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CHARACTERIZATION OF SOBOLEV-SLOBODECKI1J
SPACES USING CURVATURE ENERGIES
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Abstract: We give a new characterization of Sobolev—Slobodeckij spaces W1+tsP
for n/p < 1+s, where n is the dimension of the domain. To achieve this we introduce
a family of curvature energies inspired by the classical concept of integral Menger
curvature. We prove that a function belongs to a Sobolev—Slobodeckij space if and
only if it is in LP and the appropriate energy is finite.
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1. Introduction

The aim of this paper is to give a new characterization of Sobolev—
Slobodeckij spaces W+s? for n/p < 1+ s, where n is the dimension of
the domain. To achieve this we introduce a family of curvature energies
inspired by the classical concept of integral Menger curvature. We prove
that a function belongs to a Sobolev—Slobodeckij space if and only if it
is in L? and the appropriate energy is finite.

Integral Menger curvature. Given three distinct points z,y,z € R™
we denote by R(x,y, z) their circumradius, i.e. the radius of the unique
circle passing through them (for z, y, z collinear we assume R(zx,y, z) =
00). The inverse of R(z,y, z) will be called Menger curvature of x, y, z
and denoted by c(z,y, 2).

Motivated by the search for particularly regular, optimal shapes of
knots, Gonzalez and Maddocks proposed in [GM] to study the following
functionals on the space of curves
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Later on Strzelecki, Szumaiiska, and von der Mosel introduced in [SSv1]
an intermediate functional

// sup c(z,y, 2)P dA (x) dA (y).
zey
The functional .#, is called integral Menger curvature.

The idea behind those functionals (also called knot energies or just
energies) was the following: c¢(z,y,2) is big for z, y, z close to each
other, unless they happen to be almost collinear (note that for suffi-
ciently smooth v the quantity c(z,y,z) converges as y,z — x to the
classical curvature of v at x). Therefore, the functionals should penal-
ize self-intersections, lack of smoothness, and “bending”. By minimizing
an energy inside some fixed knot class we should find an optimal shape
of this knot. Strzelecki, Szumainska, and von der Mosel have shown
in [Svl, SSv1, SSv2]| that for suitable values of p all listed energies
exhibit certain regularizing and self-repulsive properties. In [SSv3]| they
proved results important from a knot-theoretic point of view, for example
existence of minimizers inside knot classes.

Interestingly, before Gonzalez and Maddocks proposed to investi-
gate .4, in the context of knot theory, a similar concept had arisen
in harmonic analysis. Melnikov introduced in [Mel] Menger curvature
of a positive Borel measure p in C as

= [[] cte.¢. 0 dutz) autc) dutu).

The notion has been very useful for studying the Cauchy transform and
analytic capacity; it was one of the key tools used to prove the Vi-
tushkin’s conjecture. For more information see the books [Paj, Tol].

Higher dimensional analogues. Several different attempts at gen-
eralizing integral Menger curvature to higher dimensional objects have
been made. The obvious idea of integrating the inverse of the radius of
an n-dimensional sphere passing through n + 2 points doesn’t seem to
work well because there are examples of smooth and embedded surfaces
for which such quantity is unbounded, see [Sv2, Appendix B]. Several
better generalizations were introduced and studied in [LW2, LW1, Sv2,
Koll, Kol2, KSv].

We will concentrate on the following one due to Kolasiriski [Koll]:
for xg,...,Tni1 € R we define

%n+1(A(CE07 N 71771-&-1))

diam(zg, ..., Tpe1)" T2’

K(zo, ..., xn41) =
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where A(zg,...,zn+1) stands for the convex hull of xg,...,x,41. It is
motivated by one of the formulas used to calculate Menger curvature
1 (A
oops) LAy 2)

R(z,y,2) |z —ylly —2llz — 2|

Given an n-dimensional surface 3 we define its integral Menger curvature
as

gp(Z) = A . IC(I'(), v ,In+1)p d%n(n+2)($0, cee 7$n+1)-

Note that for n = 1 we get a slightly different energy than .#),. Even
though it is clear that

AK(z,y,2) < c(x,y, 2),

in general the two quantities are not comparable: think of triples of
points z, y, z lying on S! such that = and y are fixed, but z — .
¢(x,y, z) is constantly equal to 1, while K(z,y, z) converges to zero.

The connection between Sobolev—Slobodeckij spaces and cur-
vature energies. The first to notice a connection between Sobolev
spaces and curvature energies of Menger type were Strzelecki and von
der Mosel who proved in [Sv1| that for p > 1 and a closed curve 7
we have %,(vy) < oo if and only if v is embedded and its arclength
parametrization belongs to the Sobolev space W?2P.

Blatt achieved a similar characterization of finite energy curves for .7,
and .#, in [Bla]. He showed that for p > 2 and a closed curve v with
arclength parametrization I' locally a homeomorphism, %,(v) < oo if
and only if v is embedded and T' € W?2~1/PP_ Similarly, for p > 3 and
a closed curve v with arclength parametrization I' locally a homeomor-
phism, .#,(y) < oo if and only if 7 is embedded and T' € W?2~2/pp.

In [BK] Blatt and Kolasinski described surfaces with finite £, energy.

Theorem (|BK, Theorem 1.1]). Let m,neN, peR satisfy n(n +1) <
p<oo. Furthermore, let X CR"™ be a compact n-dimensional C* man-
ifold and s =1 — % € (0,1). Then E,(X) is finite if and only if ¥
can be locally represented as the graph of a function belonging to the

Sobolev-Slobodeckij space W1TsP(R™ R™).

All results above used Sobolev—Slobodeckij spaces as a tool to char-
acterize objects with finite curvature energies. The aim of this paper is
to do the opposite: we use appropriately defined curvature energies to
characterize spaces W'+P for as many values of s and p as possible.
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Let U C R™ be open, f: U — R be measurable. Throughout the
article we will use the notation
F(z) = (z, f(x)) € R*.
We define a family of energies
Epg(f) = Kp.q(xo, ..y Tpnt1)dxo - - dTptq,
U7L+2
where
A A(F(20), - F(wpe1))?
diam(zq, . .., Tpe1)+2)a

Kpq(zo, ..., Tnt1) =

Note that for f Lipschitz continuous the quantity &, ,(f) is comparable

to Ep(graph(f)).
We adapt the ideas from [BK] to &, , and obtain the following.

Theorem 1.1. Letn e N0 < s < 1,1 < p < oo satisfy n/p < 1+ s.

Suppose that U C R™ is open, bounded, and satisfies the cone condition
L. n n(n+1 n+1+s

from Definition 2.2, or U = R™. Let q = (n+2) + o P ). Then

[ € WItsP(U) if and only if f € LP(U) and &, 4(f) < 0. Furthermore,

there exists a constant C' = C(n,p, s,U) such that
C Ny < 1 Wy + Enalf) < Ol sy

In fact, for U = R™ we prove something more.

Theorem 1.2. Letn e N0 < s < 1,1 < p < oo satisfy n/p <1+s,
and let ¢ = n(nrf;) + p(nnt_lgs). For all f: R® — R measurable we
have &, ,(f) < oo if and only if the seminorm [flwi+sp@ny is finite.

Furthermore, there exists a constant C = C(n,p,s) such that
Oil[f]evus,p(]gn) < 5p,q(f) < C[f]wus P(RM)

The organization of the paper is the following. In Section 2 we recall
some facts about Sobolev—Slobodeckij spaces. In Section 3 we prove that
for f € WItSP we have &, 4(f) < co. In Section 4 we prove the reverse
implication, and thus we conclude the proof of Theorem 1.1 and The-
orem 1.2. Our reasoning is essentially a modified version of the one
in [BK].

Throughout the article B(z,r) will denote a closed ball of radius r
centered at x, and wy, is a constant equal to the Lebesgue measure of a
k-dimensional unit ball. We will use the letter C' to denote a constant
which may change from line to line and which may depend on several
parameters. Any such dependence will be noted.
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2. Sobolev—Slobodeckij spaces
Let us recall the definition of Sobolev—Slobodeckij spaces.

Definition 2.1. Let U C R" be an open set, k € {0,1,2,...},0<s <
1,1 <p<oo. Set
1/p

D" f(@) - D f )P
I weseor =Ilhwmsoyt| S [ [P0 gy

le|=k

Here we assume that W%? = LP. The Sobolev-Slobodeckij spaces are
defined as

WkHsP(U) = {f e WEP(U) - [fllwssr@y < 00}

We will be working with open bounded sets satisfying the following
cone condition.

Definition 2.2. We say that an open bounded set U C R”™ satis-
fies the cone condition if there exist bounded open sets Uj,...,U,,
and cones C4,...,C,, which are rotated versions of a fixed cone Kj; =
{(«',2,) €ER™: 0 <z, < h, || < az,} such that

m
ouc|JUi and (UNU)+CiCU
i=1
foreachi=1,...,m.
An example of sets satisfying the cone condition are open bounded
sets with Lipschitz boundary.

In our later considerations we will need the following well-known re-
sults about Sobolev—Slobodeckij spaces.

Theorem 2.3 ([Tril, 4.2.3/Theorem]). Let U C R™ be a bounded open
set satisfying the cone condition, k € {0,1,2,...},0<s< 1,1 <p<
oo. Then there exists a bounded extension operator from WH+sP(U)
to Wh+s»(R").

Given a fixed open set U C R™ and = € U we define
={heR":z+helU,z—hecU}

and

flz+h) —2f(x) + fz — h)P L/p
[flwrter @) = (// |h7l+((13-s)p( ) dhdx) .
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Theorem 2.4 ([Tril, 2.5.1/Theorem, 4.4.2/Theorem 2|). Let U C R"™
be a bounded open set satisfying the cone condition, or U = R™. Suppose
0<s<1,1<p<oo. Then |||prwy + [Jwitsr@w) is an equivalent
norm on W1tsP(U).

Remark 2.5. Referenced results are stated in [Tril] for Besov spaces B, ,

but for sufficiently regular open sets (e.g. R™ or bounded open sets
which satisfy the cone condition) we have W*?(U) = B, ,(U), see Chap-
ters 2.5.1, 4.4.2 in [Tril].

In Section 3 we will use the following characterization of functions
with [f]y1+sp@n) < oo due to Dorronsoro [Dor|. Given a locally in-
tegrable function f and a cube Q C R™ we denote by Fgf the unique
affine function such that

/Qf—PQfdxza

/(f—PQf)xidxzo, i=1,...,n.
Q

For z € R™, t > 0 we set

Qf(x,t) = sgplIf = PgllL~(q)s

where the supremum is taken over all cubes @@ C R” of sidelength ¢ such
that z € Q.

Theorem 2.6 ([Dor, Theorem 2|). Let 1+s > n/p. For any measurable
Junction f: R™ — R we have [fly1+sp@ny < 00 if and only if

Qp(x,t)P 1/
[[fﬂwl+a P Rn = (/ /n tlfrp(l"ré) d dt) < OQ.

Moreover, we have some absolute constant C such that

C_l[f]wl+s,p(Rn) < [[f]]W1+s,p(Rn) < C[f]W1+s,p(Rn).

Remark 2.7. The seminorm used in [Dor| is different from [-Jyy1+s.p®n)-
However, both seminorms are equivalent, see [Tri2, 5.2.3/Theorem 2].
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3. Estimating &, 4(f) in terms of [f]yy1+s,p
We begin by considering the case U = R".
Lemma 3.1. Letn € N0 < s < 1,1 < p < o0 satisfy n/p < 1+ s.

Let ¢ = n(nn-:r;) + p(nj_:;s). Suppose that f: R™ — R is measurable and

[f]W1+s,p(Rn) < 0. Then
gp,q(f) S C[f]ip;v1+s,p(]1§n)a
where C = C(n,p, s).

The following lemma will let us use Q(x,t) to estimate &, ;. Recall
that F(x) = (z, f(x)).

Lemma 3.2. Suppose f € L. _(R™), xg,...,Znt1 € R™. Then

loc
HTHA(F (20), -, F2n1)))
< CQ¢(xo,2diam(zo, . . ., Tpy1)) diam(zo, . .., Tpy1)",
where C' = C(n).
Proof: Set d = diam(zg, z1,...,2n+1), T = A(F(20), ..., F(Tnt+1)). Let
@ C R™ be the cube centered at xy with sidelength 2d. Note that
2, €Q,i=0,...,n+ 1.

Without loss of generality we may assume that Pg(0) = 0, i.e. it is lin-
ear. We define IT: R"*! — graph(Pg) as the orthogonal projection onto
graph(Pg), and IT+: R"*! — graph(Pg)* as the orthogonal projection
onto graph(Pg)*.

For every y € @ holds

[f(y) = PoW)| < If — Pollz=(q) < Q¢ (0,2d).
In particular, we have for the vertices of T’

T (F(a))| < |F (i) — (4, Po(i))| = | f(2:) — Po(w:)| < Qy(x0, 2d).
This fact together with convexity of T imply that for all ¢t € T
[T (8)] < Qf (20, 2d).
At the same time
[TI(¢t) — TI(xp)| < |t — 20| < d.
Thus, T is contained in
Z = {y e R"' 1 T(y) — M(wo)| < d, [T (y)] < Qy(0,2d)}.

Using Fubini’s theorem yields the desired inequality:

AT < AN Z) = 2d"w, Q (w0, 2d). O



670 D. DABROWSKI

Proof of Lemma 3.1: For z,y € R™ set
U(z,y) = {(z1,...,2,) € (R™)" : diam(x, z1,...,2,,y) = | — y|}.

Then due to the symmetricity of ICp 4(20, - . ., Trn+1) With respect to the
permutations of variables we obtain

gp’Q(f) :/ ]vaq($0,...,$n+1)d$0...d1~n+1
(Rn)w+2

n+2 .
:( 0 )/ / / Kpg(z,z1...,20,y)dI" (21,...,2,) dr dy.
IR U (2,y)

Recall that F'(z) = (z, f(x)). We proceed by using definitions of I, ,
and U(z,y):

ATHAF (@), F(@1),. -, Flan), F(y)))?
Eral C// /U(Iy diam(z, x1,. .., Ty, y)1"+2)

X djf”Q(xl,...,xn) dx dy

= f [, T e

X d%”2(x1,...,xn) dz dy

Lemma32 Q 2
/ / / Syl 2z —y))? %)= |) d%"z(xl,...,xn)dxdy
o Jrn Juy) o —ylaeF?)

_ n? Q(x, 2]z —y[)?
C/n 2 U e 42 Y-

Since U(z,y) C (B(z, |z —y|))™ we have

A7 (U(2,y)) < Cle —y|™".

e a2l = ol
pq <C/n/n dedy

Qy (@, 2]z —y|)”
_C'/”/" 2 — g dz dy.

Thus




CHARACTERIZATION OF SOBOLEV—SLOBODECKIJ SPACES. . . 671

In the last equality we used the fact that ¢ = "("H) + 2 ("ntrl; 9 We
change the y variable using n-dimensional spherlcal coordinates such

that 2|y — x| = r, and we get from Theorem 2.6

Qg (z,r
Ep.ql <C/ /Rnr“r(“rs dx dr

= C[[f]]ngs,p(mn < C[.ﬂwlﬁ P(Rn)* [

Corollary 3.3. Letn e N, 0 < s < 1,1 < p < oo satisfy n/p < 1+ s.

Suppose that U C R™ is open, bounded, and satisfies the cone condition,

orU=R". Let q = n(nn_gl) + p(ny;};s) If f e WitsP(U), then
1125+ Ena(F) < CLAB 1o

Proof: For U = R™ we just use Lemma 3.1, so assume U # R". We use

Theorem 2.3 to extend f to f € W P(R"). By Lemma 3.1 we get

5p,q(f) < C||f||W1+sm(Rn) < Ol fllwr+sewy-
Since &, 4(f) < Sp,q(f), and || f||z» @y < | fllwi+sp @), we are done. [

4. Estimating [f]y1+s,» in terms of &£, ¢(f)

Lemma 4.1. Let n € N1 < p < o0, 0 < s < 1. Suppose that U C R"
1s open, bounded, and satisfies the cone condition, or U = R™. Let

q= ”(n"j;) + p(”r;:l;s). If f: U — R is measurable, and &, 4(f) < oo,

then

eny < CEnalF),
where C' = C(n,p,s,U).
In the proof it will be convenient to use exterior product. The defini-
tion suitable for our purposes is given below.
Definition 4.2. Let k € {1,...,n}. Given vectors wy,...,w; € R" we

define their exterior product wi A---Awy as a vector in R(Z) with coordi-
nates equal to k-minors of the kxn-matrix (w1, ..., wy). The coordinates
are indexed by k-tuples (i1, ...,4;) withi; € {1,...,n}andi; < --- <.
Remark 4.3. We will use only two properties of exterior product, namely
that

a) the mapping (wq,...,wg) — wy A -+ - A wy is k-linear,

b) the length |wy A --- A wy| is equal to the k-dimensional volume of

the parallelotope spanned by wi, ..., wg.
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To prove Lemma 4.1 we will also need the following technical lemma.

Lemma 4.4. Let U C R™ be an open bounded set satisfying the cone
condition, or U=R". For a fized oo € (0,1),r € (0,diam(U)), andx € U
let us set
W = {(w1,w2,...,w,) € (B(0,r))" C (R")":
z+w; €U, |wy A+ Awy| > ar™}.
Then there exists & € (0,1) such that for all r € (0,diam(U))
A (WEL) > O
where C = C(n,U).
Proof: Let
Wio = {(w1,we,...,wy,) € (B(0,7))" : Jwr A+ Awy,| > ar”}.

Note that
Wr,a = 7nVVl,ou

hence
(1) A (Wha) = A (W o)r™ .
For U = R" we take & = 1/2 and we are done because W:fl/Q =Wr1/2

and %”2(Wl,1/2) > 0. Now suppose U is open, bounded, and satisfies
the cone condition.
Note that the set

N = {(w1,wa,...,w,) € (B(0,1))" : |wy A -+ Aw,| =0}
is contained in the set of singular n xn matrices, so it is of zero ¢ "* mea-
sure.
Since Uae(0,1)W1,o UN = (B(0,1))", we get
. n? _ n
(2) lim A7 (W1 0) = ()"

Observe that due to the cone condition satisfied by U there exists
a Cp € (0,1) such that for any y € U and any r € (0, diam(U)) we have

(3) (U NB(y,r)) > Cowpr™.
By (2) we may choose & so small that

2 Ccy
(4) A" (Wha) > < - 20) (wn)™

Without loss of generality assume that £ = 0. Then
Wis=WeanU"=W,.an(UNB(0,r))".
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It follows from (1) and (4) that

5) A (Wra) > ( - C’f) (wn ).

At the same time (3) yields
(6) A" ((UNB0,7)") > CF (wa)"r™".
Since both W, 45 and (U N B(0,7))" are subsets of (B(0,7))" we have
(7) A (Wra U (UNBO0,1)") < (wp)r™" .
The trivial equality

A (W 01U NB(0,7)") = ™ (Wea) + 2™ (UNB(0,7)")

— " (W5 U (UNB(0,r)")

together with (5), (6), and (7) give us

2 Cn 2 2
A (Wra 0 (UNB0,7)") > <1 - 20) (W)™ + CF (wn)"r"
_ (wn)nr7l2 — Ci(wn)7erL2
2
Thus 7 (W5 N (UNB(0,7)") = 27 (Wig) > Cr. O

Proof of Lemma 4.1: Recall that F(z) = (z, f(z)). We have

_ AT A(F (w0), - -, F(@n41)))
gpﬂ(f) N /Un+2 diam(gco, S 7$n+1)(n+2)q
[(F(21) = F(z0)) A -+ A (F(#ng1) — F(xo)) |
Un+2 diam(xo, ey In+1)(n+2)q

Recall that

P
dl‘o L da:n_H

=C

dir() cee dxn+1.

H,={heR":z—heU z+heU}
Forx e U, h € H,, set
Wy = Wi & = {(wi,we,...,wy) € (B(O, [h])" :
z+w; €U, |[wy A+ Awy| > @|h|"},

with & given by Lemma 4.4 (the assumptions of Lemma 4.4 are met
because H, C B(0,diam(U)), so |h| € [0,diam(U))). Using the change
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of variables xg =z, z1 =2+ h, x;, =z +w;_1 fori=2,...,n+ 1, and
restricting the area of integration to h € Hy, (w1, ...,w,) € W} yields

dl‘o s dIn+1

|(F'(z1) = F(@o)) A - AE(zp41) = F(20))[”
5;0 Q(f):C/[Jn+2 djamo(x07._.71'n+1)(nt_2)q 0

>C// / F(z+h) — F(2)) A (F(z+w) — F(z)) A~

--A(F(ff+wn)—F($))|p

1
dlama: T+ h,r+wy,. .., T+ w,) "2

>C// / F(z+h) — F(2)) A(F(z+w) — F(z)) A~

A (F(z +w,) — F(z))|P|h|~ "2 dw, - - - dw, dh dz,

dwi - - - dw,, dh dx

where the last inequality follows from the fact that all w; € B(0, |h|).
Now, rewrite the last line as 7 times two identical integrals. Using the
fact that H, = —H, we can substitute h — —h in the second integral
and get

C
Ealf) > /U [, G = F@) A (b - F@) -

(F(z 4 wy) — F(z))[P|h|~ "2 dw, - - - dw, dh dx

7// / Flz = h)—F(@)) A (F(z + w)—F(z)) A -

A (F(x+w,) — F(x)|P |h|~"29 dw, - - - dw,, dh dz.

We use the trivial estimate |a|? + |b|P > 217P|a+b|P and (n+ 1)-linearity
of exterior product to obtain

Epal >C///I %+ h) — 2P () + F(z — h)

(8) AF(@+wi) — F(@) A A (F@ +wp) — F@))|P

X ||~ 29 dayy - - - dw,, dh d.
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We need to estimate the term
|(F(x+h)—2F(x)+ Flx —h))AN (F(z+w) — F(z))A---

A (F(z+wy,) — F(x))]
. Kf(“h)—?f?ﬂfﬂf(x—h)) : (f(a:+wUl}; —f(x)) n

Q)
fl@+wn) = f(x)) |
For brevity of notation let us set A? f(z) = f(z+h) —2f(x)+ f(z —h).
Applying Laplace expansion with respect to the first column yields

‘ <A%§<x>) . (f(x ) - f(x)> Aot <f<a: run)— f(x))

— |de 0 w1 Wn,
a dt(Aif(m) fl@+w) = flz) ... f($+wn)_f(x)>‘
= [ARf(@)[[wi A Awy.
For (w1, ...,w,) € Wi we have |wy A --- Awy| > &|h|"”, thus
|(F(x+h) —2F(z)+ F(x — h)) A (F(x +wy) — F(x)) A---
(9) e AN (F(x A+ wn) = Fx)]
z alf(x+h) = 2f(x) + f(z = h)[[A]".
Putting together (8) and (9) we obtain

Epql >C// [+ h) _2f()+f(w_h)|pdw1...dwndhdx
e

|h|(n+2 g—np

_C/U/Hm%” (W) dh dz.

|h|(n+2)a—np

Lemma 4.4 assures that 2" (W) = 2™ W) 2 C|h|™*. Since ¢ =

n(n+1) p(n+1+s)
n+2 + n+2

we get

Epal >C// floth) = 2/@) + fla = W g g,

‘h|n+sp+;n

:C[.ﬂWIJr s (U)* D
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