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SOME OBSERVATIONS ON REGULAR
DEPENDENCE OF TOTAL VARIATION ON

PARAMETERS

Abstract

Let I be a nondegenerate interval and let X 6= ∅ be a set. For a
function f : X×I → R and x ∈ X define v(x) as the total variation of the
section fx on I. We investigate the regular dependence (measurability,
Baire property, etc.) of v on the regularity of the sections f t.

Let R be the set of all reals and let I be a nondegenerate interval (open,
closed, half-closed, bounded or not). For a function g : I → R we define the
total variation of g on I as

V (g, I) = sup
π

n∑
i=1

|g(xi)− g(xi−1)|,

where the supremum is taken over all partitions π = {x0, x1, . . . , xn} of I (
i.e., n ∈ N , x0 < x1 < · · · < xn and xi ∈ I, i = 0, 1, . . . , n). We say that g is
of bounded variation on I if V (g, I) < ∞.

Let X be the set of parameters. For a mapping f : X × I → R define the
total variation of the sections fx(t) = f(x, t), x ∈ X and t ∈ I by

v(x) = V (fx, I) for x ∈ X.

In [1] the authors investigate some sufficient conditions for regular dependence
(different measurability or continuity properties) of a mapping v : X → [0,∞]
on X. In this article we give some constructions concerning these results.
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In [1] the authors observe that if I = X = [0, 1] and A ⊂ [0, 1] is a non-
measurable subset in the Lebesgue sense (without Baire property), then the
function

f(x, t) =

{
1 if x = t and x ∈ A

0 otherwise on [0, 1]2

is Lebesgue measurable and has the Baire property, but the function v(x) =
V (fx, I) is not measurable in the Lebesgue sense (does not have the Baire
property). In connection with these examples we present some constructions.

Let (Z, TZ) be a topological space. Recall (e.g., in [4]) that a function
g : Z → R is said to be quasicontinuous at a point z ∈ Z if for each real r > 0
and each TZ-open neighborhood U ⊂ Z of z there is an TZ-open nonempty
subset V ⊂ U such that g(V ) ⊂ (g(z)− r, g(z) + r).

Theorem 1. There is a Lebesgue measurable function f : [0, 1]2 → [0, 1]
having Darboux Baire 1 quasicontinuous sections f t(x) = f(x, t), x, t ∈ [0, 1],
such that the function v(x) = V (fx, [0, 1]), x ∈ [0, 1], is not measurable in the
sense of Lebesgue.

Proof. Let C ⊂ (0, 1) be a Cantor set of positive Lebesgue measure and let
(In) be a sequence of all open intervals with rational endpoints. Then the
set A = C \

⋃
{(In ∩ C); µ(In ∩ C) = 0} is a nowhere dense perfect set of

positive Lebesgue measure such that for each open interval J with J ∩A 6= ∅
the intersection J ∩ A is of positive Lebesgue measure. Enumerate the set of
all components of the set [0, 1] \ A in a sequence (Jn) such that Jn 6= Jm for
n 6= m. Let an and bn be the endpoints of Jn with an < bn. In the interiors
int(Jn) of Jn find nondegenerate closed intervals Kn = [cn, dn] ⊂ int(Jn).
Define

g(x) =

 1 for x ∈ Kn, n ≥ 1
0 if x ∈ A

linear on the intervals [an, cn] and [dn, bn] n ≥ 1.

There is a Lebesgue nonmeasurable set B ⊂ A. For (x, t) ∈ [0, 1]2 let

f(x, t) =
{

1 if x ∈ B, and x = t
g(x) otherwise on [0, 1]2.

Then, evidently, the function f is Lebesgue measurable and the sections f t,
t ∈ [0, 1], are quasicontinuous functions of Baire class 1 that have the Darboux
property. Moreover

v(x) = 0 for x ∈ [0, 1] \B, and v(x) = 2 for x ∈ B,

so the variation v : [0, 1] → [0,∞] is a function nonmeasurable in the sense of
Lebesgue.
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The function f from the last theorem has the Baire property (it is quasi-
continuous even) and the corresponding function v has also the Baire property
(it vanishes on the set [0, 1] \B).

Theorem 2. Assume the Continuum Hypothesis CH. Then there exists a
function f : [0, 1]2 → [0, 1] with the Baire property such that the sections f t,
t ∈ [0, 1], have the Darboux property and the corresponding variation function
v(x) = V (fx, [0, 1]) does not have the Baire property.

Proof. Let A ⊂ [0, 1] be a Gδ-set of Lebesgue measure zero containing all
rationals from [0, 1]. Then the set A is residual in [0, 1] and for each open
interval I ⊂ [0, 1] the equality µ(I) = µ(I \ A) is true. There is a set B ⊂ A
without the Baire property. Moreover, there is a family {Aα;α < ω1} (ω1

denotes the first ordinal of the continuum cardinality) of pairwise disjoint
subsets c-dense in [0, 1] such that [0, 1] \A =

⋃
α<ωc

Aα.
Indeed, let A0,0 ⊂ [0, 1] \ A be a countable set dense in [0, 1]. Let α > 0

be a countable ordinal and assume that we have defined pairwise disjoint
countable dense in [0, 1] sets Aβ,γ ⊂ [0, 1] \ A, where β, γ < α. Observe that
E =

⋃
β,γ<α Aβ,γ is countable set. Then let A0,α ⊂ ([0, 1] \ A) \ E be a

countable set dense in [0, 1] and for β < α let

Aβ,α ⊂ (([0, 1] \A) \ E) \
⋃

γ<β

Aγ,α

be a countable set dense in [0, 1]. Moreover, for β ≤ α let

Aα,β ⊂
(
(([0, 1] \A) \ E) \

⋃
γ<α

Aγ,α

)
\

⋃
γ<β

Aα,γ

be a countable set dense in [0, 1]. Next, for 1 ≤ α < ω1 let Aα =
⋃

β<ω1
Aα,β

and let A0 = ([0, 1] \A) \
⋃

1≤α<ω1
Aα. Observe that

A0 =
⋃

β<ω1

A0,β ∪
(
([0, 1] \A) \

⋃
α,β<ω1

Aα,β

)
.

Then the sets Aα, α < ω1, are pairwise disjoint and for each α < ω1 and
each open interval I ⊂ [0, 1] the intersection Aα ∩ I is uncountable; i.e., Aα is
c-dense in [0, 1]. Moreover, [0, 1] \A =

⋃
α<ω1

Aα.
Now, fix α < ωc and enumerate all open subintervals of [0, 1] with rational

endpoints in a sequence (In). By induction for each positive integer n there
is a nowhere dense nonempty perfect set Bn,α ⊂ (In ∩ Aα) \

⋃
k<n Bk,α. For

n ≥ 1 define a function gn,α : Bn,α → [0, 1] such that gn,α(Bn,α) = [0, 1]. Let
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gα(x) =

{
gn,α(x) if x ∈ Bn,α, n ≥ 1
0 otherwise on [0, 1].

Now enumerate all elements of the set B in a transfinite sequence bα, where
α < ωc such that bα 6= bβ for α 6= β. For (x, t) ∈ [0, 1]2 put

f(x, t) =


1 if x = t ∈ B

gα(x) if x 6= t = bα, α < ωc

0 otherwise on [0, 1]2.

Since v(x) = 0 for x ∈ A \ B and v(x) = 2 for x ∈ B, the restricted function
v/A does not have the Baire property. But the set A is residual in [0, 1], so
v : [0, 1] → [0,∞] is without the Baire property.

We will prove that the sections f t, t ∈ [0, 1], have the Darboux property.
If t ∈ A\B or t ∈ [0, 1]\A, then f t(x) = 0 for x ∈ [0, 1], and consequently the
section f t has the Darboux property. If t ∈ B, then there is an ordinal α < ω1

with t = bα. So f t(x) = gα(x) for x 6= t and f t(t) = 1. Since gα(J) = [0, 1]
for each open interval J ⊂ [0, 1], the section f t has the Darboux property.

For the next theorems we recall the following definitions and prove some
lemmas.

We will say that a family of functions gs : Z → R, where s ∈ S and S is a
set of indices, is quasi-equicontinuous at a point x ∈ Z if for each positive real
r and each set U ∈ TZ containing x there is a nonempty set V ⊂ U belonging
to TZ such that gs(V ) ⊂ (gs(x)− r, gs(x) + r) for all indices s ∈ S.

Observe that the sections f t, t ∈ [0, 1], of the function f constructed in
the proof of Theorem 1 are quasi-equicontinuous at each point x ∈ [0, 1].

A function g : Z → [−∞,∞] is said to be lower (resp. upper) semi-
quasicontinuous at a point x ∈ Z if for each real a with g(x) > a (resp.
g(x) < a ) and each set U ∈ TZ containing x there is a nonempty set V ⊂ U
belonging to TZ such that g(u) > a (resp. g(u) < a) for all points u ∈ V .

Lemma 1. If a function g : Z → [−∞,∞] is lower (resp. upper) semi-
quasicontinuous at each point x ∈ Z, then g has the Baire property.

Proof. Fix a real a and observe that the set Aa = {x ∈ Z; f(x) > a} is the
union of its interior int(Aa) and of a set contained in the frontier fr(int(Aa))
of the int(Aa), which is nowhere dense. So the set Aa has the Baire property
and the proof is completed.

Lemma 2. If Φ is a family of lower semi-quasicontinuous functions gs :
Z → R, where s ∈ S and S is a set of indices, then the pointwise supremum
h(x) = sup{gs(x); s ∈ S} is lower semi-quasicontinuous at each point x ∈ X.
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Proof. Evidently h(x) > −∞ for each point x ∈ Z. Fix a positive real r, a
point x ∈ Z and a set U ∈ TZ containing x. First we suppose that h(x) < ∞.
Since h(x) = sup{gs(x); s ∈ S}, there is an index s1 ∈ S such that gs1(x) >
h(x)− r. But the function gs1 is lower semi-quasicontinuous at x, so there is
a nonempty set V ⊂ U belonging to TZ such that gs1(V ) ⊂ (h(x)− r,∞). For
each point u ∈ V we have h(u) ≥ gs1(u) > h(x)− r.

If h(x) = ∞ then for each real a there is an index s2 ∈ S such that
gs2(x) > a. The same as above we find a nonempty set V ⊂ U belonging to
TZ such that gs2(V ) ⊂ (a,∞) and observe that h(V ) ⊂ gs2(V ) ⊂ (a,∞].

Theorem 3. Let (X, TX) be a topological space and let f : X × I → R be
a function such that for each nonempty finite set S ⊂ I and for each point
x ∈ X the family of the sections f t, where t ∈ S is quasi-equicontinuous
at x. Then the corresponding total variation v(x) = V (fx, I) is lower semi-
quasicontinuous.

Proof. Fix a partition π = {t0, . . . , tn} of the interval I and observe that the
function

X 3 x →
n∑

i=1

|f(x, ti)− f(x, ti−1)|

is quasicontinuous. Of course, for a fixed point u ∈ X and a set U ∈ TX

containing u and a positive real r by the quasi-equicontinuity of functions f ti ,
where i = 0, 1, . . . , n, at u, there is a nonempty set V ⊂ U belonging to TX

and such that

f ti(V ) ⊂
(

f(u, ti)−
r

2n + 2
, f(u, ti) +

r

2n + 2

)
for i = 0, 1, . . . , n.

Consequently, for x ∈ V and each i ∈ {0, 1, . . . , n} we obtain

|f(x, ti)− f(x, ti−1)|
≤ |f(x, ti)− f(u, ti)|+ |f(u, ti)− f(u, ti−1)|+ |f(u, ti−1)− f(x, ti−1)|

< |f(u, ti)− f(u, ti−1)|+
r

2n + 2
+

r

2n + 2

= |f(u, ti)− f(u, ti−1)|+
r

n + 1
.

So, for x ∈ V the inequality∣∣∣∣∣
n∑

i=1

|f(x, ti)− f(x, ti−1)| −
n∑

i=1

|f(u, ti)− f(u, ti−1)|

∣∣∣∣∣ ≤
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n∑
i=1

|(|f(x, ti)− f(x, ti−1)| − |f(u, ti)− f(u, ti−1)|)| < (n + 1)
r

n + 1
= r

is true and for each partition π = {t0, . . . , tn} the function

X 3 x →
n∑

i=1

|f(x, ti)− f(x, ti−1)|

is quasicontinuous on X. So, by Lemma 2 the total variation v is lower semi-
quasicontinuous, as the pointwise supremum of a family of quasicontinuous
functions.

In particular we consider the case, where X = R and TX is the density
topology. For this we recall some necessary notions.

Denote by µ the Lebesgue measure in R and by µe the outer Lebesgue
measure in R. For a set A ⊂ R and a point x we define the upper (lower)
outer density Du(A, x) (Dl(A, x)) of the set A at the point x as

lim sup
h→0+

µe(A ∩ [x− h, x + h])
2h(

lim inf
h→0+

µe(A ∩ [x− h, x + h])
2h

respectively
)

.

A point x is said to be an outer density point (a density point) of a set
A if Dl(A, x) = 1 (if there is a Lebesgue measurable set B ⊂ A such that
Dl(B, x) = 1).

The family Td of all sets A for which the implication

x ∈ A =⇒ x is a density point of A

holds, is a topology called the density topology ([2, 6]). The sets A ∈ Td are
measurable ([2]).

Let Te be the Euclidean topology in R. Continuity (quasicontinuity) of
functions g : R → R treated as mappings from (R, Td) to (R, Te) are said to be
approximate continuity (approximate quasicontinuity) (see, e.g., [2, 5] or [3]).

Since a set A ⊂ R has the Baire property with respect to the density topol-
ogy Td if and only if it is Lebesgue measurable ([5]), as an obvious corollary
from the last theorem we obtain the following.

Theorem 4. If each finite family of sections f t of functions f : R × I → R
is quasi-equicontinuous with respect to Td at every point x ∈ R, then the
corresponding total variation v(x) = V (fx, I) is Lebesgue measurable.
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As an particular case of Theorem 3.2 from [1] we have:

Theorem 5. Let (X, dX) be a compact metric space and let f : X× [a, b] → R
be a function. Assume that the sections f t, t ∈ [a, b], are continuous and the
sections fx, x ∈ X, are continuous of bounded variation on [a, b]. Then the
corresponding total variation v(x) = V (fx, [a, b]) is continuous on X if and
only if the sequence (φn) of functions φn : X → R given by

φn(x) =
2n∑

k=1

∣∣∣∣f (
x, a + k

b− a

2n

)
− f

(
x, a + (k − 1)

b− a

2n

)∣∣∣∣ for x ∈ X,

is uniformly convergent on X.

Observe that the following theorem is true.

Theorem 6. Assume that X is a nonempty set and Φ is a linear space (over
R) of functions from X to R which is uniformly closed ( i.e., it is closed with
respect to uniform convergence). Moreover suppose that if f ∈ Φ, then also
|f | ∈ Φ. Let f : X × [a, b] → R be a function. Assume that the sections f t ∈ Φ
for t ∈ [a, b] and the sections fx, x ∈ X, are continuous of bounded variation
on [a, b]. If the sequence (φn) of functions φn : X → R given by

φn(x) =
2n∑

k=1

∣∣∣∣f (
x, a + k

b− a

2n

)
− f

(
x, a + (k − 1)

b− a

2n

)∣∣∣∣ for x ∈ X,

is uniformly convergent on X, then the corresponding total variation v(x) =
V (fx, [a, b]) belongs to Φ.

Proof. We repeat the proof of Theorem 3.2 from [1]. Since for a fixed x ∈ X
the section fx is continuous on [a, b], we obtain v(x) = limn→∞ φn(x). But
the sections f t ∈ Φ for t ∈ [a, b], so φn ∈ Φ for n ≥ 1. From the uniform
convergence of the sequence (φn) follows that v ∈ Φ.

As some examples of Φ we can take the families of continuous real func-
tions on arbitrary topological spaces or the family of real cliquish functions on
topological spaces ([4]).

Theorem 7. There is a function f : [0, 1]2 → R such that the sections fx,
x ∈ [0, 1] are continuous of bounded variation, the sections f t, t ∈ [0, 1] are ap-
proximately continuous, the corresponding total variation v(x) = V (fx, [0, 1])
is approximately continuous on [0, 1] and the sequence (φn) of functions φn :
X → R given by

φn(x) =
2n∑

k=1

∣∣∣∣f (
x, a + k

b− a

2n

)
− f

(
x, a + (k − 1)

b− a

2n

)∣∣∣∣ for x ∈ [0, 1],
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is not uniformly convergent on [0, 1].

Proof. Find closed intervals In = [an, bn] such that

0 < bn+1 < an < bn < 1 for n ≥ 1 and lim
n→∞

an = 0,

and
Du

( ⋃
n≥1

[an, bn], 0
)

= 0. (∗)

In each interval In, n ≥ 1, find a closed interval Jn = [cn, dn] ⊂ (an, bn). Next,
for each n ≥ 1 we choose a closed interval Kn = [un, vn], whose the center is
of the form kn

2n+1 , where kn ∈ {1, . . . , 2n − 1} and the length is less than 1
2n+3 .

Moreover, we assume that Kn ∩Km = ∅ if n 6= m.
For n ≥ 1 define the functions gn : [an, bn] → [0, 1], hn : [un, vn] → [0, 1]

and fn : In ×Kn → [0, 1] by

gn(x) =


0 if x ∈ {an, bn}
1 if x ∈ Jn

linear on the intervals [an, cn] and [dn, bn],

and

hn(t) =


0 if t ∈ {un, vn}
1 if t = un+vn

2

linear on the intervals [un, un+vn

2 ] and [un+vn

2 , vn],

and
fn(x, t) = gn(x)hn(t) for (x, t) ∈ In ×Kn.

Now for (x, t) ∈ [0, 1]2 let

f(x, t) =

{
fn(x, t) if (x, t) ∈ In ×Kn, n ≥ 1
0 otherwise on [0, 1]2.

Then evidently the sections fx and f t, x, t ∈ [0, 1], are continuous, the sections
fx have bounded variation and by (∗) the total variation v(x) = V (fx, [0, 1])
is approximately continuous. Since v is discontinuous at 0 and the functions
φn are continuous for n ≥ 1, the convergence of (φn) to v is not uniform.

Problem 1.
Let (X, TX) be a topological space and let f : X × [a, b] → R be a func-

tion. Assume that the sections f t, t ∈ [a, b], are quasicontinuous. Must the
corresponding total variation v(x) = V (fx, [a, b]) have the Baire property?
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Problem 2.
Let (X, TX) be a topological space and let f : X× [a, b] → R be a function.

Assume that the sections f t, t ∈ [a, b], are quasicontinuous and the sections
fx, x ∈ X, have bounded variation on [a, b]. Must the corresponding total
variation v(x) = V (fx, [a, b]) have the Baire property?
Problem 3.

Assume that the sections f t, t ∈ [a, b], of a function f : [a, b]2 → R are
derivatives. Must the corresponding total variation v(x) = V (fx, [a, b]) be
Lebesgue measurable?
Problem 4.

Assume that the sections f t, t ∈ [a, b], of a function f : [a, b]2 → R
are bounded derivatives. Must the corresponding total variation v(x) =
V (fx, [a, b]) be Lebesgue measurable?
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