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ON GENERALIZATIONS OF FLETT’S
THEOREM

Abstract
In 1958 T. M. Flett proved a theorem which is a variant of the La-

grange mean value theorem; namely, let f : [a, b] → R be a differentiable
function in [a, b] and f ′(a) = f ′(b). Then there exists a number η ∈ (a, b)
such that

f(η)− f(a) = (η − a) · f ′(η).

Manav Das, Thomas Riedel and Prasanna K. Sahoo have given gener-
alizations of Flett’s theorem for approximately differentiable functions.
Here we provide generalizations of these theorems for some local S-
systems.

Definition 1. [6] By a local system S we mean a family S such that at each
point x ∈ R there is given a nonempty collection of sets S(x) with the following
properties:

(i) {x} /∈ S(x),

(ii) if A ∈ S(x), then x ∈ A,

(iii) if A1 ∈ S(x) and A2 ⊃ A1, then A2 ∈ S(x),

(iv) if A ∈ S(x) and δ > 0, then A ∩ (x− δ, x+ δ) ∈ S(x).

Now, we will give a few examples of local systems.

Example 1. Let S0 denote the system defined at each point x as

S0(x) = {A : ∃r>0(x− r, x+ r) ⊂ A}

so that each S0(x) is precisely the neighborhood filter at the point x.
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Let Ad denote the set of all accumulation points of the set A.

Example 2. A system closely associated to the above system is defined in
the following way. S∞ is defined at each point x as

S∞(x) = {A : x ∈ Ad}.

Example 3. The approximate system Sap is defined as

A ∈ Sap(x) if and only if x ∈ A and d(A, x) = 1

where for the density of a set A at a point x we write

d(A, x) = lim
h→0

|A ∩ (x, x+ h)|
|h|

where by interval (x, x+ h) we mean the interval (x+ h, x) whenever h < 0.

The system SI-ap is defined in a similar manner as the system Sap, consid-
ering another type of density points.

Example 4. Let SI-ap be the system defined for every point x as

SI-ap(x) = {A : x ∈ A ∧ dI(A, x) = 1},

where dI(A, x) = 1 means that x is an I-density point of set A (see [4]).

Example 5. Let N be an ideal or σ-ideal of sets of real numbers. The system
SN is defined as

SN (x) = {A : x ∈ A ∧ ∃δ>0(x− δ, x+ δ) \A ∈ N}.

Definition 2. [6] Let S1 and S2 be two local systems. We will write S1 � S2

if at every point x S1(x) ⊂ S2(x).

It is obvious that this relation is a partial order in the family of local
systems. One can prove the following.

Lemma 3. [6] For any local system S we have

S0 � S � S∞.

Definition 4. [6] We will say that S is filtering at a point x if A1∩A2 ∈ S(x)
whenever A1 and A2 belong to S(x).

It is clear that if a local system S is filtering at x, then the family of sets
S(x) is a filter converging to x. Conversely, if at each point x there is given a
filter S(x) converging to x and nontrivial at x in the sense that {x} does not
belong to S(x), then S is a local system.
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Definition 5. [6] A system S is bilateral provided every set A in S(x) contains
points on either side of x.

Definition 6. [6] Let S be a local system, f be a real function and x any
point in R. Then (S)-limit of f at x is defined as any extended real number
c for which the following condition holds: for every neighborhood Uc of c the
set

{t : t = x ∨ f(t) ∈ Uc}

belongs to S(x). This limit is denoted by (S) lim
y→x

f(y).

The extreme limits relative to a system S at a point x are defined as

(S) lim sup
y→x

f(y) = inf{y : {t : t = x ∨ f(t) < y} ∈ S(x)}

and
(S) lim inf

y→x
f(y) = sup{y : {t : t = x ∨ f(t) > y} ∈ S(x)}.

Lemma 7. Let S be a system such that for every x ∈ R we have A1∩A2 6= {x}
whenever A1 ∈ S(x) and A2 ∈ S(x). Then for any function f and any x ∈ R

(S) lim
y→x

inf f(y) ≤ (S) lim
y→x

sup f(y)

and (S) limy→x f(y) is unique.

Remark 1. If the system S is filtering, then (S) limy→x f(y) exists if and
only if

(S) lim sup
y→x

f(y) = (S) lim inf
y→x

f(y)

and its common value equals to the limit (S) limy→x f(y).

Now we will prove the following property.

Lemma 8. Let S be a system filtering at x for x ∈ R. Let us assume that
there exists a finite (S)-limits of functions f and g. Then

(S) lim
x→x0

(f(x) + g(x)) = (S) lim
x→x0

f(x) + (S) lim
x→x0

g(x); (1)

if moreover one of the functions f or g is bounded, then

(S) lim
x→x0

(f(x) · g(x)) = (S) lim
x→x0

f(x) · (S) lim
x→x0

g(x). (2)
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Proof. For a real number x and a positive number r let U(x, r) denote the
interval (x− r, x+ r). Let (S) limx→x0 f(x) = a and (S) limx→x0 g(x) = b. Let
r be any real number. Let

A1 = {t : t = x0 ∨ f(t) ∈ U(a,
r

2
)}.

From the definition of (S)-limit of function f at x0 we have that A1 ∈ S(x0).
Similarly, for the function g we have that

A2 = {t : t = x0 ∨ g(t) ∈ U
(
b,
r

2

)
} ∈ S(x0).

Since S is filtering at the point x0, then A1 ∩A2 ∈ S(x0). We put

A3 = {t : t = x0 ∨ f(t) + g(t) ∈ U(a+ b, r)}.

It follows from the inequality

|f(t) + g(t)− a− b| ≤ |f(t)− a|+ |g(t)− b|

that A1 ∩A2 ⊂ A3. From Definition 1 (iii) of the local system S we have, that
A3 ∈ S(x0), which completes the proof of (1).

We assume now, that f is bounded by a real number M > 0. Let r be any
real number. We see, that the sets

A1 = {t : t = x0 ∨ f(t) ∈ U
(
a,

r

2 · |b|

)
} ∈ S(x0)

and
A2 = {t : t = x0 ∨ g(t) ∈ U

(
b,

r

2M

)
} ∈ S(x0).

Hence A1 ∩A2 ∈ S(x0), since S is filtering at x0. From inequality

|f(t) · g(t)− ab| ≤ |f(t)||g(t)− b|+ |b||f(t)− a| ≤M
r

2M
+ |b| r

2|b|
= r

we have

A1 ∩A2 ⊂ A3 = {t : t = x0 ∨ f(t) · g(t) ∈ U(a · b, r)}.

Thus A3 ∈ S(x0) and we have (2).

It can easily be seen, that if one of the functions f or g has a finite limit,
then Lemma 8 is true for any local system S and without the additional
assumption that f or g is bounded.
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Definition 9. [6] Let S be a local system on X and let f be an arbitrary
function. We say that f is (S)-continuous at x provided

∀ε>0 ({t : |f(t)− f(x)| < ε} ∈ S(x)).

Lemma 10. [6] Let S1 and S2 be local systems such that S1 � S2. If function
f is (S1)-continuous at point x it is also (S2)-continuous there.

Definition 11. Let x ∈ R and let S be a local system defined in a neighbor-
hood U(x) and f be a finite real function defined in U(x). We put

C(y, x) =
f(y)− f(x)

y − x
if y 6= x and y ∈ U(x).

If (S) limy→x C(y, x) exists, then its value is called the (S)-derivative of func-
tion f at point x.

The number
(S)Df(x) = (S) lim

y→x
supC(y, x)

is called the upper (S)-derivative of function f at point x.
Similarly we define the lower (S)-derivative of function f at x as the lower

(S)-limit of C(y, x) at x and denote it by (S)Df(x).

Immediately, from Remark 1 it follows that if the system S is filtering,
then the (S)-derivative of function f at x exists if and only if both the upper
and lower S-derivatives exist at x and are equal.

Note that the corollary below follows from Lemma 8.

Corollary 12. Let S be any filtering system. If f has a finite (S)-derivative
at x, then it is (S)-continuous at that point.

R. O’Malley in [3] introduced the concept of selection.
By selection p we mean a function p(x, y) of two variables such that

(i) p(x, y) = p(y, x);

(ii) if x < y, then x < p(x, y) < y.

Example 6. For a selection p, define the selective system Sp at x by

Sp(x) = {A : x ∈ A ∧ ∃δ>0(A ⊃ {p(x, y) : 0 < |x− y| < δ})}.

This system we shall denote by Sp.
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Definition 13. A system S has intersection condition means for every choice
of sets {Sx : x ∈ R ∧ Sx ∈ S(x)} there is a positive function δ : X → R such
that

Sx ∩ Sy ∩ (x, y) 6= ∅ (3)

whenever 0 < y − x < min{δ(x), δ(y)}.

Let us assume that the system S is bilateral and fulfills the intersection
condition (3). Then there exists a selection p for which S � Sp.

Corollary 14. Let S be bilateral and satisfy the intersection condition (3)
and let p be a selection for which S � Sp. If c is the derivative of f with
respect to the system S (i.e., it is the (S)-derivative), then it is the derivative
with respect to the system Sp as well.

From properties of (S)-continuous functions (see [6]) the next theorem
follows.

Theorem 15. Let S be a bilateral system, fulfilling the intersection condition.
If a function f is (S)-continuous, then f has the Darboux property.

In view of properties of selective derivatives (see [3]) and Corollary 12 we
have the following theorems.

Theorem 16. Let a bilateral and filtering system S have the intersection
property. If f : [0, 1] → R has a finite (S)-derivative for all x in [0, 1], then the
(S)-derivative of f has the Darboux property.

Theorem 17. Let S be a filtering system that fulfills the intersection condi-
tion. If f is (S)-differentiable at every point x ∈ [a, b] and (S)f ′(x) ≥ 0 for
every x ∈ [a, b], then f is non-decreasing in [a, b].

Definition 18. ([2], [6]) We say that a system S satisfies condition (J3) at
a point x if every set E such that x ∈ E and (x − δ, x + δ) ∩ E contains a
nonempty open interval for each positive number δ belongs to S(x).

We say that a system S satisfies condition (J3) in a subset X of the set of
real numbers if it satisfies that condition at every point x from the set X.

Theorem 19. Let S be a bilateral filtering system which fulfills condition
(J3) and f : [a, b] → R be a non-decreasing function. If x0 ∈ [a, b] and f is
(S)-differentiable at x0, then it is also differentiable at x0.

Proof. Note that if f is differentiable at x0, then it is also (S)-differentiable
at x0 and (S)f ′(x0) = f ′(x0).
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Now suppose, that f doesn’t have a derivative at x0 but it has an (S)-
derivative at x0.Assume that (S)f ′(x0) = α. Then one of the extreme derivates
of f at x0 is different from α; i.e.,

Df(x0) < (S)f ′(x0) or Df(x0) > (S)f ′(x0).

Assume that
D+f(x0) < (S)f ′(x0) = α.

Since f is a nondecreasing function, D+f(x0) ≥ 0 and α > 0, of course.
Choose ε0 such that 0 < ε0 <

α
2 and D+f(x0) < α − 2ε0. So there exists

a sequence (hn) such that hn ↘ 0 and

f(x0 + hn)− f(x0)
hn

< α− 2ε0

for every n ∈ N. Note that for every n ∈ N and for any

x ∈ [x0 + (1− ε0
α− ε0

)·hn, x0 + hn]

we have f(x)−f(x0)
x−x0

< α− ε0.
Let

E = {x :
f(x)− f(x0)

x− x0
< α− ε0}

In view of condition (J3) the set E belongs to S(x0) since

E ∩ (x0 − δ, x0 + δ) ⊃ [x0 + (1− ε0
α− ε0

)·hn, x0 + hn]

for some n. Since

A = {x ∈ [a, b] :
f(x)− f(x0)

x− x0
≥ α− ε0} ∈ S(x0),

A ∩ E 6= ∅, a contradiction.
The proofs in other cases are similar.

One can obtain the same result if condition (J3) is replaced by the Khint-
chine condition.

Definition 20. [5] We say that a system S fulfills the Khintchine condi-
tion if for each sequences (xn) and (δn) such that δn ↘ 0, xn → x0 and

lim inf
n→∞

δn
|xn − x0|

> 0, the set
∞⋃

n=1

(xn − δn, xn + δn) belongs to S(x0).
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Theorem 21. [5] Let S be a bilateral filtering system which fulfills the Khint-
chine condition and let f : [a, b] → R be a non-decreasing function. If x0 ∈
[a, b] and f is (S)-differentiable at x0, then it is also differentiable at x0.

Corollary 22. Let S be a bilateral and filtering system which fulfills the in-
tersection condition and condition (J3). If a function f : [a, b] → R is (S)-
differentiable at every point x ∈ [a, b] and g : [a, b] → R is differentiable
at every point x ∈ [a, b] and (S)f ′(x) ≤ g′(x) for every x ∈ [a, b] or if
(S)f ′(x) ≥ g′(x) for every x ∈ [a, b], then f is differentiable at every point
x ∈ [a, b].

Proof. Assume that (S)f ′(x) ≤ g′(x) for x ∈ [a, b]. Hence by Lemma 8,
(S)(g−f)′ ≥ 0 for every x ∈ [a, b]. Therefore, from Theorem 17 it follows that
function g − f is non-decreasing in [a, b]. So from Theorem 19 we infer that
g − f is differentiable at every point x ∈ [a, b]. Hence, f = g − (g − f) is also
differentiable at every point x ∈ [a, b].

The same proof can be used for the next corollary.

Corollary 23. Let S be a bilateral filtering system that fulfills the Khintchine
condition. If a function f : [a, b] → R is (S)-differentiable at every point x ∈
[a, b] and g : [a, b] → R is differentiable at every point x ∈ [a, b] and (S)f ′(x) ≤
g′(x) for every x ∈ [a, b] or if (S)f ′(x) ≥ g′(x) for every x ∈ [a, b], then f is
differentiable at every point x ∈ [a, b].

Theorem 24. [Mean Value Theorem] Let S be a bilateral and filtering sys-
tem which fulfills the intersection condition and condition (J3). If a function
f : [a, b] → R is (S)-differentiable at every point x ∈ [a, b], then there exists
c ∈ (a, b) such that

(S)f ′(c) =
f(b)− f(a)

b− a
.

Proof. Let L = f(b)−f(a)
b−a . If (S)f ′ is bounded from above or from below,

then it follows from Corollary 22 that f is differentiable in [a, b] and we can
use Lagrange’s theorem on mean values for the ordinary derivative. Otherwise
there are numbers u, v in (a, b) such that (S)f ′(u) < L and (S)f ′(v) > L. Since
(S)f ′ has Darboux property by Theorem 16, there exists a number c between
u and v such that (S)f ′(c) = L, which completes the proof.

The same proof can be shown for the next theorem.

Theorem 25. [Mean Value Theorem] Let S be a bilateral and filtering system
which fulfills the Khintchine condition. If a function f : [a, b] → R is (S)-
differentiable at every point x ∈ [a, b] then there exists c ∈ (a, b) such that

(S)f ′(c) =
f(b)− f(a)

b− a
.
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1 Main Results.

From now on we consider bilateral and filtering systems which fulfil the inter-
section condition and one of the following conditions: (J3) or the Khintchine
condition.

Corollary 26. Let f : [a, b] → R be (S)-differentiable in [a, b]. If f(b) > f(a)
and (S)f ′(b) < 0, then there exists a number η ∈ (a, b) such that (S)f ′(η) = 0.

Proof. Since (S)f ′(b) < 0, it follows from the definition of (S)-derivative that
there exists x0 < b, for which f(x0) − f(b) > 0. Hence f(a) < f(b) < f(x0).
It follows from theorem 15 that there exists a number c ∈ (a, x0) for which
f(c) = f(b). If we apply theorem 24 to interval [c, b], we obtain the conclusion
of the theorem.

Corollary 27. Let f : [a, b] → R be (S)-continuous in [a, b] and (S)-differentiable
in (a, b]. If

[f(b)− f(a)] · (S)f ′(b) ≤ 0.

then there exists a number η ∈ (a, b] such that (S)f ′(η) = 0.

Proof. Consider the following possibilities:

(1) Let (S)f ′(b) = 0. Then it is sufficient to put η = b.

(2) Let us assume that f(a) = f(b).

If f is (S)-differentiable at a, then the conclusion of the corollary follows
immediately from theorem 24.

If f is not (S)-differentiable at a, then we can find a point x0 ∈ (a, b]
and we can apply theorem 24 or corollary 26 to the interval [x0, b] and
f or − f, obtaining our desired conclusion.

(3) Assume, that [f(b)− f(a)] · (S)f ′(b) < 0. Then either

(i) (S)f ′(b) < 0 and f(b) > f(a),
or

(ii) (S)-f ′(b) > 0 and f(b) < f(a).

In the case (i) we apply theorem 15 and we can find a point x0 ∈ (a, b)
such that f(x0) = f(b). Now applying theorem 24 we get the conclusion.

In the case (ii) we proceed similarly considering the function − f.

And now we will prove a generalization of Flett’s theorem for (S)-differentiable
functions.
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Theorem 28. Let f : [a, b] → R be (S)-differentiable in [a, b]. If

[(S)f ′(b)− f(b)− f(a)
b− a

] · [(S)f ′(a)− f(b)− f(a)
b− a

] ≥ 0,

then there exists η ∈ (a, b] such that

f(η)− f(a) = (η − a) · (S)f ′(η).

Proof. Let us look at the function g : [a, b] → R defined by

g(x) =


f(x)− f(a)

x− a
if x ∈ (a, b],

(S)f ′(a) if x = a.
(4)

Note that g is (S)-continuous in [a, b] and that when we use lemma 8, then
for every c ∈ (a, b]

(S)g′(c) = (S) lim
x→c

g(x)− g(c)
x− c

= (S) lim
x→c

[ 1
x− a

· f(x)− f(c)
x− c

− 1
x− a

· f(c)− f(a)
c− a

]
=

1
c− a

· (S)f ′(c)− 1
c− a

· f(c)− f(a)
c− a

=
(S)f ′(c)− g(c)

c− a

(5)

which means that g is (S)-differentiable in (a, b].
Moreover, note that it follows from (5) that

[g(b)− g(a)] · (S)g′(b)

=
−1
b− a

·
[
(S)f ′(b)− f(b)− f(a)

b− a

]
·
[
(S)f ′(a)− f(b)− f(a)

b− a

]
.

Hence it follows from the assumption that [g(b) − g(a)] · (S)g′(b) ≤ 0. From
corollary 27 it follows that (S)g′(η) = 0 for some η ∈ (a, b]. If we take the
above, the definition of g and (5), we have the conclusion of the theorem.

Theorem 29. Let f : [a, b] → R be (S)-differentiable in [a, b]. If (S)f ′(a) =
(S)f ′(b), then there exists η ∈ (a, b) such that

f(η)− f(a) = (η − a) · (S)f ′(η). (6)
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Proof. Let g : [a, b] → R be defined by (4). First, let us assume that

f(b)− f(a) = (b− a) · (S)f ′(b).

Then it follows from the definition of function g and the assumption that
g(b) = g(a). If we apply Theorem 24 we obtain

(S)g′(η) = 0 for some η ∈ (a, b).

Hence by (5)
f(η)− f(a) = (η − a) · (S)f ′(η).

But if
f(b)− f(a) 6= (b− a) · (S)f ′(b),

then either[
(S)f ′(b)− f(b)− f(a)

b− a

]
> 0 or

[
(S)f ′(b)− f(b)− f(a)

b− a

]
< 0.

Since (S)f ′(b) = (S)f ′(a),[
(S)f ′(b)− f(b)− f(a)

b− a

]
·
[
(S)f ′(a)− f(b)− f(a)

b− a

]
> 0 (7)

and if we apply Theorem 28 we obtain equality (6) for some η ∈ (a, b]. Since
the inequality (7) is sharp, it is obvious that η 6= b.

Corollary 30. If f : [a, b] → R is (S)-differentiable in [a, b], then there exists
η ∈ (a, b) such that

f(η)− f(a) = (η − a) · (S)f ′(η)− 1
2
· (S)f ′(b)− (S)f ′(a)

(b− a)
· (η − a)2.

Proof. Let us define function ψ : [a, b] → R as

ψ(x) = f(x)− 1
2
· (S)f ′(b)− (S)f ′(a)

(b− a)
· (x− a)2.

It follows from Lemma 8 that f is (S)-differentiable in [a, b] and that

(S)ψ′(x) = (S)f ′(x)− (S)f ′(b)− (S)f ′(a)
b− a

· (x− a).

Moreover, we see that (S)ψ′(a) = (S)f ′(a) = (S)ψ′(b). If we apply Theorem
29 to ψ, then

ψ(η)− ψ(a) = (η − a) · (S)ψ′(η) for some η ∈ (a, b).

If we take the above and the definition of function ψ, we have the conclusion.
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Since each of the systems S0, Sap, SI−ap, SN is bilateral, filtering and
fulfills the intersection condition and one of the following conditions: (J3) or
the Khintchine condition, we can conclude that all the results are true for each
of those systems.
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