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1. Introduction

The aim of this paper is to give a new characterization of Sobolev–
Slobodeckij spaces W 1+s,p for n/p < 1 + s, where n is the dimension of
the domain. To achieve this we introduce a family of curvature energies
inspired by the classical concept of integral Menger curvature. We prove
that a function belongs to a Sobolev–Slobodeckij space if and only if it
is in Lp and the appropriate energy is finite.

Integral Menger curvature. Given three distinct points x, y, z ∈ Rn
we denote by R(x, y, z) their circumradius, i.e. the radius of the unique
circle passing through them (for x, y, z collinear we assume R(x, y, z) =
∞). The inverse of R(x, y, z) will be called Menger curvature of x, y, z
and denoted by c(x, y, z).

Motivated by the search for particularly regular, optimal shapes of
knots, Gonzalez and Maddocks proposed in [GM] to study the following
functionals on the space of curves

Up(γ) =

∫
γ

sup
y,z∈γ

c(x, y, z)p dH 1(x),

Mp(γ) =

∫
γ

∫
γ

∫
γ

c(x, y, z)p dH 1(x) dH 1(y) dH 1(z).
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Later on Strzelecki, Szumańska, and von der Mosel introduced in [SSv1]
an intermediate functional

Ip(γ) =

∫
γ

∫
γ

sup
z∈γ

c(x, y, z)p dH 1(x) dH 1(y).

The functional Mp is called integral Menger curvature.
The idea behind those functionals (also called knot energies or just

energies) was the following: c(x, y, z) is big for x, y, z close to each
other, unless they happen to be almost collinear (note that for suffi-
ciently smooth γ the quantity c(x, y, z) converges as y, z → x to the
classical curvature of γ at x). Therefore, the functionals should penal-
ize self-intersections, lack of smoothness, and “bending”. By minimizing
an energy inside some fixed knot class we should find an optimal shape
of this knot. Strzelecki, Szumańska, and von der Mosel have shown
in [Sv1, SSv1, SSv2] that for suitable values of p all listed energies
exhibit certain regularizing and self-repulsive properties. In [SSv3] they
proved results important from a knot-theoretic point of view, for example
existence of minimizers inside knot classes.

Interestingly, before Gonzalez and Maddocks proposed to investi-
gate Mp in the context of knot theory, a similar concept had arisen
in harmonic analysis. Melnikov introduced in [Mel] Menger curvature
of a positive Borel measure µ in C as

c2(µ) =

∫∫∫
c(z, ζ, w)2 dµ(z) dµ(ζ) dµ(w).

The notion has been very useful for studying the Cauchy transform and
analytic capacity; it was one of the key tools used to prove the Vi-
tushkin’s conjecture. For more information see the books [Paj, Tol].

Higher dimensional analogues. Several different attempts at gen-
eralizing integral Menger curvature to higher dimensional objects have
been made. The obvious idea of integrating the inverse of the radius of
an n-dimensional sphere passing through n + 2 points doesn’t seem to
work well because there are examples of smooth and embedded surfaces
for which such quantity is unbounded, see [Sv2, Appendix B]. Several
better generalizations were introduced and studied in [LW2, LW1, Sv2,
Kol1, Kol2, KSv].

We will concentrate on the following one due to Kolasiński [Kol1]:
for x0, . . . , xn+1 ∈ Rn+m we define

K(x0, . . . , xn+1) =
H n+1(∆(x0, . . . , xn+1))

diam(x0, . . . , xn+1)n+2
,
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where ∆(x0, . . . , xn+1) stands for the convex hull of x0, . . . , xn+1. It is
motivated by one of the formulas used to calculate Menger curvature

c(x, y, z) =
1

R(x, y, z)
= 4

H 2(∆(x, y, z))

|x− y||y − z||z − x|
.

Given an n-dimensional surface Σ we define its integral Menger curvature
as

Ep(Σ) =

∫
Σn+2

K(x0, . . . , xn+1)p dH n(n+2)(x0, . . . , xn+1).

Note that for n = 1 we get a slightly different energy than Mp. Even
though it is clear that

4K(x, y, z) ≤ c(x, y, z),

in general the two quantities are not comparable: think of triples of
points x, y, z lying on S1 such that x and y are fixed, but z → y.
c(x, y, z) is constantly equal to 1, while K(x, y, z) converges to zero.

The connection between Sobolev–Slobodeckij spaces and cur-
vature energies. The first to notice a connection between Sobolev
spaces and curvature energies of Menger type were Strzelecki and von
der Mosel who proved in [Sv1] that for p > 1 and a closed curve γ
we have Up(γ) < ∞ if and only if γ is embedded and its arclength
parametrization belongs to the Sobolev space W 2,p.

Blatt achieved a similar characterization of finite energy curves for Ip

and Mp in [Bla]. He showed that for p > 2 and a closed curve γ with
arclength parametrization Γ locally a homeomorphism, Ip(γ) < ∞ if
and only if γ is embedded and Γ ∈ W 2−1/p,p. Similarly, for p > 3 and
a closed curve γ with arclength parametrization Γ locally a homeomor-
phism, Mp(γ) <∞ if and only if γ is embedded and Γ ∈W 2−2/p,p.

In [BK] Blatt and Kolasiński described surfaces with finite Ep energy.

Theorem ([BK, Theorem 1.1]). Let m,n∈N, p∈R satisfy n(n+ 1) <
p<∞. Furthermore, let Σ⊂Rn+m be a compact n-dimensional C1 man-
ifold and s = 1 − n(n+1)

p ∈ (0, 1). Then Ep(Σ) is finite if and only if Σ

can be locally represented as the graph of a function belonging to the
Sobolev–Slobodeckij space W 1+s,p(Rn,Rm).

All results above used Sobolev–Slobodeckij spaces as a tool to char-
acterize objects with finite curvature energies. The aim of this paper is
to do the opposite: we use appropriately defined curvature energies to
characterize spaces W 1+s,p for as many values of s and p as possible.
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Let U ⊂ Rn be open, f : U → R be measurable. Throughout the
article we will use the notation

F (x) = (x, f(x)) ∈ Rn+1.

We define a family of energies

Ep,q(f) =

∫
Un+2

Kp,q(x0, . . . , xn+1) dx0 · · · dxn+1,

where

Kp,q(x0, . . . , xn+1) =
H n+1(∆(F (x0), . . . , F (xn+1))p

diam(x0, . . . , xn+1)(n+2)q
.

Note that for f Lipschitz continuous the quantity Ep,p(f) is comparable
to Ep(graph(f)).

We adapt the ideas from [BK] to Ep,q and obtain the following.

Theorem 1.1. Let n ∈ N, 0 < s < 1, 1 < p < ∞ satisfy n/p < 1 + s.
Suppose that U ⊂ Rn is open, bounded, and satisfies the cone condition
from Definition 2.2, or U = Rn. Let q = n(n+1)

n+2 + p(n+1+s)
n+2 . Then

f ∈W 1+s,p(U) if and only if f ∈ Lp(U) and Ep,q(f) <∞. Furthermore,
there exists a constant C = C(n, p, s, U) such that

C−1‖f‖pW 1+s,p(U) ≤ ‖f‖
p
Lp(U) + Ep,q(f) ≤ C‖f‖pW 1+s,p(U).

In fact, for U = Rn we prove something more.

Theorem 1.2. Let n ∈ N, 0 < s < 1, 1 < p < ∞ satisfy n/p < 1 + s,
and let q = n(n+1)

n+2 + p(n+1+s)
n+2 . For all f : Rn → R measurable we

have Ep,q(f) < ∞ if and only if the seminorm [f ]W 1+s,p(Rn) is finite.
Furthermore, there exists a constant C = C(n, p, s) such that

C−1[f ]pW 1+s,p(Rn) ≤ Ep,q(f) ≤ C[f ]pW 1+s,p(Rn).

The organization of the paper is the following. In Section 2 we recall
some facts about Sobolev–Slobodeckij spaces. In Section 3 we prove that
for f ∈ W 1+s,p we have Ep,q(f) <∞. In Section 4 we prove the reverse
implication, and thus we conclude the proof of Theorem 1.1 and The-
orem 1.2. Our reasoning is essentially a modified version of the one
in [BK].

Throughout the article B(x, r) will denote a closed ball of radius r
centered at x, and ωk is a constant equal to the Lebesgue measure of a
k-dimensional unit ball. We will use the letter C to denote a constant
which may change from line to line and which may depend on several
parameters. Any such dependence will be noted.
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2. Sobolev–Slobodeckij spaces

Let us recall the definition of Sobolev–Slobodeckij spaces.

Definition 2.1. Let U ⊂ Rn be an open set, k ∈ {0, 1, 2, . . . }, 0 < s <
1, 1 ≤ p <∞. Set

‖f‖Wk+s,p(U) =‖f‖Wk,p(U)+

∑
|α|=k

∫
U

∫
U

|Dαf(x)−Dαf(y)|p

|x− y|n+sp
dx dy

1/p

.

Here we assume that W 0,p = Lp. The Sobolev–Slobodeckij spaces are
defined as

W k+s,p(U) = {f ∈W k,p(U) : ‖f‖Wk+s,p(U) <∞}.

We will be working with open bounded sets satisfying the following
cone condition.

Definition 2.2. We say that an open bounded set U ⊂ Rn satis-
fies the cone condition if there exist bounded open sets U1, . . . , Um
and cones C1, . . . , Cm which are rotated versions of a fixed cone Kh =
{(x′, xn) ∈ Rn : 0 < xn < h, |x′| < axn} such that

∂U ⊂
m⋃
i=1

Ui and (U ∩ Ui) + Ci ⊂ U

for each i = 1, . . . ,m.

An example of sets satisfying the cone condition are open bounded
sets with Lipschitz boundary.

In our later considerations we will need the following well-known re-
sults about Sobolev–Slobodeckij spaces.

Theorem 2.3 ([Tri1, 4.2.3/Theorem]). Let U ⊂ Rn be a bounded open
set satisfying the cone condition, k ∈ {0, 1, 2, . . . }, 0 < s < 1, 1 < p <
∞. Then there exists a bounded extension operator from W k+s,p(U)
to W k+s,p(Rn).

Given a fixed open set U ⊂ Rn and x ∈ U we define

Hx = {h ∈ Rn : x+ h ∈ U, x− h ∈ U}

and

[f ]W 1+s,p(U) =

(∫
U

∫
Hx

|f(x+ h)− 2f(x) + f(x− h)|p

|h|n+(1+s)p
dh dx

)1/p

.
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Theorem 2.4 ([Tri1, 2.5.1/Theorem, 4.4.2/Theorem 2]). Let U ⊂ Rn
be a bounded open set satisfying the cone condition, or U = Rn. Suppose
0 < s < 1, 1 < p < ∞. Then ‖·‖Lp(U) + [·]W 1+s,p(U) is an equivalent
norm on W 1+s,p(U).

Remark 2.5. Referenced results are stated in [Tri1] for Besov spacesBsp,q,
but for sufficiently regular open sets (e.g. Rn or bounded open sets
which satisfy the cone condition) we haveW s,p(U) = Bsp,p(U), see Chap-
ters 2.5.1, 4.4.2 in [Tri1].

In Section 3 we will use the following characterization of functions
with [f ]W 1+s,p(Rn) < ∞ due to Dorronsoro [Dor]. Given a locally in-
tegrable function f and a cube Q ⊂ Rn we denote by PQf the unique
affine function such that∫

Q

f − PQf dx = 0,

∫
Q

(f − PQf)xi dx = 0, i = 1, . . . , n.

For x ∈ Rn, t > 0 we set

Ωf (x, t) = sup
Q
‖f − PQ‖L∞(Q),

where the supremum is taken over all cubes Q ⊂ Rn of sidelength t such
that x ∈ Q.

Theorem 2.6 ([Dor, Theorem 2]). Let 1+s > n/p. For any measurable
function f : Rn → R we have [f ]W 1+s,p(Rn) <∞ if and only if

JfKW 1+s,p(Rn) :=

(∫ ∞
0

∫
Rn

Ωf (x, t)p

t1+p(1+s)
dx dt

)1/p

<∞.

Moreover, we have some absolute constant C such that

C−1[f ]W 1+s,p(Rn) ≤ JfKW 1+s,p(Rn) ≤ C[f ]W 1+s,p(Rn).

Remark 2.7. The seminorm used in [Dor] is different from [·]W 1+s,p(Rn).
However, both seminorms are equivalent, see [Tri2, 5.2.3/Theorem 2].



Characterization of Sobolev–Slobodeckij Spaces. . . 669

3. Estimating Ep,q(f) in terms of [f ]W 1+s,p

We begin by considering the case U = Rn.

Lemma 3.1. Let n ∈ N, 0 < s < 1, 1 < p < ∞ satisfy n/p < 1 + s.
Let q = n(n+1)

n+2 + p(n+1+s)
n+2 . Suppose that f : Rn → R is measurable and

[f ]W 1+s,p(Rn) <∞. Then

Ep,q(f) ≤ C[f ]pW 1+s,p(Rn),

where C = C(n, p, s).

The following lemma will let us use Ωf (x, t) to estimate Ep,q. Recall
that F (x) = (x, f(x)).

Lemma 3.2. Suppose f ∈ L1
loc(Rn), x0, . . . , xn+1 ∈ Rn. Then

H n+1(∆(F (x0), . . . , F (xn+1)))

≤ C Ωf (x0, 2 diam(x0, . . . , xn+1)) diam(x0, . . . , xn+1)n,

where C = C(n).

Proof: Set d = diam(x0, x1, . . . , xn+1), T = ∆(F (x0), . . . , F (xn+1)). Let
Q ⊂ Rn be the cube centered at x0 with sidelength 2d. Note that
xi ∈ Q, i = 0, . . . , n+ 1.

Without loss of generality we may assume that PQ(0) = 0, i.e. it is lin-
ear. We define Π: Rn+1 → graph(PQ) as the orthogonal projection onto
graph(PQ), and Π⊥ : Rn+1 → graph(PQ)⊥ as the orthogonal projection
onto graph(PQ)⊥.

For every y ∈ Q holds

|f(y)− PQ(y)| ≤ ‖f − PQ‖L∞(Q) ≤ Ωf (x0, 2d).

In particular, we have for the vertices of T

|Π⊥(F (xi))| ≤ |F (xi)− (xi, PQ(xi))| = |f(xi)− PQ(xi)| ≤ Ωf (x0, 2d).

This fact together with convexity of T imply that for all t ∈ T
|Π⊥(t)| ≤ Ωf (x0, 2d).

At the same time

|Π(t)−Π(x0)| ≤ |t− x0| ≤ d.
Thus, T is contained in

Z := {y ∈ Rn+1 : |Π(y)−Π(x0)| ≤ d, |Π⊥(y)| ≤ Ωf (x0, 2d)}.
Using Fubini’s theorem yields the desired inequality:

H n+1(T ) ≤H n+1(Z) = 2dnωnΩf (x0, 2d).
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Proof of Lemma 3.1: For x, y ∈ Rn set

U(x, y) = {(x1, . . . , xn) ∈ (Rn)n : diam(x, x1, . . . , xn, y) = |x− y|}.

Then due to the symmetricity of Kp,q(x0, . . . , xn+1) with respect to the
permutations of variables we obtain

Ep,q(f) =

∫
(Rn)n+2

Kp,q(x0, . . . , xn+1) dx0 · · · dxn+1

=

(
n+2

2

)∫
Rn

∫
Rn

∫
U(x,y)

Kp,q(x, x1 . . . , xn, y) dH n2

(x1, . . . , xn) dx dy.

Recall that F (x) = (x, f(x)). We proceed by using definitions of Kp,q
and U(x, y):

Ep,q(f) = C

∫
Rn

∫
Rn

∫
U(x,y)

H n+1(∆(F (x), F (x1), . . . , F (xn), F (y)))p

diam(x, x1, . . . , xn, y)q(n+2)

× dH n2

(x1, . . . , xn) dx dy

= C

∫
Rn

∫
Rn

∫
U(x,y)

H n+1(∆(F (x), F (x1), . . . , F (xn), F (y)))p

|x− y|q(n+2)

× dH n2

(x1, . . . , xn) dx dy

Lemma 3.2
≤ C

∫
Rn

∫
Rn

∫
U(x,y)

Ωf (x, 2|x− y|)p

|x− y|q(n+2)−pn dH
n2

(x1, . . . , xn) dx dy

= C

∫
Rn

∫
Rn

H n2

(U(x, y))
Ωf (x, 2|x− y|)p

|x− y|q(n+2)−pn dx dy.

Since U(x, y) ⊂ (B(x, |x− y|))n we have

H n2

(U(x, y)) ≤ C|x− y|n
2

.

Thus

Ep,q(f) ≤ C
∫
Rn

∫
Rn

|x− y|n
2 Ωf (x, 2|x− y|)p

|x− y|q(n+2)−pn dx dy

= C

∫
Rn

∫
Rn

Ωf (x, 2|x− y|)p

|x− y|n+(1+s)p
dx dy.
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In the last equality we used the fact that q = n(n+1)
n+2 + p(n+1+s)

n+2 . We
change the y variable using n-dimensional spherical coordinates such
that 2|y − x| = r, and we get from Theorem 2.6

Ep,q(f) ≤ C
∫ ∞

0

∫
Rn

Ωf (x, r)p

r1+(1+s)p
dx dr

= CJfKpW 1+s,p(Rn) ≤ C[f ]pW 1+s,p(Rn).

Corollary 3.3. Let n ∈ N, 0 < s < 1, 1 < p < ∞ satisfy n/p < 1 + s.
Suppose that U ⊂ Rn is open, bounded, and satisfies the cone condition,
or U = Rn. Let q = n(n+1)

n+2 + p(n+1+s)
n+2 . If f ∈W 1+s,p(U), then

‖f‖pLp(U) + Ep,q(f) ≤ C‖f‖pW 1+s,p(U).

Proof: For U = Rn we just use Lemma 3.1, so assume U 6= Rn. We use
Theorem 2.3 to extend f to f̃ ∈W 1+s,p(Rn). By Lemma 3.1 we get

Ep,q(f̃) ≤ C‖f̃‖W 1+s,p(Rn) ≤ C‖f‖W 1+s,p(U).

Since Ep,q(f) ≤ Ep,q(f̃), and ‖f‖Lp(U) ≤ ‖f‖W 1+s,p(U), we are done.

4. Estimating [f ]W 1+s,p in terms of Ep,q(f)

Lemma 4.1. Let n ∈ N, 1 < p < ∞, 0 < s < 1. Suppose that U ⊂ Rn
is open, bounded, and satisfies the cone condition, or U = Rn. Let
q = n(n+1)

n+2 + p(n+1+s)
n+2 . If f : U → R is measurable, and Ep,q(f) < ∞,

then
[f ]pW 1+s,p(U) ≤ CEp,q(f),

where C = C(n, p, s, U).

In the proof it will be convenient to use exterior product. The defini-
tion suitable for our purposes is given below.

Definition 4.2. Let k ∈ {1, . . . , n}. Given vectors w1, . . . , wk ∈ Rn we
define their exterior product w1∧· · ·∧wk as a vector in R(n

k) with coordi-
nates equal to k-minors of the k×n-matrix (w1, . . . , wk). The coordinates
are indexed by k-tuples (i1, . . . , ik) with ij ∈ {1, . . . , n} and i1 < · · · < ik.

Remark 4.3. We will use only two properties of exterior product, namely
that

a) the mapping (w1, . . . , wk) 7→ w1 ∧ · · · ∧ wk is k-linear,
b) the length |w1 ∧ · · · ∧ wk| is equal to the k-dimensional volume of

the parallelotope spanned by w1, . . . , wk.
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To prove Lemma 4.1 we will also need the following technical lemma.

Lemma 4.4. Let U ⊂ Rn be an open bounded set satisfying the cone
condition, or U=Rn. For a fixed α ∈ (0, 1), r ∈ (0,diam(U)), and x ∈ U
let us set

W x
r,α = {(w1, w2, . . . , wn) ∈ (B(0, r))n ⊂ (Rn)n :

x+ wi ∈ U, |w1 ∧ · · · ∧ wn| ≥ αrn}.
Then there exists α̃ ∈ (0, 1) such that for all r ∈ (0,diam(U))

H n2

(W x
r,α̃) ≥ Crn

2

,

where C = C(n,U).

Proof: Let

Wr,α = {(w1, w2, . . . , wn) ∈ (B(0, r))n : |w1 ∧ · · · ∧ wn| ≥ αrn}.
Note that

Wr,α = rW1,α,

hence

(1) H n2

(Wr,α) = H n2

(W1,α)rn
2

.

For U = Rn we take α̃ = 1/2 and we are done because W x
r,1/2 = Wr,1/2

and H n2

(W1,1/2) > 0. Now suppose U is open, bounded, and satisfies
the cone condition.

Note that the set

N = {(w1, w2, . . . , wn) ∈ (B(0, 1))n : |w1 ∧ · · · ∧ wn| = 0}

is contained in the set of singular n×nmatrices, so it is of zero H n2

mea-
sure.

Since ∪α∈(0,1)W1,α ∪N = (B(0, 1))n, we get

(2) lim
α→0

H n2

(W1,α) = (ωn)n.

Observe that due to the cone condition satisfied by U there exists
a C0 ∈ (0, 1) such that for any y ∈ U and any r ∈ (0,diam(U)) we have

(3) H n(U ∩B(y, r)) ≥ C0ωnr
n.

By (2) we may choose α̃ so small that

(4) H n2

(W1,α̃) >

(
1− Cn0

2

)
(ωn)n.

Without loss of generality assume that x = 0. Then

W x
r,α̃ = Wr,α̃ ∩ Un = Wr,α̃ ∩ (U ∩B(0, r))n.
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It follows from (1) and (4) that

(5) H n2

(Wr,α̃) >

(
1− Cn0

2

)
(ωn)nrn

2

.

At the same time (3) yields

(6) H n2

((U ∩B(0, r))n) ≥ Cn0 (ωn)nrn
2

.

Since both Wr,α̃ and (U ∩B(0, r))n are subsets of (B(0, r))n we have

(7) H n2

(Wr,α̃ ∪ (U ∩B(0, r))n) ≤ (ωn)nrn
2

.

The trivial equality

H n2

(Wr,α̃ ∩ (U ∩B(0, r))n) = H n2

(Wr,α̃) + H n2

((U ∩B(0, r))n)

−H n2

(Wr,α̃ ∪ (U ∩B(0, r))n)

together with (5), (6), and (7) give us

H n2

(Wr,α̃ ∩ (U ∩B(0, r))n) >

(
1− Cn0

2

)
(ωn)nrn

2

+ Cn0 (ωn)nrn
2

− (ωn)nrn
2

=
Cn0
2

(ωn)nrn
2

.

Thus H n2

(Wr,α̃ ∩ (U ∩B(0, r))n) = H n2

(W x
r,α̃) ≥ Crn2

.

Proof of Lemma 4.1: Recall that F (x) = (x, f(x)). We have

Ep,q(f) =

∫
Un+2

H n+1(∆(F (x0), . . . , F (xn+1)))p

diam(x0, . . . , xn+1)(n+2)q
dx0 · · · dxn+1

= C

∫
Un+2

|(F (x1)−F (x0)) ∧ · · · ∧ (F (xn+1)− F (x0))|p

diam(x0, . . . , xn+1)(n+2)q
dx0 · · · dxn+1.

Recall that
Hx = {h ∈ Rn : x− h ∈ U, x+ h ∈ U}.

For x ∈ U , h ∈ Hx set

W x
h := W x

|h|,α̃ = {(w1, w2, . . . , wn) ∈ (B(0, |h|))n :

x+ wi ∈ U, |w1 ∧ · · · ∧ wn| ≥ α̃|h|n},

with α̃ given by Lemma 4.4 (the assumptions of Lemma 4.4 are met
because Hx ⊂ B(0,diam(U)), so |h| ∈ [0,diam(U))). Using the change
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of variables x0 = x, x1 = x+ h, xi = x+ wi−1 for i = 2, . . . , n+ 1, and
restricting the area of integration to h ∈ Hx, (w1, . . . , wn) ∈W x

h yields

Ep,q(f)=C

∫
Un+2

|(F (x1)−F (x0))∧ · · · ∧(F (xn+1)−F (x0))|p

diam(x0, . . . , xn+1)(n+2)q
dx0 · · · dxn+1

≥ C
∫
U

∫
Hx

∫
Wx

h

|(F (x+ h)− F (x)) ∧ (F (x+ w1)− F (x)) ∧ · · ·

· · · ∧ (F (x+ wn)− F (x))|p

× 1

diam(x, x+ h, x+ w1, . . . , x+ wn)(n+2)q
dw1 · · · dwn dh dx

≥ C
∫
U

∫
Hx

∫
Wx

h

|(F (x+ h)− F (x)) ∧ (F (x+ w1)− F (x)) ∧ · · ·

· · · ∧ (F (x+ wn)− F (x))|p|h|−(n+2)q dw1 · · · dwn dh dx,

where the last inequality follows from the fact that all wi ∈ B(0, |h|).
Now, rewrite the last line as C

2 times two identical integrals. Using the
fact that Hx = −Hx we can substitute h 7→ −h in the second integral
and get

Ep,q(f) ≥ C

2

∫
U

∫
Hx

∫
Wx

h

|(F (x+ h)− F (x)) ∧ (F (x+ w1)− F (x)) ∧ · · ·

· · · ∧ (F (x+ wn)− F (x))|p|h|−(n+2)q dw1 · · · dwn dh dx

+
C

2

∫
U

∫
Hx

∫
Wx

h

|(F (x− h)−F (x)) ∧ (F (x+ w1)−F (x)) ∧ · · ·

· · · ∧ (F (x+ wn)− F (x))|p |h|−(n+2)q dw1 · · · dwn dh dx.

We use the trivial estimate |a|p+ |b|p ≥ 21−p|a+b|p and (n+1)-linearity
of exterior product to obtain

Ep,q(f) ≥ C
∫
U

∫
Hx

∫
Wx

h

|(F (x+ h)− 2F (x) + F (x− h))

∧ (F (x+ w1)− F (x)) ∧ · · · ∧ (F (x+ wn)− F (x))|p

× |h|−(n+2)q dw1 · · · dwn dh dx.

(8)
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We need to estimate the term
|(F (x+ h)− 2F (x) + F (x− h)) ∧ (F (x+ w1)− F (x)) ∧ · · ·

· · · ∧ (F (x+ wn)− F (x))|

=

∣∣∣∣( 0

f(x+ h)− 2f(x) + f(x− h)

)
∧
(

w1

f(x+ w1)− f(x)

)
∧ · · ·

· · · ∧
(

wn
f(x+ wn)− f(x)

)∣∣∣∣ .
For brevity of notation let us set ∆2

hf(x) = f(x+h)− 2f(x) + f(x−h).
Applying Laplace expansion with respect to the first column yields∣∣∣∣( 0

∆2
hf(x)

)
∧
(

w1

f(x+ w1)− f(x)

)
∧ · · · ∧

(
wn

f(x+ wn)− f(x)

)∣∣∣∣
=

∣∣∣∣det

(
0 w1 . . . wn

∆2
hf(x) f(x+ w1)− f(x) . . . f(x+ wn)− f(x)

)∣∣∣∣
= |∆2

hf(x)||w1 ∧ · · · ∧ wn|.

For (w1, . . . , wn) ∈W x
h we have |w1 ∧ · · · ∧ wn| ≥ α̃|h|n, thus

|(F (x+ h)− 2F (x) + F (x− h)) ∧ (F (x+ w1)− F (x)) ∧ · · ·

· · · ∧ (F (x+ wn)− F (x))|

≥ α̃|f(x+ h)− 2f(x) + f(x− h)||h|n.

(9)

Putting together (8) and (9) we obtain

Ep,q(f) ≥ C
∫
U

∫
Hx

∫
Wx

h

|f(x+ h)− 2f(x) + f(x− h)|p

|h|(n+2)q−np dw1 . . . dwn dh dx

= C

∫
U

∫
Hx

H n2

(W x
h )
|f(x+ h)− 2f(x) + f(x− h)|p

|h|(n+2)q−np dh dx.

Lemma 4.4 assures that H n2

(W x
h ) = H n2

(W x
|h|,α̃)≥C|h|n2

. Since q =
n(n+1)
n+2 + p(n+1+s)

n+2 we get

Ep,q(f) ≥ C
∫
U

∫
Hx

|f(x+ h)− 2f(x) + f(x− h)|p

|h|n+sp+p
dh dx

= C[f ]pW 1+sp,p(U).
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