Varayu Boonpogkrong and Chew Tuan Seng, Department of Mathematics, National University of Singapore, 2 Science Drive, 2 Singapore 117543, Republic of Singapore. email: matcts@nus.edu.sg

ON INTEGRALS WITH INTEGRATORS IN BV_p

Abstract

In 1936, L. C. Young proved that the Riemann-Stieltjes integral $\int_a^b f \, dg$ exists, if $f \in BV_p$, $g \in BV_q$, $\frac{1}{p} + \frac{1}{q} > 1$ and f, g do not have common discontinuous points. In this note, using Henstock's approach, we prove that $\int_a^b f \, dg$ still exists without assuming the condition on discontinuous points. Some convergence theorems are also proved.

1 Henstock-Stieltjes Integrals.

In this section, we shall introduce Henstock-Stieltjes integrals and state the Cauchy Criterion, see [3]. In this note, \mathbb{R} denotes the real line.

Definition 1.1. A finite collection $\{I_i\}_{i=1}^n$ of nonoverlapping closed subintervals of [a, b] is said to be a partition of [a, b] if $\bigcup_{i=1}^n I_i = [a, b]$. Let δ be a positive function on [a, b] and I be a closed subinterval of [a, b]. An intervalpoint pair (I, ξ) is said to be δ -fine if $\xi \in I \subset (\xi - \delta(\xi), \xi + \delta(\xi))$. A finite collection of interval-point pairs, $D = \{(I_i, \xi_i)\}_{i=1}^n$, is called a δ -fine division of [a, b] if

- (i) each (I_i, ξ_i) is δ -fine and
- (ii) $\{I_i\}_{i=1}^n$ is a partition of [a, b].

Definition 1.2. Let $f, g: [a, b] \to \mathbb{R}$. Then f is said to be *Henstock-Stieltjes* integrable (or HS-integrable) to A on [a, b] with respect to g if for every $\epsilon > 0$, there exists a positive function δ such that for every δ -fine division $D = \{([t_i, t_{i+1}], \xi_i)\}_{i=1}^n$ of [a, b], we have

$$|S(f,\delta,D) - A| < \epsilon,$$

Key Words: Henstock, Stieltjes, Young integral, p-variation Mathematical Reviews subject classification: 26A21, 28B16 Received by the editors February 27, 2004 Communicated by: B. S. Bullen

where

$$S(f,\delta,D) = \sum_{i=1}^n f(\xi_i)(g(t_{i+1}) - g(t_i)).$$
 We denote A by $(HS) \int_a^b f(t) dg(t)$ or $(HS) \int_a^b f dg$.

Proposition 1.3 (Cauchy Criterion). Let $f, g : [a, b] \to \mathbb{R}$. Then f is HS-integrable on [a, b] with respect to g if and only if for every $\epsilon > 0$, there exists a positive function δ such that for any two δ -fine divisions of [a, b], $D = \{([t_i, t_{i+1}], \xi_i)\}$ and $D' = \{([t'_i, t'_{i+1}], \xi'_i)\}$, we have

$$|S(f,\delta,D) - S(f,\delta,D')| < \epsilon.$$

2 Young-Love Inequality.

In this section we shall present some results proved by L. C. Young in 1936, see [4, 5].

Definition 2.1. Let $f : [a,b] \to \mathbb{R}$ and let $0 . Given a partition <math>D = \{[t_i, t_{i+1}]\}_{i=1}^n$ of [a, b], let

$$V_p(f, D; [a, b]) = \left[\sum_{i=1}^n \left| f(t_{i+1}) - f(t_i) \right|^p \right]^{1/p}.$$

The p-variation of f is defined by

$$V_p(f; [a, b]) = \sup_D V_p(f, D; [a, b]).$$

In this paper, we always denote $V_p(f;[a,b])$ by $V_p(f)$. We say that $f \in BV_p[a,b]$ if $V_p(f) < \infty$.

Theorem 2.2. [5, p. 256, (6.2)] Let $f \in BV_p[a, b]$ and $g \in BV_q[a, b]$, with p, q > 0 and $\frac{1}{p} + \frac{1}{q} > 1$. Then, for any partition $D = \{[t_i, t_{i+1}]\}_{i=1}^n$ of [a, b] and $\xi = t_i$, for some i,

$$\left|\sum_{i=1}^{n} f(t_{i+1}) \left(g(t_{i+1}) - g(t_{i}) \right) - f(\xi) \left(g(b) - g(a) \right) \right| \le \left\{ 1 + \zeta \left(\frac{1}{p} + \frac{1}{q} \right) \right\} V_p(f) V_q(g)$$

where $\zeta\left(\frac{1}{p} + \frac{1}{q}\right) = \sum_{n=1}^{\infty} n^{-\left(\frac{1}{p} + \frac{1}{q}\right)}$.

194

On Integrals with Integrators in BV_p

Corollary 2.3. [5, p. 257, (6.4)] Let $f \in BV_p[a, b]$ and $g \in BV_q[a, b]$, with p, q > 0 and $\frac{1}{p} + \frac{1}{q} > 1$. Then, for any two partitions, $D = \{[t_i, t_{i+1}]\}, D' = \{[s_j, s_{j+1}]\}$ of [a, b], with any $\xi_i \in [t_i, t_{i+1}], \eta_j \in [s_j, s_{j+1}]$, we have

$$\begin{split} \left| (D) \sum f(\xi_i) \left(g(t_{i+1}) - g(t_i) \right) - (D') \sum f(\eta_j) \left(g(s_{j+1}) - g(s_j) \right) \right| \\ \leq & 2 \left\{ 1 + \zeta \left(\frac{1}{p} + \frac{1}{q} \right) \right\} V_p(f) V_q(g), \\ where \zeta \left(\frac{1}{p} + \frac{1}{q} \right) = \sum_{i=1}^{\infty} n^{-\left(\frac{1}{p} + \frac{1}{q}\right)}. \end{split}$$

n=1From Jensen's inequality, we have

$$\left[\sum |f(v_i) - f(u_i)|^{p_1}\right]^{1/p_1} \le \left[\sum |f(v_i) - f(u_i)|^p\right]^{1/p}, \text{ if } 0$$

Thus, we have the following consequence.

Proposition 2.4. If $f \in BV_p[a, b]$ and $0 , then <math>f \in BV_{p_1}[a, b]$.

3 Integrable Functions.

In this section, we shall prove that $(HS) \int_a^b f \, dg$ exists if $f \in BV_p, g \in BV_q, \frac{1}{p} + \frac{1}{q} > 1$ and $p, q \ge 1$.

Definition 3.1. Let $f : [a, b] \to \mathbb{R}$. Then f is said to be regulated if f has one-sided limits at every point of [a, b]; i.e., $\lim_{t\to c^+} f(t), \lim_{t\to c^-} f(t)$ exist, for each $c \in [a, b]$. The set of all regulated functions defined on [a, b] is denoted by RF[a, b].

The following result is known; for example, see [1, p. 24]. However, we shall give a proof.

Theorem 3.2. If s is a step function and $g \in RF[a, b]$, then s is HS-integrable with respect to g on [a, b].

PROOF. We only prove the following case. Let s be a step function defined by

$$s(t) = \begin{cases} C_1 , & \text{if } t = a; \\ C_2 , & \text{if } a < t < c; \\ C_3 , & \text{if } t = c; \\ C_4 , & \text{if } c < t < b; \\ C_5 , & \text{if } t = b. \end{cases}$$

We shall prove that s is HS-integrable with respect to g on [a, b] and

$$(HS) \int_{a}^{b} s \, dg = C_{1}(g(a^{+}) - g(a)) + C_{2}(g(c^{-}) - g(a^{+})) + C_{3}(g(c^{+}) - g(c^{-})) + C_{4}(g(b^{-}) - g(c^{+})) + C_{5}(g(b) - g(b^{-})),$$

where

$$g(a^+) = \lim_{t \to a^+} g(t)$$
 and $g(a^-) = \lim_{t \to a^-} g(t)$.

Let $\epsilon > 0$ be given. Then there exists $\delta_1 > 0$, such that

$$\begin{aligned} |g(t) - g(a^+)| &< \frac{\epsilon}{8C_m} \text{ whenever } 0 < t - a < \delta_1, \\ |g(t) - g(c^-)| &< \frac{\epsilon}{8C_m} \text{ whenever } 0 < c - t < \delta_1, \\ |g(t) - g(c^+)| &< \frac{\epsilon}{8C_m} \text{ whenever } 0 < t - c < \delta_1, \\ |g(t) - g(b^-)| &< \frac{\epsilon}{8C_m} \text{ whenever } 0 < b - t < \delta_1, \end{aligned}$$

where $C_m = \max\{|C_1|, |C_2|, |C_3|, |C_4|\}.$ Choose

$$\delta(\xi) = \begin{cases} \delta_1 & \text{if } \xi = a; \\ \min\{\xi - a, c - \xi\} & \text{if } a < \xi < c; \\ \delta_1 & \text{if } \xi = c; \\ \min\{\xi - c, b - \xi\} & \text{if } c < \xi < b; \\ \delta_1 & \text{if } \xi = b. \end{cases}$$

From the choice of δ , a, b and c are associated points of any δ -fine division of [a, b]. Let $D = \{([u_i, v_i], \xi_i)\}_{i=1}^n$ be δ -fine division of [a, b]. Hence,

$$\begin{split} & \left| \sum_{i=1}^{n} s(\xi_{i})(g(v_{i}) - g(u_{i})) - C_{1}(g(a^{+}) - g(a)) - C_{2}(g(c^{-}) - g(a^{+})) \right. \\ & \left. - C_{3}(g(c^{+}) - g(c^{-})) - C_{4}(g(b^{-}) - g(c^{+})) - C_{5}(g(b) - g(b^{-})) \right| \\ & = \left| C_{1}(g(v_{1}) - g(a^{+})) + C_{2}(g(v_{1}) - g(a^{+})) + C_{2}(g(c^{-}) - g(u_{j})) \right. \\ & \left. + C_{3}(g(c^{-}) - g(u_{j})) + C_{3}(g(v_{j}) - g(c^{+})) + C_{4}(g(v_{j}) - g(c^{+})) \right. \\ & \left. + C_{4}(g(u_{n}) - g(b^{-})) + C_{5}(g(u_{n}) - g(b^{-})) \right| \\ & \leq 2C_{m} \left| (g(v_{1}) - g(a^{+})) + (g(c^{-}) - g(u_{j})) + (g(v_{j}) - g(c^{+})) + (g(u_{n}) - g(b^{-})) \right| \\ & < 2C_{m} 4(\frac{\epsilon}{8C_{m}}) = \epsilon. \end{split}$$

On Integrals with Integrators in BV_p

We remark that in the above proof, δ is a function, it is impossible to choose a constant δ .

Lemma 3.3. [2, p. 83] If $f \in BV_p[a, b]$, p > 0, then $f \in RF[a, b]$.

Lemma 3.4. [4, p. 7] Let $f \in BV_p[a,b]$, $p \ge 1$. Then, for any $p_1 > p$ and $\epsilon > 0$, there is a step function s, such that $V_{p_1}(f-s) < \epsilon$.

Now, we shall prove the main result of this paper.

Theorem 3.5. Let $f \in BV_p[a, b]$ and $g \in BV_q[a, b]$, with $p, q \ge 1$ and $\frac{1}{p} + \frac{1}{q} > 1$. Then f is HS-integrable with respect to g.

PROOF. Let $f \in BV_p[a, b]$ and $g \in BV_q[a, b]$, with $p, q \ge 1$ and $\frac{1}{p} + \frac{1}{q} > 1$. Let $\epsilon > 0$ be given. From Lemma 3.4, there is a step function s and $p_1 > p$ with $\frac{1}{p_1} + \frac{1}{q} > 1$, such that $V_{p_1}(f - s) < \epsilon$. By Theorem 3.2 and Lemma 3.3, $(HS) \int_a^b s \, dg$ exists. Then, there is a positive function δ such that for any two δ -fine divisions $D_1 = \{(\xi_l, [t_l, t_{l+1}])\}$ and $D_2 = \{(\xi_{l'}, [t_{l'}, t_{l'+1}])\}$ of [a, b] we have

$$|(D_1)\sum_{l} s(\xi_l)(g(t_{l+1}) - g(t_l)) - (D_2)\sum_{l'} s(\xi_{l'})(g(t_{l'+1}) - g(t_{l'}))| < \epsilon.$$

Hence, from Corollary 2.3 and Lemma 3.4, we can see that

$$\begin{split} |(D_{1})\sum_{l}f(\xi_{l})(g(t_{l+1}) - g(t_{l})) - (D_{2})\sum_{l'}f(\xi_{l'})(g(t_{l'+1}) - g(t_{l'}))| \\ = |(D_{1})\sum_{l}(f(\xi_{l}) - s(\xi_{l}))(g(t_{l+1}) - g(t_{l})) + (D_{1})\sum_{l}s(\xi_{l})(g(t_{l+1}) - g(t_{l})) \\ - (D_{2})\sum_{l'}s(\xi_{l'})(g(t_{l'+1}) - g(t_{l'})) - (D_{2})\sum_{l'}(f(\xi_{l'}) - s(\xi_{l'}))(g(t_{l'+1}) - g(t_{l'}))| \\ = |(D_{1})\sum_{l}(f(\xi_{l}) - s(\xi_{l}))(g(t_{l+1}) - g(t_{l})) \\ - (D_{2})\sum_{l'}(f(\xi_{l'}) - s(\xi_{l'}))(g(t_{l'+1}) - g(t_{l'}))| \\ + |(D_{1})\sum_{l}s(\xi_{l})(g(t_{l+1}) - g(t_{l})) - (D_{2})\sum_{l'}s(\xi_{l'})(g(t_{l'+1}) - g(t_{l'}))| \\ \leq 2\{1 + \zeta\Big(\frac{1}{p_{1}} + \frac{1}{q}\Big)\}V_{p_{1}}(f - s)V_{q}(g) + \epsilon \\ \leq 2\{1 + \zeta\Big(\frac{1}{p_{1}} + \frac{1}{q}\Big)\}\epsilon V_{q}(g) + \epsilon = (2V_{q}(g)\{1 + \zeta\Big(\frac{1}{p_{1}} + \frac{1}{q}\Big)\} + 1)\epsilon. \end{split}$$
Hence $(HS)\int_{a}^{b}f dg$ exists. \Box

Henceforth, if $f \in BV_p[a, b], g \in BV_q[a, b]$, where $\frac{1}{p_1} + \frac{1}{p} > 1$, $p, q \ge 1$, then the Henstock-Stieltjes integral $(HS) \int_a^b f \, dg$ is called the Henstock-Young integral, and denoted by $(HY) \int_a^b f \, dg$.

4 Convergence Theorems.

In this section we will prove some convergence theorems.

Definition 4.1 (Two-norm convergence). A sequence $\{f_n\}$ of functions defined on [a, b] is said to be two-norm convergent to f in $BV_p[a, b]$ if $f_n \in BV_p[a, b]$, for all n = 1, 2, ..., and

- (i) f_n is uniformly convergent to f on [a, b],
- (ii) $V_p(f_n) \leq A$ for every $n = 1, 2, \ldots$

In symbols, we denote the two-norm convergence by $f_n \twoheadrightarrow f$.

It is clear that $BV_p[a, b]$ is complete under two-norm convergence; i.e., if $f_n \in BV_p[a, b], n = 1, 2, \ldots$, and $f_n \twoheadrightarrow f$, then $f \in BV_p[a, b]$.

Theorem 4.2. If a sequence $\{f^{(n)}\}$ is two-norm convergent to f in $BV_p[a, b]$ and $g \in BV_q[a, b]$, with $p, q \ge 1$ and $\frac{1}{p} + \frac{1}{q} > 1$, then $(HY) \int_a^b f \, dg$ exists and

$$\lim_{n \to \infty} (HY) \int_a^b f^{(n)} dg = (HY) \int_a^b f \, dg.$$

PROOF. Let $\epsilon > 0$ be given. Let $\{f^{(n)}\}$ be two-norm convergent to f in $BV_p[a, b]$ and $g \in BV_q[a, b]$, with $p, q \ge 1$ and $\frac{1}{p} + \frac{1}{q} > 1$. First, $\int_a^b (f^{(n)} - f) dg$ exists. Thus, there is a positive function δ_n such that for every δ_n -fine division $D = \{([t_i, t_{i+1}], \xi_i)\}$ of [a, b],

$$\left| \left(\int_{a}^{b} (f^{(n)} - f) \, dg) - (D) \sum (f^{(n)}(\xi_i) - f(\xi_i)) (g(t_{i+1}) - g(t_i)) \right| < \epsilon.$$
 (1)

Let $V_p(f^{(n)} - f) \leq A$ for every n and $V_q(g) = B$. Since $f^{(n)} \twoheadrightarrow f$, there is a positive integer N such that for every $n \geq N$, we have

$$\sup_{t \in [a,b]} \{ |f^{(n)}(t) - f(t)| \} = ||f^{(n)} - f||_{\infty} < \frac{\epsilon}{2}.$$
 (2)

198

On Integrals with Integrators in BV_p

Choose a fixed $p_1 > p$ such that $\frac{1}{p_1} + \frac{1}{q} > 1$. Then $f^{(n)} - f \in BV_{p_1}[a, b]$. Furthermore for $n \ge N$ and a δ_n -fine division $D = \{([t_i, t_{i+1}], \xi_i)\}$ of [a, b], by Corollary 2.2, inequalities (1) and (2).

$$\begin{split} & \left| \int_{a}^{b} f^{(n)} dg - \int_{a}^{b} f dg \right| \\ \leq & \left| (f^{(n)}(a) - f(a))(g(b) - g(a)) \right| \\ & + \left| \int_{a}^{b} (f^{(n)} - f) dg - (f^{(n)}(a) - f(a))(g(b) - g(a)) \right| \\ \leq & \frac{\epsilon}{2} B + \left| \int_{a}^{b} (f^{(n)} - f) dg - (D) \sum (f^{(n)}(\xi_{i}) - f(\xi_{i}))(g(t_{i+1}) - g(t_{i})) \right| \\ & + \left| (D) \sum (f^{(n)}(\xi_{i}) - f(\xi_{i}))(g(t_{i+1}) - g(t_{i})) \right| \\ & - \sum (f^{(n)}(t_{i+1}) - f(t_{i+1}))(g(t_{i+1}) - g(t_{i})) - (f^{(n)}(a) - f(a))(g(b) - g(a)) \right| \\ & + \left| \sum (f^{(n)}(t_{i+1}) - f(t_{i+1}))(g(t_{i+1}) - g(t_{i})) - (f^{(n)}(a) - f(a))(g(b) - g(a)) \right| \\ \leq & \frac{\epsilon}{2} B + \epsilon + 2 \left\{ 1 + \zeta (\frac{1}{p_{1}} + \frac{1}{q}) \right\} V_{p_{1}}(f^{(n)} - f) V_{q}(g) \\ & + \left\{ 1 + \zeta (\frac{1}{p_{1}} + \frac{1}{q}) \right\} V_{p_{1}}(f^{(n)} - f) V_{q}(g) \\ \leq & \frac{\epsilon}{2} B + \epsilon + 3 \left\{ 1 + \zeta (\frac{1}{p_{1}} + \frac{1}{q}) \right\} \epsilon^{(p_{1} - p/p_{1})} V_{p}^{p/p_{1}}(f^{(n)} - f) V_{q}(g) \\ = & \frac{\epsilon}{2} B + \epsilon + 3 \left\{ 1 + \zeta (\frac{1}{p_{1}} + \frac{1}{q}) \right\} \epsilon^{(p_{1} - p/p_{1})} A^{p/p_{1}} B. \\ \text{Hence, } \lim (HY) \int_{0}^{b} f^{(n)} dg = (HY) \int_{0}^{b} f dg. \Box$$

 $\lim_{n \to \infty} (11^{-1}) \int_a^{-1} ($

Using the idea of the above proof, we have the following assertion.

Theorem 4.3. If $f \in BV_p[a,b]$ and $\{g^{(n)}\}$ is two-norm convergent to g in $BV_q[a,b]$, with $p,q \ge 1$ and $\frac{1}{p} + \frac{1}{q} > 1$, then $(HY) \int_a^b f \, dg$ exists and

$$\lim_{n \to \infty} (HY) \int_a^b f \, dg^{(n)} = (HY) \int_a^b f \, dg.$$

Again following the proof of Theorem 4.2, we have

$$\lim_{n \to \infty} \left((HS) \int_a^b f^{(n)} \, dg^{(n)} - (HS) \int_a^b f \, dg^{(n)} \right) = 0.$$

Hence, we have the following theorem.

Theorem 4.4. If $\{f^{(n)}\}$ and $\{g^{(n)}\}$ are two-norm convergent to f and g in $BV_p[a,b]$ and $BV_q[a,b]$, respectively, with $p,q \ge 1$ and $\frac{1}{p} + \frac{1}{q} > 1$, then $(HY) \int_a^b f \, dg$ exists and

$$\lim_{n \to \infty} (HY) \int_a^b f^{(n)} dg^{(n)} = (HY) \int_a^b f \, dg.$$

Similar Convergence theorems have been proved by K. K. Aye in [1, p. 71] under stronger conditions.

Acknowledgement. We would like to thank Professor Lee Peng-Yee for his constructive comments on this paper.

References

- K. K. Aye, *The Duals of Some Banach Spaces*, Ph.D. Thesis, National Institute of Education, Singapore, 2002.
- [2] R. M. Dudley and R. Norvaisa, Differentiability of Six Operators on Nonsmooth Functions and p-Variation, Springer-Verlag, Berlin Heidelberg, 1999.
- [3] R. Henstock, Lectures on the Theory of Integration, World Scientific, 1988.
- [4] E. R. Love and L. C. Young, On fractional integration by parts, Proc. London Math. Soc., (Ser 2), 44 (1938), 1–35.
- [5] L. C. Young, An inequality of the Hölder type, connected with Stieltjes integration, Acta Math., 67 (1936), 251–282.

200