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Abstract: Given a positive function F defined on the unit Euclidean sphere and
satisfying a suitable convexity condition, we consider, for hypersurfaces Mn immersed

in the Euclidean space Rn+1, the so-called k-th anisotropic mean curvatures HF
k ,

0 ≤ k ≤ n. For fixed 0 ≤ r ≤ s ≤ n, a hypersurface Mn of Rn+1 is said to be

(r, s, F )-linear Weingarten when its k-th anisotropic mean curvatures HF
k , r ≤ k ≤ s,

are linearly related. In this setting, we establish the concept of stability concerning

closed (r, s, F )-linear Weingarten hypersurfaces immersed in Rn+1 and, afterwards,

we prove that such a hypersurface is stable if, and only if, up to translations and
homotheties, it is the Wulff shape of F . For r = s and F ≡ 1, our results amount to

the standard stability studied, for instance, by Alencar–do Carmo–Rosenberg [1].

2010 Mathematics Subject Classification: Primary: 53C42; Secondary: 53B25.

Key words: Euclidean space, Wulff shape, k-th anisotropic mean curvatures,

(r, s, F )-linear Weingarten hypersurfaces, stable closed hypersurfaces.

1. Introduction and statement of the main result

In recent years, following the seminal ideas established by Reilly
in [24, 25], several authors obtained geometric properties of a hyper-
surface through the study of the Euler–Lagrange equation associated to
certain variational problems (see, for instance, [1, 4, 5, 6, 14, 11, 29]).
Proceeding into this branch, in this paper we deal with a suitable class of
closed hypersurfaces immersed in the Euclidean space Rn+1, which are
critical points for the variational problem of minimizing a linear combina-
tion of certain area functions preserving the volume enclosed. A precise
description of our object of study will be given after some preliminaries.

Let F : Sn → R+ be a positive smooth function which satisfies the
following convexity condition:

(1.1) (D2F + FI)x > 0, ∀x ∈ Sn,
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whereD2F denotes the intrinsic Hessian of F on the n-sphere Sn of Rn+1,
I denotes the identity on TxSn, and > 0 means that the matrix is positive
definite. We consider the map

(1.2)
φ : Sn −→ Rn+1

x 7−→ F (x)x+ (∇SnF )x,

whose image WF = φ(Sn) is a smooth, convex hypersurfaces in Rn+1

called the Wulff shape of F (for more details concerning the properties
of the Wulff shape see, for instance, [9, 14, 16, 17, 18, 19, 27]). We
note that, when F ≡ 1 we have that the Wulff shape of F is just the
n-dimensional Euclidean sphere Sn ⊂ Rn+1.

Throughout this paper, x : Mn ↪→ Rn+1 will stand for a smooth im-
mersion of a closed oriented hypersurface and N : Mn → Sn will denote
its corresponding Gauss map. In this setting, let

(1.3) AF := D2F + FI

and
NF := φ ◦N : Mn −→WF ,

which is called the generalized Gauss map into the Wulff shape. Then

SF := −dNF = −AF ◦ dN
is defined as being the F -Weingarten operator.

According to the previous definitions, we note that although AF

and dN be symmetric operators, SF is symmetric if and only if AF

and dN commute, which does not occur in general. We point out that
all the roots of the characteristic polynomial of SF are real. The eigen-
values of SF are called the anisotropic principal curvatures of x and are
denoted by λ1, . . . , λn. Moreover, if the principal curvatures of x are
positive, so are the anisotropic principal curvatures λi (for a proof, see
Lemma 2 in [10]).

At each p ∈ Mn, SF restricts to a linear map SF (p) : TpM → TpM .
For 1 ≤ k ≤ n, let Sk(p) denote the k-th elementary symmetric function
on the eigenvalues of SF (p); thus one gets n smooth functions Sk : M →
R, such that

(1.4) det(tI − SF ) =

n∑
k=0

(−1)kSkt
n−k,

where S0 ≡ 1 by construction. If p ∈ Mn and {λk} are the eigenvalues
with respect to the operator SF (p), one immediately sees that

Sk = σk(λ1, . . . , λn) :=
∑

1≤i1<···<ik≤n

λi1 · · ·λik ,
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where σk ∈ R[X1, . . . , Xn] is the k-th elementary symmetric polynomial
on the indeterminates X1, . . . , Xn.

For 1 ≤ k ≤ n, one defines the k-th anisotropic mean curvature HF
k

of x by

(1.5)

(
n

k

)
HF

k = σk(λ1, . . . , λn).

There exist many works concerning the properties of the k-th anisotropic
mean curvatures of hypersurfaces in Rn+1 space. We refer the readers
to [10, 13, 14, 15, 16, 23, 30].

At this point, we are in a position to define our geometrical object of
study: an immersion x : Mn ↪→ Rn+1 is said a (r, s, F )-linear Weingarten
hypersurface if, for some integers r and s satisfying the inequality 0 ≤
r ≤ s ≤ n− 1, holds the following linear relation

arbrH
F
r+1 + · · ·+ asbsH

F
s+1 = constant,

for some nonnegative real numbers ak, k ∈ {r, . . . , s}, with at least one
non zero, where bk = (k+ 1)

(
n

k+1

)
and F : Sn → R+ is a positive smooth

function which satisfies the convexity condition (1.1).
We observe that, when r = 0, s = 1, and F = 1, these hypersur-

faces are classically called linear Weingarten hypersurfaces and, in the
last years, a vast literature has been produced in the direction to obtain
characterization results of them (see, for instance, [2, 3, 7, 8, 20, 26]).
In this paper we extend this study to the anisotropic case. It is said that
a phenomenon has anisotropic behavior when its effects vary with the di-
rection; as opposed to isotropic behavior (homogeneous in all directions).
This is observed in many phenomena of nature. Indeed, it appears that
anisotropic properties are present in the study of many phenomena. For
example, crystals whose propagation of light depends on the direction
exhibit optical anisotropy [28]. The (s, s, F )-linear Weingarten hyper-
surfaces are exactly the hypersurfaces with HF

s+1 constant. On the other
hand, taking into account that all the anisotropic principal curvatures of
the Wulff shape WF are constant (see, for example, [14]), we have that
WF constitutes a natural example of closed (r, s, F )-linear Weingarten
hypersurface immersed in Rn+1, for any 0 ≤ r ≤ s ≤ n− 1.

Motivated by the previous discussion, here we will establish the notion
of stability concerning closed (r, s, F )-linear Weingarten hypersurfaces
in Rn+1. Such concept arises considering the variational problem of
minimizing a suitable linear combination of certain functionals (k, F )-th
areas for volume-preserving variations (cf. Section 4). Now, we are in
position to state our main result.
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Theorem 1. Let r and s be integers satisfying 0 ≤ r ≤ s ≤ n − 2,
n ≥ 3, and let x : Mn ↪→ Rn+1 be a closed (r, s, F )-linear Weingarten
hypersurface with HF

s+1 positive. Then, x : Mn ↪→ Rn+1 is stable if, and
only if, up to translations and homotheties, x(M) is the Wulff shape
of F .

We observed that taking r = s in Theorem 1 we reobtain Theorem 1.3
of [14]. The proof of Theorem 1 is given in Section 5.

Remark 1. Related to the isotropic case, Micallef and Moore [22] proved
that any minimal 2-sphere in a manifold with positive isotropic curvature
is unstable. More recently, Li [21] showed the nonexistence of stable
immersed minimal surfaces uniformly conformally equivalent to C in any
complete orientable 4-dimensional Riemannian manifold with uniformly
positive isotropic curvature.

2. The operators Pk, Tk, and Lk

In order to give a description of our variational problem, we will
need to define some suitable operators associated to a hypersurface
x : Mn ↪→ Rn+1 as in the previous section. The first ones are the oper-
ators Pk : X(M) → X(M), 0 ≤ k ≤ n, which can be defined inductively
from the F -Weingarten operator SF and k-th anisotropic mean curva-
tures HF

k by

(2.1) P0 = I and Pk =

(
n

k

)
HF

k I − Pk−1 ◦ SF ,

where I denotes the identity in X(M). Equivalently,

(2.2) Pk =

k∑
j=0

(−1)j
(

n

k − j

)
HF

k−jS
j
F .

Note that each Pk(p) is also a linear operator on each tangent space TpM
which commutes with SF (p).

The operator Tk : X(M)→ X(M), 0 ≤ k ≤ n, is defined by

(2.3) Tk = Pk ◦AF .

Note that, since AF and dN are symmetric, from (2.2) we have that the
transformations Tk are all self-adjoint operators. So, likewise SF ◦ AF ,
dN ◦ SF , and dN ◦ Pk are symmetric. Moreover, taking into account
that

Tk−1 ◦ dN = Pk−1 ◦AF ◦ dN = −Pk−1 ◦ SF ,
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we get

(2.4) Pk =

(
n

k

)
HF

k I − Pk−1 ◦ SF =

(
n

k

)
HF

k I + Tk−1 ◦ dN.

Finally, we define the operator Lk : C∞(M)→ C∞(M) by

(2.5) Lk(f) = div(Tk(∇f)).

Equivalently,

(2.6) Lk(f) =
∑
i,j

[
(Tk)ijfj

]
i
,

where we denote the coefficients of covariant differential of f and Tk
with respect to a (local) orthonormal frame {e1, . . . , en} on Mn by fi
and (Tk)ij , respectively. In particular, we the F -Laplacian is defined by

(2.7) ∆F (f) := L0(f) = div(AF (∇f)).

3. Key lemmas

This section is devoted to other auxiliary results which will be also
necessary to prove Theorem 1. Initially, we recall suitable inequalities
concerning the k-th anisotropic mean curvatures, which will be very
useful to show our main result.

Lemma 1. Let x : Mn ↪→ Rn+1 be a closed hypersurface and F : Sn →
R+ satisfying the condition (1.1). If HF

s+1 is positive on Mn then for
1 ≤ k ≤ s, we have:

(i) each k-th anisotropic mean curvature HF
k is positive;

(ii) HF
1 H

F
k+1 −HF

k+2 ≥ 0.

Moreover equality holds for some k in (ii) if, and only if, the anisotropic
principal curvatures are equal.

Proof: Item (i) corresponds to Lemma 10 of [10]. For (ii), it is known
that the following generalization of the Cauchy–Schwarz type inequality
holds true (see, for instance, [12, Theorem 51, p. 52, and Theorem 144,
p. 104]) for any 1 ≤ k ≤ n− 1:

(3.1) (HF
k )2 −HF

k−1H
F
k+1 ≥ 0,

the equality occurring for some k if, and only if, at this point the
anisotropic principal curvatures are equal. As HF

k > 0 for any 0 ≤
k ≤ s+ 1, we can write the inequality (3.1) as follows:

HF
k

HF
k−1
≥
HF

k+1

HF
k

,
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for any 1 ≤ k ≤ s + 1, and equality holds for some k if, and only if, at
this point the anisotropic principal curvatures are equal. Hence, we have
the inequalities

(3.2) HF
1 ≥

HF
2

HF
1

≥ HF
3

HF
2

≥ · · · ≥
HF

k+2

HF
k+1

,

for all 0 ≤ k ≤ s, and equality holds in (3.2) if, and only if, the
anisotropic principal curvatures are equal. Thus, from (3.2) we obtain
the results, finishing the proof.

Now, we will quote well known result which will be used later (for a
proof, see He and Li [13, 15] or Palmer [23]).

Lemma 2. Let x : Mn ↪→ Rn+1 be an isometric immersion of a closed
orientable Riemannian manifold Mn and F : Sn → R+ satisfying the
condition (1.1). If λ1 = λ2 = · · · = λn = constant 6= 0, then up to
translations and homotheties, x(M) is the Wulff shape of F .

In the next lemma, we recall the so-called Minkowski formulas (see
He and Li [13, 15]).

Lemma 3. Let x : Mn ↪→ Rn+1 be a closed hypersurface and F : Sn →
R+ satisfying the condition (1.1). For each 0 ≤ j ≤ n− 1, the following
Minkowski-type formulas hold∫

M

(FHF
k +HF

k+1〈x,N〉) dM = 0.

At this point, we will fix some notation. Given f ∈ C∞(M) smooth
function, we define:

Ik[f ] := Lkf + 〈TkdN, dN〉f ;(3.3)

Rr,s[f ] :=

s∑
k=r

(k + 1)akIk[f ].(3.4)

We will also need of the following result due to He and Li [13].

Lemma 4. For each 0 ≤ k ≤ n− 1, we have:

Ik[F (N)] = −
(

n

k + 1

)
〈∇HF

k+1,∇SnF 〉+ n

(
n

k + 1

)
HF

1 H
F
k+1

− (k + 2)

(
n

k + 2

)
HF

k+2;

(3.5)

Ik[〈x,N〉] = −
(

n

k + 1

)
(〈∇HF

k+1, x
>〉 − (k + 1)HF

k+1).(3.6)
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Finally, we also need of the following symmetry result, which will be
crucial to establish the proof of Theorem 1:

Lemma 5. For f, g ∈ C∞(M) and 0 ≤ r ≤ s ≤ n− 1, we have:∫
M

gRr,s[f ] dM =

∫
M

fRr,s[g] dM.

Proof: By (3.4) we have

(3.7)

∫
M

gRr,s[f ] dM =

s∑
k=r

(k + 1)ak

∫
M

gIk[f ] dM.

By Stokes theorem and from the symmetry of Tk, we have∫
M

gLk(f) dM =

∫
M

g div Tk∇f dM

= −
∫
M

〈Tk∇f,∇g〉 dM

= −
∫
M

〈∇f, Tk∇g〉 dM

=

∫
M

f div Tk∇g dM =

∫
M

fLk(g) dM.

(3.8)

Thus, by (3.3) and (3.8)∫
M

gIk[f ] dM =

∫
M

g(Lk(f)+〈TkdN, dN〉f) dM

=

∫
M

gLk(f) dM+

∫
M

fg〈TkdN, dN〉 dM

=

∫
M

fLk(g) dM+

∫
M

fg〈TkdN, dN〉 dM

=

∫
M

f(Lk(g)+〈TkdN, dN〉g)dM=

∫
M

fIk[g] dM.

(3.9)

Therefore, by (3.7), (3.9), and (3.4), we have∫
M

gRr,s[f ] dM =

s∑
k=r

(k + 1)ak

∫
M

fIk[g] dM =

∫
M

fRr,s[g] dM,

finishing the proof.
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4. Description of the variational problem

A variation of a closed oriented hypersurface x : Mn ↪→ Rn+1 is a
smooth map

X : Mn × (−ε, ε) −→ Rn+1

such that, for all t ∈ (−ε, ε), the map Xt : Mn → Rn+1 given by Xt(p) =
X(t, p) is an immersion such that X0 = x. In what follows, dMt will
denote the volume element of the metric induced on Mn by Xt and
Nt will stand for the unit normal vector field along Xt.

The variational field associated to the variation X is the vector

field
∂X

∂t

∣∣∣∣
t=0

. In this setting, denoting by (·)> the tangential compo-

nent on Mn, we have that

∂X

∂t
= fNt +

(
∂X

∂t

)>
,

where

(4.1) f =

〈
∂X

∂t
,Nt

〉
.

The volume of the variation X is the functional

V : (−ε, ε) −→ R

t 7−→ V(t) =
1

n+ 1

∫
M

〈Xt, Nt〉 dMt,

and we say X is volume-preserving if V(t) = V(0), for all t ∈ (−ε, ε).
The next lemma is a well known result and a proof of it can be found

in [6].

Lemma 6. Let x : Mn ↪→ Rn+1 be a closed oriented hypersurface. If
X : Mn × (−ε, ε)→ Rn+1 is a variation of x, then

dV
dt

=

∫
M

f dMt.

In particular, X is volume-preserving if, and only if,
∫
M
f dMt = 0 for

all t ∈ (−ε, ε).

We can reason as in the proof of Lemma 7 of [10] to get the following:

Lemma 7. Let x : Mn ↪→ Rn+1 be a closed oriented hypersurface with
Gauss map N . For any f ∈ C∞(M) satisfying

(4.2)

∫
M

f dM = 0,

there exists a volume-preserving variation X : Mn× (−ε, ε)→ Rn+1 of x
such that its variational vector field is fN .
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For each k ∈ {0, . . . , n}, we define the (k, F )-area functional Ak,F :
(−ε, ε)→ R associated to the variation X : Mn × (−ε, ε)→ Rn+1 by

(4.3) Ak,F (t) =

∫
M

F (Nt)Sk dMt.

Note that for F ≡ 1 and k = 0, it is the classical area functional.
The result below follows from Lemma 3.1 of [14].

Lemma 8. Let x : Mn ↪→ Rn+1 be a closed oriented hypersurface. If
X : Mn × (−ε, ε)→ Rn+1 is a variation of x then

(4.4)
∂HF

k+1

∂t
=
k + 1

bk
{Lk(f)+f〈Tk◦dNt, dNt〉}+

〈(
∂X

∂t

)>
,∇HF

k+1

〉
,

where f is defined in (4.1).

The previous lemma allows us to obtain the first variation of the
(k, F )-area functional (cf. Theorem 3.3 of [14]).

Lemma 9. Let x : Mn ↪→ Rn+1 be a closed oriented hypersurface. If
X : Mn × (−ε, ε)→ Rn+1 is a variation of x, then

(4.5) A′k,F (t) = −bk
∫
M

HF
k+1f dMt,

where f is defined in (4.1).

Now, motivated by the concept of (r, s, F )-linear Weingarten hyper-
surface, it is natural to consider the variational problem of minimizing
the following functional

(4.6)
Br,s,F : (−ε, ε) −→ R

t 7−→ Br,s,F (t) = arAr,F (t) + · · ·+ asAs,F (t)

for all variations X : Mn × (−ε, ε) → Rn+1 of x : Mn ↪→ Rn+1 which
preserve the volume V(t). The Jacobi functional associated to this vari-
ational problem is given by

(4.7)
Jr,s,F : (−ε, ε) −→ R

t 7−→ Jr,s,F (t) = Br,s,F (t) + λV(t),

where λ is a constant to be determined.
As an immediate consequence of Lemmas 6 and 9 we get

J ′r,s,F (t) =

∫
M

{
−

s∑
k=r

akbkH
F
k+1 + λ

}
f dMt.
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In order to make an appropriated choice of λ, let

H =
1

A0,1(0)

∫
M

{
s∑

k=r

akbkH
F
k+1(0)

}
dM

be a mean value of the k-th anisotropic mean curvatures of Mn, r≤k≤s.
We point out to the fact that, in case

∑s
k=r akbkH

F
k+1(0) is constant, one

has

(4.8) H =

s∑
k=r

akbkH
F
k+1(0) =

s∑
k=r

akbkH
F
k+1,

and this notation will be used in what follows without further comments.
Hence, choosing λ = H, we arrive at

(4.9) J ′r,s,F (t) =

∫
M

{
−

s∑
k=r

akbkH
F
k+1 +H

}
f dMt.

From (4.9) we observe that the critical points of the variational prob-
lem described above are exactly the closed (r, s, F )-linear Weingarten
hypersurfaces. This fact allow us to define a closed (r, s, F )-linear Wein-
garten hypersurface x : Mn ↪→ Rn+1 being stable when B′′r,s,F (0) ≥ 0,

for all volume-preserving variations X : Mn × (−ε, ε)→ Rn+1 of x.
Furthermore, we can reason as in [6] to obtain the following stabil-

ity criterion: a closed (r, s, F )-linear Weingarten hypersurface x : Mn ↪→
Rn+1 is stable if, and only if, J ′′r,s,F (0) ≥ 0, for all f ∈ C∞(M) such

that
∫
M
f dM = 0.

The sought formula for the second variation of Jr,s,F is a straightfor-
ward consequence of Lemmas 8 and 9.

Proposition 1. Let x : Mn ↪→ Rn+1 be closed (r, s, F )-linear Wein-
garten hypersurface. If X : Mn × (−ε, ε) → Rn+1 is a variation of x,
then J ′′r,s,F (0) is given by

(4.10) J ′′r,s,F (0)(f) = −
s∑

k=r

(k+1)ak

∫
M

{Lk(f)+〈Tk◦dN, dN〉f}f dM,

for f ∈ C∞(M).
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Proof: From (4.9) we obtain

J ′′r,s,F (0) =
∂

∂t

(∫
M

{
−

s∑
k=r

akbkH
F
k+1 +H

}
f dMt

)∣∣∣∣
t=0

= −
∫
M

s∑
k=r

akbk

(
∂HF

k+1

∂t

∣∣∣∣
t=0

)
f dM

+

∫
M

(
−

s∑
k=r

akbkH
F
k+1 +H

)
∂

∂t
(f dMt)

∣∣∣∣
t=0

.

Consequently, taking into account (4.4) and (4.8), we get

J ′′r,s,F (0) = −
s∑

j=r

(k + 1)ak

∫
M

{Lk(f) + 〈Tj ◦ dN, dN〉f}f dM

−
∫
M

〈(
∂X

∂t

)>
,∇

(
s∑

k=r

akbkH
F
k+1

)
︸ ︷︷ ︸

0

〉
f dM

= −
s∑

k=r

(k + 1)ak

∫
M

{Lk(f) + 〈Tk ◦ dN, dN〉f}f dM.

To finish the proof, we observe that the above expression depends only
on the hypersurface x : Mn ↪→Rn+1 and on the function f ∈ C∞(M).

5. Proof of Theorem 1

In what follows, we will consider the set

G =

{
f ∈ C∞(M) :

∫
M

f dM = 0

}
.

If x(M) is (up to translations and homotheties) the Wulff shape of F ,
from the proof of Theorem 1.3 in [14] we have that

−
∫
M

{Lk(f) + 〈Tk ◦ dN, dN〉f}f dM ≥ 0, ∀ f ∈ G and 0 ≤ k ≤ n.

So, from (4.10), J ′′r,s,F (f) ≥ 0 for all f ∈ G. Therefore, x is stable.

Reciprocally, supposing that x is stable, we have J ′′r,s,F (f) ≥ 0, for
all f ∈ G. Moreover, from Lemma 3 we can choose

f = γF (N) + ξ〈x,N〉
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as the test function, where

γ =

∫
M
F
∑s

k=r akbkH
F
k dM∫

M
F (N) dM

and ξ =

s∑
k=r

akbkH
F
k+1 = constant.

We also note that, from (3.3), (3.4), and Proposition 1 we have that

J ′′r,s,F (0)(f) = −
∫
M

fRr,s[f ] dM ≥ 0.

On the other hand, from (3.5) and (3.6) we get

Rr,s[f ]=

s∑
k=r

(k + 1)akIk[f ] =

s∑
k=r

(k + 1)akIk[γF (N) + ξ〈x,N〉]

=

s∑
k=r

(k + 1)ak(γIk[F (N)] + ξIk[〈x,N〉])

=

s∑
k=r

(k+1)ak

[
γ

(
−
(

n

k+1

)
〈∇HF

k+1,∇SnF 〉

+n

(
n

k + 1

)
HF

1 H
F
k+1 − (k + 2)

(
n

k + 2

)
HF

k+2

)

+ξ

(
−
(

n

k+1

)
〈∇HF

k+1, x
>〉−(k+1)

(
n

k+1

)
HF

k+1

)]
.

Hence, we get

(5.1) Rr,s[f ] =

s∑
k=r

akbk[γ(nHF
1 H

F
k+1−(n−k−1)HF

k+2)−ξ(k+1)HF
k+1].

Furthermore, from Lemma 5 we also have that

J ′′r,s,F (0)(f) = −
∫
M

fRr,s[f ] dM

= −
∫
M

(γF + ξ〈x,N〉)Rr,s[f ] dM

= −
∫
M

(γFRr,s[f ] + ξfRr,s[〈x,N〉]) dM.

(5.2)

But, from (5.1) and Lemma 4 we have

γFRr,s[f ] =

s∑
k=r

akbkF [γ2(nHF
1 H

F
k+1−(n−k−1)HF

k+2)−γξ(k+1)HF
k+1].
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Consequently, we get

γFRr,s[f ]=

s∑
k=r

akbkF
[
γ2((n−k−1)HF

1 H
F
k+1 + (k + 1)HF

1 H
F
k+1

− (n− k − 1)HF
k+2)− γξ(k + 1)HF

k+1

]
=

s∑
k=r

akbkF
{
γ2(n− k − 1)[HF

1 H
F
k+1 −HF

k+2]

+ γ2(k + 1)HF
1 H

F
k+1 − γξ(k + 1)HF

k+1

}
.

(5.3)

Moreover,

ξfRr,s[〈x,N〉] = ξf

s∑
k=r

(k + 1)akIk[〈x,N〉]

= ξf

s∑
k=r

akbk(−〈∇HF
k+1, x

>〉 − (k + 1)HF
k+1)

= −ξf
s∑

k=r

akbk(k + 1)HF
k+1

= −
s∑

k=r

akbk(k + 1)ξ(γF + ξ〈x,N〉)HF
k+1.

(5.4)

Therefore, from (5.2), (5.3), (5.4) we have

J ′′r,s,F (0)(f) = −
s∑

k=r

akbk

∫
M

[
F
{
γ2(n− k − 1)[HF

1 H
F
k+1 −HF

k+2]

+ γ2(k + 1)HF
1 H

F
k+1 − γξ(k + 1)HF

k+1

}
− (k + 1)ξ[γF + ξ〈x,N〉]HF

k+1

]
dM

= −
s∑

k=r

akbkγ
2(n− k − 1)

∫
M

F (HF
1 H

F
k+1 −HF

k+2) dM

−
s∑

k=r

akbk

∫
M

[
F
{
γ2(k + 1)HF

1 H
F
k+1 − γξ(k + 1)HF

k+1

}
− (k + 1)ξ[γF + ξ〈x,N〉]HF

k+1

]
dM.
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Thus, from Lemma 3 we get

J ′′r,s(0)(f)=−
s∑

k=r

akbkγ
2(n− k − 1)

∫
M

F (HF
1 H

F
k+1 −HF

k+2) dM

−
s∑

k=r

akbk

∫
M

F
{
γ2(k + 1)HF

1 H
F
k+1 − γξ(k + 1)HF

k+1

− (k + 1)ξγHF
k+1 + (k + 1)ξ2HF

k

}
dM(5.5)

=−
s∑

k=r

akbkγ
2(n− k − 1)

∫
M

F (HF
1 H

F
k+1 −HF

k+2) dM

−
s∑

k=r

akbk(k+1)

∫
M

F
{
HF

1 H
F
k+1γ

2−2ξHF
k+1γ+ξ2HF

k

}
dM.

Now, for each point p ∈ Mn, we consider the polynomial in z given
by

Pk,p(z) = HF
1 H

F
k+1z

2 − 2ξHF
k+1z + ξ2HF

k .

In this case, we have that the discriminant of Pk,p is

∆ = 4ξ2[(HF
k+1)2 −HF

1 H
F
k+1H

F
k ] = 4ξ2(HF

k+1)2

(
1− HF

1 H
F
k

HF
k+1

)
≤ 0,

where the last inequality in the expression above is given by Lemma 1.
Thus, we have that Pk,p ≥ 0, ∀ p ∈ Mn, and ∀ k ∈ {r, . . . , s}. In
particular,

(5.6) HF
1 H

F
k+1γ

2 − 2ξHF
k+1γ + ξ2HF

k = Pk,p(γ) ≥ 0,

∀ p ∈ Mn and ∀ k ∈ {r, . . . , s}. So, from (5.5), (5.6), and Lemma 1, we
have

J ′′r,s(0)(f) = −
s∑

k=r

akbkγ
2(n− k − 1)

∫
M

F (HF
1 H

F
k+1 −HF

k+2) dM

−
s∑

k=r

akbk(k + 1)

∫
M

FPk,p(γ) dM≤ 0.

(5.7)

From (5.7), since x is stable and taking into account that each therm
of J ′′r,s(0)(f) is nonpositive, we easily see that they are, in fact, identi-

cally zero. Consequently, using once more (5.7), we get that HF
1 H

F
k+1−

HF
k+2 = 0 on Mn, for all r ≤ k ≤ s. So, from item (ii) of Lemma 1,

we have that the anisotropic principal curvatures are equal. Therefore,
Lemma 2 assures us that, up to translations and homotheties, x(M) is
the Wulff shape of F , finishing the proof of Theorem 1.
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Remark 2. Concerning our constraint on the sign of HF
s+1 in Theorem 1,

we observe that it is crucial to the success of our technique, since the
Gardin type inequalities of Lemma 1 constitutes our algebraic tool to
detect the anisotropic umbilicity of the closed (r, s, F )-linear Weingarten
hypersurface. We also note that this phenomenon already occurs in the
context of the works of Alencar–do Carmo–Rosenberg [1] and Barbosa–
Colares [6].
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