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ON GENERALIZATIONS OF FLETT’S
THEOREM

Abstract

In 1958 T. M. Flett proved a theorem which is a variant of the La-
grange mean value theorem; namely, let f : [a,b] — R be a differentiable
function in [a, b] and f'(a) = f'(b). Then there exists a number 1 € (a, b)
such that

f@) = fla) = (n—a)- f'(n).
Manav Das, Thomas Riedel and Prasanna K. Sahoo have given gener-
alizations of Flett’s theorem for approximately differentiable functions.
Here we provide generalizations of these theorems for some local S-
systems.

Definition 1. [6] By a local system S we mean a family S such that at each
point z € R there is given a nonempty collection of sets S(x) with the following
properties:

(1) {z} £ 5(2),
(79) if A € S(x), then z € A,
(zi) if Ay € S(x) and A2 D Ay, then Az € S(z),
(iv) if A€ S(z) and § > 0, then AN (z — 4§,z + ) € S(z).
Now, we will give a few examples of local systems.
Example 1. Let Sy denote the system defined at each point x as
So(z) ={A:3so(x —rz+7) C A}

so that each Sy(z) is precisely the neighborhood filter at the point x.
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Let A% denote the set of all accumulation points of the set A.

Example 2. A system closely associated to the above system is defined in
the following way. S is defined at each point z as

Soo(z) = {A:x € A%}
Example 3. The approximate system S,,, is defined as
A€ Syp(z) if and only if z € A and d(A4,z) =1
where for the density of a set A at a point = we write

. |ANn(z,x+h

where by interval (z,x + h) we mean the interval (z + h, ) whenever h < 0.

The system Sjy_q) is defined in a similar manner as the system S, consid-
ering another type of density points.

Example 4. Let Sy, be the system defined for every point = as
S]_ap(l‘) = {A tx € AN d](A, .Z‘) = 1},
where d; (A, z) = 1 means that x is an I-density point of set A (see [4]).

Example 5. Let A be an ideal or o-ideal of sets of real numbers. The system
Sy is defined as

Sy(z)={A:z € ANTsso(x — 0,2 +5)\ Ae N}

Definition 2. [6] Let S; and Sy be two local systems. We will write S; < So
if at every point z S1(x) C Sa(z).

It is obvious that this relation is a partial order in the family of local
systems. One can prove the following.

Lemma 3. [6] For any local system S we have
S8 K8

Definition 4. [6] We will say that S is filtering at a point x if A; N Ay € S(x)
whenever A; and Aj belong to S(z).

It is clear that if a local system § is filtering at x, then the family of sets
S(z) is a filter converging to x. Conversely, if at each point x there is given a
filter S(z) converging to x and nontrivial at z in the sense that {z} does not
belong to S(z), then S is a local system.
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Definition 5. [6] A system S is bilateral provided every set A in S(x) contains
points on either side of x.

Definition 6. [6] Let S be a local system, f be a real function and z any
point in R. Then (S)-limit of f at x is defined as any extended real number
¢ for which the following condition holds: for every neighborhood U, of ¢ the
set

{t:t=xV f(t)eU.}
belongs to S(z). This limit is denoted by (S) lim f(y).
Yy—x

The extreme limits relative to a system S at a point x are defined as

(S)limsup f(y) =inf{y: {t:t =2z V f(t) <y} € S(x)}

y*}:lf
and

(8)liminf f(y) = sup{y : {t -t = 2V f(t) >y} € Sx)}.

Lemma 7. Let S be a system such that for every x € R we have AjNAg # {x}
whenever Ay € S(x) and Ay € S(x). Then for any function f and any x € R

() lim inf f(y) < (S) lim sup f(y)

y—z
and (S)limy_., f(y) is unique.

Remark 1. If the system S is filtering, then (S)lim, ., f(y) exists if and
only if
(S) limsup f(y) = (S)lim nf f(y)

y—x Yy—x

and its common value equals to the limit (S) lim,_., f(y).
Now we will prove the following property.

Lemma 8. Let S be a system filtering at x for x € R. Let us assume that
there exists a finite (S)-limits of functions f and g. Then

(8) lim (f(z) +g(x)) = (S) lim f(z)+(S) lim g(z); (1)

T—x T—x T—x

if moreover one of the functions f or g is bounded, then

(8) lim (f(z) - g(x)) = (5) lim f(z)-(S) lim g(z). (2)

r—xo r—xo r—Xo
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PROOF. For a real number x and a positive number r let U(z,r) denote the
interval (z —r,x +7). Let (S)limg_4, f(z) = a and (S) lim,—,, g(x) = b. Let
r be any real number. Let

Ay ={t:t=x0V f(t) € Ula, g)}.

From the definition of (S)-limit of function f at xy we have that A; € S(zo).
Similarly, for the function g we have that

Ay ={t:it=mzoVg(t) e U(b, g)} € S(o).
Since S is filtering at the point xg, then A; N Ay € S(zp). We put
As={t:t=xzoV f(t) +9() € Ula+b,7)}.
It follows from the inequality
|f(t) +g(t) —a—b] < |f(t) —al +g(t) - b|

that A; N Az C As. From Definition 1 (iii) of the local system S we have, that
As € S(zp), which completes the proof of (1).

We assume now, that f is bounded by a real number M > 0. Let r be any
real number. We see, that the sets

A ={t:t=moV f(t) € U(a,Q_L“)')} € S(xo)

and
Ay ={t:t=moVg(t) € U(b7 ﬁ)} € S(zo).

Hence A1 N Ay € S(xp), since S is filtering at xg. From inequality

£(0)9(6) = abl < @) llo(t) = + b7 (1) — al < Mgz + bl =
we have
Ay NAy CAy={t:t=uoV f(t)-g(t) € Ula-br)}.
Thus Az € S(z0) and we have (2). O

It can easily be seen, that if one of the functions f or g has a finite limit,
then Lemma 8 is true for any local system S and without the additional
assumption that f or g is bounded.
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Definition 9. [6] Let S be a local system on X and let f be an arbitrary
function. We say that f is (S)-continuous at x provided

Veso ({t: [f(t) — f(z)] <e} € S(x)).

Lemma 10. [6] Let S; and Sy be local systems such that Sy < Sa. If function
f s (S1)-continuous at point x it is also (Sa)-continuous there.

Definition 11. Let « € R and let S be a local system defined in a neighbor-
hood U(z) and f be a finite real function defined in U(z). We put
Cy,z) = Jw ify# 2 and y € U(x).
If (S)lim, ., C(y, z) exists, then its value is called the (S)-derivative of func-
tion f at point x.
The number

(S)Df(z) = (S) lim sup C(y, )

Yy—z

is called the upper (S)-derivative of function f at point z.

Similarly we define the lower (S§)-derivative of function f at x as the lower
(8)-limit of C(y,z) at z and denote it by (S)Df(x).

Immediately, from Remark 1 it follows that if the system S is filtering,
then the (S)-derivative of function f at z exists if and only if both the upper
and lower S-derivatives exist at x and are equal.

Note that the corollary below follows from Lemma 8.

Corollary 12. Let S be any filtering system. If f has a finite (S)-derivative
at x, then it is (S)-continuous at that point.

R. O’Malley in [3] introduced the concept of selection.
By selection p we mean a function p(z,y) of two variables such that

(i) p(z,y) = p(y, »);
(ii) if z < y, then z < p(z,y) < .
Example 6. For a selection p, define the selective system S, at = by
Sp(x) ={A:z€ ANTs550(A D {p(z,y) : 0 < |z —y| < })}.

This system we shall denote by S,,.
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Definition 13. A system S has intersection condition means for every choice
of sets {S; : © € RA S, € S(x)} there is a positive function § : X — R such
that

Sz NSy N (x,y) # 0 3)
whenever 0 < y — 2 < min{d(z),d(y)}.

Let us assume that the system S is bilateral and fulfills the intersection
condition (3). Then there exists a selection p for which § < S,,.

Corollary 14. Let S be bilateral and satisfy the intersection condition (3)
and let p be a selection for which S < Sp. If ¢ is the derivative of f with
respect to the system S (i.e., it is the (S)-derivative), then it is the derivative
with respect to the system S, as well.

From properties of (S)-continuous functions (see [6]) the next theorem
follows.

Theorem 15. Let S be a bilateral system, fulfilling the intersection condition.
If a function f is (S)-continuous, then f has the Darboux property.

In view of properties of selective derivatives (see [3]) and Corollary 12 we
have the following theorems.

Theorem 16. Let a bilateral and filtering system S have the intersection
property. If f:[0,1] — R has a finite (S)-derivative for all x in [0,1], then the
(8)-derivative of [ has the Darboux property.

Theorem 17. Let S be a filtering system that fulfills the intersection condi-
tion. If f is (S)-differentiable at every point x € [a,b] and (S)f'(x) > 0 for
every x € la, b, then f is non-decreasing in [a, b].

Definition 18. ([2],[6]) We say that a system S satisfies condition (J3) at
a point z if every set E such that x € F and (z — d,2 + ) N E contains a
nonempty open interval for each positive number ¢ belongs to S(x).

We say that a system S satisfies condition (J3) in a subset X of the set of
real numbers if it satisfies that condition at every point x from the set X.

Theorem 19. Let S be a bilateral filtering system which fulfills condition
(J3) and f : [a,b] — R be a non-decreasing function. If xq € [a,b] and f is
(S)-differentiable at xq, then it is also differentiable at xg.

ProOF. Note that if f is differentiable at x¢, then it is also (S)-differentiable
at xg and (S)f'(xo) = f'(x0).
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Now suppose, that f doesn’t have a derivative at zy but it has an (S)-
derivative at zo. Assume that (S)f/(xo) = a. Then one of the extreme derivates
of f at xg is different from «; i.e.,

Df(xz0) < (8)f'(xo) or Df(w0) > (S)f'(wo)-

Assume that
D, f(zo) < (8)f'(x0) = a.

Since f is a nondecreasing function, D f(x¢) > 0 and a > 0, of course.
Choose gg such that 0 < g9 < § and D, f(x¢) < a — 2. So there exists
a sequence (hy,) such that h, \, 0 and

fwo + ) = f(0)
b,

< a—2¢e

for every n € N. Note that for every n € N and for any

€0

x €[z + (1— )b, o + ]
a — &
we have%‘igm”)<a—so.
Let
E:{x:M<a_€o}
Tr — X

In view of condition (J3) the set E belongs to S(xp) since

€0

Eﬂ(xo—é,xo—l—&)j[xo—i—(l— )hn,$0+hn]

o — &p

for some n. Since

A:{xe[a,b]:Mza—so}eS(a‘o),

X — X

ANE #0, a contradiction.
The proofs in other cases are similar. O

One can obtain the same result if condition (J3) is replaced by the Khint-
chine condition.

Definition 20. [5] We say that a system S fulfills the Khintchine condi-

tion if for each sequences (x,) and (d,) such that J, \, 0, z, — z¢ and
On >

lim inf ————— > 0, the set U (Tn — On, @y + 0,) belongs to S(zg).

n— oo ‘xn — x0| e
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Theorem 21. [5] Let S be a bilateral filtering system which fulfills the Khint-
chine condition and let f : [a,b] — R be a non-decreasing function. If xo €
[a,b] and f is (S)-differentiable at xo, then it is also differentiable at xg.

Corollary 22. Let S be a bilateral and filtering system which fulfills the in-
tersection condition and condition (J3). If a function f:[a,b] = R is (S)-
differentiable at every point x € [a,b] and g : [a,b] — R is differentiable
at every point © € [a,b] and (S)f'(x) < ¢'(x) for every x € [a,b] or if
(S8)f'(x) > ¢'(x) for every x € [a,b], then f is differentiable at every point
x € [a,b)].

PROOF. Assume that (S)f'(z) < ¢'(x) for x € [a,b]. Hence by Lemma 8,
(8)(g—f) > 0 for every = € [a, b]. Therefore, from Theorem 17 it follows that
function g — f is non-decreasing in [a,b]. So from Theorem 19 we infer that
g — f is differentiable at every point x € [a,b]. Hence, f = g — (g — f) is also
differentiable at every point x € [a, b]. O

The same proof can be used for the next corollary.

Corollary 23. Let S be a bilateral filtering system that fulfills the Khintchine
condition. If a function f :[a,b] — R is (S)-differentiable at every point x €
[a,b] and g : [a,b] — R is differentiable at every point x € [a,b] and (S)f'(x) <
g'(z) for every x € [a,b] or if (S)f'(x) > ¢'(x) for every x € [a,b], then f is
differentiable at every point x € [a,b).

Theorem 24. [Mean Value Theorem| Let S be a bilateral and filtering sys-
tem which fulfills the intersection condition and condition (J3). If a function
f:]a,b] = R is (S)-differentiable at every point x € [a,b], then there exists
¢ € (a,b) such that

f(b) = f(a)

A

©)r(9 =101

ProOOF. Let L = W. If (S)f’ is bounded from above or from below,

then it follows from Corollary 22 that f is differentiable in [a,b] and we can
use Lagrange’s theorem on mean values for the ordinary derivative. Otherwise
there are numbers u, v in (a, b) such that (S)f/(u) < L and (S) f’(v) > L. Since
(8)f" has Darboux property by Theorem 16, there exists a number ¢ between
u and v such that (S)f’(¢) = L, which completes the proof. O

The same proof can be shown for the next theorem.

Theorem 25. [Mean Value Theorem| Let S be a bilateral and filtering system
which fulfills the Khintchine condition. If a function f:[a,b] — R is (S)-
differentiable at every point x € [a,b] then there exists c € (a,b) such that
f(b) — f(a)
S)f'(e) = .
©)1'0) = 10T
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1 Main Results.

From now on we consider bilateral and filtering systems which fulfil the inter-
section condition and one of the following conditions: (J3) or the Khintchine
condition.

Corollary 26. Let f : [a,b] — R be (S)-differentiable in [a,b]. If f(b) > f(a)
and (8)f'(b) < 0, then there exists a number 1 € (a,b) such that (S)f'(n) = 0.

PrOOF. Since (S)f/(b) < 0, it follows from the definition of (S)-derivative that
there exists g < b, for which f(zg) — f(b) > 0. Hence f(a) < f(b) < f(zo).
It follows from theorem 15 that there exists a number ¢ € (a,zq) for which
f(e) = f(b). If we apply theorem 24 to interval [c, b], we obtain the conclusion
of the theorem. O

Corollary 27. Let f : [a,b] — R be (S)-continuous in [a, b] and (S)-differentiable
n (a,0]. If
[£(0) = f(a)] - (8)f'(b) < 0.

then there exists a number n € (a,b] such that (S)f'(n) = 0.
PrOOF. Consider the following possibilities:
(1) Let (S)f’(b) = 0. Then it is sufficient to put n = b.

(2) Let us assume that f(a) = f(b).

If f is (S)-differentiable at a, then the conclusion of the corollary follows
immediately from theorem 24.

If f is not (S)-differentiable at a, then we can find a point z¢ € (a,b]
and we can apply theorem 24 or corollary 26 to the interval [z, b] and
f or — f, obtaining our desired conclusion.

(3) Assume, that [f(b) — f(a)]- (S)f'(b) < 0. Then either
(i) (8)f'(b) <0 and f(b) > f(a),

(ii) (S)-f'(b) > 0 and f(b) < f(a).

In the case (i) we apply theorem 15 and we can find a point g € (a,b)
such that f(xg) = f(b). Now applying theorem 24 we get the conclusion.
In the case (ii) we proceed similarly considering the function — f. O

And now we will prove a generalization of Flett’s theorem for (S)-differentiable
functions.
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Theorem 28. Let f : [a,b] — R be (S)-differentiable in [a,b]. If

then there exists 1 € (a,b] such that
fn) = fla) = (n=a)-(S)f'(n)-

PROOF. Let us look at the function g : [a,b] — R defined by

{w if z € (a,b], (4)
(S)f/(a) if z =a.

g(x) =

Note that g is (S)-continuous in [a,b] and that when we use lemma 8, then
for every c € (a, b

T—a T—c _x—a. c—a (5)
B cia ($)f'(e) = c : a f(ci— Z(a)
(8)f'(c) — g(c)

which means that g is (S)-differentiable in (a, b].
Moreover, note that it follows from (5) that

l9(b) — g(a)] - (S)g' ()

N (SIS A

f(®) — f(a)
b—a ’

b—a

| 1@ -

Hence it follows from the assumption that [g(b) — g(a)] - (S)¢’(b) < 0. From
corollary 27 it follows that (S)g’(n) = 0 for some n € (a,b]. If we take the
above, the definition of g and (5), we have the conclusion of the theorem. O

Theorem 29. Let f : [a,b] — R be (S)-differentiable in [a,b]. If (S)f'(a) =
(8)f'(b), then there exists n € (a,b) such that

f) = fla) = (n—a)-(S)f(n). (6)
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PROOF. Let g : [a,b] — R be defined by (4). First, let us assume that
f®) = f(a) = (b—a)- (S)f'(b).

Then it follows from the definition of function g and the assumption that
g(b) = g(a). If we apply Theorem 24 we obtain

(8)¢'(n) = 0 for some n € (a,b).
Hence by (5)

But if

then either

[SIOE Lé = 5(@} > 00r [(S)f/(b) - f“’l)) — (J:(“)} <.
Since (8)f'(b) = (S)f'(a),

(©r® - 11D s - OTD] 50

and if we apply Theorem 28 we obtain equality (6) for some 7 € (a,b]. Since
the inequality (7) is sharp, it is obvious that n # b. O

Corollary 30. If f : [a,b] — R is (S)-differentiable in [a,b], then there exists
1 € (a,b) such that
1 (8)f'(b) —(85)f'(a)

Fm) = fla) = (n—a)-(S)f'(n) - 5 - =

PROOF. Let us define function 4 : [a,b] — R as

o) = 1oy - 1 OO (o

It follows from Lemma 8 that f is (S)-differentiable in [a, b] and that

S)/(@) = ()7 (@) - OLOZET) ()

Moreover, we see that (S)¢'(a) = (S)f'(a) = (S)¢'(b). If we apply Theorem
29 to v, then

b(n) —¢(a) = (n = a) - (S)y'(n) for some 7 € (a,b).

If we take the above and the definition of function 1, we have the conclusion.
O
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Since each of the systems Sy, Sup, Sr—ap, Sa is bilateral, filtering and
fulfills the intersection condition and one of the following conditions: (.J3) or
the Khintchine condition, we can conclude that all the results are true for each
of those systems.
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