Enrico Zoli, Dipartimento di Ingegneria dell'Informazione, Università degli Studi di Siena, via Roma 56, 53100 Siena, Italy. email: zoli@math.unifi.it

NO TRANSCENDENCE BASIS OF \mathbb{R} OVER \mathbb{Q} CAN BE ANALYTIC

Abstract

It has been proved by Sierpiński that no linear basis of \mathbb{R} over \mathbb{Q} can be an analytic set. Here we show that the same assertion holds by replacing "linear basis" with "transcendence basis". Furthermore, it is demonstrated that purely transcendental subfields of \mathbb{R} generated by Borel bases of the same cardinality are Borel isomorphic (as fields). Following Mauldin's arguments, we also indicate, for each ordinal α such that $1 \leq \alpha<\omega_{1}\left(2 \leq \alpha<\omega_{1}\right)$, the existence of subfields of \mathbb{R} of exactly additive (multiplicative, ambiguous) class α in \mathbb{R}.

1 Introduction.

Sierpiński showed in [9] that no linear basis of \mathbb{R} over \mathbb{Q} can be analytic (in particular, Borel). In this note, we prove the same statement for the so-called transcendence bases of \mathbb{R} over \mathbb{Q} :

Theorem 1.1. No transcendence basis of \mathbb{R} over \mathbb{Q} can be analytic. ${ }^{1}$
Moreover, suggested by the reading of Le Gac's [6], in Section 3 we give an elementary proof for the following assertion:

Theorem 1.2. Fields of reals generated by algebraically independent Borel sets of the same cardinality are Borel isomorphic (as fields). ${ }^{2}$

[^0]Before proceeding further, let us fix the terminology according to Isaacs's book [3], to which we refer the reader for the necessary elements of field theory needed below.

A set $\mathcal{T} \subseteq \mathbb{R}$ is a transcendence basis if \mathcal{T} is algebraically independent and maximal, in the sense of set-theoretic inclusion (by virtue of Zorn's Lemma, it does exist). Given F a subfield of \mathbb{R}, we put $F^{*}:=F \backslash\{0\}$. alg F is the subfield of \mathbb{R} ([3], theorem 17.5) consisting of the numbers algebraic over F, i.e., the roots of the polynomials in $F[X]$. If $x \in \operatorname{alg} F, \operatorname{deg}_{F} x$ stands for the degree of x over $F . S_{n}$ denotes the symmetric group on $\{1, \ldots, n\}$. Whenever \mathcal{T} is a transcendence basis, $F:=\mathbb{Q}(\mathcal{T})$ is a purely transcendental extension of \mathbb{Q} in \mathbb{R} and

$$
\begin{equation*}
\mathbb{R}=\operatorname{alg} F=\bigcup_{n=1}^{\infty} F_{n} \tag{1}
\end{equation*}
$$

where $F_{n}:=\left\{x \in \mathbb{R}: \operatorname{deg}_{F} x \leq n\right\}$.
We refer the reader to chapter 8 of [1] for the elements of the theory of analytic and borelian subsets of Polish spaces needed below.

2 Proof of Theorem 1.1.

The proof consists in showing that whenever \mathcal{A} is an algebraically independent, analytic set of reals, the field $\operatorname{alg} \mathbb{Q}(\mathcal{A})$ is analytic and of Lebesgue measure zero. ${ }^{3}$ In case \mathcal{A} is a transcendence basis, by (1) this clearly leads to the absurd conclusion that \mathbb{R} itself is Lebesgue null.

Suppose \mathcal{A} algebraically independent and of analytic type. Defined, for every $n \in \mathbb{N}$,

$$
\mathcal{A}_{n}:=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{A}^{n}: x_{i} \neq x_{j} \text { for } i \neq j\right\}
$$

(\mathcal{A}^{n} denoting the cartesian product of n copies of \mathcal{A}), we have

$$
\begin{equation*}
F:=\mathbb{Q}(\mathcal{A})=\bigcup_{n \in \mathbb{N}} \bigcup_{R} R\left(\mathcal{A}_{n}\right), \tag{2}
\end{equation*}
$$

where, for any n, R ranges over all the field $\mathbb{Q}\left(X_{1}, \ldots, X_{n}\right)$ of rational functions in n indeterminates over \mathbb{Q}, i.e., $R=P / Q$ with $P, Q \in \mathbb{Q}\left[X_{1}, \ldots X_{n}\right], Q \neq 0$. Note that each R above is well-defined on \mathcal{A}_{n} and continuous. Consequently, F is analytic, inasmuch as it is the union of denumerably many continuous images of analytic subsets of Polish spaces.

[^1]Let us now show that the analyticity of F implies that every $F_{n}\left(F_{n}\right.$ as in (1)) is analytic as well. To this aim, for every $n \in \mathbb{N}$ define

$$
\begin{aligned}
P_{n}: F^{n} \times F^{*} \times \mathbb{R} \subseteq \mathbb{R}^{n+2} & \rightarrow \mathbb{R} & \left(a_{0}, \ldots, a_{n-1}, a_{n}, x\right) & \mapsto \sum_{i=0}^{n} a_{i} x^{i}, \\
\pi_{n}: \mathbb{R}^{n+2} & \rightarrow \mathbb{R} & \left(a_{0}, \ldots, a_{n}, x\right) & \mapsto x
\end{aligned}
$$

Moreover, put $E_{n}:=\pi_{n}\left(P_{n}^{-1}(\{0\})\right)$.
Evidently, E_{n} consists of those reals that are roots of some polynomial in $F[X]$ having degree equal to n. Hence, for every $n \in \mathbb{N}: F_{n}=\bigcup_{i=1}^{n} E_{i}$.

By applying proposition 8.2.6 in [1] twice (note that, in view of our initial assumption, $F^{n} \times F^{*} \times \mathbb{R}$ is analytic in \mathbb{R}^{n+2}) we conclude that all the E_{n}-thus also the $F_{n^{-}}$are analytic. A fortiori, Lebesgue measurable ([1], theorem 8.4.1).

It remains to check that each F_{n} is Lebesgue null: suppose, on the contrary, that there exists a certain F_{n} with positive Lebesgue measure. Then, by Steinhaus's Theorem (see proposition 1.4.8 in [1]) there must exist $\delta>0$ such that

$$
B(0, \delta) \subseteq \operatorname{diff}\left(F_{n}\right):=\left\{x-y: x, y \in F_{n}\right\}
$$

which is in contrast with the following couple, valid for every n :

$$
\operatorname{diff}\left(F_{n}\right) \subseteq F_{n^{2}} \quad \text { and } \quad \overline{\mathbb{R} \backslash F_{n^{2}}}=\mathbb{R}
$$

Indeed, the former is just a consequence of the elementary algebraic fact:

$$
\operatorname{deg}_{F} x \leq m \quad \text { and } \quad \operatorname{deg}_{F} y \leq n \quad \Longrightarrow \quad \operatorname{deg}_{F}(x-y) \leq m n
$$

Concerning the latter, for every $n \in \mathbb{N}$ and $q \in \mathbb{Q}^{*}$ we have the following:

$$
n=\operatorname{deg}_{\mathbb{Q}} \sqrt[n]{2}=\operatorname{deg}_{\mathbb{Q}} q \sqrt[n]{2}=\operatorname{deg}_{F} q \sqrt[n]{2}
$$

due to both Eisenstein's Criterion (theorem 16.21 in [3]) and the fact that F is a purely transcendental extension of \mathbb{Q}-a polynomial that is irreducible over \mathbb{Q} cannot be reduced over any purely transcendental extension of \mathbb{Q} : apply this to $X^{n}-2 \in \mathbb{Q}[X]$. Consequently, for every $q \in \mathbb{Q}^{*}$ and $n \in \mathbb{N}$, letting $N:=n^{2}+1$ we have $q \sqrt[N]{2} \in \mathbb{R} \backslash F_{n^{2}}$.

3 Proof of Theorem 1.2.

It consists in combining and adapting Le Gac's [6] and Mauldin's [7] ideas to the field theoretical case.

Assume that \mathcal{A} and \mathcal{A}^{\prime} both are algebraically independent, Borel sets in \mathbb{R} such that $\operatorname{card} \mathcal{A}=\operatorname{card} \mathcal{A}^{\prime}=\mathfrak{c}$ (the case $\operatorname{card} \mathcal{A}=\operatorname{card} \mathcal{A}^{\prime} \leq \aleph_{0}$ is obvious
and of no interest). ${ }^{4}$ On the basis of theorem 8.3.6 in [1], there exists a Borel isomorphism $g: \mathcal{A} \rightarrow \mathcal{A}^{\prime}$. Clearly, this is extended uniquely to a field (algebraic) isomorphism $G: \mathbb{Q}(\mathcal{A}) \rightarrow \mathbb{Q}\left(\mathcal{A}^{\prime}\right)$. We are going to show that G is a Borel isomorphism as well.

To this aim, we firstly note that for every $n \in \mathbb{N}$ the map g induces a Borel isomorphism $g_{n}: \mathcal{A}_{n} \rightarrow \mathcal{A}_{n}^{\prime}$ defined as follows:

$$
g_{n}\left(x_{1}, \ldots, x_{n}\right):=\left(g\left(x_{1}\right), \ldots, g\left(x_{n}\right)\right)
$$

Secondly, we introduce the following definition: we call a set $X \subseteq \mathcal{A}_{n}$ transversal in \mathcal{A}_{n} if for any $\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{A}_{n}$ there exists an unique $\sigma \in S_{n}$ for which $\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right) \in X$. For example, the Borel set

$$
\mathcal{B}_{n}:=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{A}_{n}: x_{1}<\ldots<x_{n}\right\}
$$

is transversal in \mathcal{A}_{n}. We leave to the reader the easy task to prove that, for any $n \in \mathbb{N}$ and any Borel X transversal in \mathcal{A}_{n}, the restriction map $g_{n_{X}}: X \rightarrow$ $X^{\prime}:=g_{n}(X)$ is a Borel isomorphism, and that X^{\prime} is transversal in \mathcal{A}_{n}^{\prime}.

Furthermore, for every $n \in \mathbb{N}$ let us agree to denote with \Re_{n} the set of all the proper rational functions in $\mathbb{Q}\left(X_{1}, \ldots, X_{n}\right)$, i.e., the set

$$
\Re_{n}:=\mathbb{Q}\left(X_{1}, \ldots, X_{n}\right) \backslash\left(\bigcup_{i=1}^{n} \mathbb{Q}\left(X_{1}, \ldots, \widehat{X}_{i}, \ldots, X_{n}\right)\right)
$$

the symbol \widehat{X}_{i} meaning that the indeterminate X_{i} is omitted.
This done, we may reformulate (2) in this way (\mathcal{B}_{n} and \mathcal{B}_{n}^{\prime} as above):

$$
\begin{equation*}
F:=\mathbb{Q}(\mathcal{A})=\mathbb{Q} \bigcup\left(\bigcup_{n \in \mathbb{N}} \bigcup_{R \in \Re_{n}} R\left(\mathcal{B}_{n}\right)\right) \tag{3}
\end{equation*}
$$

and, analogously,

$$
\begin{equation*}
F^{\prime}:=\mathbb{Q}\left(\mathcal{A}^{\prime}\right)=\mathbb{Q} \bigcup\left(\bigcup_{n \in \mathbb{N}} \bigcup_{R \in \mathfrak{R}_{n}} R\left(\mathcal{B}_{n}^{\prime}\right)\right) \tag{4}
\end{equation*}
$$

Indeed, if we have $z=R\left(x_{1}, \ldots, x_{n}\right)$ for certain $z \in \mathbb{R},\left(x_{1}, \ldots, x_{n}\right) \in$ \mathcal{A}_{n} and $R=R\left(X_{1}, \ldots, X_{n}\right) \in \Re_{n}$, then $z=\widetilde{R}\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)$, where $\sigma \in S_{n}$ is such that $\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right) \in \mathcal{B}_{n}$ and $\widetilde{R}=\widetilde{R}\left(X_{1}, \ldots, X_{n}\right):=$ $R\left(X_{\sigma^{-1}(1)}, \ldots, X_{\sigma^{-1}(n)}\right) \in \mathfrak{R}_{n}$.

[^2]Lemma 3.1. Suppose \mathcal{A} algebraically independent over \mathbb{Q}, \mathcal{X} and \mathcal{Y} subsets of \mathcal{A}. Then

$$
\mathbb{Q}(\mathcal{X} \cap \mathcal{Y})=\mathbb{Q}(\mathcal{X}) \cap \mathbb{Q}(\mathcal{Y})
$$

Proof. Put $\mathcal{Z}:=\mathcal{X} \cap \mathcal{Y}$ and consider the following chain of equalities:

$$
\mathbb{Q}(\mathcal{X}) \cap \mathbb{Q}(\mathcal{Y})=(\mathbb{Q}(\mathcal{Z})(\mathcal{X} \backslash \mathcal{Y})) \cap(\mathbb{Q}(\mathcal{Z})(\mathcal{Y} \backslash \mathcal{X}))=\mathbb{Q}(\mathcal{Z})
$$

The first one is always true, independently of our assumption on \mathcal{A} (for, obviously, $\mathcal{X}=\mathcal{Z} \cup(\mathcal{X} \backslash \mathcal{Y})$ and $\mathcal{Y}=\mathcal{Z} \cup(\mathcal{Y} \backslash \mathcal{X}))$. The second holds inasmuch as $\mathcal{X} \backslash \mathcal{Y}$ and $\mathcal{Y} \backslash \mathcal{X}$ are disjoint and $\mathcal{A} \backslash \mathcal{Z}$-in particular, the set $(\mathcal{X} \backslash \mathcal{Y}) \cup(\mathcal{Y} \backslash \mathcal{X})-$ is algebraically independent over $\mathbb{Q}(\mathcal{Z})$, by lemma 24.6 in [3].

Lemma 3.2. Let \mathcal{A} be algebraically independent. Suppose there exist $R \in$ \mathfrak{R}_{n} and $S \in \mathfrak{R}_{m}$, with $\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{A}_{n}$ and $\left(y_{1}, \ldots, y_{m}\right) \in \mathcal{A}_{m}$ such that $R\left(x_{1}, \ldots, x_{n}\right)=S\left(y_{1}, \ldots, y_{m}\right)$. Then, $m=n, R=S$ and there exists $\sigma \in S_{n}$ such that $y_{i}=x_{\sigma(i)}$ for every $i=1, \ldots, n$.

Proof. We have

$$
z:=R\left(x_{1}, \ldots, x_{n}\right)=S\left(y_{1}, \ldots, y_{m}\right) \in \mathbb{Q}\left(x_{1}, \ldots, x_{n}\right) \cap \mathbb{Q}\left(y_{1}, \ldots, y_{m}\right)
$$

By Lemma 3.1 there exist distinct $z_{1}, \ldots, z_{k} \in \mathcal{A}$ and $T \in \mathbb{Q}\left(X_{1}, \ldots, X_{k}\right)$ such that

$$
\left\{z_{1}, \ldots, z_{k}\right\}=\left\{x_{1}, \ldots, x_{n}\right\} \cap\left\{y_{1}, \ldots y_{m}\right\}
$$

and

$$
z=T\left(z_{1}, \ldots, z_{k}\right) \in \mathbb{Q}\left(z_{1}, \ldots, z_{k}\right)=\mathbb{Q}\left(x_{1}, \ldots, x_{n}\right) \cap \mathbb{Q}\left(y_{1}, \ldots, y_{m}\right)
$$

Up to rearranging the x_{i} 's and the y_{i} 's, we may assume $z_{i}=x_{i}=y_{i}$ for $i=1, \ldots, k$. Then, from

$$
T\left(x_{1}, \ldots, x_{k}\right)-R\left(x_{1}, \ldots, x_{n}\right)=0=T\left(y_{1}, \ldots, y_{k}\right)-S\left(y_{1}, \ldots, y_{m}\right)
$$

the algebraic independence of \mathcal{A} and the fact that R and S are proper, we infer both $k=m=n$ and $T=S=R$.

Lemma 3.3. Every rational map $R: \mathcal{B}_{n} \rightarrow R\left(\mathcal{B}_{n}\right)$ in (3) is injective. The union in (3) is disjoint. (Identical propositions hold for (4).)

Proof. Let us assume there exists $z \in \mathbb{R}$ such that $z=R\left(x_{1}, \ldots, x_{m}\right)=$ $S\left(y_{1}, \ldots, y_{n}\right)$ for certain $\left(x_{1}, \ldots, x_{m}\right) \in \mathcal{B}_{m}$ and $\left(y_{1}, \ldots, y_{n}\right) \in \mathcal{B}_{n}, R \in \mathfrak{R}_{m}$ and $S \in \mathfrak{R}_{n}$. By Lemma $3.2, m=n$ and $R=S$. By definition of $\mathcal{B}_{n}, y_{i}=x_{i}$ for every $i=1, \ldots, n$. This proves both the assertions.

In virtue of proposition 8.3.5 and theorem 8.3.7 in [1] and of Lemma 3.3, for any $n \in \mathbb{N}$ and $R \in \mathfrak{R}_{n}$ the set $R\left(\mathcal{B}_{n}\right)$ turns out to be borelian and Borel isomorphic to $R\left(\mathcal{B}_{n}^{\prime}\right)$ via the composite map

$$
G_{\mid R\left(\mathcal{B}_{n}\right)}: R\left(\mathcal{B}_{n}\right) \rightarrow \mathcal{B}_{n} \rightarrow \mathcal{B}_{n}^{\prime} \rightarrow R\left(\mathcal{B}_{n}^{\prime}\right) .
$$

Hence, we infer that F and F^{\prime} are both Borel sets, and finally that $G: F \rightarrow F^{\prime}$ is a Borel isomorphism. This concludes the proof.

Incidentally, the existence of algebraically independent, perfect subsets of $\mathbb{R}[8]$, [5] allows us to establish the following

Theorem 3.4. There is a purely transcendental subfield of \mathbb{R} of exactly additive class 1 in \mathbb{R}. For each ordinal α such that $2 \leq \alpha<\omega_{1}$, there exists a purely transcendental subfield of \mathbb{R} of exactly additive (multiplicative, ambiguous) class α in \mathbb{R}.

Mutatis mutandis, the proof is that of Mauldin: we omit it and refer the reader to theorem 1 in [7].

Acknowledgements. We wish to thank Prof. C. Casolo for his precious assistance and the referee for pointing out a serious gap in the proof of Theorem 1.2.

References

[1] D. Cohn, Measure Theory, Birkhäuser, Boston, 1980.
[2] G. Edgar and C. Miller, Borel subrings of the reals, Proc. Amer. Math. Soc., 131, no. 4 (2003), 1121-1129.
[3] I. M. Isaacs, Algebra, Brooks/Cole, Pacific Grove, 1994.
[4] R. R. Kallman, Certain quotient spaces are countably separated. III, J. Funct. Anal., 22 (1976), 225-241.
[5] K. Kuratowski, Applications of the Baire-category method to the problem of independent sets, Fund. Math., 81 (1973), 65-72.
[6] B. Le Gac, Some properties of Borel subgroups of real numbers, Proc. Amer. Math. Soc., 87, no. 4 (1983), 677-680.
[7] R. D. Mauldin, On the Borel subspaces of algebraic structures, Indiana Univ. Math. J., 29 (1980), 261-265.
[8] J. Mycielski, Independent sets in topological algebras, Fund. Math., 55 (1964), 141-147.
[9] W. Sierpiński, Sur la question de la mesurabilité de la base de M. Hamel, Fund. Math., 1 (1920), 105-111.

[^0]: Key Words: algebraically independent sets, analytic sets, Borel classes Mathematical Reviews subject classification: 12F20, 28A05
 Received by the editors June 16, 2004
 Communicated by: R. Daniel Mauldin
 ${ }^{1}$ The phrases "of \mathbb{R} " and "over \mathbb{Q} " shall be frequently omitted.
 ${ }^{2}$ By appealing to a deep result by Kallman [4], Le Gac shows that \mathbb{Q}-linear subspaces of \mathbb{R} generated by Borel bases of the same cardinality are Borel isomorphic (as groups). Our approach, depending on Mauldin's [7], does not require Kallman's analysis.

[^1]: ${ }^{3}$ In this connection, we wish to quote a recent result due to Edgar and Miller [2]: the Hausdorff dimension of any analytic, proper subring (in particular, subfield) of \mathbb{R} is 0 .

[^2]: ${ }^{4}$ It is a well-established fact that algebraically independent, uncountable Borel subsets of \mathbb{R} do exist: see [8] or [5], for instance.

