Enrico Zoli, Dipartimento di Ingegneria dell'Informazione, Università degli Studi di Siena, via Roma 56, 53100 Siena, Italy. email: zoli@math.unifi.it

NO TRANSCENDENCE BASIS OF \mathbb{R} OVER \mathbb{Q} CAN BE ANALYTIC

Abstract

It has been proved by Sierpiński that no linear basis of \mathbb{R} over \mathbb{Q} can be an analytic set. Here we show that the same assertion holds by replacing "linear basis" with "transcendence basis". Furthermore, it is demonstrated that purely transcendental subfields of \mathbb{R} generated by Borel bases of the same cardinality are Borel isomorphic (as fields). Following Mauldin's arguments, we also indicate, for each ordinal α such that $1 \leq \alpha < \omega_1$ ($2 \leq \alpha < \omega_1$), the existence of subfields of \mathbb{R} of exactly additive (multiplicative, ambiguous) class α in \mathbb{R} .

1 Introduction.

Sierpiński showed in [9] that no linear basis of \mathbb{R} over \mathbb{Q} can be analytic (in particular, Borel). In this note, we prove the same statement for the so-called transcendence bases of \mathbb{R} over \mathbb{Q} :

Theorem 1.1. No transcendence basis of \mathbb{R} over \mathbb{Q} can be analytic.¹

Moreover, suggested by the reading of Le Gac's [6], in Section 3 we give an elementary proof for the following assertion:

Theorem 1.2. Fields of reals generated by algebraically independent Borel sets of the same cardinality are Borel isomorphic (as fields).²

Key Words: algebraically independent sets, analytic sets, Borel classes

Mathematical Reviews subject classification: 12F20, 28A05

Received by the editors June 16, 2004

Communicated by: R. Daniel Mauldin ¹The phrases "of \mathbb{R} " and "over \mathbb{Q} " shall be frequently omitted.

²By appealing to a deep result by Kallman [4], Le Gac shows that \mathbb{Q} -linear subspaces of \mathbb{R} generated by Borel bases of the same cardinality are Borel isomorphic (as groups). Our approach, depending on Mauldin's [7], does not require Kallman's analysis.

Before proceeding further, let us fix the terminology according to Isaacs's book [3], to which we refer the reader for the necessary elements of field theory needed below.

A set $\mathcal{T} \subseteq \mathbb{R}$ is a transcendence basis if \mathcal{T} is algebraically independent and maximal, in the sense of set-theoretic inclusion (by virtue of Zorn's Lemma, it does exist). Given F a subfield of \mathbb{R} , we put $F^* := F \setminus \{0\}$. alg F is the subfield of \mathbb{R} ([3], theorem 17.5) consisting of the numbers algebraic over F, i.e., the roots of the polynomials in F[X]. If $x \in \text{alg } F$, $\deg_F x$ stands for the degree of x over F. S_n denotes the symmetric group on $\{1, \ldots, n\}$. Whenever \mathcal{T} is a transcendence basis, $F := \mathbb{Q}(\mathcal{T})$ is a purely transcendental extension of \mathbb{Q} in \mathbb{R} and

$$\mathbb{R} = \operatorname{alg} F = \bigcup_{n=1}^{\infty} F_n, \tag{1}$$

where $F_n := \{x \in \mathbb{R} : \deg_F x \le n\}.$

We refer the reader to chapter 8 of [1] for the elements of the theory of analytic and borelian subsets of Polish spaces needed below.

2 Proof of Theorem 1.1.

The proof consists in showing that whenever \mathcal{A} is an algebraically independent, analytic set of reals, the field alg $\mathbb{Q}(\mathcal{A})$ is analytic and of Lebesgue measure zero.³ In case \mathcal{A} is a transcendence basis, by (1) this clearly leads to the absurd conclusion that \mathbb{R} itself is Lebesgue null.

Suppose \mathcal{A} algebraically independent and of analytic type. Defined, for every $n \in \mathbb{N}$,

$$\mathcal{A}_n := \{ (x_1, \dots, x_n) \in \mathcal{A}^n : x_i \neq x_j \text{ for } i \neq j \}$$

 $(\mathcal{A}^n$ denoting the cartesian product of *n* copies of \mathcal{A}), we have

$$F := \mathbb{Q}(\mathcal{A}) = \bigcup_{n \in \mathbb{N}} \bigcup_{R} R(\mathcal{A}_n),$$
(2)

where, for any n, R ranges over all the field $\mathbb{Q}(X_1, \ldots, X_n)$ of rational functions in n indeterminates over \mathbb{Q} , i.e., R = P/Q with $P, Q \in \mathbb{Q}[X_1, \ldots, X_n], Q \neq 0$. Note that each R above is well-defined on \mathcal{A}_n and continuous. Consequently, F is analytic, inasmuch as it is the union of denumerably many continuous images of analytic subsets of Polish spaces.

³In this connection, we wish to quote a recent result due to Edgar and Miller [2]: the Hausdorff dimension of any analytic, proper subring (in particular, subfield) of \mathbb{R} is 0.

Let us now show that the analyticity of F implies that every F_n (F_n as in (1)) is analytic as well. To this aim, for every $n \in \mathbb{N}$ define

$$P_n: F^n \times F^* \times \mathbb{R} \subseteq \mathbb{R}^{n+2} \to \mathbb{R} \qquad (a_0, \dots, a_{n-1}, a_n, x) \mapsto \sum_{i=0}^n a_i x^i,$$
$$\pi_n: \mathbb{R}^{n+2} \to \mathbb{R} \qquad (a_0, \dots, a_n, x) \mapsto x.$$

Moreover, put $E_n := \pi_n(P_n^{-1}(\{0\}))$. Evidently, E_n consists of those reals that are roots of some polynomial in F[X] having degree equal to n. Hence, for every $n \in \mathbb{N}$: $F_n = \bigcup_{i=1}^n E_i$.

By applying proposition 8.2.6 in [1] twice (note that, in view of our initial assumption, $F^n \times F^* \times \mathbb{R}$ is analytic in \mathbb{R}^{n+2}) we conclude that all the E_n -thus also the F_n - are analytic. A fortiori, Lebesgue measurable ([1], theorem 8.4.1).

It remains to check that each F_n is Lebesgue null: suppose, on the contrary, that there exists a certain F_n with positive Lebesgue measure. Then, by Steinhaus's Theorem (see proposition 1.4.8 in [1]) there must exist $\delta > 0$ such that

$$B(0,\delta) \subseteq \operatorname{diff}(F_n) := \{x - y : x, y \in F_n\},\$$

which is in contrast with the following couple, valid for every n:

diff
$$(F_n) \subseteq F_{n^2}$$
 and $\overline{\mathbb{R} \setminus F_{n^2}} = \mathbb{R}$.

Indeed, the former is just a consequence of the elementary algebraic fact:

 $\deg_F x < m$ and $\deg_F y < n \implies \deg_F (x - y) < mn$.

Concerning the latter, for every $n \in \mathbb{N}$ and $q \in \mathbb{Q}^*$ we have the following:

$$n = \deg_{\mathbb{O}} \sqrt[n]{2} = \deg_{\mathbb{O}} q \sqrt[n]{2} = \deg_F q \sqrt[n]{2},$$

due to both Eisenstein's Criterion (theorem 16.21 in [3]) and the fact that F is a purely transcendental extension of \mathbb{Q} –a polynomial that is irreducible over \mathbb{Q} cannot be reduced over any purely transcendental extension of \mathbb{Q} : apply this to $X^n - 2 \in \mathbb{Q}[X]$ -. Consequently, for every $q \in \mathbb{Q}^*$ and $n \in \mathbb{N}$, letting $N := n^2 + 1$ we have $q\sqrt[N]{2} \in \mathbb{R} \setminus F_{n^2}$.

3 Proof of Theorem 1.2.

It consists in combining and adapting Le Gac's [6] and Mauldin's [7] ideas to the field theoretical case.

Assume that \mathcal{A} and \mathcal{A}' both are algebraically independent, Borel sets in \mathbb{R} such that $\operatorname{card} \mathcal{A} = \operatorname{card} \mathcal{A}' = \mathfrak{c}$ (the case $\operatorname{card} \mathcal{A} = \operatorname{card} \mathcal{A}' \leq \aleph_0$ is obvious and of no interest).⁴ On the basis of theorem 8.3.6 in [1], there exists a Borel isomorphism $g : \mathcal{A} \to \mathcal{A}'$. Clearly, this is extended uniquely to a field (algebraic) isomorphism $G : \mathbb{Q}(\mathcal{A}) \to \mathbb{Q}(\mathcal{A}')$. We are going to show that G is a Borel isomorphism as well.

To this aim, we firstly note that for every $n \in \mathbb{N}$ the map g induces a Borel isomorphism $g_n : \mathcal{A}_n \to \mathcal{A}'_n$ defined as follows:

$$g_n(x_1,\ldots,x_n):=(g(x_1),\ldots,g(x_n)).$$

Secondly, we introduce the following definition: we call a set $X \subseteq \mathcal{A}_n$ transversal in \mathcal{A}_n if for any $(x_1, \ldots, x_n) \in \mathcal{A}_n$ there exists an unique $\sigma \in S_n$ for which $(x_{\sigma(1)}, \ldots, x_{\sigma(n)}) \in X$. For example, the Borel set

$$\mathcal{B}_n := \{ (x_1, \dots, x_n) \in \mathcal{A}_n : x_1 < \dots < x_n \}$$

is transversal in \mathcal{A}_n . We leave to the reader the easy task to prove that, for any $n \in \mathbb{N}$ and any Borel X transversal in \mathcal{A}_n , the restriction map $g_{n|_X} : X \to X' := g_n(X)$ is a Borel isomorphism, and that X' is transversal in \mathcal{A}'_n .

Furthermore, for every $n \in \mathbb{N}$ let us agree to denote with \mathfrak{R}_n the set of all the *proper* rational functions in $\mathbb{Q}(X_1, \ldots, X_n)$, i.e., the set

$$\mathfrak{R}_n := \mathbb{Q}(X_1, \ldots, X_n) \setminus \left(\bigcup_{i=1}^n \mathbb{Q}(X_1, \ldots, \widehat{X}_i, \ldots, X_n) \right),$$

the symbol \widehat{X}_i meaning that the indeterminate X_i is omitted.

This done, we may reformulate (2) in this way (\mathcal{B}_n and \mathcal{B}'_n as above):

$$F := \mathbb{Q}(\mathcal{A}) = \mathbb{Q}\bigcup\left(\bigcup_{n\in\mathbb{N}}\bigcup_{R\in\mathfrak{R}_n}R(\mathcal{B}_n)\right)$$
(3)

and, analogously,

$$F' := \mathbb{Q}(\mathcal{A}') = \mathbb{Q}\bigcup\left(\bigcup_{n\in\mathbb{N}}\bigcup_{R\in\mathfrak{R}_n}R(\mathcal{B}'_n)\right).$$
(4)

Indeed, if we have $z = R(x_1, \ldots, x_n)$ for certain $z \in \mathbb{R}$, $(x_1, \ldots, x_n) \in \mathcal{A}_n$ and $R = R(X_1, \ldots, X_n) \in \mathfrak{R}_n$, then $z = \widetilde{R}(x_{\sigma(1)}, \ldots, x_{\sigma(n)})$, where $\sigma \in S_n$ is such that $(x_{\sigma(1)}, \ldots, x_{\sigma(n)}) \in \mathcal{B}_n$ and $\widetilde{R} = \widetilde{R}(X_1, \ldots, X_n) := R(X_{\sigma^{-1}(1)}, \ldots, X_{\sigma^{-1}(n)}) \in \mathfrak{R}_n$.

⁴It is a well-established fact that algebraically independent, uncountable Borel subsets of \mathbb{R} do exist: see [8] or [5], for instance.

Lemma 3.1. Suppose \mathcal{A} algebraically independent over \mathbb{Q} , \mathcal{X} and \mathcal{Y} subsets of \mathcal{A} . Then

$$\mathbb{Q}(\mathcal{X} \cap \mathcal{Y}) = \mathbb{Q}(\mathcal{X}) \cap \mathbb{Q}(\mathcal{Y}).$$

PROOF. Put $\mathcal{Z} := \mathcal{X} \cap \mathcal{Y}$ and consider the following chain of equalities:

$$\mathbb{Q}(\mathcal{X})\cap\mathbb{Q}(\mathcal{Y})=(\mathbb{Q}(\mathcal{Z})(\mathcal{X}\setminus\mathcal{Y}))\cap(\mathbb{Q}(\mathcal{Z})(\mathcal{Y}\setminus\mathcal{X}))=\mathbb{Q}(\mathcal{Z}).$$

The first one is always true, independently of our assumption on \mathcal{A} (for, obviously, $\mathcal{X} = \mathcal{Z} \cup (\mathcal{X} \setminus \mathcal{Y})$ and $\mathcal{Y} = \mathcal{Z} \cup (\mathcal{Y} \setminus \mathcal{X})$). The second holds inasmuch as $\mathcal{X} \setminus \mathcal{Y}$ and $\mathcal{Y} \setminus \mathcal{X}$ are disjoint and $\mathcal{A} \setminus \mathcal{Z}$ –in particular, the set $(\mathcal{X} \setminus \mathcal{Y}) \cup (\mathcal{Y} \setminus \mathcal{X})$ – is algebraically independent over $\mathbb{Q}(\mathcal{Z})$, by lemma 24.6 in [3]. \Box

Lemma 3.2. Let \mathcal{A} be algebraically independent. Suppose there exist $R \in \mathfrak{R}_n$ and $S \in \mathfrak{R}_m$, with $(x_1, \ldots, x_n) \in \mathcal{A}_n$ and $(y_1, \ldots, y_m) \in \mathcal{A}_m$ such that $R(x_1, \ldots, x_n) = S(y_1, \ldots, y_m)$. Then, m = n, R = S and there exists $\sigma \in S_n$ such that $y_i = x_{\sigma(i)}$ for every $i = 1, \ldots, n$.

PROOF. We have

$$z := R(x_1, \ldots, x_n) = S(y_1, \ldots, y_m) \in \mathbb{Q}(x_1, \ldots, x_n) \cap \mathbb{Q}(y_1, \ldots, y_m).$$

By Lemma 3.1 there exist distinct $z_1, \ldots, z_k \in \mathcal{A}$ and $T \in \mathbb{Q}(X_1, \ldots, X_k)$ such that

$$\{z_1, \ldots, z_k\} = \{x_1, \ldots, x_n\} \cap \{y_1, \ldots, y_m\}$$

and

$$z = T(z_1, \ldots, z_k) \in \mathbb{Q}(z_1, \ldots, z_k) = \mathbb{Q}(x_1, \ldots, x_n) \cap \mathbb{Q}(y_1, \ldots, y_m).$$

Up to rearranging the x_i 's and the y_i 's, we may assume $z_i = x_i = y_i$ for i = 1, ..., k. Then, from

$$T(x_1, \dots, x_k) - R(x_1, \dots, x_n) = 0 = T(y_1, \dots, y_k) - S(y_1, \dots, y_m),$$

the algebraic independence of \mathcal{A} and the fact that R and S are proper, we infer both k = m = n and T = S = R.

Lemma 3.3. Every rational map $R : \mathcal{B}_n \to R(\mathcal{B}_n)$ in (3) is injective. The union in (3) is disjoint. (Identical propositions hold for (4).)

PROOF. Let us assume there exists $z \in \mathbb{R}$ such that $z = R(x_1, \ldots, x_m) = S(y_1, \ldots, y_n)$ for certain $(x_1, \ldots, x_m) \in \mathcal{B}_m$ and $(y_1, \ldots, y_n) \in \mathcal{B}_n$, $R \in \mathfrak{R}_m$ and $S \in \mathfrak{R}_n$. By Lemma 3.2, m = n and R = S. By definition of \mathcal{B}_n , $y_i = x_i$ for every $i = 1, \ldots, n$. This proves both the assertions.

In virtue of proposition 8.3.5 and theorem 8.3.7 in [1] and of Lemma 3.3, for any $n \in \mathbb{N}$ and $R \in \mathfrak{R}_n$ the set $R(\mathcal{B}_n)$ turns out to be borelian and Borel isomorphic to $R(\mathcal{B}'_n)$ via the composite map

$$G_{|R(\mathcal{B}_n)}: R(\mathcal{B}_n) \to \mathcal{B}_n \to \mathcal{B}'_n \to R(\mathcal{B}'_n).$$

Hence, we infer that F and F' are both Borel sets, and finally that $G: F \to F'$ is a Borel isomorphism. This concludes the proof.

Incidentally, the existence of algebraically independent, perfect subsets of \mathbb{R} [8], [5] allows us to establish the following

Theorem 3.4. There is a purely transcendental subfield of \mathbb{R} of exactly additive class 1 in \mathbb{R} . For each ordinal α such that $2 \leq \alpha < \omega_1$, there exists a purely transcendental subfield of \mathbb{R} of exactly additive (multiplicative, ambiguous) class α in \mathbb{R} .

Mutatis mutandis, the proof is that of Mauldin: we omit it and refer the reader to theorem 1 in [7].

Acknowledgements. We wish to thank Prof. C. Casolo for his precious assistance and the referee for pointing out a serious gap in the proof of Theorem 1.2.

References

- [1] D. Cohn, Measure Theory, Birkhäuser, Boston, 1980.
- [2] G. Edgar and C. Miller, *Borel subrings of the reals*, Proc. Amer. Math. Soc., **131**, **no. 4** (2003), 1121–1129.
- [3] I. M. Isaacs, Algebra, Brooks/Cole, Pacific Grove, 1994.
- [4] R. R. Kallman, Certain quotient spaces are countably separated. III, J. Funct. Anal., 22 (1976), 225–241.
- [5] K. Kuratowski, Applications of the Baire-category method to the problem of independent sets, Fund. Math., 81 (1973), 65–72.
- [6] B. Le Gac, Some properties of Borel subgroups of real numbers, Proc. Amer. Math. Soc., 87, no. 4 (1983), 677–680.
- [7] R. D. Mauldin, On the Borel subspaces of algebraic structures, Indiana Univ. Math. J., 29 (1980), 261–265.

No Transcendence Basis of ${\mathbb R}$ over ${\mathbb Q}$ Can be Analytic

- [8] J. Mycielski, Independent sets in topological algebras, Fund. Math., 55 (1964), 141–147.
- [9] W. Sierpiński, Sur la question de la mesurabilité de la base de M. Hamel, Fund. Math., 1 (1920), 105–111.