Ján Borsík, Mathematical Institute, Slovak Academy of Sciences, Grešákova 6, SK-04001 Košice, Slovakia. email: borsik@saske.sk

## SOME CLASSES OF STRONGLY QUASICONTINUOUS FUNCTIONS

## Abstract

Some classes of strongly quasicontinuous functions are investigated.

Let  $\mathbb{R}$ ,  $\mathbb{Q}$  and  $\mathbb{N}$  be the set of all real, rational and positive integer numbers, respectively. For a set  $A \subset \mathbb{R}$  denote by Int A and Cl A the interior and the closure of A, respectively. Recall that a function  $f : \mathbb{R} \to \mathbb{R}$  is quasi-continuous at a point  $x \in \mathbb{R}$  if for each  $\varepsilon > 0$  and for each neighborhood U of x there is a nonempty open set  $G \subset U$  such that  $f(G) \subset (f(x) - \varepsilon, f(x) + \varepsilon)$  ([3]). Denote by Q(f) (C(f)) the set of all quasi-continuity (continuity) points of f. It is well-known that the set  $Q(f) \setminus C(f)$  is of the first category but it need not be measurable or of measure zero (e.g., if T is a closed nowhere dense set of positive measure and  $S \subset T$  is dense in T and nonmeasurable (of measure zero), then for its characteristic function  $\chi_S$  the set  $Q(\chi_S) \setminus C(\chi_S)$  is nonmeasurable (of positive measure).

Let  $\ell_e$  ( $\ell$ ) denote the outer Lebesgue measure (Lebesgue measure) in  $\mathbb{R}$ . Let

$$d_u(A, x) = \limsup_{h \to 0^+} \ell_e(A \cap (x - h, x + h))/2h$$
$$(d_l(A, x) = \liminf_{h \to 0^+} \ell_e(A \cap (x - h, x + h)/2h)$$

the upper (lower) outer density of  $A \subset \mathbb{R}$  at a point  $x \in \mathbb{R}$ .

Z. Grande in [1] introduced properties A(x) and B(x) of functions:

A function  $f : \mathbb{R} \to \mathbb{R}$  has property A(x) at a point  $x \in \mathbb{R}$  if there exists an open set U such that  $d_u(U, x) > 0$  and the restricted function  $f \upharpoonright (U \cup \{x\})$ is continuous at x. We will write  $f \in A(x)$  if f has the property A(x) at a point x.

Received by the editors November 15, 2004

Key Words: continuity, quasi-continuity, strong quasi-continuity

Mathematical Reviews subject classification: Primary: 26A15; Secondary: 54C08, 54C30

Communicated by: B. S. Thomson

<sup>\*</sup>Supported by Grant VEGA 2/3165/23

<sup>689</sup> 

A function  $f : \mathbb{R} \to \mathbb{R}$  has property B(x) at  $x \in \mathbb{R}$  (abbreviated  $f \in B(x)$ ) if for  $\varepsilon > 0$  we have  $d_u(\operatorname{Int}\{y : |f(y) - f(x)| < \varepsilon\}, x) > 0$ .

Denote by A(f) the set  $\{x \in \mathbb{R} : f \in A(x)\}$  and by B(f) the set  $\{x \in \mathbb{R} : f \in B(x)\}$ . Z. Grande has shown that  $C(f) \subset A(f) \subset B(f) \subset Q(f)$  and that the measure of  $B(f) \setminus C(f)$  is zero.

**Definition 1.** Let  $f : \mathbb{R} \to \mathbb{R}$  be a function and let  $r \in [0, 1)$ . We put

 $A_r(f) = \{x \in \mathbb{R} : \text{there is an open set } U \text{ such that } d_u(U, x) > r \text{ and } f \upharpoonright (U \cup \{x\}) \text{ is continuous at } x\},$ 

 $A_r^l(f) = \{x \in \mathbb{R} : \text{there is an open set } U \text{ such that } d_l(U, x) > r \text{ and} f \upharpoonright (U \cup \{x\}) \text{ is continuous at } x\},$ 

 $B_r(f) = \{x \in \mathbb{R} : \text{for each } \varepsilon > 0 \text{ there is an open set } U \text{ such that } d_u(U, x) > r \text{ and } f(U) \subset (f(x) - \varepsilon, f(x) + \varepsilon)\},\$ 

 $B_r^l(f) = \{x \in \mathbb{R} : \text{for each } \varepsilon > 0 \text{ there is an open set } U \text{ such that} \\ d_l(U,x) > r \text{ and } f(U) \subset (f(x) - \varepsilon, f(x) + \varepsilon) \}.$ 

Evidently,  $A_r^l(f) \subset A_r(f) \subset B_r(f)$  and  $A_r^l(f) \subset B_r^l(f) \subset B_r(f)$  for each  $r \in [0,1)$ . Further,  $A_r(f) \subset A_s(f)$ ,  $B_r(f) \subset B_s(f)$ ,  $A_r^l(f) \subset A_s^l(f)$ , and  $B_r^l(f) \subset B_s^l(f)$  for  $0 \le s < r < 1$ . Thus, the sets  $A_r(f) \setminus C(f)$ ,  $A_r^l(f) \setminus C(f)$ ,  $B_r(f) \setminus C(f)$ , and  $B_r^l(f) \setminus C(f)$  are sets of first category and of measure zero. We shall show that  $B_r(f) \subset A_s(f)$  and  $B_r^l(f) \subset A_s^l(f)$  for  $0 \le s < r < 1$ .

**Lemma 1.** Let  $0 \leq \beta < 1$ , a > 0,  $x \in \mathbb{R}$  and let A be a measurable set. If  $\ell(A \cap (x - a, x + a)) > \beta$ , then there is  $c \in (0, a)$  such that for each  $b \in (0, c)$ 

$$\ell(A \cap ((x-a, x-b) \cup (x+b, x+a))) > \beta.$$

PROOF. Put  $\ell(A \cap (x - a, x + a)) = \alpha > \beta$ . Then there is c > 0 such that  $\alpha - 2c > \beta$ . Since  $2c < \alpha \le 2a$ , we have c < a. Let 0 < b < c. Then  $\alpha = \ell(A \cap (x - a, x + a)) = \ell(A \cap ((x - a, x - b) \cup (x + b, x + a))) + \ell(A \cap (x - b, x + b)) \le \ell(A \cap ((x - a, x - b) \cup (x + b, x + a))) + 2b$ . Therefore  $\ell(A \cap ((x - a, x - b) \cup (x + b, x + a))) \ge \alpha - 2b > \beta$ .

**Theorem 1.** Let  $f : \mathbb{R} \to \mathbb{R}$  be a function and let  $0 \le s < r < 1$ . Then  $B_r(f) \subset A_s(f)$  and  $B_r^l(f) \subset A_s^l(f)$ .

PROOF. The inclusion  $B_r(f) \subset A_s(f)$ :

Let  $x \in B_r(f)$ . Then for each  $n \in \mathbb{N}$  there is an open set  $A_n$  such that  $d_u(A_n, x) > r$  and  $f(A_n) \subset (f(x) - 1/n, f(x) + 1/n)$ . There is a sequence  $(h_i^n)_i$  such that  $0 < h_{i+1}^n < h_i^n$ ,  $\lim_{i \to \infty} h_i^n = 0$  and  $\ell(A_n \cap (x - h_i^n, x + h_i^n))/(2h_i^n) > r$ .

Let  $v_0 = h_1^1$ . Since  $\ell(A_1 \cap (x - v_0, x + v_0)) > 2rv_0$ , according to Lemma 1 there is  $c_1 \in (0, v_0)$  such that  $\ell(A_1 \cap ((x - v_0, x - b) \cup (x + b, x + v_0))) > 2rv_0$ for each  $b \in (0, c_1)$ . Let  $j \in \mathbb{N}$  be such that  $h_j^2 < c_1/2$  and let  $v_1 = h_j^2$ . Assume that we have positive numbers  $v_0, v_1, \ldots, v_n$  such that  $0 < v_i < v_{i-1}/2, v_i \in \{h_1^{i+1}, h_2^{i+1}, \ldots, h_k^{i+1}, \ldots\}$  and  $\ell(A_i \cap ((x - v_{i-1}, x - v_i) \cup (x + v_i, x + v_{i+1})) > 2rv_{i-1}$  for each  $i \in \{1, 2, \ldots, n\}$ . Since  $v_n = h_j^{n+1}$  for some  $j \in \mathbb{N}$ , so  $\ell((A_{n+1} \cap (x - v_n, x + v_n)) > 2rv_n$  and according to Lemma 1 there is  $c_{n+1} \in (0, v_n)$  such that  $\ell((A_{n+1} \cap ((x - v_n, x - b) \cup (x + b, x + v_n))) > 2rv_n$  for each  $b \in (0, c_{n+1})$ . There is  $k \in \mathbb{N}$  such that  $h_k^{n+2} < c_{n+1}/2$  and put  $v_{n+1} = h_k^{n+2}$ .

Now put  $V_n = A_n \cap ((x - v_{n-1}, x - v_n) \cup (x + v_n, x + v_{n-1}))$  and  $V = \bigcup_{n=1}^{\infty} V_n$ . Then V is an open set. We shall show that  $d_u(V, x) > s$ . We see that  $V \cap (x - v_n, x + v_n) = \bigcup_{i=1}^{\infty} (V_i \cap (x - v_n, x + v_n)) = \bigcup_{i=n+1}^{\infty} V_i$  and therefore  $\ell(V \cap (x - v_n, x + v_n)) = \sum_{i=n+1}^{\infty} \ell(V_i) \ge \ell(V_{n+1}) > 2rv_n$ . This yields  $\frac{\ell(V \cap (x - v_n, x + v_n))}{2v_n} > \frac{2rv_n}{2v_n} = r$  and thus  $d_u(V, x) \ge r > s$ .

Now we shall show that  $f \upharpoonright (V \cup \{x\})$  is continuous at x. Let  $\varepsilon > 0$ . Choose  $n \in \mathbb{N}$  with  $1/n < \varepsilon$ . If  $y \in V \cap (x - v_n, x + v_n)$ , then  $y \in V_j$  for some  $j \ge n$ . Then  $f(y) \in f(V_j) \subset f(A_j) \subset (f(x) - 1/j, f(x) + 1/j) \subset (f(x) - \varepsilon, f(x) + \varepsilon)$ ; i.e.,  $f \upharpoonright (V \cup \{x\})$  is continuous at x.

The inclusion  $B_r^l(f) \subset A_s^l(f)$ :

Let  $x \in B_r^l(f)$ . Then for each  $n \in \mathbb{N}$  there is an open set  $A_n$  such that  $\beta_n = d_l(A_n, x) > r$  and  $f(A_n) \subset (f(x) - 1/n, f(x) + 1/n)$ . Since  $r/\beta_n < 1$ , for each  $n \in \mathbb{N}$  there is  $k_n > 2$  such that

$$\frac{k_n-1}{k_n+1} > \max\left\{\sqrt{\frac{r}{\beta_n}}, \sqrt{\frac{r}{\beta_{n+1}}}\right\}.$$

Put  $\eta_n = \frac{\beta_n - r}{k_n} > 0$ . Evidently  $\beta_n - \eta_n > r$ . Since  $d_l(A_n, x) > \beta_n - \eta_n$ , there is  $h_n > 0$ , such that  $\ell(A_n \cap (x - h, x + h)) > 2(\beta_n - \eta_n)h$  for each  $h \in (0, h_n]$ .

We can assume that  $h_{n+1} < h_n/2$ . Put  $p_0 = h_1$ . According to Lemma 1 there is  $c_1 \in (0, p_0)$  such that  $\ell(A_1 \cap ((x - p_0, x - b) \cup (x + b, x + p_0))) > 2(\beta_1 - \eta_1)p_0$  for each  $b \in (0, c_1)$ . Further, since  $d_l(A_1, x) < \beta_1 + \eta_1$ , there is  $p_1 < \min\{c_1, h_2\}$  such that  $\ell(A_1 \cap ((x - p_1, x + p_1)) < 2(\beta_1 + \eta_1)p_1$ .

Assume that we have positive numbers  $p_0, p_1, \ldots, p_n$  such that for each  $i \in \{1, 2, \ldots, n\}$ 

$$\begin{split} p_i &< \min\{p_{i-1}, h_{i+1}\},\\ \ell((A_i \cap (x - p_i, x + p_i)) < 2(\beta_i + \eta_i)p_i \text{ and}\\ \ell(A_i \cap ((x - p_{i-1}, x - p_i) \cup (x + p_i, x + p_{i-1}))) > 2(\beta_i - \eta_i)p_{i-1}. \end{split}$$

Since  $p_n < h_{n+1}$ ,  $\ell(A_{n+1} \cap (x - p_n, x + p_n)) > 2(\beta_{n+1} - \eta_{n+1})p_n$  and according to Lemma 1 there is  $c_{n+1} \in (0, p_n)$  such that for each  $b \in (0, c_{n+1})$ 

$$\ell(A_{n+1} \cap ((x - p_n, x - b) \cup (x + b, x + p_n)) > 2(\beta_{n+1} - \eta_{n+1})p_n.$$

Further there is  $p_{n+1} < \min\{c_{n+1}, h_{n+2}\}$  such that

$$\ell(A_{n+1} \cap ((x - p_{n+1}, x + p_{n+1})) < 2(\beta_{n+1} + \eta_{n+1})p_{n+1}$$

$$\begin{split} & \text{Then } p_{n+1} < p_n \text{ and } \ell(A_{n+1} \cap ((x-p_n,x-p_{n+1}) \cup (x+p_{n+1},x+p_n)) > \\ & 2(\beta_{n+1}-\eta_{n+1})p_n. \text{ Put } V_n = A_n \cap ((x-p_{n-1},x-p_n) \cup (x+p_n,x+p_{n-1})) \text{ and } \\ & V = \bigcup_{n=1}^{\infty} V_n. \text{ Then } V \text{ is an open set. We shall show that } d_l(V,x) > s. \text{ Let } \\ & 0 < h < h_1. \text{ Since } 0 < p_{j+1} \leq p_j \text{ and } \lim_{j \to \infty} p_j = 0, \text{ there is } n \in \mathbb{N} \text{ such that } \\ & p_n < h \leq p_{n-1}. \text{ Then } h > \frac{k_n+1}{k_n-1}p_n \text{ or } h \leq \frac{k_n+1}{k_n-1}p_n. \\ & \text{ a) Let } h > \frac{k_n+1}{k_n-1}p_n. \text{ Then } k_nh-h-k_np_n-p_n = (k_n-1)h-(k_n+1)p_n > \\ & (k_n-1)\frac{k_n+1}{k_n-1}p_n-(k_n+1)p_n = 0. \text{ Further, } h \leq p_{n-1} < h_n \text{ and hence } \\ & 2(\beta_n-\eta_n)h < \ell((A_n \cap (x-h,x+h)) = \ell(A_n \cap (x-p_n,x+p_n)) \\ & \quad + \ell(A_n \cap ((x-h,x-p_n) \cup (x+p_n,x+h)) \\ & < 2(\beta_n+\eta_n)p_n + \ell(A_n \cap ((x-h,x-p_n) \cup (x+p_n,x+h))). \end{split}$$

Therefore

$$\ell(A_n \cap ((x-h, x-p_n) \cup (x+p_n, x+h)) > 2(\beta_n - \eta_n)h - 2(\beta_n + \eta_n)p_n$$
  
=2r(h-p\_n) + 2k\_n^{-1}(k\_n\beta\_n h - \beta\_n h + rh - k\_np\_n - \beta\_n p\_n + rp\_n - rk\_n h + rk\_np\_n)  
=2r(h-p\_n) + 2k\_n^{-1}(\beta\_n - r)(k\_n h - h - k\_np\_n - p\_n) > 2r(h-p\_n).

Further we see that  $\ell(V_{n+1}) = \ell(A_{n+1} \cap ((x-p_n, x-p_{n+1}) \cup (x+p_{n+1}, x+p_n)) > 2(\beta_{n+1} - \eta_{n+1})p_n > 2rp_n$ . Therefore we obtain

$$\begin{split} \ell(V \cap (x - h, x + h)) &\geq \ell(V \cap ((x - h, x - p_{n+1}) \cup (x + p_{n+1}, x + h)) \\ &= \ell(V_{n+1}) + \ell(A_n \cap ((x - h, x - p_n) \cup (x + p_n, x + h)) \\ &> 2rp_n + 2r(h - p_n) = 2rh. \end{split}$$

b) Now let  $h \leq \frac{k_n + 1}{k_n - 1} p_n$ . We see that

$$\frac{k_n - 1}{k_n + 1} (\beta_{n+1} - \eta_{n+1}) = \frac{k_n - 1}{k_n + 1} \cdot \frac{(k_{n+1} - 1)\beta_{n+1} + r}{k_{n+1}}$$
$$> \frac{k_n - 1}{k_n + 1} \cdot \frac{k_{n+1} - 1}{k_{n+1} + 1} \beta_{n+1} > \sqrt{\frac{r}{\beta_{n+1}}} \cdot \sqrt{\frac{r}{\beta_{n+1}}} \cdot \beta_{n+1} = r$$

692

This yields

$$\begin{split} \ell(V \cap ((x-h,h+h)) &\geq \ell(V_{n+1}) \\ &= \ell(A_{n+1} \cap ((x-p_n,x-p_{n+1}) \cup (x+p_{n+1},x+p_n)) \\ &> 2(\beta_{n+1}-\eta_{n+1})p_n \geq 2(\beta_{n+1}-\eta_{n+1})\frac{k_n-1}{k_n+1}h > 2rh \end{split}$$

Therefore for each  $h \in (0, h_1)$  we have  $\ell(V \cap (x - h, x + h)) > 2rh$ ; i.e.,  $d_l(V, x) \ge r > s$ . Similarly as above we can prove that  $f \upharpoonright (V \cup \{x\})$  is continuous at x.

**Theorem 2.** Let  $f : \mathbb{R} \to \mathbb{R}$  be a function and let  $0 \le s < r < 1$ . Then

and each of inclusions can be proper.

PROOF. The inclusions follow from previous remarks and Theorem 1. The following examples show that the inclusions can be proper.  $\hfill \Box$ 

**Proposition 1.** Let  $r, s \in [0, 1)$ . Then there is a function  $f : \mathbb{R} \to [0, 1]$  such that f is continuous at each point different from zero and  $0 \in A_r(f) \setminus B_s^l(f)$ .

PROOF. Put  $a_n = \frac{1}{(4n)!}$ ,  $b_n = \frac{1}{(4n-1)!}$ ,  $c_n = \frac{1}{(4n-2)!}$  and  $d_n = \frac{1}{(4n-3)!}$ . Then  $0 < d_{n+1} < a_n < b_n < c_n < d_n \le 1$ . Put  $A = \bigcup_{n=1}^{\infty} ((a_n, b_n) \cup (-b_n, -a_n))$ and  $B = \bigcup_{n=1}^{\infty} ((c_n, d_n) \cup (-d_n, -c_n))$ . Then A and B are open disjoint sets and  $\operatorname{Cl} A \cap \operatorname{Cl} B = \{0\}$ . Hence there is a continuous function  $g : \mathbb{R} \setminus \{0\} \to [0, 1]$ such that g(x) = 0 for  $x \in B$  and g(x) = 1 for  $x \in A$ . Now let  $f : \mathbb{R} \to [0, 1]$ be such that f(x) = g(x) for  $x \neq 0$  and f(0) = 0. We shall show that f is our function.

We have  $A \cap (0, b_n) = \bigcup_{i=n}^{\infty} (a_i, b_i)$  and therefore

$$\ell(A \cap (-b_n, 0)) = \ell(A \cap (0, b_n)) \ge \ell((a_n, b_n)) = \frac{1}{(4n-1)!} - \frac{1}{(4n)!} = \frac{4n-1}{(4n)!}$$

and

$$\frac{\ell((A \cap (-b_n, b_n))}{2b_n} \ge \frac{((4n-1)!)(4n-1)}{(4n)!} = \frac{4n-1}{4n}.$$

Since  $\lim_{n \to \infty} b_n = 0$ , we obtain

$$d_u(A,0) \ge \lim_{n \to \infty} \frac{\ell((A \cap (-b_n, b_n)))}{2b_n} \ge \lim_{n \to \infty} \frac{4n-1}{4n} = 1.$$

Similarly we can show that  $d_u(B,0) = 1$ . Evidently, f is continuous at each point different from zero. The set B is open,  $d_u(B,0) = 1 > r$  and f(x) = 0 for  $x \in B \cup \{0\}$ , thus  $0 \in A_r(f)$ .

Now let U be an open set such that  $d_l((U,0) > s$ . Then  $d_u(\mathbb{R} \setminus U,0) < 1 - s \leq 1$ . If  $A \cap U = \emptyset$  then  $d_u(A,0) \leq d_u(\mathbb{R} \setminus U,0) < 1$ , a contradiction, Therefore  $A \cap U \neq \emptyset$  and this yields  $0 \notin B_s^l(f)$ .

**Lemma 2.** Let  $0 \le \alpha < 1$ . Then there are disjoint closed intervals  $I_i^n, J_i^n \subset (-1,0) \cup (0,1), i, n \in \mathbb{N}$ , such that:

- (i)  $d_l(\bigcup_{n=1}^{\infty} \operatorname{Int} I_i^n, 0) \ge \alpha \cdot 2^{-i}$  for each  $i \in \mathbb{N}$ ,
- (ii)  $d_l(\bigcup_{n=1}^{\infty} \operatorname{Int} J_i^n, 0) \ge (1-\alpha)2^{-i}$  for each  $i \in \mathbb{N}$ ,
- (*iii*)  $\operatorname{Cl}(\bigcup_{n=1}^{\infty}\bigcup_{i=1}^{\infty}I_i^n)\cap\operatorname{Cl}(\bigcup_{n=1}^{\infty}\bigcup_{i=1}^{\infty}J_i^n)=\{0\}.$

PROOF. There are disjoint closed intervals  $K_i^n, L_i^n \subset (\frac{1}{n+1}, \frac{1}{n}), 1 \leq i \leq n$ , such that  $\ell(K_i^n) = \frac{\alpha \cdot 2^{-i}}{n(n+1)}$  and  $\ell(L_i^n) = \frac{(1-\alpha) \cdot 2^{-i}}{n(n+1)}$  for each  $i, 1 \leq i \leq n$  (For  $\alpha = 0$  we require that  $\ell(K_i^n) > 0$  and  $\ell(L_i^n) = \frac{2^{-i}}{n(n+1)}$ ). If I = [a, b] is an interval, denote by -I the interval [-b, -a]. Put  $I_i^k = (-1)^{k+1} K_i^{i+[(k-1)/2]}$  and  $J_i^k = (-1)^{k+1} L_i^{i+[(k-1)/2]}$  for  $i, k \in \mathbb{N}$ , where [x] is the integer part of x. Then all intervals  $I_i^k, J_i^k$  are mutually disjoint. We shall show that they satisfy (i), (ii), and (iii). (i): Let  $\varepsilon > 0$  and  $i \in \mathbb{N}$ . Choose  $p \in \mathbb{N}$  such that  $p \geq i$  and  $1/p < \varepsilon$ . Let 0 < h < 1/p. Then there is  $n \in \mathbb{N}, n \geq p$ , such that  $1/(n+1) \leq h < 1/n$ . We see that

$$\bigcup_{k=1}^{\infty} I_i^k \cap (0,h) \supset \bigcup_{k=1}^{\infty} I_i^k \cap (0,1/(n+1)) = \bigcup_{k=n+1}^{\infty} K_i^k$$

and therefore

$$\begin{split} \ell(\bigcup_{k=1}^{\infty} I_i^k \cap (0,h)) &\geq \ell(\bigcup_{k=n+1}^{\infty} K_i^k) = \sum_{k=n+1}^{\infty} \ell(K_i^k) = \sum_{k=n+1}^{\infty} \frac{\alpha \cdot 2^{-i}}{k(k+1)} \\ &= \alpha \cdot 2^{-i} \sum_{k=n+1}^{\infty} \frac{1}{k(k+1)} = \frac{\alpha \cdot 2^{-i}}{n+1}. \end{split}$$

Similarly we can show that  $\ell(\bigcup_{k=1}^{\infty} I_i^k \cap (-h, 0)) \ge \frac{\alpha \cdot 2^{-i}}{n+1}$  and hence  $\ell(\bigcup_{k=1}^{\infty} I_i^k \cap (-h, h)) \ge 2\frac{\alpha \cdot 2^{-i}}{n+1}$ . Since 0 < h < 1/n, we obtain

$$\frac{\ell(\bigcup_{k=1}^{\infty} I_i^k \cap (-h,h))}{2h} \ge \frac{\alpha \cdot 2^{-i} \cdot n}{n+1} \ge \alpha \cdot 2^{-i}(1-\frac{1}{p}) > \alpha \cdot 2^{-i}(1-\varepsilon)$$

Thus  $d_l(\bigcup_{n=1}^{\infty} I_i^n, 0) \ge \alpha \cdot 2^{-i}(1-\varepsilon)$  for each  $\varepsilon > 0$ ; i.e.,  $d_l(\bigcup_{n=1}^{\infty} I_i^n, 0) \ge \alpha \cdot 2^{-i}$ . (ii): The proof is similar.

(iii): It follows from the construction.

**Proposition 2.** Let  $0 \le r < s < 1$ . Then there is a function  $f : \mathbb{R} \to [0, 1]$  such that f is continuous at each point different from zero and  $0 \in A_r^l(f) \setminus B_s(f)$ .

PROOF. Let  $I_i^n$ ,  $J_i^n$  be closed disjoint intervals from Lemma 2 for  $\alpha = s$ . Put  $A = \bigcup_{i,n \in \mathbb{N}} \operatorname{Int} I_i^n$  and  $B = \bigcup_{i,n \in \mathbb{N}} \operatorname{Int} J_i^n$ . Then  $\operatorname{Cl} A \cap \operatorname{Cl} B = \{0\}$  and there is a continuous function  $g : \mathbb{R} \setminus \{0\} \to [0,1]$  such that g(x) = 0 for  $x \in A$  and g(x) = 1 for  $x \in B$ . Let  $f : \mathbb{R} \to \mathbb{R}$  be a function such that f(x) = g(x) for  $x \neq 0$  and f(0) = 0. Then f is continuous at each point different from zero. The set A is open and  $d_l(A, 0) \geq \sum_{i=1}^{\infty} d_l(\bigcup_{n=1}^{\infty} \operatorname{Int} I_i^n, 0) \geq \sum_{i=1}^{\infty} s \cdot 2^{-i} = s > r$ . Since f is constant on  $A \cup \{0\}$ , we have  $0 \in A_r^l(f)$ .

Now, let U be an open set such that  $d_u(U,0) > s$ . We have  $d_l(B,0) \ge \sum_{i=1}^{\infty} d_l(\bigcup_{n=1}^{\infty} \operatorname{Int} J_i^n, 0) \ge \sum_{i=1}^{\infty} (1-s)2^{-i} = 1-s$ . If  $B \cap U = \emptyset$ , then  $1-s \le d_l(B,0) \le d_l(\mathbb{R} \setminus U,0) < 1-s$ , a contradiction. Therefore  $B \cap U \neq \emptyset$  and this yields  $0 \notin B_s(f)$ .

**Proposition 3.** Let  $r \in [0,1)$ . Then there is a function  $f : \mathbb{R} \to [0,1]$  such that f is continuous at each point different from zero and  $0 \in A_r^l(f) \setminus C(f)$ .

PROOF. Let  $I_i^n$ ,  $J_i^n$  be closed disjoint intervals from Lemma 2 for  $\alpha = 0$ . Put  $A = \bigcup_{i,n\in\mathbb{N}} \operatorname{Int} I_i^n$  and  $B = \bigcup_{i,n\in\mathbb{N}} \operatorname{Int} J_i^n$ . Then there is a function  $f: \mathbb{R} \to [0,1]$  such that f(0) = 0, f(x) = 0 for  $x \in B$ , f(x) = 1 for  $x \in A$  and f is continuous at each point different from zero. Then B is an open set and  $d_l(B,0) \geq \sum_{i=1}^{\infty} 2^{-i} = 1 > r$ . Since f is constant on  $B \cup \{0\}$ , we have  $0 \in A_r^l(f)$ . Since  $0 \in \operatorname{Cl} A$ , we have  $0 \notin C(f)$ .

**Proposition 4.** There is a function  $f : \mathbb{R} \to [0,1]$  such that f is continuous at each point different from zero and  $0 \in Q(f) \setminus B_0(f)$ .

PROOF. Let A and B be the same as in Proposition 3. Then there is a function  $f : \mathbb{R} \to [0,1]$  such that f(0) = 0, f(x) = 0 for  $x \in A$ , f(x) = 1 for  $x \in B$  and f is continuous at each point different from zero. Since  $0 \in \operatorname{Cl} A$ , we have  $0 \in Q(f)$ . Now let U be an open set such that  $d_u(U,0) > 0$ . If  $B \cap U = \emptyset$ , then  $1 \leq d_l(B,0) \leq d_l(\mathbb{R} \setminus U,0) < 1$ , a contradiction. Therefore  $B \cap U \neq \emptyset$  and  $0 \notin B_0(f)$ .

**Proposition 5.** Let  $r \in [0,1)$ . Then there is a function  $f : \mathbb{R} \to [0,1]$  such that f is continuous at each point different from zero and  $0 \in B_r^l(f) \setminus A_r(f)$ .

PROOF. Let  $I_i^n$ ,  $J_i^n$  be closed disjoint intervals from Lemma 2 for  $\alpha = r$ . Put  $A = \bigcup_{i,n\in\mathbb{N}} \operatorname{Int} I_i^n$  and  $B = \bigcup_{i,n\in\mathbb{N}} \operatorname{Int} J_i^n$ . Then there is a function  $f: \mathbb{R} \to [0,1]$  such that f(0) = 0, f(x) = 0 for  $x \in A$ , f(x) = 1/i for  $x \in J_i^n$  and f is continuous at each point different from zero.

Let  $\varepsilon > 0$ . Choose  $i \in \mathbb{N}$  with  $1/i < \varepsilon$ . Then  $D = A \cup \bigcup_{n=1}^{\infty} \operatorname{Int} J_i^n$  is an open set and  $f(D) \subset (-\varepsilon, \varepsilon)$ . Since  $A \cap (\bigcup_{n=1}^{\infty} \operatorname{Int} J_i^n) = \emptyset$ , we obtain

$$d_l(D,0) \ge d_l(A,0) + d_l(\bigcup_{n=1}^{\infty} \operatorname{Int} J_i^n, 0) \ge r + (1-r)2^{-i} > r.$$

Therefore  $0 \in B_r^l(f)$ .

Now let U be an open set such that  $t = d_u(U, 0) > r$ . Let V be arbitrary open neighborhood of 0. Then  $d_u(U \cap V, 0) = t$ . Put q = (t - r)/2 and let  $\eta > 0$  be such that  $2\eta < q$ . Let  $j \in \mathbb{N}$  be such that  $2^{-j} < q$  and denote by  $C = \bigcup_{i=1}^{j} \bigcup_{n=1}^{\infty} \operatorname{Int} J_i^n$ . Since  $I_i^n$  and  $J_i^n$  are disjoint, we obtain

$$d_l(C,0) \ge \sum_{i=1}^j d_l(\bigcup_{n=1}^\infty \operatorname{Int} J_i^n, 0) \ge \sum_{i=1}^j (1-r)2^{-i} = (1-r)(1-2^{-j}).$$

Then also  $d_l(C \cap V, 0) \ge (1-r)(1-2^{-j}) > (1-r)(1-2^{-j}) - \eta$ . Hence there is a  $\delta > 0$  such that for each  $h \in (0, \delta)$ 

$$\frac{\ell((-h,h)\cap V\cap C)}{2h} > (1-r)(1-2^{-j}) - \eta.$$

Since  $d_u(U \cap V, 0) > t - \eta$ , there is a sequence  $(h_m)_m$  converging to zero such that

$$\frac{\ell((-h_m, h_m) \cap V \cap U)}{2h_m} > t - \eta.$$

We can assume that  $h_m \in (0, \delta)$ . Assume that  $U \cap V \cap C = \emptyset$ . Then

$$1 = \frac{\ell((-h_m, h_m))}{2h_m} \ge \frac{\ell((-h_m, h_m) \cap V \cap U)}{2h_m} + \frac{\ell((-h_m, h_m) \cap V \cap C)}{2h_m}$$
  
>  $(1 - r)(1 - 2^{-j}) - \eta + t - \eta > (1 - r)(1 - q) + t - 2\eta$   
>  $1 - r - q + t - 2\eta = 1 + q - 2\eta.$ 

This yields  $q < 2\eta$ , a contradiction. Therefore  $U \cap V \cap C \neq \emptyset$ . This means that each neighborhood V of 0 contains a point  $z \in V \cap U$  such that  $f(z) \ge 1/j$ ; i.e.,  $0 \notin A_r(f)$ .

**Corollary 1.** For each  $s \in [0, 1)$  we have

$$A_s(f) = \bigcup_{1 > r > s} A_r(f) = \bigcup_{1 > r > s} B_r(f),$$
$$A_s^l(f) = \bigcup_{1 > r > s} A_r^l(f) = \bigcup_{1 > r > s} B_r^l(f)$$

and for each  $s \in (0, 1)$  we have

$$B_s(f) \subset \bigcap_{0 \le r < s} A_r(f) = \bigcap_{0 \le r < s} B_r(f),$$
$$B_s^l(f) \subset \bigcap_{0 \le r < s} A_r^l(f) = \bigcap_{0 \le r < s} B_r^l(f).$$

The inclusion can be proper.

PROOF. Evidently  $\bigcup_{1>r>s} A_r(f) \subset \bigcup_{1>r>s} B_r(f)$  and  $\bigcap_{0 \leq r < s} A_r(f) \subset \bigcap_{0 \leq r < s} B_r(f)$ . From Theorem 1 we obtain  $\bigcup_{1>r>s} B_r(f) \subset A_s(f)$  and  $B_s(f) \subset \bigcap_{0 \leq r < s} A_r(f)$ . If  $x \in A_s(f)$ , then there is an open set U such that  $d_u(U,x) > s$  and  $f \upharpoonright (U \cup \{x\})$  is continuous at x. Now there is r > s such that  $d_u(U,x) > r$  and hence  $x \in A_r(f) \subset \bigcup_{1>r>s} A_r(f)$ . Finally, if  $x \in \bigcap_{0 \leq r < s} B_r(f)$  and  $0 \leq t < s$ , then for  $r \in (t,s)$  we have  $x \in B_r(f)$  and by Theorem 1  $x \in A_t(f)$ ; i.e.,  $x \in \bigcap_{0 \leq r < s} A_r$ . The function from Proposition 2 is such that  $A_r^l(f) = \mathbb{R}$  for each  $r \in [0,1)$ ; i.e.,  $\bigcap_{0 \leq r < s} A_r(f) = \mathbb{R}$  but  $0 \notin B_s(f)$ .

**Lemma 3.** Let  $f, g : \mathbb{R} \to \mathbb{R}$ ,  $r \in [0, 1)$  and  $c \neq 0$ . Then we have

$$C(f) \cap A_r(g) \subset A_r(f+g) \text{ and } A_r(f) = A_r(cf),$$
  

$$C(f) \cap A_r^l(g) \subset A_r^l(f+g) \text{ and } A_r^l(f) = A_r^l(cf),$$

$$C(f) \cap B_r(g) \subset B_r(f+g) \text{ and } B_r(f) = B_r(cf),$$
  

$$C(f) \cap B_r^l(g) \subset B_r^l(f+g) \text{ and } B_r^l(f) = B_r^l(cf).$$

PROOF. Obvious.

**Remark 1.** The set  $B_r^l(f) \setminus A_r(f)$  can be dense. Let  $r \in [0,1)$  and let  $f : \mathbb{R} \to [0,1]$  be the function from Proposition 5 (i.e.,  $C(f) = \mathbb{R} \setminus \{0\}$  and  $0 \in B_r^l(f) \setminus A_r(f)$ ). Let  $D = \{d_1, d_2, \ldots, d_n, \ldots\}$  be a countable dense set in  $\mathbb{R}$ . For each  $i \in \mathbb{N}$ , let  $f_i(x) = f(x - d_i)$ . Then  $C(f_i) = \mathbb{R} \setminus \{d_i\}$  and  $d_i \in B_r^l(f_i) \setminus A_r(f_i)$ . Put  $g = \sum_{n=1}^{\infty} 2^{-n} f_n$ . The function  $\sum_{n \neq i} 2^{-n} f_n$  is continuous at  $d_i$  and hence by Lemma 3 we get  $d_i \in B_r^l(g)$ . Since  $\mathbb{R} \setminus D \subset C(g)$ , we get  $B_r^l(g) = \mathbb{R}$ . Further  $d_i \notin A_r(f_i)$  and hence by Lemma 3  $d_i \notin A_r(g)$ ; i.e.,  $B_r^l(g) \setminus A_r(g) = D$ .

Let us denote by C and Q the family of all continuous and quasicontinuous functions, respectively, and define the following classes of functions

**Definition 2.** Let  $r \in [0, 1)$ . We put

 $\mathcal{A}_r = \{ f : \mathbb{R} \to \mathbb{R}; A_r(f) = \mathbb{R} \},$  $\mathcal{A}_r^l = \{ f : \mathbb{R} \to \mathbb{R}; A_r^l(f) = \mathbb{R} \},$  $\mathcal{B}_r = \{ f : \mathbb{R} \to \mathbb{R}; B_r(f) = \mathbb{R} \},$  $\mathcal{B}_r^l = \{ f : \mathbb{R} \to \mathbb{R}; B_r^l(f) = \mathbb{R} \}$ 

**Theorem 3.** Let  $0 \le s < r < 1$ . Then



and all inclusions are proper.

PROOF. The inclusions follow from Theorem 2. Propositions 1–5 show that the inclusions are proper.  $\hfill \Box$ 

**Corollary 2.** For each  $s \in [0, 1)$  we have

$$\mathcal{A}_s \supset \bigcup_{1>r>s} \mathcal{A}_r = \bigcup_{1>r>s} \mathcal{B}_r,$$
  
 $\mathcal{A}_s^l \supset \bigcup_{1>r>s} \mathcal{A}_r^l = \bigcup_{1>r>s} \mathcal{B}_r^l$ 

698

and for each  $s \in (0,1)$  we have

$$\mathcal{B}_s \subset \bigcap_{0 \leq r < s} \mathcal{A}_r = \bigcap_{0 \leq r < s} \mathcal{B}_r,$$
  
 $\mathcal{B}_s^l \subset \bigcap_{0 \leq r < s} \mathcal{A}_r^l = \bigcap_{0 \leq r < s} \mathcal{B}_r^l.$ 

The inclusions are proper.

PROOF. The inclusions follow from Theorem 2. The function f from Proposition 2 belongs to  $\bigcap_{0 \le r < s} \mathcal{A}_r^l \setminus \mathcal{B}_s$ . The rest follows from Theorem 4.

Let  $\rho(f,g) = \min\{1, \sup\{|f(x) - g(x)| : x \in \mathbb{R}\}\)$ . We shall show that the inclusions in Theorem 3 and Corollary 2 mean, "is nowhere dense subset of" (with possible exception for  $\mathcal{A}_r \subset \mathcal{B}_r$  and  $\mathcal{A}_r^l \subset \mathcal{B}_r^l$ ) in the topology of the uniform convergence.

**Proposition 6.** Let  $s \in [0,1)$ . Then the sets  $\mathcal{B}_r$ ,  $\mathcal{B}_r^l$ ,  $\bigcup_{1>r>s} \mathcal{B}_r$  and  $\bigcup_{1>r>s} \mathcal{B}_r^l$  are closed in the topology of the uniform convergence.

PROOF. Let  $f_n : \mathbb{R} \to \mathbb{R}, f_n \in \bigcup_{1 > r > s} \mathcal{B}_r$  and let  $(f_n)_n$  uniformly converge to  $f : \mathbb{R} \to \mathbb{R}$ . Let  $x \in \mathbb{R}$  and  $\varepsilon > 0$ . Then there is  $n_0 \in \mathbb{N}$  such that  $|f_n(y) - f(y)| < \varepsilon/3$  for each  $n \ge n_0$  and for each  $y \in \mathbb{R}$ . Since  $f_{n_0} \in \bigcup_{1 > r > s} \mathcal{B}_r$ , there is  $r \in (s, 1)$  such that  $f_{n_0} \in \mathcal{B}_r$  and there is an open set U such that  $d_u(U, x) > r$  and  $|f_{n_0}(y) - f_{n_0}(x)| < \varepsilon/3$  for each  $y \in U$ . Therefore for each  $y \in$ U we have  $|f(y) - f(x)| \le |f(y) - f_{n_0}(y)| + |f_{n_0}(y) - f_{n_o}(x)| + |f_{n_0}(x) - f(x)| < \varepsilon;$ i.e.,  $f \in \mathcal{B}_r \subset \bigcup_{1 > r > s} \mathcal{B}_r$ . Similarly we can show other cases.  $\Box$ 

The sets  $\mathcal{A}_r$  and  $\mathcal{A}_r^l$  are not closed.

**Proposition 7.** For each  $r \in [0,1)$  there is a sequence  $(f_n)_n$  of functions belonging to  $\mathcal{A}_r^l$  such that its uniform limit does not belong to  $\mathcal{A}_r$ .

PROOF. Let  $I_i^n$ ,  $J_i^n$  be closed disjoint intervals from Lemma 2 for  $\alpha = r$ . Define functions  $f, f_k : \mathbb{R} \to \mathbb{R}$   $(k \in \mathbb{N})$  by

$$f(x) = \begin{cases} 0 & \text{for } x \in \{0\} \cup \bigcup_{i=1}^{\infty} \bigcup_{n=1}^{\infty} I_i^n, \\ \frac{1}{i} & \text{for } x \in \bigcup_{n=1}^{\infty} J_i^n, \\ \text{linear on components of } \mathbb{R} \setminus (\{0\} \cup \bigcup_{i=1}^{\infty} \bigcup_{n=1}^{\infty} I_i^n \cup \bigcup_{i=1}^{\infty} \bigcup_{n=1}^{\infty} J_i^n), \end{cases}$$

$$f_k(x) = \begin{cases} 0 & \text{for } x \in \{0\} \cup \bigcup_{i=1}^{\infty} \bigcup_{n=1}^{\infty} I_i^n \cup \bigcup_{i=k+1}^{\infty} \bigcup_{n=1}^{\infty} J_i^n), \\ \frac{1}{i} & \text{for } x \in \bigcup_{n=1}^{\infty} J_i^n \text{ and } i \le k, \\ \text{linear on components of } \mathbb{R} \setminus (\{0\} \cup \bigcup_{i=1}^{\infty} \bigcup_{n=1}^{\infty} I_i^n \cup \bigcup_{i=1}^{\infty} \bigcup_{n=1}^{\infty} J_i^n) \end{cases}$$

We shall show that  $f_k \in \mathcal{A}_r^l$  for each  $k \in \mathbb{N}$ ,  $(f_k)_k$  uniformly converges to fand  $f \notin \mathcal{A}_r$ . Let  $k \in \mathbb{N}$ . Evidently,  $f_k$  is continuous at each point different from zero. If  $D = \bigcup_{i=1}^{\infty} \bigcup_{n=1}^{\infty} \operatorname{Int} I_i^n \cup \bigcup_{n=1}^{\infty} \operatorname{Int} J_{k+1}^n$ , then D is open and

$$d_l(D,0) \ge d_l(\bigcup_{i=1}^{\infty} \bigcup_{n=1}^{\infty} \operatorname{Int} I_i^n, 0) + d_l(\bigcup_{n=1}^{\infty} \operatorname{Int} J_{k+1}^n) \ge r + (1-r)2^{-k-1} > r.$$

Since  $f_k$  is constant on  $\{0\} \cup D$ , we have  $0 \in A_r^l(f_k)$  and  $f_k \in \mathcal{A}_r^l$ . If  $x \in \{0\} \cup \bigcup_{i=1}^{\infty} \bigcup_{n=1}^{\infty} I_i^n$ , then  $f_k(x) = f(x) = 0$ . If  $x \in \bigcup_{n=1}^{\infty} J_i^n$  and  $i \leq k$ , then  $f_k(x) = f(x) = 1/i$ . If  $x \in \bigcup_{n=1}^{\infty} J_i^n$  and j > k, then  $|f_k(x) - f(x)| = 1/i < 1/k$ . Finally, let x belongs to a component of  $\mathbb{R} \setminus (\{0\} \cup \bigcup_{i=1}^{\infty} \bigcup_{n=1}^{\infty} I_i^n \cup \bigcup_{i=1}^{\infty} \bigcup_{n=1}^{\infty} J_i^n)$ . Therefore  $x \in (p,q)$  for some p, q and x = tp + (1-t)q for some  $t \in (0,1)$ . Then  $f(x) = t \cdot f(p) + (1-t)f(q)$  and  $f_k(x) = t \cdot f_k(p) + (1-t)f_k(q)$ . From the definition of f and  $f_k$ , if  $z \in \{p,q\}$  and f(z) = 0 or f(z) = 1/i and i > k then  $f_k(z) = 0$  and if f(z) = 1/i and  $i \leq k$ , then  $f_k(x) - f(x)| \leq t|f_k(p) - f(p)| + (1-t)|f_k(q) - f(q)| < t/k + (1-t)/k = 1/k$ . Therefore  $|f_k(x) - f(x)| < 1/k$  for each  $x \in \mathbb{R}$ ; i.e.,  $(f_k)_k$  uniformly converges to f. Since f is the function from Proposition 5,  $f \notin \mathcal{A}_r$ .

**Problem 1.** Characterize uniform limits of  $\mathcal{A}_r$  and  $\mathcal{A}_r^l$ . Is true that each function from  $\mathcal{B}_r$  ( $\mathcal{B}_r^l$ ) can be written as the uniform limit of functions from  $\mathcal{A}_r$  ( $\mathcal{A}_r^l$ )? (Z. Grande in [1] has shown that this is true for  $\mathcal{B}_0$ .)

**Theorem 4.** Let  $s \in [0,1)$ . Then  $\bigcup_{1>r>s} \mathcal{B}_r$  is nowhere dense set in  $\mathcal{A}_s$  and  $\bigcup_{1>r>s} \mathcal{B}_r^l$  is nowhere dense set in  $\mathcal{A}_s^l$ .

PROOF. According to Proposition 6, the set  $\bigcup_{1>r>s} \mathcal{B}_r$  is closed. Therefore it is sufficient to prove that its complement is dense in  $\mathcal{A}_s$ . Let  $f \in \bigcup_{1>r>s} \mathcal{B}_r$  and let  $1 > \varepsilon > 0$ . Then there is  $r \in (s, 1)$  such that  $f \in \mathcal{B}_r$ . Since the set  $\mathbb{R} \setminus C(f)$ is of the first category, there is a countable set  $H = \{z_1, z_2, \ldots, z_n, \ldots\} \subset C(f)$  such that  $z_{n+1} - z_n > 1$  for each  $n \in \mathbb{N}$ . According to Proposition 2 for each  $t \in (s, 1)$  there is  $h_t : \mathbb{R} \to [0, 1]$  such that  $C(h_t) = \mathbb{R} \setminus \{0\}$  and  $0 \in A_s(h_t) \setminus B_t(h_t)$ . Put  $n_0 = \min\{n \in \mathbb{N} : s + 1/n < 1\}$ . Now define  $h : \mathbb{R} \to [0, 1]$  by

$$h(x) = \begin{cases} h_{s+1/n}(x-z_n) & \text{for } x \in [z_n - 1/4, z_n + 1/4] \text{ and } n \ge n_0 \\ h_{s+1/n_0}(x-z_{n_0}) & \text{for } x \le z_{n_0} - 1/4, \\ \text{linear} & \text{on } [z_n + 1/4, z_n + 3/4] \text{ and } n \ge n_0. \end{cases}$$

Then  $\mathbb{R} \setminus \{z_{n_0}, z_{n_0+1}, \dots\} \subset C(h)$  and  $z_n \in A_s(h) \setminus B_{s+1/n}(h)$  for each  $n \ge n_0$ .

Now put  $g = f + (\varepsilon/2)h$ . Then  $\rho(f,g) < \varepsilon$ . If  $n \ge n_0$ , then  $z_n \in C(f)$  and  $z_n \in A_s(h)$ . Hence by Lemma 3 we obtain  $z_n \in A_s(g)$ . If  $x \ne z_n$   $(n \ge n_0)$ , then  $x \in C(h)$  and  $x \in B_r(f)$ . Therefore  $x \in B_r(g) \subset A_s(g)$ . Thus  $A_s(g) = \mathbb{R}$  and  $g \in \mathcal{A}_s$ . Now let  $t \in (s, 1)$ . Then there is  $n \ge n_o$  such that s + 1/n < t. Then  $z_n \notin B_{s+1/n}(h), z_n \in C(f)$  and hence  $z_n \notin B_{s+1/n}(g)$  and  $z_n \notin B_t(g)$ . Therefore  $g \notin \mathcal{B}_t$  for each  $t \in (s, 1)$ , i.e.  $g \notin \bigcup_{1 > r > s} \mathcal{B}_r$ .

Similarly, using Propositions 1, 3 and 4 and Lemma 3 we can show that for each  $r \in [0, 1)$ ,  $\mathcal{B}_r^l \cap \mathcal{A}_r$  (and thus also  $\mathcal{A}_r^l$ ) is nowhere dense subset of  $\mathcal{A}_r$ ,  $\mathcal{B}_r^l$  is nowhere dense subset of  $\mathcal{B}_r$ ,  $\mathcal{C}$  is nowhere dense subset of  $\mathcal{A}_r^l$  and  $\mathcal{B}_0$  is nowhere dense subset of  $\mathcal{Q}$ . Therefore,  $(\mathcal{B}_r)_{r \in [0,1)}$  is the family of closed subsets of  $\mathcal{Q}$ such that  $\mathcal{B}_r$  is nowhere dense subset of  $\mathcal{B}_s$  whenever  $0 \leq s < r < 1$ .

## References

- Z. Grande, On strong quasi-continuity of functions of two variables, Real Anal. Exchange, 21 (1995/96), 236–243.
- [2] Z. Grande, On strong quasicontinuity points, Tatra Mt. Math. Publ., 8 (1996), 17–21.
- [3] T. Neubrunn, *Quasi-continuity*, Real Anal. Exchange, **14** (1988/89), 259– 308.