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RUNS AND INTEGRATION

Abstract

We use the convergence notion of a run to define integration processes
which subsume those of Riemann-Stieltjes, Lebesgue and Henstock-
Kurzweil.

1 Introduction.

Runs were introduced by Hewitt Kenyon and A. P. Morse in their paper
“Runs”, Pacific Journal of Mathematics, 1958 [6], as an alternative to filters
[4] and nets [5]. No standard text in topology mentions them. Nonetheless, we
find them to be an ideal tool for defining integration. We illustrate this view-
point by using runs to define an integration process which subsumes Lebesgue
and Riemann-Stieltjes integration. Elementary additivity properties of the
integral are established under very general conditions. A variant of the main
definition yields a generalization of the gauge (Henstock-Kurzweil) integral
[1, 3, 12], thereby extending a description using nets (Moore-Smith limits)
given in [3]. Although all of the definitions are valid in very abstract situa-
tions, they suggest viewpoints which are new even for real-valued functions on
the real line. For the equivalence of runs with filters and nets we refer to [6].

For any relation R we denote by dom R and rng R respectively the domain
of R := {x : ∃y (x, y) ∈ R}, and the range of R := {y : ∃x (x, y) ∈ R}. For
all x ∈ dom R, we denote by Rx the set {t : (x, t) ∈ R}. A run in a set
Z is a relation R such that rng R ⊆ Z, and, for all x, y ∈ dom R, there
exists z ∈ dom R such that Rz ⊆ Rx ∩ Ry; i.e., such that if (z, t) ∈ R, then
(x, t), (y, t) ∈ R; R′ is a subrun of R if and only if R is a run, R′ is a run,
and for all x ∈ dom R there exists y ∈ dom R′ such that R′y ⊆ Rx. Runs R
and R′ will be called linked if and only if Rx ∩ R′x′ 6= ∅, for all x ∈ dom R
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and x′ ∈ dom R′. A run R in a topological space Z converges to z ∈ Z if
and only if for each neighborhood N of z there exists x ∈ dom R such that
Rx ⊆ N . Clearly, if R and R′ are linked runs in a Hausdorff space converging
to z and z′ respectively, then z = z′.

Let R be a relation and f a function defined on rng R. We denote by f ◦R
the relation consisting of all ordered pairs (x, f(z)), with (x, z) ∈ R. Let Ri

be a run in a set Zi, i = 1, . . . , k. We denote by R1 ⊗ · · · ⊗ Rk the collection
of all ordered pairs ((x1, . . . , xk), (z1, . . . , zk)), in which (xi, zi) ∈ Ri for each
1 ≤ i ≤ k. The following properties of runs are easily checked.

If R is a run in a set Z, and f is a function from Z to a set T , then f ◦R
is a run in T . If Ri is a run in a set Zi, i = 1, . . . , k, then R1 ⊗ · · · ⊗ Rk is
a run in Z1 × · · · × Zk. A run R in a topological space Z converges to z ∈ Z
if and only if every subrun of R converges to z. If, for 1 ≤ i ≤ k, Zi is a
topological space and Ri is a run in Zi converging to zi, and f is a continuous
function on the product space Z1 × · · · × Zk to a topological space T , then
f ◦ (R1 ⊗ · · · ⊗Rk) is a run in T converging to f(z1, . . . , zk).

In particular, therefore, if R1, R2 are runs in a commutative topological
semigroup, (Z,+), converging respectively to zi ∈ Zi, for i = 1, 2, then the run,
R1+R2, consisting of all ordered pairs ((x1, x2), s1+s2) for which (xi, si) ∈ Ri,
i = 1, 2, converges to z1 + z2.

2 Integration.

We turn now to the definition of an integration process [11]. In what follows,
E is a set, H and N are families of subsets of E such that H is closed under
finite intersections, and H ∩N ∈ N , for all H ∈ H and N ∈ N , f is a function
on E to a set X, A ⊆ E, η is a function on H to a set Y , and <,> is a binary
operation on X×Y to a commutative topological semigroup, (Z,+). We shall
denote < x, y > by x.y. For any non-empty P ⊆ H, non-empty finite F ⊆ P ,
and choice function h : p ∈ P 7→ hp ∈ p, we denote by S(f, h, η, F ) the sum∑

p∈F f(hp).η(p).
Denote by PH(A) the family of all countable P ⊆ H such that A ⊆

⋃
P

and P ∩N = ∅. Given P,Q ∈ PH(A), we say that Q is finer than P if for each
q ∈ Q there exists p ∈ P with q ⊆ p. A truncation on PH(A) is a function
∆ on PH(A) such that ∆(P ) is a finite subset of P for each P ∈ PH(A). A
truncation Γ is larger than a truncation ∆ if and only if ∆(P ′) ⊆ Γ(P ′) for all
P ′ ∈ PH(A). If P ∈ PH(A) has pairwise intersections in N , it will be called
an N -mesh in H covering A. Subsets A1 and A2 of E are separated by H
with respect to N if and only if there exist H1 and H2 in H with Ai ⊆ Hi,
i = 1, 2, such that H1 ∩H2 ∈ N . (Notice that if N contains only the empty
set then an N -mesh is actually a countable, pairwise-disjoint subfamily of H.
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We introduce N -meshes to allow covers of A which are possibly not pairwise-
disjoint, as occur in Riemann integration.) For each A ⊆ E, let PA be a
subfamily of PH(A) directed by refinement. We define the run F(A, f, η,P)
to be the collection of all ordered pairs ((P,∆), S(f, h, η,Γ(Q))), for which
P ∈ PA, ∆ is a truncation on PH(A), h is a choice function on Q for some
Q ∈ PA finer than P , and Γ is a truncation on PH(A) larger than ∆.

Definition 2.1. The function f is P-integrable over A with respect to η if
and only if F(A, f, η,P) is a run in Z converging to some z ∈ Z.

For motivation of the definition we refer to [11]. The idea of using an
arbitrary PA is taken from [7]. If f is P-integrable over A with respect to
η, and Z is Hausdorff, then we denote by P-

∫
A

f.dη the unique point of Z
to which F(A, f, η,P) converges. The phrase “P-

∫
A

f.dη exists” will then be
synonymous with “F(A, f, η,P) converges in Z to P-

∫
A

f.dη”. The case of
non-Hausdorff Z can be treated by consideration of the standard quotient
space. Our first two theorems establish additivity properties of the integral.

Theorem 2.1. Let X be a commutative semigroup, with <,> being additive
in its first argument, and let f1, f2 be X-valued functions on E. If P-

∫
A

f1.dη,
P-

∫
A

f2.dη both exist, then P-
∫

A
(f1 + f2).dη exists, and

P-
∫

A

(f1 + f2).dη = P-
∫

A

f1.dη + P-
∫

A

f2.dη

Proof. Let f1, f2 be X-valued functions on E which are integrable over A.
Then, by earlier remarks, F(A, f1, η,P) + F(A, f2, η,P) is a run converging
to P-

∫
A

f1.dη + P-
∫

A
f2.dη. We shall now show that it has F(A, f1 + f2, η,P)

as a subrun. We shall write (P,∆) ≺ (Q,Γ) if and only if P,Q ∈ PH(A)
with Q finer than P , and ∆, Γ are truncations on PH(A) with Γ larger than
∆. Let D consist of all ordered pairs (P,∆), where P ∈ PA and ∆ is a
truncation on PH(A). Then D is directed by ≺. Given any (Pi,∆i) ∈ D,
i = 1, 2, choose (P ′,∆′) ∈ D such that (Pi,∆i) ≺ (P ′,∆′), i = 1, 2. Suppose
((P ′,∆′), S(f1 + f2, h, η, Γ(Q))) ∈ F(A, f1 + f2, η,P). Since ≺ is transitive,
((Pi,∆i), S(fi, h, η, Γ(Q))) ∈ F(A, fi, η,P). Further, by the additivity of <,>
in its first argument,

S(f1 + f2, h, η, Γ(Q)) = S(f1, h, η, Γ(Q)) + S(f2, h, η, Γ(Q)),
and therefore,
(((P1,∆1), (P2,∆2)), S(f1 + f2, h, η, Γ(Q))) ∈ F(A, f1, η,P) + F(A, f2, η,P).

Thus, F(A, f1 + f2, η,P) is a subrun of F(A, f1, η,P) + F(A, f2, η,P).

Similarly, we can show the linearity of the integral when X is a vector
space over the real or complex numbers, Z is a topological vector space over
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the same field of scalars, and <,> is linear in its first argument. Note that
PA may consist of all countable, pairwise-disjoint subfamilies of H which cover
A, or of all finite, pairwise-disjoint subfamilies of H which cover A. Indeed,
we may take PA to be the family of all finite N -meshes in H covering A.

We can show that the integral is an additive set-function, if the families PA

satisfy the following conditions:

• PA ⊆ PH(A) is directed by refinement, and {H} ∈ PA, for all A ⊆ H ∈
H;

• if P ∈ PA∪B then there exists P ′ ∈ PA finer than {p ∈ P : p ∩A 6= ∅};
• if Qi ∈ PAi

, and p1 ∩ p2 ∈ N for all pi ∈ Qi, i = 1, 2, then Q1 ∪ Q2 ∈
PA1∪A2 .

Theorem 2.2. Let A1, A2 be subsets of E which are separated by H with
respect to N . If the integrals on both sides exist then

P-
∫

A1

f.dη + P-
∫

A2

f.dη = P-
∫

A1∪A2

f.dη.

Proof. For i = 1, 2, let Ai ⊆ Hi ∈ H with H1∩H2 ∈ N . Let Pi ∈ PAi
, ∆i be

a truncation on PH(Ai), P ∈ PA1∪A2 , and ∆ be a truncation on PH(A1∪A2).
Choose Qi ∈ PAi

finer than {Hi}, Pi, and {p ∈ P : p ∩ Ai 6= ∅}, and denote
Q1∪Q2 by Q. Then Q ∈ PA1∪A2 . Let Γi be a truncation on PH(Ai) such that
Γi is larger than ∆i, and Γ1(Q1) ∪ Γ2(Q2) ⊇ ∆(Q1 ∪Q2). Let hi be a choice
function on Qi, and h be the choice function on Q given by h(q) = hi(q), if q ∈
Qi. Let Γ be a truncation on PH(A1∪A2) such that Γ(Q) = Γ1(Q1)∪Γ2(Q2),
and Γ(P ) = ∆(P ), if P 6= Q1 ∪Q2. Then,

S(f, h1, η,Γ1(Q1)) + S(f, h2, η,Γ2(Q2)) = S(f, h, η,Γ(Q)),
((Pi,∆i), S(f, hi, η,Γi(Qi))) ∈ F(Ai, f, η,PAi), and
((P,∆), S(f, h, η,Γ(Q))) ∈ F(A1 ∪A2, f, η,PA1∪A2).

Thus F(A1 ∪ A2, f, η,PA1∪A2), F(A1, f, η,PA1) + F(A2, f, η,PA2) are linked
runs, and their limits are therefore equal.

For the classical definition of the Riemann-Stieltjes integral [9], p.122, and
[2], p.298, we identify E, X, Y and Z with the real line, and <,> with the
binary operation of multiplication on the real line. Let H be the family of
all non-empty, closed subintervals, [s, t], of the real line, η([s, t]) = g(t)− g(s)
for some monotone increasing function g, N consist of the empty set together
with all one-point subsets of the real line, A = [a, b], and PA be the family
of all finite N -meshes P ⊆ H with

⋃
P = [a, b]. In this case the use of
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truncations is superfluous, and, for a bounded real-valued function f on [a, b],
the Riemann-Stieltjes integral may be defined as the limit, when it exists, of
the run whose ordered pairs are of the form, (P, S(f, h, η,Q)), where P ∈ PA

and h is a choice function on Q for some Q ∈ PA which is a refinement of
P ([9], thms. 6.6, 6.7, and [2], thms. 5.8, 5.9), or, equivalently, as the limit of
the run whose ordered pairs are of the form (δ, S(f, h, η,Q)), where δ > 0,
Q ∈ PA, with the length of q less than δ for all q ∈ Q, and h is a choice
function on Q, [2], Theorem 5.10, p.309.

Modifying the latter approach, we can use runs to define a generalized
gauge (Henstock-Kurzweil) integral [1]. Let U be a uniformity on E [4]. A
gauge on E is a function on E to U . Given Q ∈ PH(A), a choice function
h on Q and a gauge δ on E, we shall say that (Q,h) is δ-fine if and only if
(t, hq) ∈ δ(hq) for all q ∈ Q and t ∈ q. Now let PA be a subfamily of PH(A)
such that for each gauge δ on E there exists a Q ∈ PA and a choice function h
on Q such that (Q,h) is δ-fine. (For the gauge integral of a real-valued function
on a closed, bounded interval of the real line, validity of the latter condition is
guaranteed by Cousin’s theorem [1].) Denote by K(A, f, η,P,U) the collection
of all ordered pairs, ((δ,∆), S(f, h, η,Γ(Q))), in which δ is a gauge on E, ∆
is a truncation of PH(A), Γ is a truncation of PH(A) larger than ∆, Q ∈ PA

and h is a choice function on Q such that (Q,h) is δ-fine.

Definition 2.2. The function f is gauge-integrable over A with respect to
P if and only if K(A, f, η,P,U) is a run in Z converging to some z ∈ Z.

The generalized gauge integral of an X-valued function f on E will be
denoted by G-

∫
A

f.dη. Through a straightforward modification of its proof,
Theorem 2.1 extends to this integral.

Theorem 2.3. Let X be a semigroup, and <,> be additive in its first argu-
ment. If G-

∫
A

f1.dη, G-
∫

A
f2.dη both exist, then G-

∫
A
(f1 + f2).dη exists, and

G-
∫

A

(f1 + f2).dη = G-
∫

A

f1.dη + G-
∫

A

f2.dη

A similar extension of Theorem 2.2 can be established if the families PA

satisfy the following conditions:

• for all A ⊆ H ∈ H, and gauge δ on E, there exist Q ∈ PA, and a choice
function h on Q, such that q ⊆ H for all q ∈ Q, and (Q, h) is δ-fine.

• if Qi ∈ PAi
, and p1 ∩ p2 ∈ N for all pi ∈ Qi, i = 1, 2, then Q1 ∪ Q2 ∈

PA1∪A2 .



120 Hugh G. R. Millington

Theorem 2.4. Let A1, A2 be subsets of E which are separated by H with
respect to N . If the integrals on both sides exist then

G-
∫

A1

f.dη + G-
∫

A2

f.dη = G-
∫

A1∪A2

f.dη.

We note that the above definition of a generalized gauge integral is ap-
plicable to any subset of a uniform space, and allows countable covers of the
domain of integration. However, when E, X, Y and Z are identified with the
real line, under the uniformity generated by the standard Euclidean metric,
and <,> with multiplication, A is a closed subinterval of E with non-empty
interior, H is the family of all closed subintervals [s, t] of E having non-empty
interior, with η([s, t]) = g(t) − g(s) for some monotone increasing function g
on E, N consists of the empty set together with all one-point subsets of the
real line, and PA consists of all finite N -meshes P ⊆ H with

⋃
P = A, then

the above yields a definition of the gauge integral of a real-valued function f
on A [1]. Our definition using runs therefore improves on that given in [3]
using nets.

We can give a unified definition of the integration processes defined above.
For each A ⊆ E, let MA be a run in the family of all ordered pairs (P, g)
for which P ∈ PH(A) and g is a choice function on P . Let J (A, f, η,M) be
the run in Z consisting of all ordered pairs ((x, ∆), S(f, h, η, Γ(Q))) for which
x ∈ domMA, ∆ is a truncation on PH(A), (x, (Q,h)) ∈ MA and Γ is a
truncation on PH(A) larger than ∆.

Definition 2.3. The function f is M-integrable over A if and only if the
run J (A, f, η,M) converges to some z ∈ Z.

This generalized integral of an X-valued function f on E will be denoted
by M-

∫
A

f.dη. It is easily shown that it is additive.

Theorem 2.5. Let X be a semigroup, and <,> be additive in its first ar-
gument. If M-

∫
A

f1.dη, M-
∫

A
f2.dη both exist, then M-

∫
A
(f1 + f2).dη exists,

and
M-

∫
A

(f1 + f2).dη = M-
∫

A

f1.dη +M-
∫

A

f2.dη

Its additivity as a set function can be proved under the following assump-
tions:

• for all A ⊆ H ∈ H, and x ∈ domMA, there exists Q,h such that
(x, (Q,h)) ∈MA, and q ⊆ H for all q ∈ Q;

• for all y ∈ domMA1∪A2 , and i = 1, 2, there exist xi ∈ domMAi , such
that if (xi, (Qi, hi)) ∈MAi , p1∩p2 ∈ N for all pi ∈ Qi, and h(q) = hi(q)
whenever q ∈ Qi, then (y, (Q1 ∪Q2, h)) ∈MA1∪A2 .
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Theorem 2.6. Let A1, A2 be subsets of E which are separated by H with
respect to N . If the integrals on both sides exist then

M-
∫

A1

f.dη +M-
∫

A2

f.dη = M-
∫

A1∪A2

f.dη,

By appropriate specialization of MA we obtain the integrals defined pre-
viously, and their additivity properties.

3 Set Functions.

We close with applications of runs to the generation of set functions by inner
or outer approximation, showing that runs may be of interest outside of in-
tegration theory. Given a Z-valued function ν on a family, H, of subsets of
E, we say that ν is additive if and only if ν(A ∪ B) = ν(A) + ν(B), for all
disjoint A and B in H.

Let (K,G) be a pair of families of subsets of E, such that K is closed under
finite unions, G is closed under finite unions and finite intersections, and for
all K ∈ K and G ∈ G: (1) K\G ∈ K, G\K ∈ G, (2) there exist K ′ ∈ K and
G′ ∈ G with K ′ ⊆ G and G′ ⊆ K, and (3) if K ⊆ G then there exist K ′ ∈ K
and G′ ∈ G with K ⊆ G′ ⊆ K ′ ⊆ G [8, 10].

Let κ and γ be Z-valued functions, respectively on K and G. For each
G ∈ G, let K−(G, κ) be the run consisting of all ordered pairs (K, κ(K ′)),
for which K, K ′ ∈ K and K ⊆ K ′ ⊆ G. For each A ⊆ E let G+(A, γ) be
the run consisting of all ordered pairs (G, γ(G′)), for which G, G′ ∈ G, with
A ⊆ G′ ⊆ G.

Theorem 3.1. Let κ be additive, and G1, G2 ∈ G be disjoint. If K−(G1, κ)
and K−(G2, κ) converge to z1, z2 respectively, then K−(G1 ∪G2, κ) converges
to z1 + z2.

Proof. Let G1, G2 ∈ G be disjoint, and K1,K2 ∈ K with Ki ⊆ Gi ∈ G,
i = 1, 2. For each K ′ ∈ K such that K1∪K2 ⊆ K ′ ⊆ G1∪G2, let K ′

1 = K ′\G2,
K ′

2 = K ′ \G1. Then κ(K ′) = κ(K ′
1) + κ(K ′

2), and (Ki, κ(K ′
i)) ∈ K−(Gi, κ),

i = 1, 2. Thus K−(G1 ∪G2, κ) is a subrun of K−(G1, κ) +K−(G2, κ).

Theorem 3.2. Let γ be additive, and K1,K2 ∈ K be disjoint. If G+(K1, γ)
and G+(K2, γ) converge to z1, z2 respectively, then G+(K1 ∪K2, γ) converges
to z1 + z2.

Proof. G+(K1 ∪ K2, γ) is a subrun of G+(K1, γ) + G+(K2, γ). (The proof
uses the following separation property of (K,G). For all disjoint K1,K2 ∈ K,
there exist disjoint G1, G2 ∈ G with Ki ⊆ Gi, i = 1, 2.)
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Further conditions are required to guarantee the existence of the limits
appearing in the theorems above [1, 2, 11], or to guarantee that the set func-
tions defined by inner or outer approximation are extensions σ-additive on a
σ-algebra containing the original domain of definition.

We do not doubt the usefulness of filters and nets for describing conver-
gence. However we do think that there is still a place for runs, especially in
the theory of integration, where they correspond to the process under consid-
eration more efficiently than filters or nets. (See, [6], p.813, last paragraph.)
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