AN EXAMPLE OF AN ADDITIVE ALMOST CONTINUOUS SIERPIŃSKI-ZYGMUND FUNCTION

Dedicated to the memory of
Jerry Gibson

Abstract

Assuming that the union of fewer than \mathfrak{c}-many meager sets does not cover the real line, we construct an example of an additive almost continuous Sierpiński-Zygmund function which has a perfect road at each point but which does not have the Cantor intermediate value property.

Our terminology is standard. In particular, symbols \mathbb{Q} and \mathbb{R} stand for the sets of all rationals and reals, respectively. We consider only real-valued functions of one real variable. No distinction is made between a function and its graph. The cardinality of \mathbb{R} is denoted by \mathfrak{c}. If A is a planar set, we denote its x-projection by dom $(A) . \mathcal{M}$ denotes the ideal of meager subsets of the real line and $\operatorname{cov}(\mathcal{M})$ is the minimal cardinality of a family of meager sets which cover \mathbb{R}. (Note that if $\operatorname{cov}(\mathcal{M})=\mathfrak{c}, A \subset \mathbb{R}$ is residual in some open interval and B is the union of fewer than \mathfrak{c} meager sets, then $A \backslash B$ is of size \mathfrak{c}.)

If $A \subset \mathbb{R}\left(\right.$ or $\left.A \subset \mathbb{R}^{2}\right)$, then $\operatorname{LIN}(A)$ denotes the linear subspace of $\mathbb{R}\left(\mathbb{R}^{2}\right.$, respectively) over \mathbb{Q} generated by A. (Note that if $A \subset \mathbb{R}^{2}$, then $\operatorname{dom}(\operatorname{LIN}(A))$ is a linear subspace of \mathbb{R}.) In particular, if $q \in \mathbb{Q}$ and $\langle x, y\rangle \in \mathbb{R}^{2}$, then $q\langle x, y\rangle=\langle q x, q y\rangle$ and if $q \in \mathbb{Q}$ and $A \subset \mathbb{R}^{2}$, then $q A=\{q a: a \in A\}$.

[^0]A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is Sierpiński-Zygmund type (SZ function) if the restriction $f \mid A$ is discontinuous for each $A \subset \mathbb{R}$ of size \mathfrak{c}. Recall that f is an SZ function iff for every G_{δ} set $G \subset \mathbb{R}$ and for each continuous function $g: G \rightarrow \mathbb{R}, f$ agrees with g on the set of size less than $\mathfrak{c}[\mathrm{SZ}]$. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is almost continuous (in the sense of Stallings, $f \in \mathrm{AC}$ shortly) if each open subset of the plane containing f contains also a continuous function $g: \mathbb{R} \rightarrow \mathbb{R}$. A blocking set $K \subset \mathbb{R}^{2}$ is a closed subset of \mathbb{R}^{2} that meets the graph of every continuous function $g: \mathbb{R} \rightarrow \mathbb{R}$ and is disjoint with at least one function. Recall that if $f: \mathbb{R} \rightarrow \mathbb{R}$ intersects every blocking set, then it is almost continuous. Recall also that for each blocking set $K \subset \mathbb{R}^{2}$ there exists a continuous function g defined on a G_{δ} set $G \subset \mathbb{R}$ such that G is residual in some non-degenerate open interval $I \subset \mathbb{R}$ and $g \subset K$. (See [KK, Lemma 1] and the proof of $[\mathrm{BCN}$, Theorem 1].)

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ has a perfect road at $x \in \mathbb{R}$ if there exists a perfect set P with bilateral limit point x such that $f \mid P$ is continuous at $x . \mathrm{PR}$ is the class of all functions which have a perfect road at each point $x \in \mathbb{R}$.
f has the Cantor intermediate value property $(f \in$ CIVP $)$ if for each $x, y \in$ \mathbb{R} and every perfect set C between $f(x)$ and $f(y)$ there exists a perfect set P between x and y with $f(P) \subset C$.

It is easy to construct an additive function $f \in \mathrm{SZ} \cap \mathrm{PR}$. (See [BCN, Theorem 2].) Ciesielski and Jastrzȩbski constructed an additive function $f \in \mathrm{AC} \cap \mathrm{PR} \backslash \mathrm{CIVP}$ [CJ, Example 5.1]. Assuming the real line \mathbb{R} is not a union of fewer than c-many of its meager subsets, Balcerzak, Ciesielski and Natkaniec show that there exists a function $f \in \mathrm{AC} \cap \mathrm{SZ} \cap \mathrm{PR}[\mathrm{BCN}$, Theorem 1]. Moreover, they show that some additional set-theoretic assumptions are necessary, because the existence of an SZ function which is almost continuous is independent of ZFC axioms [BCN, Section 5]. (See also [GN], [GN1], and $[\mathrm{KP}]$.)

The aim of this note is to find a single example having all these properties at once.

Theorem 1. Assume that $\operatorname{cov}(\mathcal{M})=\mathfrak{c}$. There exists an additive function $f \in \mathrm{SZ} \cap \mathrm{AC} \cap \mathrm{PR} \backslash \mathrm{CIVP}$.

Proof. Let $C \subset(0,1)$ be a Cantor set which is linearly independent over \mathbb{Q}. (See, e.g., [MK, Theorem 2, p. 270].) Let p be a bilateral limit point of C and let $H=\left\{t_{\alpha}: \alpha<\mathfrak{c}\right\}$ be a Hamel basis such that $C \subset H, t_{0}=p$, and $t_{1} \in C$. Let $\left\{K_{\alpha}: \alpha<\mathfrak{c}\right\}$ be the collection of all perfect nowhere dense subsets of $\mathbb{R}, \mathcal{G}=\left\{g_{\alpha}: \alpha<\mathfrak{c}\right\}$ be the family of all continuous functions defined on G_{δ} subsets of the real line and let $\left\{I_{n}: n<\omega\right\}$ be a sequence of all open intervals with rational end-points. We will define a sequence $f_{\alpha}, \alpha<\mathfrak{c}$, of linear functions defined on subspaces of \mathbb{R} with the following properties.
(P1) $t_{\alpha} \in \operatorname{dom}\left(f_{\alpha}\right)$ and $\left|\operatorname{dom}\left(f_{\alpha}\right)\right|<\mathfrak{c}$.
(P2) $f_{\beta} \subset f_{\alpha}$ if $\beta<\alpha$.
(P3) If dom $\left(g_{\alpha}\right)$ is residual in some interval I, then there is $x \in I \cap \operatorname{dom}\left(f_{\alpha}\right)$ with $f_{\alpha}(x)=\lim _{t \rightarrow x} g_{\alpha}(t)$.
(P4) $f_{\alpha} \cap g_{\beta} \subset f_{\beta}$ whenever $\beta<\alpha$.
$(\mathbf{P} 5) f_{0}\left(t_{0}\right)=0, f_{0}\left(t_{1}\right)=1$.
(P6) $f_{\alpha} \mid C$ is continuous at t_{0}.
(P7) There exists $x_{\alpha} \in K_{\alpha} \cap \operatorname{dom}\left(f_{\alpha}\right)$ with $f_{\alpha}\left(x_{\alpha}\right) \notin C$.
Then by properties (P1) and (P2), $f=\bigcup_{\alpha<c} f_{\alpha}$ is an additive function defined on all of \mathbb{R}. The property (P4) implies $f \cap g_{\beta} \subset f_{\beta}$ for each $\beta<\mathfrak{c}$, so $\left|f \cap g_{\beta}\right|<\mathfrak{c}$ and consequently, $f \in \mathrm{SZ}$. The condition (P6) implies that $f \in \mathrm{PR}$. In fact, fix $x \in \mathbb{R}$ and set $z=x-t_{0}$. Then $C+z$ is a perfect set containing x as a bilateral limit point, and $f \mid(C+z)$ is continuous at x because $f \mid(C+z)=(f \mid C)+\langle z, f(z)\rangle$. The statements (P5) and (P7) together with $C \subset(0,1)$ give $f \notin$ CIVP .

Now we will verify that f is almost continuous. Fix a blocking set $K \subset \mathbb{R}^{2}$. Let α be the first ordinal for which there exist $q \in \mathbb{Q} \backslash\{0\}, n<\omega$ and $v \in f$, $v=\left\langle v_{0}, v_{1}\right\rangle$, such that $\operatorname{dom}\left[\left(q g_{\alpha}+v\right) \cap K\right]$ is residual in the interval I_{n}. Then dom $\left(g_{\alpha}\right)$ is residual in the interval $J=q^{-1}\left(I_{n}-v_{0}\right)$. By (P3) there is $x \in J$ with $f_{\alpha}(x)=\lim _{t \rightarrow x} g_{\alpha}(t)$. Then $x^{\prime}=q x+v_{0} \in I_{n}$ and $\left\langle x^{\prime}, f\left(x^{\prime}\right)\right\rangle=\langle q x+$ $\left.v_{0}, q f(x)+v_{1}\right\rangle=q\langle x, f(x)\rangle+v=q\left\langle x, f_{\alpha}(x)\right\rangle+v \in \operatorname{cl}\left(q g_{\alpha}+v\right)$. Since $q g_{\alpha}+v$ is continuous and K is closed, this easily implies that $\left(I_{n} \times \mathbb{R}\right) \cap\left(q g_{\alpha}+v\right)=$ $\left(I_{n} \times \mathbb{R}\right) \cap\left(q g_{\alpha}+v\right) \cap K$. Thus $\left\langle x^{\prime}, f\left(x^{\prime}\right)\right\rangle \in \operatorname{cl}\left(\left(q g_{\alpha}+v\right) \cap K\right) \subset K$ and therefore $K \cap f \neq \emptyset$.

The functions $f_{\alpha}, \alpha<\mathfrak{c}$, will be constructed by induction. Suppose α is fixed and all $f_{\beta}, \beta<\alpha$, are defined.
(i) Let $\bar{f}_{\alpha}=\operatorname{LIN}\left(\bigcup_{\beta<\alpha} f_{\beta}\right)$. We define a sequence $d_{\alpha, n}, n<\omega$, inductively in the following way. Let $D_{\alpha, n}=\left\{d_{\alpha, i}: i<n\right\} \backslash\{0\}$ and $f_{\alpha, n}=\operatorname{LIN}\left(\bar{f}_{\alpha} \cup\right.$ $\left.\left(g_{\alpha} \mid D_{\alpha, n}\right)\right)$. If
(*) $\operatorname{dom}\left(g_{\alpha}\right)$ is residual in I_{n}, and for all $\beta<\alpha, q \in \mathbb{Q}$ and $w \in f_{\alpha, n}$ the set $I_{n} \cap \operatorname{dom}\left[\left(q g_{\beta}+w\right) \cap g_{\alpha}\right]$ is nowhere dense, ${ }^{1}$

[^1]then $d_{\alpha, n} \in I_{n} \cap \operatorname{dom}\left(g_{\alpha}\right) \backslash \operatorname{LIN}\left(\operatorname{dom}\left(f_{\alpha, n}\right) \cup C\right)$ is such that
\[

$$
\begin{equation*}
\operatorname{LIN}\left(\left\{\left\langle d_{\alpha, n}, g_{\alpha}\left(d_{\alpha, n}\right)\right\rangle\right\} \cup f_{\alpha, n}\right) \cap \bigcup_{\beta<\alpha} g_{\beta} \subset f_{\alpha, n} \tag{1}
\end{equation*}
$$

\]

Otherwise $d_{\alpha, n}=0$.
(ii) Let $\tilde{f}_{\alpha}=\bigcup_{n<\omega} f_{\alpha, n}$. A real number t_{α}^{\prime} has the following properties:
(a) $t_{0}^{\prime}=0$ and $t_{1}^{\prime}=1$.
(b) If $t_{\alpha} \in \operatorname{dom}\left(\tilde{f}_{\alpha}\right)$, then $t_{\alpha}^{\prime}=\tilde{f}_{\alpha}\left(t_{\alpha}\right)$.
(c) If $t_{\alpha} \in C \backslash \operatorname{dom}\left(\tilde{f}_{\alpha}\right)$, then $t_{\alpha}^{\prime} \notin C$ and $\left|t_{\alpha}^{\prime}-t_{0}^{\prime}\right|<\left|t_{\alpha}-t_{0}\right|$.
(d) For each $q \in \mathbb{Q}, \beta \leq \alpha$ and $x \in \operatorname{dom}\left(\tilde{f}_{\alpha}\right)$, if $q t_{\alpha}+x \notin \operatorname{dom}\left(\tilde{f}_{\alpha}\right)$, then the inequality $g_{\beta}\left(q t_{\alpha}+x\right) \neq q t_{\alpha}^{\prime}+\tilde{f}_{\alpha}(x)$ holds.
(iii) Let $\hat{f}_{\alpha}=\operatorname{LIN}\left(\tilde{f}_{\alpha} \cup\left\{\left\langle t_{\alpha}, t_{\alpha}^{\prime}\right\rangle\right\}\right)$. Numbers $s_{\alpha, 0}, \ldots, s_{\alpha, n}, s_{\alpha, 0}^{\prime}, \ldots, s_{\alpha, n}^{\prime}$ have the following properties:
(a) $s_{\alpha, 0}, \ldots, s_{\alpha, n} \in H \backslash \operatorname{dom}\left(\hat{f}_{\alpha}\right)$ and there are $q_{0}, \ldots, q_{n} \in \mathbb{Q} \backslash\{0\}$ and $w \in \operatorname{dom}\left(\hat{f}_{\alpha}\right)$ such that $x_{\alpha}=\sum_{i=0}^{n} q_{i} s_{\alpha, i}+w \in K_{\alpha} \backslash \operatorname{dom}\left(\hat{f}_{\alpha}\right)$.
(b) $\sum_{i=0}^{n} q_{i} s_{\alpha, i}^{\prime}+\hat{f}_{\alpha}(w) \notin C$.
(c) If $s_{\alpha, i} \in C$, then $\left|s_{\alpha, i}^{\prime}-t_{0}^{\prime}\right|<\left|s_{\alpha, i}-t_{0}\right|$.
(d) $g_{\beta}\left(\sum_{i=0}^{n} p_{i} s_{\alpha, i}+x\right) \neq \sum_{i=0}^{n} p_{i} s_{\alpha, i}^{\prime}+\hat{f}_{\alpha}(x)$ whenever $p_{0}, \ldots, p_{n} \in \mathbb{Q}$, $\sum_{i=0}^{n} p_{i} s_{\alpha, i} \neq 0, \beta \leq \alpha$, and $x \in \operatorname{dom}\left(\hat{f}_{\alpha}\right)$.

Put $f_{\alpha}=\operatorname{LIN}\left(\hat{f}_{\alpha} \cup\left\{\left\langle s_{\alpha, 0}, s_{\alpha, 0}^{\prime}\right\rangle, \ldots,\left\langle s_{\alpha, n}, s_{\alpha, n}^{\prime}\right\rangle\right\}\right)$.
The existence of $s_{\alpha, 0}, \ldots, s_{\alpha, n}$ follows from the fact that $\operatorname{dom}(\hat{f})$ is of size less than \mathfrak{c}, so $K_{\alpha} \not \subset \operatorname{dom}(\hat{f})$. The choice of t_{α}^{\prime} is clear. Numbers $s_{\alpha, i}^{\prime}$, $i \leq n$ are chosen by induction. We will show how to choose $d_{\alpha, n}$ in the case if $(*)$ holds. Observe that $\operatorname{dom}\left(f_{\alpha, n}\right)$ is of size less than \mathfrak{c}, so the sets $A=I_{n} \cap \operatorname{dom}\left[\left(\mathbb{Q} \cdot \bigcup_{\beta<\alpha} g_{\beta}+f_{\alpha, n}\right) \cap g_{\alpha}\right]$ and $B=\operatorname{LIN}\left(\operatorname{dom}\left(f_{\alpha, n}\right) \cup C\right)$ are unions of fewer than \mathfrak{c} many meager sets, and by $\operatorname{cov}(\mathcal{M})=\mathfrak{c}$, the set $I_{n} \cap \operatorname{dom} g_{\alpha} \backslash(A \cup B)$ is non-empty. Choose $d_{\alpha, n}$ from this set. We have to verify that the condition (1) holds. Suppose there is $\beta<\alpha$ and $\langle x, y\rangle \in$ $\operatorname{LIN}\left(\left\{\left\langle d_{\alpha, n}, g_{\alpha}\left(d_{\alpha, n}\right)\right\rangle\right\} \cup f_{\alpha, n}\right) \cap g_{\beta} \backslash f_{\alpha, n}$. Then $\left\langle d_{\alpha, n}, g_{\alpha}\left(d_{\alpha, n}\right)\right\rangle \in \mathbb{Q} g_{\beta}+f_{\alpha, n}$, so $d_{\alpha, n} \in \operatorname{dom}\left[\left(\mathbb{Q} \cdot \bigcup_{\beta<\alpha} g_{\beta}+f_{\alpha, n}\right) \cap g_{\alpha}\right]$, a contradiction.

It is easy to observe that f_{α} is a linear function having properties (P1), (P2) and (P5). (P4) is a consequence of (ii.d) and (iii.d). (P6) follows by (ii.c) and (iii.c), and (P7) by (iii.a) and (iii.b). To verify (P3) assume that dom (g_{α})
is residual in I_{n}. If condition $(*)$ holds, then $d_{\alpha, n} \in \operatorname{dom}\left(f_{\alpha} \cap g_{\alpha}\right) \cap I_{n}$, and since g_{α} is continuous, $f_{\alpha}\left(d_{\alpha, n}\right)=\lim _{t \rightarrow d_{\alpha, n}} g_{\alpha}(t)$. Otherwise there are $\beta<\alpha$, $q \in \mathbb{Q} \backslash\{0\}$ and $w \in f_{\alpha}, w=\left\langle w_{0}, w_{1}\right\rangle$, such that $\operatorname{dom}\left[\left(q g_{\beta}+w\right) \cap g_{\alpha}\right]$ is residual in some interval $J \subset I_{n}$. (Note that for each $x \in J$, the limit of $q g_{\beta}+w$ at x exists iff the limit of g_{α} at x exists, and then those limits are equal.) Let $J^{\prime}=q^{-1}\left(J-w_{0}\right)$. Then $\operatorname{dom}\left(g_{\beta}\right)$ is residual in J^{\prime}, so there is $x \in J^{\prime} \cap \operatorname{dom}\left(f_{\beta}\right)$ with $f_{\beta}(x)=\lim _{t \rightarrow x} g_{\beta}(t)$. Therefore $x^{\prime}=q x+w_{0} \in J \cap \operatorname{dom}\left(f_{\alpha}\right)$ and $f_{\alpha}\left(x^{\prime}\right)=q f_{\beta}(x)+w_{1}=\lim _{t \rightarrow x^{\prime}} g_{\alpha}(t)$.

References

[BCN] M. Balcerzak, K. Ciesielski and T. Natkaniec, Sierpiński-Zygmund functions that are Darboux, almost continuous, or have a perfect road, Arch. Math. Logic, 37 (1997), 29-35.
[CJ] K. Ciesielski, J. Jastrzȩbski, Darboux-like functions within the classes of Baire one, Baire two, and additive functions, Topology Appl., 103 (2000), 203-219.
[GN] R. Gibson, T. Natkaniec, Darboux like functions, Real Anal. Exchange, 22(2) (1996-97), 492-533.
[GN1] R. Gibson, T. Natkaniec, Darboux like functions. Old problems and new results, Real Anal. Exchange, 24, No. 2 (1998-99), 487-496.
[KK] K. R. Kellum, Almost continuity and connectivity - sometimes it's as easy to prove a stronger result, Real Anal. Exchange, 8 (1982-83), 244-252.
[MK] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities. Cauchy's Equation and Jensen's Inequality, PWN, Warszawa - Kraków - Katowice, 1985.
[KP] K. Płotka, Sum of Sierpiński-Zygmund and Darboux like functions, Topology Appl., 122(3) (2002), 547-564.
[SZ] W. Sierpiński, A. Zygmund, Sur une fonction qui est discontinue sur tout ensemble de puissance du continu, Fund. Math., 4 (1923), 316318.

[^0]: Key Words: almost continuous; additive function; Sierpiński-Zygmund function; perfect road; Cantor Intermediate Value Property

 Mathematical Reviews subject classification: Primary 26A15; Secondary: 03E50
 Received by the editors June 17, 2004
 Communicated by: Krzysztof Chris Ciesielski

[^1]: ${ }^{1}$ or equivalently, the set $I_{n} \cap \operatorname{dom}\left[\left(q g_{\beta}+w\right) \cap g_{\alpha}\right]$ is meager,

