Inga Jędrzejewska and Bożenna Szkopińska, Institute of Mathematics, Technical University of Łódź, 90-924 Łódź, al. Politechniki 11, Poland. email: bszkopin@op.pl

ON GENERALIZATIONS OF FLETT'S THEOREM

Abstract

In 1958 T. M. Flett proved a theorem which is a variant of the Lagrange mean value theorem; namely, let $f : [a, b] \to \mathbb{R}$ be a differentiable function in [a, b] and f'(a) = f'(b). Then there exists a number $\eta \in (a, b)$ such that

$$f(\eta) - f(a) = (\eta - a) \cdot f'(\eta).$$

Manav Das, Thomas Riedel and Prasanna K. Sahoo have given generalizations of Flett's theorem for approximately differentiable functions. Here we provide generalizations of these theorems for some local S-systems.

Definition 1. [6] By a local system S we mean a family S such that at each point $x \in \mathbb{R}$ there is given a nonempty collection of sets S(x) with the following properties:

- (i) $\{x\} \notin S(x)$,
- (*ii*) if $A \in S(x)$, then $x \in A$,
- (*iii*) if $A_1 \in S(x)$ and $A_2 \supset A_1$, then $A_2 \in S(x)$,

f

(iv) if $A \in S(x)$ and $\delta > 0$, then $A \cap (x - \delta, x + \delta) \in S(x)$.

Now, we will give a few examples of local systems.

Example 1. Let S_0 denote the system defined at each point x as

$$S_0(x) = \{A : \exists_{r>0} (x - r, x + r) \subset A\}$$

so that each $S_0(x)$ is precisely the neighborhood filter at the point x.

Key Words: derivatives, local system, Flett's theorem Mathematical Reviews subject classification: 26A24

Received by the editors September 22, 2003

Communicated by: B. S. Thomson

Let A^d denote the set of all accumulation points of the set A.

Example 2. A system closely associated to the above system is defined in the following way. S_{∞} is defined at each point x as

$$S_{\infty}(x) = \{A : x \in A^d\}$$

Example 3. The approximate system S_{ap} is defined as

$$A \in S_{ap}(x)$$
 if and only if $x \in A$ and $d(A, x) = 1$

where for the density of a set A at a point x we write

$$d(A, x) = \lim_{h \to 0} \frac{|A \cap (x, x+h)|}{|h|}$$

where by interval (x, x + h) we mean the interval (x + h, x) whenever h < 0.

The system S_{I-ap} is defined in a similar manner as the system S_{ap} , considering another type of density points.

Example 4. Let S_{I-ap} be the system defined for every point x as

$$S_{I-ap}(x) = \{A : x \in A \land d_I(A, x) = 1\},\$$

where $d_I(A, x) = 1$ means that x is an *I*-density point of set A (see [4]).

Example 5. Let \mathcal{N} be an ideal or σ -ideal of sets of real numbers. The system $\mathcal{S}_{\mathcal{N}}$ is defined as

$$S_{\mathcal{N}}(x) = \{A : x \in A \land \exists_{\delta > 0} (x - \delta, x + \delta) \setminus A \in \mathcal{N} \}.$$

Definition 2. [6] Let S_1 and S_2 be two local systems. We will write $S_1 \ll S_2$ if at every point $x S_1(x) \subset S_2(x)$.

It is obvious that this relation is a partial order in the family of local systems. One can prove the following.

Lemma 3. [6] For any local system S we have

$$\mathcal{S}_0 \ll \mathcal{S} \ll \mathcal{S}_\infty.$$

Definition 4. [6] We will say that S is filtering at a point x if $A_1 \cap A_2 \in S(x)$ whenever A_1 and A_2 belong to S(x).

It is clear that if a local system S is filtering at x, then the family of sets S(x) is a filter converging to x. Conversely, if at each point x there is given a filter S(x) converging to x and nontrivial at x in the sense that $\{x\}$ does not belong to S(x), then S is a local system.

Definition 5. [6] A system S is bilateral provided every set A in S(x) contains points on either side of x.

Definition 6. [6] Let S be a local system, f be a real function and x any point in \mathbb{R} . Then (S)-limit of f at x is defined as any extended real number c for which the following condition holds: for every neighborhood U_c of c the set

$$\{t: t = x \lor f(t) \in U_c\}$$

belongs to S(x). This limit is denoted by $(\mathcal{S}) \lim_{y \to x} f(y)$.

The extreme limits relative to a system S at a point x are defined as

$$(\mathcal{S}) \limsup_{y \to x} f(y) = \inf\{y : \{t : t = x \lor f(t) < y\} \in S(x)\}$$

and

$$(\mathcal{S})\liminf_{y\to x} f(y) = \sup\{y: \{t: t = x \lor f(t) > y\} \in S(x)\}$$

Lemma 7. Let S be a system such that for every $x \in \mathbb{R}$ we have $A_1 \cap A_2 \neq \{x\}$ whenever $A_1 \in S(x)$ and $A_2 \in S(x)$. Then for any function f and any $x \in \mathbb{R}$

$$(\mathcal{S}) \lim_{y \to x} \inf f(y) \le (\mathcal{S}) \lim_{y \to x} \sup f(y)$$

and $(\mathcal{S}) \lim_{y \to x} f(y)$ is unique.

Remark 1. If the system S is filtering, then $(S) \lim_{y \to x} f(y)$ exists if and only if

$$(\mathcal{S}) \limsup_{y \to x} f(y) = (\mathcal{S}) \liminf_{y \to x} f(y)$$

and its common value equals to the limit $(\mathcal{S}) \lim_{y \to x} f(y)$.

Now we will prove the following property.

Lemma 8. Let S be a system filtering at x for $x \in \mathbb{R}$. Let us assume that there exists a finite (S)-limits of functions f and g. Then

$$(\mathcal{S})\lim_{x \to x_0} (f(x) + g(x)) = (\mathcal{S})\lim_{x \to x_0} f(x) + (\mathcal{S})\lim_{x \to x_0} g(x); \tag{1}$$

if moreover one of the functions f or g is bounded, then

$$(\mathcal{S})\lim_{x \to x_0} (f(x) \cdot g(x)) = (\mathcal{S})\lim_{x \to x_0} f(x) \cdot (\mathcal{S})\lim_{x \to x_0} g(x).$$
(2)

PROOF. For a real number x and a positive number r let U(x, r) denote the interval (x - r, x + r). Let $(\mathcal{S}) \lim_{x \to x_0} f(x) = a$ and $(\mathcal{S}) \lim_{x \to x_0} g(x) = b$. Let r be any real number. Let

$$A_1 = \{t : t = x_0 \lor f(t) \in U(a, \frac{r}{2})\}.$$

From the definition of (S)-limit of function f at x_0 we have that $A_1 \in S(x_0)$. Similarly, for the function g we have that

$$A_{2} = \{t : t = x_{0} \lor g(t) \in U\left(b, \frac{r}{2}\right)\} \in S(x_{0}).$$

Since S is filtering at the point x_0 , then $A_1 \cap A_2 \in S(x_0)$. We put

$$A_3 = \{t : t = x_0 \lor f(t) + g(t) \in U(a+b,r)\}$$

It follows from the inequality

$$|f(t) + g(t) - a - b| \le |f(t) - a| + |g(t) - b|$$

that $A_1 \cap A_2 \subset A_3$. From Definition 1 (iii) of the local system S we have, that $A_3 \in S(x_0)$, which completes the proof of (1).

We assume now, that f is bounded by a real number M > 0. Let r be any real number. We see, that the sets

$$A_1 = \{t : t = x_0 \lor f(t) \in U\left(a, \frac{r}{2 \cdot |b|}\right)\} \in S(x_0)$$

and

$$A_{2} = \{t : t = x_{0} \lor g(t) \in U\left(b, \frac{r}{2M}\right)\} \in S(x_{0}).$$

Hence $A_1 \cap A_2 \in S(x_0)$, since S is filtering at x_0 . From inequality

$$|f(t) \cdot g(t) - ab| \le |f(t)||g(t) - b| + |b||f(t) - a| \le M \frac{r}{2M} + |b|\frac{r}{2|b|} = r$$

we have

$$A_1 \cap A_2 \subset A_3 = \{t : t = x_0 \lor f(t) \cdot g(t) \in U(a \cdot b, r)\}.$$

Thus $A_3 \in S(x_0)$ and we have (2).

It can easily be seen, that if one of the functions f or g has a finite limit, then Lemma 8 is true for any local system S and without the additional assumption that f or g is bounded.

Definition 9. [6] Let S be a local system on X and let f be an arbitrary function. We say that f is (S)-continuous at x provided

$$\forall_{\varepsilon>0} \ (\{t: |f(t) - f(x)| < \varepsilon\} \in S(x)).$$

Lemma 10. [6] Let S_1 and S_2 be local systems such that $S_1 \ll S_2$. If function f is (S_1) -continuous at point x it is also (S_2) -continuous there.

Definition 11. Let $x \in \mathbb{R}$ and let S be a local system defined in a neighborhood U(x) and f be a finite real function defined in U(x). We put

$$C(y,x) = \frac{f(y) - f(x)}{y - x} \text{ if } y \neq x \text{ and } y \in U(x).$$

If $(S) \lim_{y \to x} C(y, x)$ exists, then its value is called the (S)-derivative of function f at point x.

The number

$$(\mathcal{S})\overline{D}f(x) = (\mathcal{S})\lim_{y \to x} \sup C(y, x)$$

is called the upper (S)-derivative of function f at point x.

Similarly we define the lower (S)-derivative of function f at x as the lower (S)-limit of C(y, x) at x and denote it by $(S)\underline{D}f(x)$.

Immediately, from Remark 1 it follows that if the system S is filtering, then the (S)-derivative of function f at x exists if and only if both the upper and lower S-derivatives exist at x and are equal.

Note that the corollary below follows from Lemma 8.

Corollary 12. Let S be any filtering system. If f has a finite (S)-derivative at x, then it is (S)-continuous at that point.

R. O'Malley in [3] introduced the concept of selection. By selection p we mean a function p(x, y) of two variables such that

- (i) p(x, y) = p(y, x);
- (ii) if x < y, then x < p(x, y) < y.

Example 6. For a selection p, define the selective system S_p at x by

$$S_p(x) = \{A : x \in A \land \exists_{\delta > 0} (A \supset \{p(x, y) : 0 < |x - y| < \delta\})\}.$$

This system we shall denote by \mathcal{S}_p .

Definition 13. A system S has intersection condition means for every choice of sets $\{S_x : x \in \mathbb{R} \land S_x \in S(x)\}$ there is a positive function $\delta : X \to \mathbb{R}$ such that

$$S_x \cap S_y \cap (x, y) \neq \emptyset \tag{3}$$

whenever $0 < y - x < \min\{\delta(x), \delta(y)\}.$

Let us assume that the system S is bilateral and fulfills the intersection condition (3). Then there exists a selection p for which $S \ll S_p$.

Corollary 14. Let S be bilateral and satisfy the intersection condition (3) and let p be a selection for which $S \ll S_p$. If c is the derivative of f with respect to the system S (i.e., it is the (S)-derivative), then it is the derivative with respect to the system S_p as well.

From properties of (\mathcal{S}) -continuous functions (see [6]) the next theorem follows.

Theorem 15. Let S be a bilateral system, fulfilling the intersection condition. If a function f is (S)-continuous, then f has the Darboux property.

In view of properties of selective derivatives (see [3]) and Corollary 12 we have the following theorems.

Theorem 16. Let a bilateral and filtering system S have the intersection property. If $f: [0,1] \to \mathbb{R}$ has a finite (S)-derivative for all x in [0,1], then the (S)-derivative of f has the Darboux property.

Theorem 17. Let S be a filtering system that fulfills the intersection condition. If f is (S)-differentiable at every point $x \in [a, b]$ and $(S)f'(x) \ge 0$ for every $x \in [a, b]$, then f is non-decreasing in [a, b].

Definition 18. ([2], [6]) We say that a system S satisfies condition (J_3) at a point x if every set E such that $x \in E$ and $(x - \delta, x + \delta) \cap E$ contains a nonempty open interval for each positive number δ belongs to S(x).

We say that a system S satisfies condition (J_3) in a subset X of the set of real numbers if it satisfies that condition at every point x from the set X.

Theorem 19. Let S be a bilateral filtering system which fulfills condition (J_3) and $f : [a,b] \to \mathbb{R}$ be a non-decreasing function. If $x_0 \in [a,b]$ and f is (S)-differentiable at x_0 , then it is also differentiable at x_0 .

PROOF. Note that if f is differentiable at x_0 , then it is also (S)-differentiable at x_0 and $(S)f'(x_0) = f'(x_0)$.

Now suppose, that f doesn't have a derivative at x_0 but it has an (S)-derivative at x_0 . Assume that $(S)f'(x_0) = \alpha$. Then one of the extreme derivates of f at x_0 is different from α ; i.e.,

$$\underline{D}f(x_0) < (\mathcal{S})f'(x_0) \text{ or } \overline{D}f(x_0) > (\mathcal{S})f'(x_0).$$

Assume that

$$\underline{D}_+f(x_0) < (\mathcal{S})f'(x_0) = \alpha.$$

Since f is a nondecreasing function, $\underline{D}_+ f(x_0) \ge 0$ and $\alpha > 0$, of course.

Choose ε_0 such that $0 < \varepsilon_0 < \frac{\alpha}{2}$ and $\underline{D}_+ f(x_0) < \alpha - 2\varepsilon_0$. So there exists a sequence (h_n) such that $h_n \searrow 0$ and

$$\frac{f(x_0 + h_n) - f(x_0)}{h_n} < \alpha - 2\varepsilon_0$$

for every $n \in \mathbb{N}$. Note that for every $n \in N$ and for any

$$x \in [x_0 + (1 - \frac{\varepsilon_0}{\alpha - \varepsilon_0}) \cdot h_n, x_0 + h_n]$$

we have $\frac{f(x)-f(x_0)}{x-x_0} < \alpha - \varepsilon_0$. Let

$$E = \{x : \frac{f(x) - f(x_0)}{x - x_0} < \alpha - \varepsilon_0\}$$

In view of condition (J_3) the set E belongs to $S(x_0)$ since

$$E \cap (x_0 - \delta, x_0 + \delta) \supset [x_0 + (1 - \frac{\varepsilon_0}{\alpha - \varepsilon_0}) \cdot h_n, x_0 + h_n]$$

for some n. Since

$$A = \{x \in [a, b] : \frac{f(x) - f(x_0)}{x - x_0} \ge \alpha - \varepsilon_0\} \in S(x_0),$$

 $A \cap E \neq \emptyset$, a contradiction.

The proofs in other cases are similar.

One can obtain the same result if condition (J_3) is replaced by the Khintchine condition.

Definition 20. [5] We say that a system S fulfills the Khintchine condition if for each sequences (x_n) and (δ_n) such that $\delta_n \searrow 0$, $x_n \to x_0$ and $\liminf_{n \to \infty} \frac{\delta_n}{|x_n - x_0|} > 0$, the set $\bigcup_{n=1}^{\infty} (x_n - \delta_n, x_n + \delta_n)$ belongs to $S(x_0)$.

Theorem 21. [5] Let S be a bilateral filtering system which fulfills the Khintchine condition and let $f : [a, b] \to \mathbb{R}$ be a non-decreasing function. If $x_0 \in [a, b]$ and f is (S)-differentiable at x_0 , then it is also differentiable at x_0 .

Corollary 22. Let S be a bilateral and filtering system which fulfills the intersection condition and condition (J_3) . If a function $f : [a, b] \to \mathbb{R}$ is (S)differentiable at every point $x \in [a, b]$ and $g : [a, b] \to \mathbb{R}$ is differentiable at every point $x \in [a, b]$ and $(S)f'(x) \leq g'(x)$ for every $x \in [a, b]$ or if $(S)f'(x) \geq g'(x)$ for every $x \in [a, b]$, then f is differentiable at every point $x \in [a, b]$.

PROOF. Assume that $(S)f'(x) \leq g'(x)$ for $x \in [a, b]$. Hence by Lemma 8, $(S)(g-f)' \geq 0$ for every $x \in [a, b]$. Therefore, from Theorem 17 it follows that function g - f is non-decreasing in [a, b]. So from Theorem 19 we infer that g - f is differentiable at every point $x \in [a, b]$. Hence, f = g - (g - f) is also differentiable at every point $x \in [a, b]$.

The same proof can be used for the next corollary.

Corollary 23. Let S be a bilateral filtering system that fulfills the Khintchine condition. If a function $f : [a,b] \to \mathbb{R}$ is (S)-differentiable at every point $x \in [a,b]$ and $g : [a,b] \to \mathbb{R}$ is differentiable at every point $x \in [a,b]$ and $(S)f'(x) \leq g'(x)$ for every $x \in [a,b]$ or if $(S)f'(x) \geq g'(x)$ for every $x \in [a,b]$, then f is differentiable at every point $x \in [a,b]$.

Theorem 24. [Mean Value Theorem] Let S be a bilateral and filtering system which fulfills the intersection condition and condition (J_3) . If a function $f : [a, b] \to \mathbb{R}$ is (S)-differentiable at every point $x \in [a, b]$, then there exists $c \in (a, b)$ such that

$$(\mathcal{S})f'(c) = \frac{f(b) - f(a)}{b - a}.$$

PROOF. Let $L = \frac{f(b)-f(a)}{b-a}$. If (S)f' is bounded from above or from below, then it follows from Corollary 22 that f is differentiable in [a, b] and we can use Lagrange's theorem on mean values for the ordinary derivative. Otherwise there are numbers u, v in (a, b) such that (S)f'(u) < L and (S)f'(v) > L. Since (S)f' has Darboux property by Theorem 16, there exists a number c between u and v such that (S)f'(c) = L, which completes the proof. \Box

The same proof can be shown for the next theorem.

Theorem 25. [Mean Value Theorem] Let S be a bilateral and filtering system which fulfills the Khintchine condition. If a function $f : [a, b] \to \mathbb{R}$ is (S)differentiable at every point $x \in [a, b]$ then there exists $c \in (a, b)$ such that

$$(\mathcal{S})f'(c) = \frac{f(b) - f(a)}{b - a}.$$

1 Main Results.

From now on we consider bilateral and filtering systems which fulfil the intersection condition and one of the following conditions: (J_3) or the Khintchine condition.

Corollary 26. Let $f : [a,b] \to \mathbb{R}$ be (S)-differentiable in [a,b]. If f(b) > f(a) and (S)f'(b) < 0, then there exists a number $\eta \in (a,b)$ such that $(S)f'(\eta) = 0$.

PROOF. Since $(\mathcal{S})f'(b) < 0$, it follows from the definition of (\mathcal{S}) -derivative that there exists $x_0 < b$, for which $f(x_0) - f(b) > 0$. Hence $f(a) < f(b) < f(x_0)$. It follows from theorem 15 that there exists a number $c \in (a, x_0)$ for which f(c) = f(b). If we apply theorem 24 to interval [c, b], we obtain the conclusion of the theorem.

Corollary 27. Let $f : [a, b] \to \mathbb{R}$ be (S)-continuous in [a, b] and (S)-differentiable in (a, b]. If

$$[f(b) - f(a)] \cdot (\mathcal{S})f'(b) \le 0.$$

then there exists a number $\eta \in (a, b]$ such that $(S)f'(\eta) = 0$.

PROOF. Consider the following possibilities:

- (1) Let (S)f'(b) = 0. Then it is sufficient to put $\eta = b$.
- (2) Let us assume that f(a) = f(b).

If f is (S)-differentiable at a, then the conclusion of the corollary follows immediately from theorem 24.

If f is not (S)-differentiable at a, then we can find a point $x_0 \in (a, b]$ and we can apply theorem 24 or corollary 26 to the interval $[x_0, b]$ and f or -f, obtaining our desired conclusion.

- (3) Assume, that $[f(b) f(a)] \cdot (S)f'(b) < 0$. Then either
 - (i) $(\mathcal{S})f'(b) < 0$ and f(b) > f(a), or
 - (ii) (\mathcal{S}) -f'(b) > 0 and f(b) < f(a).

In the case (i) we apply theorem 15 and we can find a point $x_0 \in (a, b)$ such that $f(x_0) = f(b)$. Now applying theorem 24 we get the conclusion.

In the case (ii) we proceed similarly considering the function -f. \Box

And now we will prove a generalization of Flett's theorem for (\mathcal{S}) -differentiable functions.

Theorem 28. Let $f : [a, b] \to \mathbb{R}$ be (S)-differentiable in [a, b]. If

$$[(\mathcal{S})f'(b) - \frac{f(b) - f(a)}{b - a}] \cdot [(\mathcal{S})f'(a) - \frac{f(b) - f(a)}{b - a}] \ge 0,$$

then there exists $\eta \in (a, b]$ such that

$$f(\eta) - f(a) = (\eta - a) \cdot (\mathcal{S}) f'(\eta).$$

PROOF. Let us look at the function $g: [a, b] \to \mathbb{R}$ defined by

$$g(x) = \begin{cases} \frac{f(x) - f(a)}{x - a} & \text{if } x \in (a, b], \\ (S)f'(a) & \text{if } x = a. \end{cases}$$
(4)

Note that g is (S)-continuous in [a, b] and that when we use lemma 8, then for every $c \in (a, b]$

$$(S)g'(c) = (S)\lim_{x \to c} \frac{g(x) - g(c)}{x - c} = (S)\lim_{x \to c} \left[\frac{1}{x - a} \cdot \frac{f(x) - f(c)}{x - c} - \frac{1}{x - a} \cdot \frac{f(c) - f(a)}{c - a} \right] = \frac{1}{c - a} \cdot (S)f'(c) - \frac{1}{c - a} \cdot \frac{f(c) - f(a)}{c - a} = \frac{(S)f'(c) - g(c)}{c - a}$$
(5)

which means that g is (S)-differentiable in (a, b].

Moreover, note that it follows from (5) that

$$[g(b) - g(a)] \cdot (\mathcal{S})g'(b)$$

= $\frac{-1}{b-a} \cdot \left[(\mathcal{S})f'(b) - \frac{f(b) - f(a)}{b-a} \right] \cdot \left[(\mathcal{S})f'(a) - \frac{f(b) - f(a)}{b-a} \right].$

Hence it follows from the assumption that $[g(b) - g(a)] \cdot (S)g'(b) \leq 0$. From corollary 27 it follows that $(S)g'(\eta) = 0$ for some $\eta \in (a, b]$. If we take the above, the definition of g and (5), we have the conclusion of the theorem. \Box

Theorem 29. Let $f : [a,b] \to \mathbb{R}$ be (S)-differentiable in [a,b]. If (S)f'(a) = (S)f'(b), then there exists $\eta \in (a,b)$ such that

$$f(\eta) - f(a) = (\eta - a) \cdot (\mathcal{S}) f'(\eta).$$
(6)

PROOF. Let $g: [a,b] \to \mathbb{R}$ be defined by (4). First, let us assume that

$$f(b) - f(a) = (b - a) \cdot (\mathcal{S})f'(b).$$

Then it follows from the definition of function g and the assumption that g(b) = g(a). If we apply Theorem 24 we obtain

$$(\mathcal{S})g'(\eta) = 0$$
 for some $\eta \in (a, b)$.

Hence by (5)

$$f(\eta) - f(a) = (\eta - a) \cdot (\mathcal{S}) f'(\eta).$$

But if

$$f(b) - f(a) \neq (b - a) \cdot (\mathcal{S}) f'(b),$$

then either

$$\left[(\mathcal{S})f'(b) - \frac{f(b) - f(a)}{b - a} \right] > 0 \text{ or } \left[(\mathcal{S})f'(b) - \frac{f(b) - f(a)}{b - a} \right] < 0.$$

Since $(\mathcal{S})f'(b) = (\mathcal{S})f'(a)$,

$$\left[(\mathcal{S})f'(b) - \frac{f(b) - f(a)}{b - a} \right] \cdot \left[(\mathcal{S})f'(a) - \frac{f(b) - f(a)}{b - a} \right] > 0 \tag{7}$$

and if we apply Theorem 28 we obtain equality (6) for some $\eta \in (a, b]$. Since the inequality (7) is sharp, it is obvious that $\eta \neq b$.

Corollary 30. If $f : [a, b] \to \mathbb{R}$ is (S)-differentiable in [a, b], then there exists $\eta \in (a, b)$ such that

$$f(\eta) - f(a) = (\eta - a) \cdot (\mathcal{S})f'(\eta) - \frac{1}{2} \cdot \frac{(\mathcal{S})f'(b) - (\mathcal{S})f'(a)}{(b - a)} \cdot (\eta - a)^2.$$

PROOF. Let us define function $\psi : [a, b] \to \mathbb{R}$ as

$$\psi(x) = f(x) - \frac{1}{2} \cdot \frac{(\mathcal{S})f'(b) - (\mathcal{S})f'(a)}{(b-a)} \cdot (x-a)^2.$$

It follows from Lemma 8 that f is (S)-differentiable in [a, b] and that

$$(\mathcal{S})\psi'(x) = (\mathcal{S})f'(x) - \frac{(\mathcal{S})f'(b) - (\mathcal{S})f'(a)}{b-a} \cdot (x-a).$$

Moreover, we see that $(S)\psi'(a) = (S)f'(a) = (S)\psi'(b)$. If we apply Theorem 29 to ψ , then

$$\psi(\eta) - \psi(a) = (\eta - a) \cdot (\mathcal{S})\psi'(\eta)$$
 for some $\eta \in (a, b)$.

If we take the above and the definition of function $\psi,$ we have the conclusion. $\hfill \Box$

Since each of the systems S_0 , S_{ap} , S_{I-ap} , S_N is bilateral, filtering and fulfills the intersection condition and one of the following conditions: (J_3) or the Khintchine condition, we can conclude that all the results are true for each of those systems.

References

- M. Das, T. Riedel, P. K. Sahoo, Flett's Mean Value Theorem for approximately differentiable functions, Radovi Matematički, 10 (2001), 157–164.
- [2] J. M. Jędrzejewski, On Limit Numbers of Real Functions, Fund. Math., 83, No. 3 (1973/74), 269–281.
- [3] R. J. O'Malley, Selective derivatives, Acta Math. Acad. Sci. Hung., 29 (1977), 77–97.
- [4] W. Poreda, E. Wagner-Bojakowska, W. Wilczyński, A category analogue of the density topology, Fund. Math., 125 (1985), 167–173.
- [5] T. Świątkowski, On some generalizations of the notion of derivative, (in Polish), Zeszyty Nauk. Polit. Łódźkiej, 149 Mat. 2.1 (1972), 89–103.
- [6] B. S. Thomson, *Real Functions*, Lecture Notes in Math. 1170, Springer Verlag, Berlin, Heidelberg, New York, Tokyo, 1985.