(\bigcup_{k=1}^{\infty} I_{i}^{k} \cap(-h, h)\right)}{2 h} \geq \frac{\alpha \cdot 2^{-i} \cdot n}{n+1} \geq \alpha \cdot 2^{-i}\left(1-\frac{1}{p}\right)>\alpha \cdot 2^{-i}(1-\varepsilon) .
$$

Thus $d_{l}\left(\bigcup_{n=1}^{\infty} I_{i}^{n}, 0\right) \geq \alpha \cdot 2^{-i}(1-\varepsilon)$ for each $\varepsilon>0$; i.e., $d_{l}\left(\bigcup_{n=1}^{\infty} I_{i}^{n}, 0\right) \geq \alpha \cdot 2^{-i}$.
(ii): The proof is similar.
(iii): It follows from the construction.

Proposition 2. Let $0 \leq r<s<1$. Then there is a function $f: \mathbb{R} \rightarrow[0,1]$ such that f is continuous at each point different from zero and $0 \in A_{r}^{l}(f) \backslash$ $B_{s}(f)$.

Proof. Let I_{i}^{n}, J_{i}^{n} be closed disjoint intervals from Lemma 2 for $\alpha=s$. Put $A=\bigcup_{i, n \in \mathbb{N}} \operatorname{Int} I_{i}^{n}$ and $B=\bigcup_{i, n \in \mathbb{N}} \operatorname{Int} J_{i}^{n}$. Then $\mathrm{Cl} A \cap \mathrm{Cl} B=\{0\}$ and there is a continuous function $g: \mathbb{R} \backslash\{0\} \rightarrow[0,1]$ such that $g(x)=0$ for $x \in A$ and $g(x)=1$ for $x \in B$. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that $f(x)=g(x)$ for $x \neq 0$ and $f(0)=0$. Then f is continuous at each point different from zero. The set A is open and $d_{l}(A, 0) \geq \sum_{i=1}^{\infty} d_{l}\left(\bigcup_{n=1}^{\infty} \operatorname{Int} I_{i}^{n}, 0\right) \geq \sum_{i=1}^{\infty} s \cdot 2^{-i}=s>r$. Since f is constant on $A \cup\{0\}$, we have $0 \in A_{r}^{l}(f)$.

Now, let U be an open set such that $d_{u}(U, 0)>s$. We have $d_{l}(B, 0) \geq$ $\sum_{i=1}^{\infty} d_{l}\left(\bigcup_{n=1}^{\infty} \operatorname{Int} J_{i}^{n}, 0\right) \geq \sum_{i=1}^{\infty}(1-s) 2^{-i}=1-s$. If $B \cap U=\emptyset$, then $1-s \leq$ $d_{l}(B, 0) \leq d_{l}(\mathbb{R} \backslash U, 0)<1-s$, a contradiction. Therefore $B \cap U \neq \emptyset$ and this yields $0 \notin B_{s}(f)$.

Proposition 3. Let $r \in[0,1)$. Then there is a function $f: \mathbb{R} \rightarrow[0,1]$ such that f is continuous at each point different from zero and $0 \in A_{r}^{l}(f) \backslash C(f)$.
Proof. Let I_{i}^{n}, J_{i}^{n} be closed disjoint intervals from Lemma 2 for $\alpha=0$. Put $A=\bigcup_{i, n \in \mathbb{N}}$ Int I_{i}^{n} and $B=\bigcup_{i, n \in \mathbb{N}}$ Int J_{i}^{n}. Then there is a function $f: \mathbb{R} \rightarrow[0,1]$ such that $f(0)=0, f(x)=0$ for $x \in B, f(x)=1$ for $x \in A$ and f is continuous at each point different from zero. Then B is an open set and $d_{l}(B, 0) \geq \sum_{i=1}^{\infty} 2^{-i}=1>r$. Since f is constant on $B \cup\{0\}$, we have $0 \in A_{r}^{l}(f)$. Since $0 \in \mathrm{Cl} A$, we have $0 \notin C(f)$.
Proposition 4. There is a function $f: \mathbb{R} \rightarrow[0,1]$ such that f is continuous at each point different from zero and $0 \in Q(f) \backslash B_{0}(f)$.

Proof. Let A and B be the same as in Proposition 3. Then there is a function $f: \mathbb{R} \rightarrow[0,1]$ such that $f(0)=0, f(x)=0$ for $x \in A, f(x)=1$ for $x \in B$ and f is continuous at each point different from zero. Since $0 \in \mathrm{Cl} A$, we have $0 \in Q(f)$. Now let U be an open set such that $d_{u}(U, 0)>0$. If $B \cap U=\emptyset$, then $1 \leq d_{l}(B, 0) \leq d_{l}(\mathbb{R} \backslash U, 0)<1$, a contradiction. Therefore $B \cap U \neq \emptyset$ and $0 \notin B_{0}(f)$.

Proposition 5. Let $r \in[0,1)$. Then there is a function $f: \mathbb{R} \rightarrow[0,1]$ such that f is continuous at each point different from zero and $0 \in B_{r}^{l}(f) \backslash A_{r}(f)$.

Proof. Let I_{i}^{n}, J_{i}^{n} be closed disjoint intervals from Lemma 2 for $\alpha=r$. Put $A=\bigcup_{i, n \in \mathbb{N}} \operatorname{Int} I_{i}^{n}$ and $B=\bigcup_{i, n \in \mathbb{N}} \operatorname{Int} J_{i}^{n}$. Then there is a function $f: \mathbb{R} \rightarrow[0,1]$ such that $f(0)=0, f(x)=0$ for $x \in A, f(x)=1 / i$ for $x \in J_{i}^{n}$ and f is continuous at each point different from zero.

Let $\varepsilon>0$. Choose $i \in \mathbb{N}$ with $1 / i<\varepsilon$. Then $D=A \cup \bigcup_{n=1}^{\infty} \operatorname{Int} J_{i}^{n}$ is an open set and $f(D) \subset(-\varepsilon, \varepsilon)$. Since $A \cap\left(\bigcup_{n=1}^{\infty} \operatorname{Int} J_{i}^{n}\right)=\emptyset$, we obtain

$$
d_{l}(D, 0) \geq d_{l}(A, 0)+d_{l}\left(\bigcup_{n=1}^{\infty} \operatorname{Int} J_{i}^{n}, 0\right) \geq r+(1-r) 2^{-i}>r
$$

Therefore $0 \in B_{r}^{l}(f)$.
Now let U be an open set such that $t=d_{u}(U, 0)>r$. Let V be arbitrary open neighborhood of 0 . Then $d_{u}(U \cap V, 0)=t$. Put $q=(t-r) / 2$ and let $\eta>0$ be such that $2 \eta<q$. Let $j \in \mathbb{N}$ be such that $2^{-j}<q$ and denote by $C=\bigcup_{i=1}^{j} \bigcup_{n=1}^{\infty} \operatorname{Int} J_{i}^{n}$. Since I_{i}^{n} and J_{i}^{n} are disjoint, we obtain

$$
d_{l}(C, 0) \geq \sum_{i=1}^{j} d_{l}\left(\bigcup_{n=1}^{\infty} \operatorname{Int} J_{i}^{n}, 0\right) \geq \sum_{i=1}^{j}(1-r) 2^{-i}=(1-r)\left(1-2^{-j}\right)
$$

Then also $d_{l}(C \cap V, 0) \geq(1-r)\left(1-2^{-j}\right)>(1-r)\left(1-2^{-j}\right)-\eta$. Hence there is a $\delta>0$ such that for each $h \in(0, \delta)$

$$
\frac{\ell((-h, h) \cap V \cap C)}{2 h}>(1-r)\left(1-2^{-j}\right)-\eta
$$

Since $d_{u}(U \cap V, 0)>t-\eta$, there is a sequence $\left(h_{m}\right)_{m}$ converging to zero such that

$$
\frac{\ell\left(\left(-h_{m}, h_{m}\right) \cap V \cap U\right)}{2 h_{m}}>t-\eta .
$$

We can assume that $h_{m} \in(0, \delta)$. Assume that $U \cap V \cap C=\emptyset$. Then

$$
\begin{aligned}
1 & =\frac{\ell\left(\left(-h_{m}, h_{m}\right)\right)}{2 h_{m}} \geq \frac{\ell\left(\left(-h_{m}, h_{m}\right) \cap V \cap U\right)}{2 h_{m}}+\frac{\ell\left(\left(-h_{m}, h_{m}\right) \cap V \cap C\right)}{2 h_{m}} \\
& >(1-r)\left(1-2^{-j}\right)-\eta+t-\eta>(1-r)(1-q)+t-2 \eta \\
& >1-r-q+t-2 \eta=1+q-2 \eta .
\end{aligned}
$$

This yields $q<2 \eta$, a contradiction. Therefore $U \cap V \cap C \neq \emptyset$. This means that each neighborhood V of 0 contains a point $z \in V \cap U$ such that $f(z) \geq 1 / j$; i.e., $0 \notin A_{r}(f)$.

Corollary 1. For each $s \in[0,1)$ we have

$$
\begin{aligned}
& A_{s}(f)=\bigcup_{1>r>s} A_{r}(f)=\bigcup_{1>r>s} B_{r}(f), \\
& A_{s}^{l}(f)=\bigcup_{1>r>s} A_{r}^{l}(f)=\bigcup_{1>r>s} B_{r}^{l}(f)
\end{aligned}
$$

and for each $s \in(0,1)$ we have

$$
\begin{aligned}
& B_{s}(f) \subset \bigcap_{0 \leq r<s} A_{r}(f)=\bigcap_{0 \leq r<s} B_{r}(f), \\
& B_{s}^{l}(f) \subset \bigcap_{0 \leq r<s} A_{r}^{l}(f)=\bigcap_{0 \leq r<s} B_{r}^{l}(f) .
\end{aligned}
$$

The inclusion can be proper.
Proof. Evidently $\bigcup_{1>r>s} A_{r}(f) \subset \bigcup_{1>r>s}^{\bigcup} B_{r}(f)$ and $\bigcap_{0 \leq r<s} A_{r}(f) \subset \bigcap_{0 \leq r<s} B_{r}(f)$. From Theorem 1 we obtain $\bigcup_{1>r>s} B_{r}(f) \subset A_{s}(f)$ and $B_{s}(f) \subset \bigcap_{0 \leq r<s} A_{r}(f)$. If $x \in A_{s}(f)$, then there is an open set U such that $d_{u}(U, x)>s$ and $f \upharpoonright(U \cup\{x\})$ is continuous at x. Now there is $r>s$ such that $d_{u}(U, x)>r$ and hence $x \in A_{r}(f) \subset \bigcup_{1>r>s} A_{r}(f)$. Finally, if $x \in \bigcap_{0 \leq r<s} B_{r}(f)$ and $0 \leq t<s$, then for $r \in(t, s)$ we have $x \in B_{r}(f)$ and by Theorem $1 x \in A_{t}(f)$; i.e., $x \in \bigcap_{0 \leq r<s} A_{r}$. The function from Proposition 2 is such that $A_{r}^{l}(f)=\mathbb{R}$ for each $r \in[0,1)$; i.e., $\bigcap_{0 \leq r<s} A_{r}(f)=\mathbb{R}$ but $0 \notin B_{s}(f)$.

Lemma 3. Let $f, g: \mathbb{R} \rightarrow \mathbb{R}, r \in[0,1)$ and $c \neq 0$. Then we have

$$
\begin{aligned}
& C(f) \cap A_{r}(g) \subset A_{r}(f+g) \text { and } A_{r}(f)=A_{r}(c f) \\
& C(f) \cap A_{r}^{l}(g) \subset A_{r}^{l}(f+g) \text { and } A_{r}^{l}(f)=A_{r}^{l}(c f)
\end{aligned}
$$

$$
\begin{aligned}
& C(f) \cap B_{r}(g) \subset B_{r}(f+g) \text { and } B_{r}(f)=B_{r}(c f) \\
& C(f) \cap B_{r}^{l}(g) \subset B_{r}^{l}(f+g) \text { and } B_{r}^{l}(f)=B_{r}^{l}(c f)
\end{aligned}
$$

Proof. Obvious.
Remark 1. The set $B_{r}^{l}(f) \backslash A_{r}(f)$ can be dense. Let $r \in[0,1)$ and let $f: \mathbb{R} \rightarrow[0,1]$ be the function from Proposition 5 (i.e., $C(f)=\mathbb{R} \backslash\{0\}$ and $\left.0 \in B_{r}^{l}(f) \backslash A_{r}(f)\right)$. Let $D=\left\{d_{1}, d_{2}, \ldots, d_{n}, \ldots\right\}$ be a countable dense set in \mathbb{R}. For each $i \in \mathbb{N}$, let $f_{i}(x)=f\left(x-d_{i}\right)$. Then $C\left(f_{i}\right)=\mathbb{R} \backslash\left\{d_{i}\right\}$ and $d_{i} \in B_{r}^{l}\left(f_{i}\right) \backslash A_{r}\left(f_{i}\right)$. Put $g=\sum_{n=1}^{\infty} 2^{-n} f_{n}$. The function $\sum_{n \neq i} 2^{-n} f_{n}$ is continuous at d_{i} and hence by Lemma 3 we get $d_{i} \in B_{r}^{l}(g)$. Since $\mathbb{R} \backslash D \subset C(g)$, we get $B_{r}^{l}(g)=\mathbb{R}$. Further $d_{i} \notin A_{r}\left(f_{i}\right)$ and hence by Lemma $3 d_{i} \notin A_{r}(g)$; i.e., $B_{r}^{l}(g) \backslash A_{r}(g)=D$.

Let us denote by \mathcal{C} and \mathcal{Q} the family of all continuous and quasicontinuous functions, respectively, and define the following classes of functions

Definition 2. Let $r \in[0,1)$. We put

$$
\begin{aligned}
& \mathcal{A}_{r}=\left\{f: \mathbb{R} \rightarrow \mathbb{R} ; A_{r}(f)=\mathbb{R}\right\} \\
& \mathcal{A}_{r}^{l}=\left\{f: \mathbb{R} \rightarrow \mathbb{R} ; A_{r}^{l}(f)=\mathbb{R}\right\} \\
& \mathcal{B}_{r}=\left\{f: \mathbb{R} \rightarrow \mathbb{R} ; B_{r}(f)=\mathbb{R}\right\}, \\
& \mathcal{B}_{r}^{l}=\left\{f: \mathbb{R} \rightarrow \mathbb{R} ; B_{r}^{l}(f)=\mathbb{R}\right\}
\end{aligned}
$$

Theorem 3. Let $0 \leq s<r<1$. Then

and all inclusions are proper.
Proof. The inclusions follow from Theorem 2. Propositions 1-5 show that the inclusions are proper.

Corollary 2. For each $s \in[0,1)$ we have

$$
\begin{aligned}
& \mathcal{A}_{s} \supset \bigcup_{1>r>s} \mathcal{A}_{r}=\bigcup_{1>r>s} \mathcal{B}_{r}, \\
& \mathcal{A}_{s}^{l} \supset \bigcup_{1>r>s} \mathcal{A}_{r}^{l}=\bigcup_{1>r>s} \mathcal{B}_{r}^{l}
\end{aligned}
$$

and for each $s \in(0,1)$ we have

$$
\begin{aligned}
& \mathcal{B}_{s} \subset \bigcap_{0 \leq r<s} \mathcal{A}_{r}=\bigcap_{0 \leq r<s} \mathcal{B}_{r}, \\
& \mathcal{B}_{s}^{l} \subset \bigcap_{0 \leq r<s} \mathcal{A}_{r}^{l}=\bigcap_{0 \leq r<s} \mathcal{B}_{r}^{l} .
\end{aligned}
$$

The inclusions are proper.
Proof. The inclusions follow from Theorem 2. The function f from Proposition 2 belongs to $\bigcap_{0 \leq r<s} \mathcal{A}_{r}^{l} \backslash \mathcal{B}_{s}$. The rest follows from Theorem 4.

Let $\rho(f, g)=\min \{1, \sup \{|f(x)-g(x)|: x \in \mathbb{R}\}$. We shall show that the inclusions in Theorem 3 and Corollary 2 mean, "is nowhere dense subset of" (with possible exception for $\mathcal{A}_{r} \subset \mathcal{B}_{r}$ and $\mathcal{A}_{r}^{l} \subset \mathcal{B}_{r}^{l}$) in the topology of the uniform convergence.

Proposition 6. Let $s \in[0,1)$. Then the sets $\mathcal{B}_{r}, \mathcal{B}_{r}^{l}, \bigcup_{1>r>s} \mathcal{B}_{r}$ and $\bigcup_{1>r>s} \mathcal{B}_{r}^{l}$ are closed in the topology of the uniform convergence.

Proof. Let $f_{n}: \mathbb{R} \rightarrow \mathbb{R}, f_{n} \in \bigcup_{1>r>s} \mathcal{B}_{r}$ and let $\left(f_{n}\right)_{n}$ uniformly converge to $f: \mathbb{R} \rightarrow \mathbb{R}$. Let $x \in \mathbb{R}$ and $\varepsilon>0$. Then there is $n_{0} \in \mathbb{N}$ such that $\left|f_{n}(y)-f(y)\right|<\varepsilon / 3$ for each $n \geq n_{0}$ and for each $y \in \mathbb{R}$. Since $f_{n_{0}} \in \bigcup_{1>r>s} \mathcal{B}_{r}$, there is $r \in(s, 1)$ such that $f_{n_{0}} \in \mathcal{B}_{r}$ and there is an open set U such that $d_{u}(U, x)>r$ and $\left|f_{n_{0}}(y)-f_{n_{0}}(x)\right|<\varepsilon / 3$ for each $y \in U$. Therefore for each $y \in$ U we have $|f(y)-f(x)| \leq\left|f(y)-f_{n_{0}}(y)\right|+\left|f_{n_{0}}(y)-f_{n_{o}}(x)\right|+\left|f_{n_{0}}(x)-f(x)\right|<\varepsilon$; i.e., $f \in \mathcal{B}_{r} \subset \bigcup_{1>r>s} \mathcal{B}_{r}$. Similarly we can show other cases.

The sets \mathcal{A}_{r} and \mathcal{A}_{r}^{l} are not closed.
Proposition 7. For each $r \in[0,1)$ there is a sequence $\left(f_{n}\right)_{n}$ of functions belonging to \mathcal{A}_{r}^{l} such that its uniform limit does not belong to \mathcal{A}_{r}.

Proof. Let I_{i}^{n}, J_{i}^{n} be closed disjoint intervals from Lemma 2 for $\alpha=r$. Define functions $f, f_{k}: \mathbb{R} \rightarrow \mathbb{R}(k \in \mathbb{N})$ by

$$
f(x)= \begin{cases}0 & \text { for } x \in\{0\} \cup \bigcup_{i=1}^{\infty} \bigcup_{n=1}^{\infty} I_{i}^{n}, \\ \frac{1}{i} & \text { for } x \in \bigcup_{n=1}^{\infty} J_{i}^{n} \\ \text { linear } & \text { on components of } \mathbb{R} \backslash\left(\{0\} \cup \bigcup_{i=1}^{\infty} \bigcup_{n=1}^{\infty} I_{i}^{n} \cup \bigcup_{i=1}^{\infty} \bigcup_{n=1}^{\infty} J_{i}^{n}\right),\end{cases}
$$

$$
f_{k}(x)= \begin{cases}0 & \text { for } \left.x \in\{0\} \cup \bigcup_{i=1}^{\infty} \bigcup_{n=1}^{\infty} I_{i}^{n} \cup \bigcup_{i=k+1}^{\infty} \bigcup_{n=1}^{\infty} J_{i}^{n}\right), \\ \frac{1}{i} & \text { for } x \in \bigcup_{n=1}^{\infty} J_{i}^{n} \text { and } i \leq k, \\ \text { linear } & \text { on components of } \mathbb{R} \backslash\left(\{0\} \cup \bigcup_{i=1}^{\infty} \bigcup_{n=1}^{\infty} I_{i}^{n} \cup \bigcup_{i=1}^{\infty} \bigcup_{n=1}^{\infty} J_{i}^{n}\right) .\end{cases}
$$

We shall show that $f_{k} \in \mathcal{A}_{r}^{l}$ for each $k \in \mathbb{N},\left(f_{k}\right)_{k}$ uniformly converges to f and $f \notin \mathcal{A}_{r}$. Let $k \in \mathbb{N}$. Evidently, f_{k} is continuous at each point different from zero. If $D=\bigcup_{i=1}^{\infty} \bigcup_{n=1}^{\infty} \operatorname{Int} I_{i}^{n} \cup \bigcup_{n=1}^{\infty} \operatorname{Int} J_{k+1}^{n}$, then D is open and

$$
d_{l}(D, 0) \geq d_{l}\left(\bigcup_{i=1}^{\infty} \bigcup_{n=1}^{\infty} \operatorname{Int} I_{i}^{n}, 0\right)+d_{l}\left(\bigcup_{n=1}^{\infty} \operatorname{Int} J_{k+1}^{n}\right) \geq r+(1-r) 2^{-k-1}>r
$$

Since f_{k} is constant on $\{0\} \cup D$, we have $0 \in A_{r}^{l}\left(f_{k}\right)$ and $f_{k} \in \mathcal{A}_{r}^{l}$. If $x \in$ $\{0\} \cup \bigcup_{i=1}^{\infty} \bigcup_{n=1}^{\infty} I_{i}^{n}$, then $f_{k}(x)=f(x)=0$. If $x \in \bigcup_{n=1}^{\infty} J_{i}^{n}$ and $i \leq k$, then $f_{k}(x)=f(x)=1 / i$. If $x \in \bigcup_{n=1}^{\infty} J_{i}^{n}$ and $j>k$, then $\left|f_{k}(x)-f(x)\right|=1 / i<1 / k$. Finally, let x belongs to a component of $\mathbb{R} \backslash\left(\{0\} \cup \bigcup_{i=1}^{\infty} \bigcup_{n=1}^{\infty} I_{i}^{n} \cup \bigcup_{i=1}^{\infty} \bigcup_{n=1}^{\infty} J_{i}^{n}\right)$. Therefore $x \in(p, q)$ for some p, q and $x=t p+(1-t) q$ for some $t \in(0,1)$. Then $f(x)=t \cdot f(p)+(1-t) f(q)$ and $f_{k}(x)=t \cdot f_{k}(p)+(1-t) f_{k}(q)$. From the definition of f and f_{k}, if $z \in\{p, q\}$ and $f(z)=0$ or $f(z)=1 / i$ and $i>k$ then $f_{k}(z)=0$ and if $f(z)=1 / i$ and $i \leq k$, then $f_{k}(z)=1 / i$. Therefore for $z \in\{p, q\}$ we have $\left|f_{k}(z)-f(z)\right|<1 / k$. Then $\left|f_{k}(x)-f(x)\right| \leq t\left|f_{k}(p)-f(p)\right|+$ $(1-t)\left|f_{k}(q)-f(q)\right|<t / k+(1-t) / k=1 / k$. Therefore $\left|f_{k}(x)-f(x)\right|<1 / k$ for each $x \in \mathbb{R}$; i.e., $\left(f_{k}\right)_{k}$ uniformly converges to f. Since f is the function from Proposition 5, $f \notin \mathcal{A}_{r}$.

Problem 1. Characterize uniform limits of \mathcal{A}_{r} and \mathcal{A}_{r}^{l}. Is true that each function from $\mathcal{B}_{r}\left(\mathcal{B}_{r}^{l}\right)$ can be written as the uniform limit of functions from $\mathcal{A}_{r}\left(\mathcal{A}_{r}^{l}\right)$? (Z. Grande in [1] has shown that this is true for \mathcal{B}_{0}.)

Theorem 4. Let $s \in[0,1)$. Then $\bigcup_{1>r>s} \mathcal{B}_{r}$ is nowhere dense set in \mathcal{A}_{s} and $\bigcup_{1>r>s} \mathcal{B}_{r}^{l}$ is nowhere dense set in \mathcal{A}_{s}^{l}.

Proof. According to Proposition 6, the set $\bigcup_{1>r>s} \mathcal{B}_{r}$ is closed. Therefore it is sufficient to prove that its complement is dense in \mathcal{A}_{s}. Let $f \in \underset{1>r>s}{\bigcup} \mathcal{B}_{r}$ and let $1>\varepsilon>0$. Then there is $r \in(s, 1)$ such that $f \in \mathcal{B}_{r}$. Since the set $\mathbb{R} \backslash C(f)$ is of the first category, there is a countable set $H=\left\{z_{1}, z_{2}, \ldots, z_{n}, \ldots\right\} \subset$ $C(f)$ such that $z_{n+1}-z_{n}>1$ for each $n \in \mathbb{N}$. According to Proposition 2 for each $t \in(s, 1)$ there is $h_{t}: \mathbb{R} \rightarrow[0,1]$ such that $C\left(h_{t}\right)=\mathbb{R} \backslash\{0\}$ and $0 \in A_{s}\left(h_{t}\right) \backslash B_{t}\left(h_{t}\right)$. Put $n_{0}=\min \{n \in \mathbb{N}: s+1 / n<1\}$. Now define $h: \mathbb{R} \rightarrow[0,1]$ by

$$
h(x)= \begin{cases}h_{s+1 / n}\left(x-z_{n}\right) & \text { for } x \in\left[z_{n}-1 / 4, z_{n}+1 / 4\right] \text { and } n \geq n_{0} \\ h_{s+1 / n_{0}}\left(x-z_{n_{0}}\right) & \text { for } x \leq z_{n_{0}}-1 / 4 \\ \text { linear } & \text { on }\left[z_{n}+1 / 4, z_{n}+3 / 4\right] \text { and } n \geq n_{0}\end{cases}
$$

Then $\mathbb{R} \backslash\left\{z_{n_{0}}, z_{n_{0}+1}, \ldots\right\} \subset C(h)$ and $z_{n} \in A_{s}(h) \backslash B_{s+1 / n}(h)$ for each $n \geq n_{0}$.
Now put $g=f+(\varepsilon / 2) h$. Then $\rho(f, g)<\varepsilon$. If $n \geq n_{0}$, then $z_{n} \in C(f)$ and $z_{n} \in A_{s}(h)$. Hence by Lemma 3 we obtain $z_{n} \in A_{s}(g)$. If $x \neq z_{n}\left(n \geq n_{0}\right)$, then $x \in C(h)$ and $x \in B_{r}(f)$. Therefore $x \in B_{r}(g) \subset A_{s}(g)$. Thus $A_{s}(g)=\mathbb{R}$ and $g \in \mathcal{A}_{s}$. Now let $t \in(s, 1)$. Then there is $n \geq n_{o}$ such that $s+1 / n<t$. Then $z_{n} \notin B_{s+1 / n}(h), z_{n} \in C(f)$ and hence $z_{n} \notin B_{s+1 / n}(g)$ and $z_{n} \notin B_{t}(g)$. Therefore $g \notin \mathcal{B}_{t}$ for each $t \in(s, 1)$, i.e. $g \notin \underset{1>r>s}{\bigcup} \mathcal{B}_{r}$.

Similarly, using Propositions 1, 3 and 4 and Lemma 3 we can show that for each $r \in[0,1), \mathcal{B}_{r}^{l} \cap \mathcal{A}_{r}$ (and thus also \mathcal{A}_{r}^{l}) is nowhere dense subset of $\mathcal{A}_{r}, \mathcal{B}_{r}^{l}$ is nowhere dense subset of $\mathcal{B}_{r}, \mathcal{C}$ is nowhere dense subset of \mathcal{A}_{r}^{l} and \mathcal{B}_{0} is nowhere dense subset of \mathcal{Q}. Therefore, $\left(\mathcal{B}_{r}\right)_{r \in[0,1)}$ is the family of closed subsets of \mathcal{Q} such that \mathcal{B}_{r} is nowhere dense subset of \mathcal{B}_{s} whenever $0 \leq s<r<1$.

References

[1] Z. Grande, On strong quasi-continuity of functions of two variables, Real Anal. Exchange, 21 (1995/96), 236-243.
[2] Z. Grande, On strong quasicontinuity points, Tatra Mt. Math. Publ., 8 (1996), 17-21.
[3] T. Neubrunn, Quasi-continuity, Real Anal. Exchange, 14 (1988/89), 259308.

[^0]: Key Words: continuity, quasi-continuity, strong quasi-continuity
 Mathematical Reviews subject classification: Primary: 26A15; Secondary: 54C08, 54C30

 Received by the editors November 15, 2004
 Communicated by: B. S. Thomson
 *Supported by Grant VEGA 2/3165/23

