Inga Jędrzejewska and Bożenna Szkopińska, Institute of Mathematics, Technical University of Łódź, 90-924 Łódź, al. Politechniki 11, Poland. email: bszkopin@op.pl

ON GENERALIZATIONS OF FLETT'S THEOREM

Abstract

In 1958 T. M. Flett proved a theorem which is a variant of the Lagrange mean value theorem; namely, let $f:[a, b] \rightarrow \mathbb{R}$ be a differentiable function in $[a, b]$ and $f^{\prime}(a)=f^{\prime}(b)$. Then there exists a number $\eta \in(a, b)$ such that $$
f(\eta)-f(a)=(\eta-a) \cdot f^{\prime}(\eta)
$$

Manav Das, Thomas Riedel and Prasanna K. Sahoo have given generalizations of Flett's theorem for approximately differentiable functions. Here we provide generalizations of these theorems for some local \mathcal{S} systems.

Definition 1. [6] By a local system \mathcal{S} we mean a family \mathcal{S} such that at each point $x \in \mathbb{R}$ there is given a nonempty collection of sets $S(x)$ with the following properties:
(i) $\{x\} \notin S(x)$,
(ii) if $A \in S(x)$, then $x \in A$,
(iii) if $A_{1} \in S(x)$ and $A_{2} \supset A_{1}$, then $A_{2} \in S(x)$,
(iv) if $A \in S(x)$ and $\delta>0$, then $A \cap(x-\delta, x+\delta) \in S(x)$.

Now, we will give a few examples of local systems.
Example 1. Let \mathcal{S}_{0} denote the system defined at each point x as

$$
S_{0}(x)=\left\{A: \exists_{r>0}(x-r, x+r) \subset A\right\}
$$

so that each $S_{0}(x)$ is precisely the neighborhood filter at the point x.

[^0]Let A^{d} denote the set of all accumulation points of the set A.
Example 2. A system closely associated to the above system is defined in the following way. \mathcal{S}_{∞} is defined at each point x as

$$
S_{\infty}(x)=\left\{A: x \in A^{d}\right\}
$$

Example 3. The approximate system $\mathcal{S}_{a p}$ is defined as

$$
A \in S_{a p}(x) \text { if and only if } x \in A \text { and } \mathrm{d}(A, x)=1
$$

where for the density of a set A at a point x we write

$$
\mathrm{d}(A, x)=\lim _{h \rightarrow 0} \frac{|A \cap(x, x+h)|}{|h|}
$$

where by interval $(x, x+h)$ we mean the interval $(x+h, x)$ whenever $h<0$.
The system $\mathcal{S}_{I-a p}$ is defined in a similar manner as the system $\mathcal{S}_{a p}$, considering another type of density points.

Example 4. Let $\mathcal{S}_{I-a p}$ be the system defined for every point x as

$$
S_{I-a p}(x)=\left\{A: x \in A \wedge d_{I}(A, x)=1\right\}
$$

where $\mathrm{d}_{I}(A, x)=1$ means that x is an I-density point of set A (see [4]).
Example 5. Let \mathcal{N} be an ideal or σ-ideal of sets of real numbers. The system $\mathcal{S}_{\mathcal{N}}$ is defined as

$$
S_{\mathcal{N}}(x)=\left\{A: x \in A \wedge \exists_{\delta>0}(x-\delta, x+\delta) \backslash A \in \mathcal{N}\right\}
$$

Definition 2. [6] Let \mathcal{S}_{1} and \mathcal{S}_{2} be two local systems. We will write $\mathcal{S}_{1} \ll \mathcal{S}_{2}$ if at every point $x S_{1}(x) \subset S_{2}(x)$.

It is obvious that this relation is a partial order in the family of local systems. One can prove the following.

Lemma 3. [6] For any local system \mathcal{S} we have

$$
\mathcal{S}_{0} \ll \mathcal{S} \ll \mathcal{S}_{\infty}
$$

Definition 4. [6] We will say that \mathcal{S} is filtering at a point x if $A_{1} \cap A_{2} \in S(x)$ whenever A_{1} and A_{2} belong to $S(x)$.

It is clear that if a local system \mathcal{S} is filtering at x, then the family of sets $S(x)$ is a filter converging to x. Conversely, if at each point x there is given a filter $S(x)$ converging to x and nontrivial at x in the sense that $\{x\}$ does not belong to $S(x)$, then \mathcal{S} is a local system.

Definition 5. [6] A system \mathcal{S} is bilateral provided every set A in $S(x)$ contains points on either side of x.

Definition 6. [6] Let \mathcal{S} be a local system, f be a real function and x any point in \mathbb{R}. Then (\mathcal{S})-limit of f at x is defined as any extended real number c for which the following condition holds: for every neighborhood U_{c} of c the set

$$
\left\{t: t=x \vee f(t) \in U_{c}\right\}
$$

belongs to $S(x)$. This limit is denoted by $(\mathcal{S}) \lim _{y \rightarrow x} f(y)$.
The extreme limits relative to a system \mathcal{S} at a point x are defined as

$$
(\mathcal{S}) \limsup _{y \rightarrow x} f(y)=\inf \{y:\{t: t=x \vee f(t)<y\} \in S(x)\}
$$

and

$$
(\mathcal{S}) \liminf _{y \rightarrow x} f(y)=\sup \{y:\{t: t=x \vee f(t)>y\} \in S(x)\}
$$

Lemma 7. Let \mathcal{S} be a system such that for every $x \in \mathbb{R}$ we have $A_{1} \cap A_{2} \neq\{x\}$ whenever $A_{1} \in S(x)$ and $A_{2} \in S(x)$. Then for any function f and any $x \in \mathbb{R}$

$$
(\mathcal{S}) \lim _{y \rightarrow x} \inf f(y) \leq(\mathcal{S}) \lim _{y \rightarrow x} \sup f(y)
$$

and $(\mathcal{S}) \lim _{y \rightarrow x} f(y)$ is unique.
Remark 1. If the system \mathcal{S} is filtering, then $(\mathcal{S}) \lim _{y \rightarrow x} f(y)$ exists if and only if

$$
(\mathcal{S}) \limsup _{y \rightarrow x} f(y)=(\mathcal{S}) \liminf _{y \rightarrow x} f(y)
$$

and its common value equals to the $\operatorname{limit}(\mathcal{S}) \lim _{y \rightarrow x} f(y)$.
Now we will prove the following property.
Lemma 8. Let \mathcal{S} be a system filtering at x for $x \in \mathbb{R}$. Let us assume that there exists a finite (\mathcal{S})-limits of functions f and g. Then

$$
\begin{equation*}
(\mathcal{S}) \lim _{x \rightarrow x_{0}}(f(x)+g(x))=(\mathcal{S}) \lim _{x \rightarrow x_{0}} f(x)+(\mathcal{S}) \lim _{x \rightarrow x_{0}} g(x) \tag{1}
\end{equation*}
$$

if moreover one of the functions f or g is bounded, then

$$
\begin{equation*}
(\mathcal{S}) \lim _{x \rightarrow x_{0}}(f(x) \cdot g(x))=(\mathcal{S}) \lim _{x \rightarrow x_{0}} f(x) \cdot(\mathcal{S}) \lim _{x \rightarrow x_{0}} g(x) \tag{2}
\end{equation*}
$$

Proof. For a real number x and a positive number r let $U(x, r)$ denote the interval $(x-r, x+r)$. Let $(\mathcal{S}) \lim _{x \rightarrow x_{0}} f(x)=a$ and $(\mathcal{S}) \lim _{x \rightarrow x_{0}} g(x)=b$. Let r be any real number. Let

$$
A_{1}=\left\{t: t=x_{0} \vee f(t) \in U\left(a, \frac{r}{2}\right)\right\}
$$

From the definition of (\mathcal{S})-limit of function f at x_{0} we have that $A_{1} \in S\left(x_{0}\right)$. Similarly, for the function g we have that

$$
A_{2}=\left\{t: t=x_{0} \vee g(t) \in U\left(b, \frac{r}{2}\right)\right\} \in S\left(x_{0}\right)
$$

Since \mathcal{S} is filtering at the point x_{0}, then $A_{1} \cap A_{2} \in S\left(x_{0}\right)$. We put

$$
A_{3}=\left\{t: t=x_{0} \vee f(t)+g(t) \in U(a+b, r)\right\}
$$

It follows from the inequality

$$
|f(t)+g(t)-a-b| \leq|f(t)-a|+|g(t)-b|
$$

that $A_{1} \cap A_{2} \subset A_{3}$. From Definition 1 (iii) of the local system \mathcal{S} we have, that $A_{3} \in S\left(x_{0}\right)$, which completes the proof of (1).

We assume now, that f is bounded by a real number $M>0$. Let r be any real number. We see, that the sets

$$
A_{1}=\left\{t: t=x_{0} \vee f(t) \in U\left(a, \frac{r}{2 \cdot|b|}\right)\right\} \in S\left(x_{0}\right)
$$

and

$$
A_{2}=\left\{t: t=x_{0} \vee g(t) \in U\left(b, \frac{r}{2 M}\right)\right\} \in S\left(x_{0}\right)
$$

Hence $A_{1} \cap A_{2} \in S\left(x_{0}\right)$, since \mathcal{S} is filtering at x_{0}. From inequality

$$
|f(t) \cdot g(t)-a b| \leq|f(t)||g(t)-b|+|b||f(t)-a| \leq M \frac{r}{2 M}+|b| \frac{r}{2|b|}=r
$$

we have

$$
A_{1} \cap A_{2} \subset A_{3}=\left\{t: t=x_{0} \vee f(t) \cdot g(t) \in U(a \cdot b, r)\right\}
$$

Thus $A_{3} \in S\left(x_{0}\right)$ and we have (2).
It can easily be seen, that if one of the functions f or g has a finite limit, then Lemma 8 is true for any local system \mathcal{S} and without the additional assumption that f or g is bounded.

Definition 9. [6] Let \mathcal{S} be a local system on X and let f be an arbitrary function. We say that f is (\mathcal{S})-continuous at x provided

$$
\forall_{\varepsilon>0}(\{t:|f(t)-f(x)|<\varepsilon\} \in S(x))
$$

Lemma 10. [6] Let \mathcal{S}_{1} and \mathcal{S}_{2} be local systems such that $\mathcal{S}_{1} \ll \mathcal{S}_{2}$. If function f is $\left(\mathcal{S}_{1}\right)$-continuous at point x it is also $\left(\mathcal{S}_{2}\right)$-continuous there.

Definition 11. Let $x \in \mathbb{R}$ and let \mathcal{S} be a local system defined in a neighborhood $U(x)$ and f be a finite real function defined in $U(x)$. We put

$$
C(y, x)=\frac{f(y)-f(x)}{y-x} \text { if } y \neq x \text { and } y \in U(x)
$$

If $(\mathcal{S}) \lim _{y \rightarrow x} C(y, x)$ exists, then its value is called the (\mathcal{S})-derivative of function f at point x.

The number

$$
(\mathcal{S}) \bar{D} f(x)=(\mathcal{S}) \lim _{y \rightarrow x} \sup C(y, x)
$$

is called the upper (\mathcal{S})-derivative of function f at point x.
Similarly we define the lower (\mathcal{S})-derivative of function f at x as the lower (\mathcal{S})-limit of $C(y, x)$ at x and denote it by $(\mathcal{S}) \underline{D} f(x)$.

Immediately, from Remark 1 it follows that if the system \mathcal{S} is filtering, then the (\mathcal{S})-derivative of function f at x exists if and only if both the upper and lower \mathcal{S}-derivatives exist at x and are equal.

Note that the corollary below follows from Lemma 8.
Corollary 12. Let \mathcal{S} be any filtering system. If f has a finite (\mathcal{S})-derivative at x, then it is (\mathcal{S})-continuous at that point.
R. O'Malley in [3] introduced the concept of selection.

By selection p we mean a function $p(x, y)$ of two variables such that
(i) $p(x, y)=p(y, x)$;
(ii) if $x<y$, then $x<p(x, y)<y$.

Example 6. For a selection p, define the selective system \mathcal{S}_{p} at x by

$$
S_{p}(x)=\left\{A: x \in A \wedge \exists_{\delta>0}(A \supset\{p(x, y): 0<|x-y|<\delta\})\right\}
$$

This system we shall denote by \mathcal{S}_{p}.

Definition 13. A system \mathcal{S} has intersection condition means for every choice of sets $\left\{S_{x}: x \in \mathbb{R} \wedge S_{x} \in S(x)\right\}$ there is a positive function $\delta: X \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
S_{x} \cap S_{y} \cap(x, y) \neq \emptyset \tag{3}
\end{equation*}
$$

whenever $0<y-x<\min \{\delta(x), \delta(y)\}$.
Let us assume that the system \mathcal{S} is bilateral and fulfills the intersection condition (3). Then there exists a selection p for which $\mathcal{S} \ll \mathcal{S}_{p}$.

Corollary 14. Let \mathcal{S} be bilateral and satisfy the intersection condition (3) and let p be a selection for which $\mathcal{S} \ll \mathcal{S}_{p}$. If c is the derivative of f with respect to the system \mathcal{S} (i.e., it is the (\mathcal{S})-derivative), then it is the derivative with respect to the system \mathcal{S}_{p} as well.

From properties of (\mathcal{S})-continuous functions (see [6]) the next theorem follows.

Theorem 15. Let \mathcal{S} be a bilateral system, fulfilling the intersection condition. If a function f is (\mathcal{S})-continuous, then f has the Darboux property.

In view of properties of selective derivatives (see [3]) and Corollary 12 we have the following theorems.

Theorem 16. Let a bilateral and filtering system \mathcal{S} have the intersection property. If $f:[0,1] \rightarrow \mathbb{R}$ has a finite (\mathcal{S})-derivative for all x in $[0,1]$, then the (\mathcal{S})-derivative of f has the Darboux property.

Theorem 17. Let \mathcal{S} be a filtering system that fulfills the intersection condition. If f is (\mathcal{S})-differentiable at every point $x \in[a, b]$ and $(\mathcal{S}) f^{\prime}(x) \geq 0$ for every $x \in[a, b]$, then f is non-decreasing in $[a, b]$.

Definition 18. ([2], [6]) We say that a system \mathcal{S} satisfies condition $\left(J_{3}\right)$ at a point x if every set E such that $x \in E$ and $(x-\delta, x+\delta) \cap E$ contains a nonempty open interval for each positive number δ belongs to $\mathcal{S}(x)$.

We say that a system \mathcal{S} satisfies condition $\left(J_{3}\right)$ in a subset X of the set of real numbers if it satisfies that condition at every point x from the set X.

Theorem 19. Let \mathcal{S} be a bilateral filtering system which fulfills condition $\left(J_{3}\right)$ and $f:[a, b] \rightarrow \mathbb{R}$ be a non-decreasing function. If $x_{0} \in[a, b]$ and f is (\mathcal{S})-differentiable at x_{0}, then it is also differentiable at x_{0}.

Proof. Note that if f is differentiable at x_{0}, then it is also (\mathcal{S})-differentiable at x_{0} and $(\mathcal{S}) f^{\prime}\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)$.

Now suppose, that f doesn't have a derivative at x_{0} but it has an (\mathcal{S}) derivative at x_{0}. Assume that $(\mathcal{S}) f^{\prime}\left(x_{0}\right)=\alpha$. Then one of the extreme derivates of f at x_{0} is different from α; i.e.,

$$
\underline{D} f\left(x_{0}\right)<(\mathcal{S}) f^{\prime}\left(x_{0}\right) \text { or } \bar{D} f\left(x_{0}\right)>(\mathcal{S}) f^{\prime}\left(x_{0}\right)
$$

Assume that

$$
\underline{D}_{+} f\left(x_{0}\right)<(\mathcal{S}) f^{\prime}\left(x_{0}\right)=\alpha .
$$

Since f is a nondecreasing function, $\underline{D}_{+} f\left(x_{0}\right) \geq 0$ and $\alpha>0$, of course.
Choose ε_{0} such that $0<\varepsilon_{0}<\frac{\alpha}{2}$ and $\underline{D}_{+} f\left(x_{0}\right)<\alpha-2 \varepsilon_{0}$. So there exists a sequence $\left(h_{n}\right)$ such that $h_{n} \searrow 0$ and

$$
\frac{f\left(x_{0}+h_{n}\right)-f\left(x_{0}\right)}{h_{n}}<\alpha-2 \varepsilon_{0}
$$

for every $n \in \mathbb{N}$. Note that for every $n \in N$ and for any

$$
x \in\left[x_{0}+\left(1-\frac{\varepsilon_{0}}{\alpha-\varepsilon_{0}}\right) \cdot h_{n}, x_{0}+h_{n}\right]
$$

we have $\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}<\alpha-\varepsilon_{0}$.
Let

$$
E=\left\{x: \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}<\alpha-\varepsilon_{0}\right\}
$$

In view of condition $\left(J_{3}\right)$ the set E belongs to $S\left(x_{0}\right)$ since

$$
E \cap\left(x_{0}-\delta, x_{0}+\delta\right) \supset\left[x_{0}+\left(1-\frac{\varepsilon_{0}}{\alpha-\varepsilon_{0}}\right) \cdot h_{n}, x_{0}+h_{n}\right]
$$

for some n. Since

$$
A=\left\{x \in[a, b]: \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} \geq \alpha-\varepsilon_{0}\right\} \in S\left(x_{0}\right)
$$

$A \cap E \neq \emptyset$, a contradiction.
The proofs in other cases are similar.
One can obtain the same result if condition $\left(J_{3}\right)$ is replaced by the Khintchine condition.

Definition 20. [5] We say that a system \mathcal{S} fulfills the Khintchine condition if for each sequences $\left(x_{n}\right)$ and $\left(\delta_{n}\right)$ such that $\delta_{n} \searrow 0, x_{n} \rightarrow x_{0}$ and $\liminf _{n \rightarrow \infty} \frac{\delta_{n}}{\left|x_{n}-x_{0}\right|}>0$, the set $\bigcup_{n=1}^{\infty}\left(x_{n}-\delta_{n}, x_{n}+\delta_{n}\right)$ belongs to $S\left(x_{0}\right)$.

Theorem 21. [5] Let \mathcal{S} be a bilateral filtering system which fulfills the Khintchine condition and let $f:[a, b] \rightarrow \mathbb{R}$ be a non-decreasing function. If $x_{0} \in$ $[a, b]$ and f is (\mathcal{S})-differentiable at x_{0}, then it is also differentiable at x_{0}.

Corollary 22. Let \mathcal{S} be a bilateral and filtering system which fulfills the intersection condition and condition $\left(J_{3}\right)$. If a function $f:[a, b] \rightarrow \mathbb{R}$ is (\mathcal{S}) differentiable at every point $x \in[a, b]$ and $g:[a, b] \rightarrow \mathbb{R}$ is differentiable at every point $x \in[a, b]$ and $(\mathcal{S}) f^{\prime}(x) \leq g^{\prime}(x)$ for every $x \in[a, b]$ or if $(\mathcal{S}) f^{\prime}(x) \geq g^{\prime}(x)$ for every $x \in[a, b]$, then f is differentiable at every point $x \in[a, b]$.
Proof. Assume that $(\mathcal{S}) f^{\prime}(x) \leq g^{\prime}(x)$ for $x \in[a, b]$. Hence by Lemma 8 , $(\mathcal{S})(g-f)^{\prime} \geq 0$ for every $x \in[a, b]$. Therefore, from Theorem 17 it follows that function $g-f$ is non-decreasing in $[a, b]$. So from Theorem 19 we infer that $g-f$ is differentiable at every point $x \in[a, b]$. Hence, $f=g-(g-f)$ is also differentiable at every point $x \in[a, b]$.

The same proof can be used for the next corollary.
Corollary 23. Let \mathcal{S} be a bilateral filtering system that fulfills the Khintchine condition. If a function $f:[a, b] \rightarrow \mathbb{R}$ is (\mathcal{S})-differentiable at every point $x \in$ $[a, b]$ and $g:[a, b] \rightarrow \mathbb{R}$ is differentiable at every point $x \in[a, b]$ and $(\mathcal{S}) f^{\prime}(x) \leq$ $g^{\prime}(x)$ for every $x \in[a, b]$ or if $(\mathcal{S}) f^{\prime}(x) \geq g^{\prime}(x)$ for every $x \in[a, b]$, then f is differentiable at every point $x \in[a, b]$.
Theorem 24. [Mean Value Theorem] Let \mathcal{S} be a bilateral and filtering system which fulfills the intersection condition and condition $\left(J_{3}\right)$. If a function $f:[a, b] \rightarrow \mathbb{R}$ is (\mathcal{S})-differentiable at every point $x \in[a, b]$, then there exists $c \in(a, b)$ such that

$$
(\mathcal{S}) f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Proof. Let $L=\frac{f(b)-f(a)}{b-a}$. If $(\mathcal{S}) f^{\prime}$ is bounded from above or from below, then it follows from Corollary 22 that f is differentiable in $[a, b]$ and we can use Lagrange's theorem on mean values for the ordinary derivative. Otherwise there are numbers u, v in (a, b) such that $(\mathcal{S}) f^{\prime}(u)<L$ and $(\mathcal{S}) f^{\prime}(v)>L$. Since $(\mathcal{S}) f^{\prime}$ has Darboux property by Theorem 16 , there exists a number c between u and v such that $(\mathcal{S}) f^{\prime}(c)=L$, which completes the proof.

The same proof can be shown for the next theorem.
Theorem 25. [Mean Value Theorem] Let \mathcal{S} be a bilateral and filtering system which fulfills the Khintchine condition. If a function $f:[a, b] \rightarrow \mathbb{R}$ is (S)differentiable at every point $x \in[a, b]$ then there exists $c \in(a, b)$ such that

$$
(\mathcal{S}) f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

1 Main Results.

From now on we consider bilateral and filtering systems which fulfil the intersection condition and one of the following conditions: $\left(J_{3}\right)$ or the Khintchine condition.

Corollary 26. Let $f:[a, b] \rightarrow \mathbb{R}$ be (\mathcal{S})-differentiable in $[a, b]$. If $f(b)>f(a)$ and $(\mathcal{S}) f^{\prime}(b)<0$, then there exists a number $\eta \in(a, b)$ such that $(\mathcal{S}) f^{\prime}(\eta)=0$.

Proof. Since $(\mathcal{S}) f^{\prime}(b)<0$, it follows from the definition of (\mathcal{S})-derivative that there exists $x_{0}<b$, for which $f\left(x_{0}\right)-f(b)>0$. Hence $f(a)<f(b)<f\left(x_{0}\right)$. It follows from theorem 15 that there exists a number $c \in\left(a, x_{0}\right)$ for which $f(c)=f(b)$. If we apply theorem 24 to interval $[c, b]$, we obtain the conclusion of the theorem.

Corollary 27. Let $f:[a, b] \rightarrow \mathbb{R}$ be (\mathcal{S})-continuous in $[a, b]$ and (\mathcal{S})-differentiable in ($a, b]$. If

$$
[f(b)-f(a)] \cdot(\mathcal{S}) f^{\prime}(b) \leq 0
$$

then there exists a number $\eta \in(a, b]$ such that $(\mathcal{S}) f^{\prime}(\eta)=0$.
Proof. Consider the following possibilities:
(1) Let $(\mathcal{S}) f^{\prime}(b)=0$. Then it is sufficient to put $\eta=b$.
(2) Let us assume that $f(a)=f(b)$.

If f is (\mathcal{S})-differentiable at a, then the conclusion of the corollary follows immediately from theorem 24.
If f is not (\mathcal{S})-differentiable at a, then we can find a point $x_{0} \in(a, b]$ and we can apply theorem 24 or corollary 26 to the interval $\left[x_{0}, b\right]$ and f or $-f$, obtaining our desired conclusion.
(3) Assume, that $[f(b)-f(a)] \cdot(\mathcal{S}) f^{\prime}(b)<0$. Then either
(i) $(\mathcal{S}) f^{\prime}(b)<0$ and $f(b)>f(a)$,
or
(ii) $(\mathcal{S})-f^{\prime}(b)>0$ and $f(b)<f(a)$.

In the case (i) we apply theorem 15 and we can find a point $x_{0} \in(a, b)$ such that $f\left(x_{0}\right)=f(b)$. Now applying theorem 24 we get the conclusion.

In the case (ii) we proceed similarly considering the function $-f$.
And now we will prove a generalization of Flett's theorem for (\mathcal{S})-differentiable functions.

Theorem 28. Let $f:[a, b] \rightarrow \mathbb{R}$ be (S)-differentiable in $[a, b]$. If

$$
\left[(\mathcal{S}) f^{\prime}(b)-\frac{f(b)-f(a)}{b-a}\right] \cdot\left[(\mathcal{S}) f^{\prime}(a)-\frac{f(b)-f(a)}{b-a}\right] \geq 0
$$

then there exists $\eta \in(a, b]$ such that

$$
f(\eta)-f(a)=(\eta-a) \cdot(\mathcal{S}) f^{\prime}(\eta)
$$

Proof. Let us look at the function $g:[a, b] \rightarrow \mathbb{R}$ defined by

$$
g(x)= \begin{cases}\frac{f(x)-f(a)}{x-a} & \text { if } x \in(a, b] \tag{4}\\ (\mathcal{S}) f^{\prime}(a) & \text { if } x=a\end{cases}
$$

Note that g is (\mathcal{S})-continuous in $[a, b]$ and that when we use lemma 8 , then for every $c \in(a, b]$

$$
\begin{align*}
(\mathcal{S}) g^{\prime}(c) & =(\mathcal{S}) \lim _{x \rightarrow c} \frac{g(x)-g(c)}{x-c} \\
& =(\mathcal{S}) \lim _{x \rightarrow c}\left[\frac{1}{x-a} \cdot \frac{f(x)-f(c)}{x-c}-\frac{1}{x-a} \cdot \frac{f(c)-f(a)}{c-a}\right] \\
& =\frac{1}{c-a} \cdot(\mathcal{S}) f^{\prime}(c)-\frac{1}{c-a} \cdot \frac{f(c)-f(a)}{c-a} \tag{5}\\
& =\frac{(\mathcal{S}) f^{\prime}(c)-g(c)}{c-a}
\end{align*}
$$

which means that g is (\mathcal{S})-differentiable in $(a, b]$.
Moreover, note that it follows from (5) that

$$
\begin{aligned}
& {[g(b)-g(a)] \cdot(\mathcal{S}) g^{\prime}(b)} \\
& =\frac{-1}{b-a} \cdot\left[(\mathcal{S}) f^{\prime}(b)-\frac{f(b)-f(a)}{b-a}\right] \cdot\left[(\mathcal{S}) f^{\prime}(a)-\frac{f(b)-f(a)}{b-a}\right]
\end{aligned}
$$

Hence it follows from the assumption that $[g(b)-g(a)] \cdot(\mathcal{S}) g^{\prime}(b) \leq 0$. From corollary 27 it follows that $(\mathcal{S}) g^{\prime}(\eta)=0$ for some $\eta \in(a, b]$. If we take the above, the definition of g and (5), we have the conclusion of the theorem.

Theorem 29. Let $f:[a, b] \rightarrow \mathbb{R}$ be (\mathcal{S})-differentiable in $[a, b]$. If $(\mathcal{S}) f^{\prime}(a)=$ $(\mathcal{S}) f^{\prime}(b)$, then there exists $\eta \in(a, b)$ such that

$$
\begin{equation*}
f(\eta)-f(a)=(\eta-a) \cdot(\mathcal{S}) f^{\prime}(\eta) \tag{6}
\end{equation*}
$$

Proof. Let $g:[a, b] \rightarrow \mathbb{R}$ be defined by (4). First, let us assume that

$$
f(b)-f(a)=(b-a) \cdot(\mathcal{S}) f^{\prime}(b)
$$

Then it follows from the definition of function g and the assumption that $g(b)=g(a)$. If we apply Theorem 24 we obtain

$$
(\mathcal{S}) g^{\prime}(\eta)=0 \text { for some } \eta \in(a, b)
$$

Hence by (5)

$$
f(\eta)-f(a)=(\eta-a) \cdot(\mathcal{S}) f^{\prime}(\eta)
$$

But if

$$
f(b)-f(a) \neq(b-a) \cdot(\mathcal{S}) f^{\prime}(b)
$$

then either

$$
\left[(\mathcal{S}) f^{\prime}(b)-\frac{f(b)-f(a)}{b-a}\right]>0 \text { or }\left[(\mathcal{S}) f^{\prime}(b)-\frac{f(b)-f(a)}{b-a}\right]<0
$$

Since $(\mathcal{S}) f^{\prime}(b)=(\mathcal{S}) f^{\prime}(a)$,

$$
\begin{equation*}
\left[(\mathcal{S}) f^{\prime}(b)-\frac{f(b)-f(a)}{b-a}\right] \cdot\left[(\mathcal{S}) f^{\prime}(a)-\frac{f(b)-f(a)}{b-a}\right]>0 \tag{7}
\end{equation*}
$$

and if we apply Theorem 28 we obtain equality (6) for some $\eta \in(a, b]$. Since the inequality (7) is sharp, it is obvious that $\eta \neq b$.

Corollary 30. If $f:[a, b] \rightarrow \mathbb{R}$ is (\mathcal{S})-differentiable in $[a, b]$, then there exists $\eta \in(a, b)$ such that

$$
f(\eta)-f(a)=(\eta-a) \cdot(\mathcal{S}) f^{\prime}(\eta)-\frac{1}{2} \cdot \frac{(\mathcal{S}) f^{\prime}(b)-(\mathcal{S}) f^{\prime}(a)}{(b-a)} \cdot(\eta-a)^{2}
$$

Proof. Let us define function $\psi:[a, b] \rightarrow \mathbb{R}$ as

$$
\psi(x)=f(x)-\frac{1}{2} \cdot \frac{(\mathcal{S}) f^{\prime}(b)-(\mathcal{S}) f^{\prime}(a)}{(b-a)} \cdot(x-a)^{2}
$$

It follows from Lemma 8 that f is (\mathcal{S})-differentiable in $[a, b]$ and that

$$
(\mathcal{S}) \psi^{\prime}(x)=(\mathcal{S}) f^{\prime}(x)-\frac{(\mathcal{S}) f^{\prime}(b)-(\mathcal{S}) f^{\prime}(a)}{b-a} \cdot(x-a)
$$

Moreover, we see that $(\mathcal{S}) \psi^{\prime}(a)=(\mathcal{S}) f^{\prime}(a)=(\mathcal{S}) \psi^{\prime}(b)$. If we apply Theorem 29 to ψ, then

$$
\psi(\eta)-\psi(a)=(\eta-a) \cdot(\mathcal{S}) \psi^{\prime}(\eta) \text { for some } \eta \in(a, b)
$$

If we take the above and the definition of function ψ, we have the conclusion.

Since each of the systems $\mathcal{S}_{0}, \mathcal{S}_{a p}, \mathcal{S}_{I-a p}, \mathcal{S}_{\mathcal{N}}$ is bilateral, filtering and fulfills the intersection condition and one of the following conditions: $\left(J_{3}\right)$ or the Khintchine condition, we can conclude that all the results are true for each of those systems.

References

[1] M. Das, T. Riedel, P. K. Sahoo, Flett's Mean Value Theorem for approximately differentiable functions, Radovi Matematički, 10 (2001), 157-164.
[2] J. M. Jędrzejewski, On Limit Numbers of Real Functions, Fund. Math., 83, No. 3 (1973/74), 269-281.
[3] R. J. O'Malley, Selective derivatives, Acta Math. Acad. Sci. Hung., 29 (1977), 77-97.
[4] W. Poreda, E. Wagner-Bojakowska, W. Wilczyński, A category analogue of the density topology, Fund. Math., 125 (1985), 167-173.
[5] T. Swiątkowski, On some generalizations of the notion of derivative, (in Polish), Zeszyty Nauk. Polit. Łódźkiej, 149 Mat. 2.1 (1972), 89-103.
[6] B. S. Thomson, Real Functions, Lecture Notes in Math. 1170, Springer Verlag, Berlin, Heidelberg, New York, Tokyo, 1985.

[^0]: Key Words: derivatives, local system, Flett's theorem
 Mathematical Reviews subject classification: 26A24
 Received by the editors September 22, 2003
 Communicated by: B. S. Thomson

