Zbigniew Grande and Ewa Strońska; Institute of Mathematics, Bydgoszcz Academy, Plac Weyssenhoffa 11, 85-072 Bydgoszcz, Poland. email: grande@ab.byd.edu.pl and strewa@pro.onet.pl

SOME OBSERVATIONS ON REGULAR DEPENDENCE OF TOTAL VARIATION ON PARAMETERS

Abstract

Let I be a nondegenerate interval and let $X \neq \emptyset$ be a set. For a function $f: X \times I \to \mathbb{R}$ and $x \in X$ define v(x) as the total variation of the section f_x on I. We investigate the regular dependence (measurability, Baire property, etc.) of v on the regularity of the sections f^t .

Let \mathbb{R} be the set of all reals and let I be a nondegenerate interval (open, closed, half-closed, bounded or not). For a function $g: I \to \mathbb{R}$ we define the total variation of g on I as

$$V(g, I) = \sup_{\pi} \sum_{i=1}^{n} |g(x_i) - g(x_{i-1})|,$$

where the supremum is taken over all partitions $\pi = \{x_0, x_1, \ldots, x_n\}$ of I (i.e., $n \in N$, $x_0 < x_1 < \cdots < x_n$ and $x_i \in I$, $i = 0, 1, \ldots, n$). We say that g is of bounded variation on I if $V(g, I) < \infty$.

Let X be the set of parameters. For a mapping $f : X \times I \to \mathbb{R}$ define the total variation of the sections $f_x(t) = f(x, t), x \in X$ and $t \in I$ by

$$v(x) = V(f_x, I)$$
 for $x \in X$.

In [1] the authors investigate some sufficient conditions for regular dependence (different measurability or continuity properties) of a mapping $v: X \to [0, \infty]$ on X. In this article we give some constructions concerning these results.

Key Words: Measurability, density topology, total variation, Baire property, uniform convergence

Mathematical Reviews subject classification: 26A45, 26A15, 26B99 Received by the editors October 28, 2003

Communicated by: B. S. Thomson

^{*}Partially supported by Bydgoszcz Academy grant 2003

In [1] the authors observe that if I = X = [0, 1] and $A \subset [0, 1]$ is a nonmeasurable subset in the Lebesgue sense (without Baire property), then the function

$$f(x,t) = \begin{cases} 1 & \text{if } x = t \text{ and } x \in A \\ 0 & \text{otherwise on } [0,1]^2 \end{cases}$$

is Lebesgue measurable and has the Baire property, but the function $v(x) = V(f_x, I)$ is not measurable in the Lebesgue sense (does not have the Baire property). In connection with these examples we present some constructions.

Let (Z, T_Z) be a topological space. Recall (e.g., in [4]) that a function $g: Z \to \mathbb{R}$ is said to be quasicontinuous at a point $z \in Z$ if for each real r > 0 and each T_Z -open neighborhood $U \subset Z$ of z there is an T_Z -open nonempty subset $V \subset U$ such that $g(V) \subset (g(z) - r, g(z) + r)$.

Theorem 1. There is a Lebesgue measurable function $f : [0,1]^2 \to [0,1]$ having Darboux Baire 1 quasicontinuous sections $f^t(x) = f(x,t), x, t \in [0,1]$, such that the function $v(x) = V(f_x, [0,1]), x \in [0,1]$, is not measurable in the sense of Lebesgue.

PROOF. Let $C \subset (0,1)$ be a Cantor set of positive Lebesgue measure and let (I_n) be a sequence of all open intervals with rational endpoints. Then the set $A = C \setminus \bigcup \{ (I_n \cap C); \ \mu(I_n \cap C) = 0 \}$ is a nowhere dense perfect set of positive Lebesgue measure such that for each open interval J with $J \cap A \neq \emptyset$ the intersection $J \cap A$ is of positive Lebesgue measure. Enumerate the set of all components of the set $[0,1] \setminus A$ in a sequence (J_n) such that $J_n \neq J_m$ for $n \neq m$. Let a_n and b_n be the endpoints of J_n with $a_n < b_n$. In the interiors $int(J_n)$ of J_n find nondegenerate closed intervals $K_n = [c_n, d_n] \subset int(J_n)$. Define

$$g(x) = \begin{cases} 1 & \text{for} & x \in K_n, \quad n \ge 1\\ 0 & \text{if} & x \in A\\ linear & \text{on the intervals} \quad [a_n, c_n] \text{ and } [d_n, b_n] \quad n \ge 1. \end{cases}$$

There is a Lebesgue nonmeasurable set $B \subset A$. For $(x,t) \in [0,1]^2$ let

$$f(x,t) = \begin{cases} 1 & \text{if } x \in B, \text{ and } x = t \\ g(x) & \text{otherwise on } [0,1]^2. \end{cases}$$

Then, evidently, the function f is Lebesgue measurable and the sections f^t , $t \in [0, 1]$, are quasicontinuous functions of Baire class 1 that have the Darboux property. Moreover

$$v(x) = 0$$
 for $x \in [0,1] \setminus B$, and $v(x) = 2$ for $x \in B$,

so the variation $v: [0,1] \to [0,\infty]$ is a function nonmeasurable in the sense of Lebesgue. \Box

The function f from the last theorem has the Baire property (it is quasicontinuous even) and the corresponding function v has also the Baire property (it vanishes on the set $[0, 1] \setminus B$).

Theorem 2. Assume the Continuum Hypothesis CH. Then there exists a function $f : [0,1]^2 \rightarrow [0,1]$ with the Baire property such that the sections f^t , $t \in [0,1]$, have the Darboux property and the corresponding variation function $v(x) = V(f_x, [0,1])$ does not have the Baire property.

PROOF. Let $A \subset [0,1]$ be a G_{δ} -set of Lebesgue measure zero containing all rationals from [0,1]. Then the set A is residual in [0,1] and for each open interval $I \subset [0,1]$ the equality $\mu(I) = \mu(I \setminus A)$ is true. There is a set $B \subset A$ without the Baire property. Moreover, there is a family $\{A_{\alpha}; \alpha < \omega_1\}$ (ω_1 denotes the first ordinal of the continuum cardinality) of pairwise disjoint subsets \mathfrak{c} -dense in [0,1] such that $[0,1] \setminus A = \bigcup_{\alpha < \omega_c} A_{\alpha}$.

Indeed, let $A_{0,0} \subset [0,1] \setminus A$ be a countable set dense in [0,1]. Let $\alpha > 0$ be a countable ordinal and assume that we have defined pairwise disjoint countable dense in [0,1] sets $A_{\beta,\gamma} \subset [0,1] \setminus A$, where $\beta, \gamma < \alpha$. Observe that $E = \bigcup_{\beta,\gamma < \alpha} A_{\beta,\gamma}$ is countable set. Then let $A_{0,\alpha} \subset ([0,1] \setminus A) \setminus E$ be a countable set dense in [0,1] and for $\beta < \alpha$ let

$$A_{\beta,\alpha} \subset (([0,1] \setminus A) \setminus E) \setminus \bigcup_{\gamma < \beta} A_{\gamma,\alpha}$$

be a countable set dense in [0, 1]. Moreover, for $\beta \leq \alpha$ let

$$A_{\alpha,\beta} \subset \left(\left(\left(\left[0,1 \right] \setminus A \right) \setminus E \right) \setminus \bigcup_{\gamma < \alpha} A_{\gamma,\alpha} \right) \setminus \bigcup_{\gamma < \beta} A_{\alpha,\gamma} \right)$$

be a countable set dense in [0, 1]. Next, for $1 \leq \alpha < \omega_1$ let $A_{\alpha} = \bigcup_{\beta < \omega_1} A_{\alpha,\beta}$ and let $A_0 = ([0,1] \setminus A) \setminus \bigcup_{1 < \alpha < \omega_1} A_{\alpha}$. Observe that

$$A_0 = \bigcup_{\beta < \omega_1} A_{0,\beta} \cup \left(([0,1] \setminus A) \setminus \bigcup_{\alpha,\beta < \omega_1} A_{\alpha,\beta} \right).$$

Then the sets A_{α} , $\alpha < \omega_1$, are pairwise disjoint and for each $\alpha < \omega_1$ and each open interval $I \subset [0, 1]$ the intersection $A_{\alpha} \cap I$ is uncountable; i.e., A_{α} is \mathfrak{c} -dense in [0, 1]. Moreover, $[0, 1] \setminus A = \bigcup_{\alpha < \omega_1} A_{\alpha}$.

Now, fix $\alpha < \omega_c$ and enumerate all open subintervals of [0, 1] with rational endpoints in a sequence (I_n) . By induction for each positive integer n there is a nowhere dense nonempty perfect set $B_{n,\alpha} \subset (I_n \cap A_\alpha) \setminus \bigcup_{k < n} B_{k,\alpha}$. For $n \geq 1$ define a function $g_{n,\alpha} : B_{n,\alpha} \to [0,1]$ such that $g_{n,\alpha}(B_{n,\alpha}) = [0,1]$. Let

$$g_{\alpha}(x) = \begin{cases} g_{n,\alpha}(x) & \text{if } x \in B_{n,\alpha}, \ n \ge 1\\ 0 & \text{otherwise on } [0,1]. \end{cases}$$

Now enumerate all elements of the set B in a transfinite sequence b_{α} , where $\alpha < \omega_c$ such that $b_{\alpha} \neq b_{\beta}$ for $\alpha \neq \beta$. For $(x, t) \in [0, 1]^2$ put

$$f(x,t) = \begin{cases} 1 & \text{if } x = t \in B \\ g_{\alpha}(x) & \text{if } x \neq t = b_{\alpha}, \ \alpha < \omega_c \\ 0 & \text{otherwise on } [0,1]^2. \end{cases}$$

Since v(x) = 0 for $x \in A \setminus B$ and v(x) = 2 for $x \in B$, the restricted function v/A does not have the Baire property. But the set A is residual in [0, 1], so $v : [0, 1] \to [0, \infty]$ is without the Baire property.

We will prove that the sections f^t , $t \in [0, 1]$, have the Darboux property. If $t \in A \setminus B$ or $t \in [0, 1] \setminus A$, then $f^t(x) = 0$ for $x \in [0, 1]$, and consequently the section f^t has the Darboux property. If $t \in B$, then there is an ordinal $\alpha < \omega_1$ with $t = b_{\alpha}$. So $f^t(x) = g_{\alpha}(x)$ for $x \neq t$ and $f^t(t) = 1$. Since $g_{\alpha}(J) = [0, 1]$ for each open interval $J \subset [0, 1]$, the section f^t has the Darboux property. \Box

For the next theorems we recall the following definitions and prove some lemmas.

We will say that a family of functions $g_s : Z \to \mathbb{R}$, where $s \in S$ and S is a set of indices, is quasi-equicontinuous at a point $x \in Z$ if for each positive real r and each set $U \in T_Z$ containing x there is a nonempty set $V \subset U$ belonging to T_Z such that $g_s(V) \subset (g_s(x) - r, g_s(x) + r)$ for all indices $s \in S$.

Observe that the sections f^t , $t \in [0, 1]$, of the function f constructed in the proof of Theorem 1 are quasi-equicontinuous at each point $x \in [0, 1]$.

A function $g : Z \to [-\infty, \infty]$ is said to be lower (resp. upper) semiquasicontinuous at a point $x \in Z$ if for each real a with g(x) > a (resp. g(x) < a) and each set $U \in T_Z$ containing x there is a nonempty set $V \subset U$ belonging to T_Z such that g(u) > a (resp. g(u) < a) for all points $u \in V$.

Lemma 1. If a function $g : Z \to [-\infty, \infty]$ is lower (resp. upper) semiquasicontinuous at each point $x \in Z$, then g has the Baire property.

PROOF. Fix a real a and observe that the set $A_a = \{x \in Z; f(x) > a\}$ is the union of its interior $int(A_a)$ and of a set contained in the frontier $fr(int(A_a))$ of the $int(A_a)$, which is nowhere dense. So the set A_a has the Baire property and the proof is completed.

Lemma 2. If Φ is a family of lower semi-quasicontinuous functions g_s : $Z \to \mathbb{R}$, where $s \in S$ and S is a set of indices, then the pointwise supremum $h(x) = \sup\{g_s(x); s \in S\}$ is lower semi-quasicontinuous at each point $x \in X$.

108

PROOF. Evidently $h(x) > -\infty$ for each point $x \in Z$. Fix a positive real r, a point $x \in Z$ and a set $U \in T_Z$ containing x. First we suppose that $h(x) < \infty$. Since $h(x) = \sup\{g_s(x); s \in S\}$, there is an index $s_1 \in S$ such that $g_{s_1}(x) > h(x) - r$. But the function g_{s_1} is lower semi-quasicontinuous at x, so there is a nonempty set $V \subset U$ belonging to T_Z such that $g_{s_1}(V) \subset (h(x) - r, \infty)$. For each point $u \in V$ we have $h(u) \ge g_{s_1}(u) > h(x) - r$.

If $h(x) = \infty$ then for each real *a* there is an index $s_2 \in S$ such that $g_{s_2}(x) > a$. The same as above we find a nonempty set $V \subset U$ belonging to T_Z such that $g_{s_2}(V) \subset (a, \infty)$ and observe that $h(V) \subset g_{s_2}(V) \subset (a, \infty]$. \Box

Theorem 3. Let (X, T_X) be a topological space and let $f : X \times I \to \mathbb{R}$ be a function such that for each nonempty finite set $S \subset I$ and for each point $x \in X$ the family of the sections f^t , where $t \in S$ is quasi-equicontinuous at x. Then the corresponding total variation $v(x) = V(f_x, I)$ is lower semiquasicontinuous.

PROOF. Fix a partition $\pi = \{t_0, \ldots, t_n\}$ of the interval I and observe that the function

$$X \ni x \to \sum_{i=1}^{n} |f(x, t_i) - f(x, t_{i-1})|$$

is quasicontinuous. Of course, for a fixed point $u \in X$ and a set $U \in T_X$ containing u and a positive real r by the quasi-equicontinuity of functions f^{t_i} , where $i = 0, 1, \ldots, n$, at u, there is a nonempty set $V \subset U$ belonging to T_X and such that

$$f^{t_i}(V) \subset \left(f(u, t_i) - \frac{r}{2n+2}, f(u, t_i) + \frac{r}{2n+2}\right) \text{ for } i = 0, 1, \dots, n.$$

Consequently, for $x \in V$ and each $i \in \{0, 1, ..., n\}$ we obtain

$$\begin{aligned} |f(x,t_i) - f(x,t_{i-1})| \\ &\leq |f(x,t_i) - f(u,t_i)| + |f(u,t_i) - f(u,t_{i-1})| + |f(u,t_{i-1}) - f(x,t_{i-1})| \\ &< |f(u,t_i) - f(u,t_{i-1})| + \frac{r}{2n+2} + \frac{r}{2n+2} \\ &= |f(u,t_i) - f(u,t_{i-1})| + \frac{r}{n+1}. \end{aligned}$$

So, for $x \in V$ the inequality

$$\left|\sum_{i=1}^{n} |f(x,t_i) - f(x,t_{i-1})| - \sum_{i=1}^{n} |f(u,t_i) - f(u,t_{i-1})|\right| \le C_{n-1}$$

$$\sum_{i=1}^{n} |(|f(x,t_i) - f(x,t_{i-1})| - |f(u,t_i) - f(u,t_{i-1})|)| < (n+1)\frac{r}{n+1} = r$$

is true and for each partition $\pi = \{t_0, \ldots, t_n\}$ the function

$$X \ni x \to \sum_{i=1}^{n} |f(x, t_i) - f(x, t_{i-1})|$$

is quasicontinuous on X. So, by Lemma 2 the total variation v is lower semiquasicontinuous, as the pointwise supremum of a family of quasicontinuous functions.

In particular we consider the case, where $X = \mathbb{R}$ and T_X is the density topology. For this we recall some necessary notions.

Denote by μ the Lebesgue measure in \mathbb{R} and by μ_e the outer Lebesgue measure in \mathbb{R} . For a set $A \subset \mathbb{R}$ and a point x we define the upper (lower) outer density $D_u(A, x)$ $(D_l(A, x))$ of the set A at the point x as

$$\limsup_{h \to 0^+} \frac{\mu_e(A \cap [x - h, x + h])}{2h}$$
$$\left(\liminf_{h \to 0^+} \frac{\mu_e(A \cap [x - h, x + h])}{2h} \text{ respectively}\right)$$

A point x is said to be an outer density point (a density point) of a set A if $D_l(A, x) = 1$ (if there is a Lebesgue measurable set $B \subset A$ such that $D_l(B, x) = 1$).

The family T_d of all sets A for which the implication

$$x \in A \Longrightarrow x$$
 is a density point of A

holds, is a topology called the density topology ([2, 6]). The sets $A \in T_d$ are measurable ([2]).

Let T_e be the Euclidean topology in \mathbb{R} . Continuity (quasicontinuity) of functions $g : \mathbb{R} \to \mathbb{R}$ treated as mappings from (\mathbb{R}, T_d) to (\mathbb{R}, T_e) are said to be approximate continuity (approximate quasicontinuity) (see, e.g., [2, 5] or [3]).

Since a set $A \subset \mathbb{R}$ has the Baire property with respect to the density topology T_d if and only if it is Lebesgue measurable ([5]), as an obvious corollary from the last theorem we obtain the following.

Theorem 4. If each finite family of sections f^t of functions $f : \mathbb{R} \times I \to \mathbb{R}$ is quasi-equicontinuous with respect to T_d at every point $x \in \mathbb{R}$, then the corresponding total variation $v(x) = V(f_x, I)$ is Lebesgue measurable.

110

As an particular case of Theorem 3.2 from [1] we have:

Theorem 5. Let (X, d_X) be a compact metric space and let $f : X \times [a, b] \to \mathbb{R}$ be a function. Assume that the sections f^t , $t \in [a, b]$, are continuous and the sections f_x , $x \in X$, are continuous of bounded variation on [a, b]. Then the corresponding total variation $v(x) = V(f_x, [a, b])$ is continuous on X if and only if the sequence (ϕ_n) of functions $\phi_n : X \to \mathbb{R}$ given by

$$\phi_n(x) = \sum_{k=1}^{2^n} \left| f\left(x, a + k \frac{b-a}{2^n}\right) - f\left(x, a + (k-1) \frac{b-a}{2^n}\right) \right| \text{ for } x \in X,$$

is uniformly convergent on X.

Observe that the following theorem is true.

Theorem 6. Assume that X is a nonempty set and Φ is a linear space (over \mathbb{R}) of functions from X to \mathbb{R} which is uniformly closed (i.e., it is closed with respect to uniform convergence). Moreover suppose that if $f \in \Phi$, then also $|f| \in \Phi$. Let $f: X \times [a,b] \to \mathbb{R}$ be a function. Assume that the sections $f^t \in \Phi$ for $t \in [a,b]$ and the sections $f_x, x \in X$, are continuous of bounded variation on [a,b]. If the sequence (ϕ_n) of functions $\phi_n: X \to \mathbb{R}$ given by

$$\phi_n(x) = \sum_{k=1}^{2^n} \left| f\left(x, a + k \frac{b-a}{2^n}\right) - f\left(x, a + (k-1) \frac{b-a}{2^n}\right) \right| \text{ for } x \in X,$$

is uniformly convergent on X, then the corresponding total variation $v(x) = V(f_x, [a, b])$ belongs to Φ .

PROOF. We repeat the proof of Theorem 3.2 from [1]. Since for a fixed $x \in X$ the section f_x is continuous on [a, b], we obtain $v(x) = \lim_{n \to \infty} \phi_n(x)$. But the sections $f^t \in \Phi$ for $t \in [a, b]$, so $\phi_n \in \Phi$ for $n \ge 1$. From the uniform convergence of the sequence (ϕ_n) follows that $v \in \Phi$.

As some examples of Φ we can take the families of continuous real functions on arbitrary topological spaces or the family of real cliquish functions on topological spaces ([4]).

Theorem 7. There is a function $f : [0,1]^2 \to \mathbb{R}$ such that the sections f_x , $x \in [0,1]$ are continuous of bounded variation, the sections f^t , $t \in [0,1]$ are approximately continuous, the corresponding total variation $v(x) = V(f_x, [0,1])$ is approximately continuous on [0,1] and the sequence (ϕ_n) of functions $\phi_n : X \to \mathbb{R}$ given by

$$\phi_n(x) = \sum_{k=1}^{2^n} \left| f\left(x, a + k \frac{b-a}{2^n}\right) - f\left(x, a + (k-1) \frac{b-a}{2^n}\right) \right| \text{ for } x \in [0,1],$$

is not uniformly convergent on [0, 1].

PROOF. Find closed intervals $I_n = [a_n, b_n]$ such that

$$0 < b_{n+1} < a_n < b_n < 1$$
 for $n \ge 1$ and $\lim_{n \to \infty} a_n = 0$,

and

$$D_u\Big(\bigcup_{n\ge 1} [a_n, b_n], 0\Big) = 0. \tag{(*)}$$

In each interval I_n , $n \ge 1$, find a closed interval $J_n = [c_n, d_n] \subset (a_n, b_n)$. Next, for each $n \ge 1$ we choose a closed interval $K_n = [u_n, v_n]$, whose the center is of the form $\frac{k_n}{2^{n+1}}$, where $k_n \in \{1, \ldots, 2^n - 1\}$ and the length is less than $\frac{1}{2^{n+3}}$. Moreover, we assume that $K_n \cap K_m = \emptyset$ if $n \ne m$.

For $n \ge 1$ define the functions $g_n : [a_n, b_n] \to [0, 1], h_n : [u_n, v_n] \to [0, 1]$ and $f_n : I_n \times K_n \to [0, 1]$ by

$$g_n(x) = \begin{cases} 0 & \text{if } x \in \{a_n, b_n\} \\ 1 & \text{if } x \in J_n \\ \text{linear} & \text{on the intervals } [a_n, c_n] \text{ and } [d_n, b_n], \end{cases}$$

and

$$h_n(t) = \begin{cases} 0 & \text{if } t \in \{u_n, v_n\} \\ 1 & \text{if } t = \frac{u_n + v_n}{2} \\ \text{linear} & \text{on the intervals } [u_n, \frac{u_n + v_n}{2}] \text{ and } [\frac{u_n + v_n}{2}, v_n], \end{cases}$$

and

$$f_n(x,t) = g_n(x)h_n(t)$$
 for $(x,t) \in I_n \times K_n$.

Now for $(x,t) \in [0,1]^2$ let

$$f(x,t) = \begin{cases} f_n(x,t) & \text{if } (x,t) \in I_n \times K_n, \ n \ge 1\\ 0 & \text{otherwise on } [0,1]^2. \end{cases}$$

Then evidently the sections f_x and f^t , $x, t \in [0, 1]$, are continuous, the sections f_x have bounded variation and by (*) the total variation $v(x) = V(f_x, [0, 1])$ is approximately continuous. Since v is discontinuous at 0 and the functions ϕ_n are continuous for $n \ge 1$, the convergence of (ϕ_n) to v is not uniform. \Box

Problem 1.

Let (X, T_X) be a topological space and let $f : X \times [a, b] \to \mathbb{R}$ be a function. Assume that the sections $f^t, t \in [a, b]$, are quasicontinuous. Must the corresponding total variation $v(x) = V(f_x, [a, b])$ have the Baire property?

Problem 2.

Let (X, T_X) be a topological space and let $f : X \times [a, b] \to \mathbb{R}$ be a function. Assume that the sections f^t , $t \in [a, b]$, are quasicontinuous and the sections f_x , $x \in X$, have bounded variation on [a, b]. Must the corresponding total variation $v(x) = V(f_x, [a, b])$ have the Baire property? **Problem 3.**

Assume that the sections f^t , $t \in [a, b]$, of a function $f : [a, b]^2 \to \mathbb{R}$ are derivatives. Must the corresponding total variation $v(x) = V(f_x, [a, b])$ be Lebesgue measurable?

Problem 4.

Assume that the sections f^t , $t \in [a, b]$, of a function $f : [a, b]^2 \to \mathbb{R}$ are bounded derivatives. Must the corresponding total variation $v(x) = V(f_x, [a, b])$ be Lebesgue measurable?

References

- M. Balcerzak, A. Kucia, A. Nowak, *Regular dependence of total variation* on parameters, Real Analysis Exchange, **29** (2003-04), 419–428.
- [2] A. M. Bruckner, Differentiation of real functions, Lectures Notes in Math., 659, Springer-Verlag, Berlin, 1978.
- [3] Z. Grande, Sur les functions approximativement quasi-continues, Rev. Roumaine Math. Pures Appl., 34 (1989), 17–22.
- [4] T. Neubrunn, *Quasi-continuity*, Real Analysis Exchange, 14, No. 2 (1988-89), 259–306.
- [5] J. C. Oxtoby, Measure and category, Springer-Verlag, New York, 1996.
- [6] F. D. Tall, The density topology, Pacific J. Math., 62 (1976), 275–284.