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Abstract: This paper deals with the determination of the absolute valued algebras

with a nonzero idempotent commuting with the remaining idempotents and satisfying

x2x = xx2 for every x. We prove that, in addition to the absolute valued algebras R,
C, H, or O of the reals, complexes, division real quaternions or division real octonions,

one such absolute valued algebra A can also be isometrically isomorphic to some of

the absolute valued algebras
?
C,

?
H, or

?
O, obtained from C, H, and O by imposing a

new product defined by multiplying the conjugates of the elements. In particular,
every absolute valued algebra having the above properties is finite-dimensional. This

generalizes some well known theorems of Albert, Urbanik and Wright, and El-Mallah.

2010 Mathematics Subject Classification: 17A80, 17A75, 17A60, 17D99.

Key words: Absolute valued algebra, idempotent, division algebra, third-power as-

sociativity, pairwise commuting elements.

1. Introduction

Let A 6= 0 be a real algebra, which is not necessarily associative as all
the algebras considered throughout this note. The algebra A is said to
be an absolute valued algebra if its vector space is a real normed space
and

(1) ‖xy‖ = ‖x‖‖y‖
holds for any x, y ∈ A. As an immediate consequence from (1) we ob-
tain that the linear operators Lx, Rx : A −→ A given by Lx : y 7→ xy and
Rx : y 7→ yx are one to one maps for any x 6= 0. Real and complex num-
bers, so as the division quaternions and division octonions algebras H
and O are absolute valued algebras. A celebrated theorem by K. Ur-
banik and F. B. Wright asserts that R, C, H, and O are the only unital
absolute valued algebras [16, Theorem 1]. According to [14, p. 109],
we will call it the noncommutative Urbanik and Wright Theorem. This
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was previously stated by A. A. Albert under the additional restriction
of algebraicity [2].

This paper deals with absolute valued algebras that are third-power
associative. We recall that an algebra A over a field F is said to be
third-power associative, or that A satisfies the third-power associative
condition, if x2x = xx2 for all elements x of A. It is possible to obtain
easily from R, C, H, or O examples of third-power associative absolute
valued algebras in the following way: if D = C, H, or O and ? is its

natural involution then the algebra
?

D obtained from D by changing the
product into the new product · defined by x · y = x?y? is an absolute
valued algebra with respect to the same norm as that of D. The absolute

valued algebras
?

C,
?

H,
?

O are third-power associative. The first of these,
?

C, has been previously considered by many authors including Albert [3]
and Urbanik and Wright [16]. In fact in the fundamental paper [16] the

authors prove that, up to isometric isomorphisms, R, C, and
?

C are the
unique commutative absolute valued algebras. According to [14] we will
call this result the commutative Urbanik and Wright Theorem.

The norm of the absolute valued algebras
?

C,
?

H,
?

O derives from an in-
ner product. Furthermore, they have nonzero idempotents, but they are
not unital. Nevertheless, the three algebras have a nonzero idempotent e
satisfying

(2) ex = −x = xe

for every element x orthogonal to e. A nonzero idempotent in an absolute
valued algebra A with norm deriving from an inner product is said to
be a para-unit if (2) holds for every x orthogonal to e. Obviously each
para-unit is a nonzero idempotent commuting with each element of A.
In particular, it commutes with all idempotents.

The above comments suggest the natural question: whether in a given
third-power associative absolute valued algebra A the existence of a
nonzero idempotent commuting with all idempotents guarantees that

A is isometrically isomorphic to R, C, H, O,
?

C,
?

H, or
?

O. The main the-
orem in this paper gives an affirmative answer to this problem. Neither
the third-power associativity nor the existence of a nonzero idempotent
commuting with the remaining can be dropped in the assumptions of
our main theorem. Indeed, it is well-known that infinite-dimensional
absolute valued algebras with a unique nonzero idempotent exist even
satisfying, in addition, to be a one-sided division algebra (see [6, 13]).
As a consequence of our main theorem, we can obtain the commutative
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Urbanik and Wright Theorem, as well as a result by A. Chandid assert-
ing that the nonzero idempotents in a third-power associative absolute
valued algebra A commute pairwise if and only if A is isometrically iso-

morphic to R, C, H, O, or
?

C (see [5, Théorème 3.19]).
In order to prove our main theorem we need to establish some results,

sometimes related to the commutativity of certain elements in the abso-
lute valued algebra. In general, Section 2 is devoted to those results that
can be proved without the requirement of the third-power associativity.
This includes Proposition 2.5 which assures that certain subspaces of el-
ements commuting with a given nonzero idempotent have norm deriving
from an inner product. In Section 3 we study some aspects associated
with the nonzero idempotents in a third-power associative absolute val-
ued algebra. The existence of these idempotents is a consequence of a
very recent result established by M. Cabrera and A. Rodŕıguez in the
forthcoming book [4], and formulated in Proposition 3.1 below. We will
use it in the proof of the main theorem. Also Proposition 3.5 depends of
it. We continue Section 3 by giving several properties related to idem-
potents satisfying some restrictions on commutativity (Propositions 3.2,
3.4, and 3.5). In the remainder of the section we focus on third-power
associative absolute valued algebras A with a nonzero idempotent g com-
muting with all the idempotents of A and we obtain a decomposition into
vector subspaces of A which plays a role similar to the Peirce decompo-
sition in classical contexts, establishing, in addition, some properties of
these subspaces (Proposition 3.6). As application, we give a new proof
of a theorem by M. L. El-Mallah, which asserts that every third-power
associative absolute valued algebra A with a nonzero idempotent com-
muting with the remaining elements of A is isometrically isomorphic to

R, C, H, O,
?

C,
?

H, or
?

O (see [10, Theorem 3.7] and [9, Theorem 6]).
Finally we point out that despite all efforts realized and the partial

successes, the problem of the determination of all the third-power as-
sociative absolute valued algebras still remains open (see the excellent
survey [14] for a more complete information). This makes that the re-
sults obtained and the methods developed throughout this paper can
also be viewed as a new contribution to this topic.

2. Commuting elements in absolute valued algebras

Let A be an absolute valued algebra and W a vector subspace of A
whose elements pairwise commute. It is well known that the norm in
the vector subspace W derives from an inner product ( | )W (see [16,
Lemma 1]). If x and y commute in A we will denote by ( | )x,y the inner
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product inducing the norm in Rx+Ry. For an absolute valued algebra A
satisfying the third-power associative condition the elements of everyone
of the subspaces Rx + Rx2 pairwise commute. For short, we will write
then the inner products of these subspaces as ( | )x,2.

Lemma 2.1. Let x and y be commuting elements in an absolute valued
algebra A such that the squares x2 and y2 also commute.

1. If ‖x‖ = 1 = ‖y‖ and (x | y)x,y = 0 then x2 = −y2.

2. If x2 commutes with xy, then

(3) ‖x‖2y2 − 2(x | y)x,yxy + ‖y‖2x2 = 0.

In particular, if e and f are different nonzero idempotents such
that Re + Rf is a commutative subalgebra then this subalgebra is

isometrically isomorphic to
?

C.

Proof: 1. We have x2 − y2 = (x + y)(x − y) and so ‖x2 − y2‖2 = ‖x +

y‖2‖x − y‖2 =
(
‖x‖2 + ‖y‖2

)2
= 4. Thus, ‖x2 − y2‖ = 2. By [16,

Lemma 3], we obtain x2 = −y2.

2. If x and y belong to the same vector line, (3) holds trivially. We will
assume x and y linearly independent. If x and y are orthogonal, apply-
ing part 1 to x/‖x‖ and y/‖y‖, we obtain ‖y‖2x2 + ‖x‖2y2 = 0, which
is just (3). Now we will consider the case that x and y are linearly inde-
pendent but not necessarily orthogonal. A straightforward verification
shows that x′ := x and y′ := −(x | y)x,yx+ ‖x‖2y are linearly indepen-
dent commuting orthogonal elements whose squares also commute. The
previous case when the elements are orthogonal yields to

(4) ‖y′‖2x′2 + ‖x′‖2y′2 = 0.

Since y′
2

= (x | y)2x,yx
2 − 2(x | y)x,y‖x‖2xy + ‖x‖4y2 and ‖y′‖2 =

‖x‖4‖y‖2 − (x | y)2x,y‖x‖2, the relation (4) remains

‖x‖4‖y‖2x2 − 2(x | y)x,y‖x‖4xy + ‖x‖6y2 = 0,

which is equivalent to (3).
In the case that e and f are different nonzero idempotents such that

Re+Rf is a commutative subalgebra, the specialization of (3) to x = e
and y = f gives e + f = 2(e | f)e,f ef and in consequence 4(e | f)2 =
‖e+f‖2 = 2+2(e | f). The solutions of the second degree equation 2(e |
f)2 − (e | f) − 1 = 0 are (e | f) = 1 and (e | f) = − 1

2 , but the first
possibility can be ruled out, because (e | f) = 1 = ‖e‖‖f‖ is the equality
case of the Cauchy–Schwartz inequality, so e = f , a contradiction. Thus,
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(e | f) = − 1
2 and e + f + ef = 0. Therefore, Re + Rf is isometrically

isomorphic to
?

C.

Remark 2.2. Part 1 of the previous lemma is well known in the partic-
ular case that one of the given commuting elements is an idempotent
[10, Lemma 3.3] and it also appears implicitly in [16]. An identity as
that of equation (3) holds in the related frame of the finite-dimensional
(resp. anisotropic) third-power associative composition algebras, even
without any assumption on commutativities involving squares [12] (see
also [7] where this identity plays an important role in the determina-
tion of the third-power associative anisotropic composition algebras over
fields of characteristic 6= 2, 3). It also appears in [5, Proposition 3.21] in
the context of the absolute valued algebras. The assertion in 2 relative
to the subalgebra Re+ Rf is a particular case of Albert’s result assert-
ing that finite-dimensional absolute valued algebras are isotopic to R,
C, H, or O [1, 3], which implies that any two-dimensional commutative

absolute valued algebra is isometrically isomorphic to C or
?

C.

Corollary 2.3. Let A be a third-power associative absolute valued alge-
bra and x ∈ A such that ‖x‖ = 1 and x2x3 = x3x2. Then

(5) x2x2 − 2(x | x2)x,2x
3 + x2 = 0.

Remark 2.4. If x and y are commuting elements in an absolute valued
algebra and W is a prehilbert space containing Rx+Ry, then (z | v)x,y =
(z | v)W for all z, v ∈ Rx + Ry and so in it is possible to substitute
the inner product of (3) (resp. (5)) by (x | y)W (resp. (x | x2)W ). In
particular, this is so when W is a vector subspace of A containing x and
y and where its elements pairwise commute.

If F is a field of characteristic 6= 2 and A an F -algebra, as it is
customary, we will denote by • the new product in A defined as x • y =
1
2 (xy+ yx). In this way we obtain a new algebra A+ which is said to be
the symmetrized algebra of A. Also • is called the symmetrized product
of that of A.

The next proposition is an easy consequence of the results in [7].

Proposition 2.5. Let A be an absolute valued algebra, g 6= 0 an idem-
potent, and B a vector subspace containing g. Assume that every x ∈ B
generates with g a subalgebra isomorphic to R, C, or

?

C. Then B is a
subalgebra of A+, the norm of B derives from an inner product ( | ) and
if V is the vector subspace of the elements orthogonal to g in B then the
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commutative symmetrized product • of B is given in the way

(6) (αg + v) • (βg + w) =
(
αβ − (v | w)

)
g + αgw + βgv

for any α, β ∈ R and v, w ∈ V . Furthermore, gv = ±v for any v ∈ V .

Proof: Since every element x of B generates with g a subalgebra Bx of A

isomorphic to R, C, or
?

C, g commutes with x and Bx ⊂ B. Furthermore,
‖z • z′‖ = ‖zz′‖ = ‖z‖‖z′‖ for all z, z′ ∈ Bx. Since x2 ∈ Bx ⊂ B, the
vector subspace B is closed by squares, so it is also a subalgebra of
A+. By [7, Proposition 3.7], B with the product • is a commutative
g-quadratic algebra in the sense of [7] and this product is given as in (6)
(see also [7, Lemma 3.1 and proof of Lemma 3.6]). Finally, if v ∈ V
then the orthogonality of g and v and the fact that Bv is isometrically

isomorphic to C or
?

C imply that gv = ±v.

3. Idempotents in third-power associative algebras

This section deals with some properties associated with nonzero idem-
potents in third-power associative absolute valued algebras. We first
consider the existence of these idempotents in one such absolute valued
algebra A. If x is a norm-one element of A such that x and x2 are lin-
early dependent then x2 = ±x, which gives that x or −x is a nonzero
idempotent in A. In case that x and x2 are linearly independent, the ex-
istence of nonzero idempotents is guaranteed by the proposition below,
which is proved in a forthcoming book by M. Cabrera and A. Rodŕıguez
[4, Proposition 2.8.85]. Our proof of the main theorem of this paper
depends also heavily on this proposition.

Proposition 3.1. Let A be a third-power associative absolute valued
algebra and P a vector plane in A. Then there exists some nonzero
element in the set {z ∈ P : (z | z2)z,2 = 0} and if z is a norm-one
element in this set then −z2 is a nonzero idempotent of A.

Next we recall some elementary facts on third-power associative alge-
bras. Let A be a third-power associative algebra over a field of charac-
teristic 6= 2. By linearization of xx2 = x2x it follows

(7) yx2 + x(xy + yx) = (xy + yx)x+ x2y.

Using the bracket product [ , ] defined by [x, y] = xy−yx for all x, y ∈ A,
the identity (7) can be also written in the way

(8) [xy + yx, x] + [x2, y] = 0.
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Making y = x2 in the previous equation we obtain x(x2x) = (x2x)x. Let
e be an arbitrary idempotent in A. From (7) we get

(9) Le ◦ (Le +Re − Id) = Re ◦ (Le +Re − Id),

which asserts that ex+ xe− x commutes with e for every x ∈ A. Using
the symmetrized product, the linearized identity (8) can be written in a
more compact way as 2[x • y, x] + [x2, y] = 0.

There are some elementary properties related to the nonzero idempo-
tents of an algebra, which can be useful. So if A is an algebra over a
field of characteristic 6= 2 and e and f nonzero idempotents of A then
−e 6= f . Indeed, in the contrary case −e = f = f2 = e2 = e, which
contradicts the nonzero character of e. We will use this in the proof of
the next proposition, as well as in that of Proposition 3.5.

Proposition 3.2. Let A be a third-power associative absolute valued
algebra.

1. If e 6= 0 is an idempotent in A and x ∈ A an element such that it
and its square commute with e, then

(10) x2 − 2(e | x)e,xex+ ‖x‖2e = 0.

2. Two different commuting nonzero idempotents of A generate a sub-

algebra isometrically isomorphic to
?

C.
3. If a given element x of A and its square x2 commute with two

commuting different nonzero idempotents e and f , then x belongs
to the subalgebra Re+ Rf generated by e and f .

Proof: 1. By third-power associativity, from the commutativity of e
and x it follows that of e with ex. Now (10) is a particular case of (3).

2. By part 1, if e 6= 0 6= f are different commuting idempotents then
e − 2(e | f)e,fef + f = 0. Furthermore, (e | f)e,f 6= 0, because (e |
f)e,f = 0, implies e = −f , a contradiction. From (e | f)e,f 6= 0 it follows
ef ∈ Re+Rf , which proves that Re+Rf is a commutative subalgebra.

By Lemma 2.1, Re+ Rf is isometrically isomorphic to
?

C.

3. We assume x 6= 0. By part 1,

x2 − 2(e | x)e,xex+ ‖x‖2e = 0, x2 − 2(f | x)f,xfx+ ‖x‖2f = 0.

Subtracting both equalities we obtain ‖x‖2(f − e) = 2
(
(f | x)f,xf − (e |

x)e,xe
)
x. In particular, (f | x)f,xf − (e | x)e,xe 6= 0. By part 2, B =

Re+Rf is a subalgebra isometrically isomorphic to
?

C. In particular there
exists some z ∈ B such that ‖x‖2(f − e) = 2

(
(f | x)f,xf − (e | x)e,xe

)
z.
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So
(
(f | x)f,xf − (e | x)e,xe

)
(x− z) = 0. Thus x = z ∈ B, because A has

not nonzero zero divisors.

Remark 3.3. Part 2 of Proposition 3.2 appears in [5, Lemme 3.12], where
a different proof is given.

Let A be a third-power associative absolute valued algebra. We will
denote by E the set of the nonzero idempotents of A. If g ∈ E and w is
an element of A such that w /∈ Rg, then we will denote by Ew(g) the
set of the e ∈ E for which there exists some w′ ∈ Rg + Rw such that

(w′
2 | w′)w′,2 = 0 and w′

2
= −e. In this case we also say that w′ is a

(g, w)-square root of −e. In the following proposition we provide suffi-
cient conditions assuring that Ew(g) has only one idempotent e different
from g.

Proposition 3.4. Let A be a third-power associative absolute valued al-
gebra, g a nonzero idempotent of A, and w a norm-one element of A
satisfying [w, g] 6= 0, so that g commutes with w2 and with each idem-
potent of Ew(g). Then Ew(g) consists of only one nonzero idempotent e.
Furthermore, −w2 = e 6= g.

Proof: Assume e ∈ Ew(g). Then e is a nonzero idempotent and there

exists some w′ in the vector plane P = Rg+Rw satisfying (w′
2 | w′)w′,2 =

0 and w′
2

= −e. So w′ and e commute, w′ 6= ±g and P = Rg + Rw′.
This implies e 6= g, because if e = g then [g, w′] = 0 and g would
commute with all elements of P and, in particular, [g, w] = 0 which

is a contradiction. Writing w′ = ξg + ηw (ξ, η ∈ R), we have w′
2

=

ξ2g + ξη(gw +wg) + η2w2. Since [w2, g] = 0 and [w′
2
, g] = 0, we obtain

0 = [g, w′
2
] = ξη[g, gw + wg] = ξη[g, w]. Thus, ξη = 0. The possibility

η = 0 is ruled out, because we have shown at the start of this proof
that w′ 6= ±g. So ξ = 0, w′ = ±w and −w2 = e 6= g. In particular,
w determines completely e and in consequence Ew(g) = {e}.

Proposition 3.5. Let A be a third-power associative absolute valued
algebra, W a vector subspace of A, and g ∈ W a nonzero idempotent
commuting with every element of W , with the property that for every
w ∈ W such that w /∈ Rg, the idempotents in the set Ew(g) commute
with g. Then the following assertions hold:

1. For every w ∈ W , the norm of Rg + Rw derives from an inner
product.

2. u2 = −‖u‖2g for all u ∈W and orthogonal to g.

3. If the elements of W pairwise commute then dimW ≤ 2.
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4. If the elements of W pairwise commute and, in addition, for each
w ∈W and v ∈ Rg + Rw + R(gw), with v /∈ Rg, the idempotent g
commutes with each idempotent of Ev(g), then W is a subalgebra

of A isometrically isomorphic to R, C, or
?

C.

Proof: Since the elements of W commute with g, for every w ∈ W the
norm of Rg+Rw derives from an inner product (see [16, Lemma 1]). This
proves part 1. If dimW = 1 the remaining assertions of Proposition 3.5
are trivial, because in this case W = Rg. So we will assume without
loss of generality that dimW ≥ 2, and we will proceed in a sequence of
steps.

Step 1: For each w ∈ W with w /∈ Rg, all e′ ∈ Ew(g) with e′ 6= g and
every (g, w)-square root w′ of −e′, we have that Rg+Re′ is a subalgebra

isometrically isomorphic to
?

C and, in addition, Rg + Re′ = Rg + Rw′ =
Rg + Rw ⊂ W . In particular, if some Ew(g) contains elements different

from g then W contains some subalgebra isometrically isomorphic to
?

C.
Indeed, from w′ ∈ Rg+Rw ⊂W it follows that w′ commutes with g.

Since w′
2

= −e′, w′2 commutes with g and w′ commutes with e′. By
part 3 of Proposition 3.2, w′ ∈ Rg+Re′. Now we observe that w′ /∈ Rg,

because if it were w′ ∈ Rg then w′ = ±g, −e′ = w′
2

= g2 = g, which is
impossible for the nonzero idempotents e and g of A. From w′ /∈ Rg and
w′ ∈ Rg+Re′ it follows that e′ ∈ Rg+Rw′. Thus, Rg+Re′ = Rg+Rw′ ⊂
W and W contains the distinct idempotents g and e′. By part 2 of

Proposition 3.2, Rg+Re′ is isometrically isomorphic to
?

C. Furthermore,
from w′ /∈ Rg and w′ ∈ Rg + Rw it follows Rg + Rw′ = Rg + Rw.

Step 2: g ∈ Ew(g) for every w ∈W such that w /∈ Rg.
Indeed, by Proposition 3.1 if w ∈ W and w /∈ Rg, then there exists

w′ ∈ Rg + Rw such that e′ = −w′2 is a nonzero idempotent satisfying
(w′ | e′)w′,2 = 0. Without loss of generality we will assume e′ 6= g.
By step 1, Rg + Re′ = Rg + Rw ⊂ W and Rg + Re′ is a subalgebra

isometrically isomorphic to
?

C. If v0 is a norm-one element of Rg + Re′
orthogonal to g, then v0

2 = −g and g ∈ Ew(g).

Step 3: u2 = −‖u‖2g for all u ∈W and orthogonal to g.
By step 2, g ∈ Eu(g). So, it follows the existence of u′ ∈ Rg+Ru such

that (u′
2 | u′)u′,2 = 0, and u′

2
= −g. So (u′ | g)u′,2 = 0 and Ru = Ru′.

In consequence, u = ±‖u‖u′ and u2 = −‖u‖2g.

Step 4: If the elements of W pairwise commute then dimW = 2.
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Indeed, consider two norm-one elements u1, u2 ∈ W orthogonal to g.
By step 3, u21 = −g = u22 and in consequence 0 = (u1 − u2)(u1 + u2).
Thus, u2 = ±u1 which implies dimW = 2.

Step 5. If the elements of W pairwise commute and, in addition, for
each w ∈ W and v ∈ Rg + Rw + R(gw), with v /∈ Rg, the idempo-
tent g commutes with each idempotent of Ev(g), then W is a subalgebra

isometrically isomorphic to C or
?

C.
Indeed, since dimW = 2 there exists a norm one element u ∈W which

is orthogonal to g. By step 3, u2 = −g. By third-power associativity, the
elements g, u, and gu pairwise commute. Step 4 applied to the vector
subspace Rg + Ru+ R(gu) implies gu ∈ Rg + Ru and consequently the
multiplication map Lg induces an isometric linear map in the vector
subspace W = Rg + Ru. Therefore, gu = ±u and W is a subalgebra

isometrically isomorphic to C or
?

C.

Proposition 3.6. Let A be a third-power associative absolute valued
algebra, g ∈ A a nonzero idempotent commuting with all idempotents
of A, and C(g) the vector subspace of the elements of A commuting
with g. Then the following assertions hold:

1. If x ∈ C(g) then

(Lg +Rg)2x = 4x, g(gx) = x = (xg)g.

2. The norm of C(g) derives from an inner product, C(g) is a subal-
gebra of A+, and if V is the vector subspace of the elements of C(g)
orthogonal to g, then gv = ±v for any v ∈ V and the commutative
symmetrized product • of C(g) is given as in (6) for any α, β ∈ R
and v, w ∈ V .

3. An element x of C(g) commutes with a nonzero idempotent e 6= g
if and only if x ∈ Rg + Re.

4. (Lg +Rg)3 − (Lg +Rg)2 − 4(Lg +Rg) + 4 Id = 0.
5. A splits as a direct sum of vector subspaces A = A2 ⊕ A−2 ⊕ A1,

where

A2 = {x ∈ A : (Lg +Rg)x = 2x},
A−2 = {x ∈ A : (Lg +Rg)x = −2x},
A1 = {x ∈ A : (Lg +Rg)x = x}.

6. z2 ∈ C(g) for all z ∈ A1.
7. The vector subspace C(g) agrees with A2⊕A−2, furthermore either
A−2 = 0 or A2 = Rg.
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8. A2 and A−2 are orthogonal subspaces of C(g) and

(11) A2 ={x ∈ A : xg = x = gx} and A−2 ={x ∈ A : xg = −x = gx}.

Proof: 1. By Proposition 3.5, for every x commuting with g the vector

subspace Rg+Rx is a subalgebra isometrically isomorphic to R, C, or
?

C.
So g is a unit or a para-unit element of this subalgebra and, in particular,
relations 1 hold.

2. Since each x of C(g) generates with g a subalgebra isometrically iso-

morphic to R, C, or
?

C, part 2 is an immediate consequence of Proposi-
tion 2.5.

3. The commutativity of e and g obviously implies that the elements
of Rg + Re commute with e. On the other hand, if x = αg + v (α ∈
R, v ∈ V ) commutes with e then, from the commutativity of g and e, it
follows [v, e] = 0. Using the commutative product • of part 2, we obtain
[x2, e] = [(α2−‖v‖2)g+2αgv, e] = ±2α[v, e] = 0. But x2 also commutes
with g, because x2 ∈ Rg+Rv ⊂ C(g). By Proposition 3.2, x ∈ Rg+Re.

4. By third-power associativity for every y ∈ A the element gy + yg − y
commutes with g. By part 1,

(Lg +Rg)2(Lg +Rg − Id)y = 4(Lg +Rg − Id)y,

which can be rewritten in the way (Lg + Rg)3 − (Lg + Rg)2 − 4(Lg +
Rg) + 4 Id = 0.

5. The polynomial X3 −X2 − 4X + 4 has roots 2, −2, and 1. So A has
the decomposition in vector subspaces claimed in 5.

6. By linearization of the third-power associativity identity, if z ∈ A1

then [z2, g] = −[zg + gz, z] = −[z, z] = 0. Therefore, z2 ∈ C(g).

7. By (8), for every x ∈ A2 we have [2x, g] = [gx + xg, g] = −[g2, x] =
−[g, x]. Thus, [x, g] = 0 and A2 ⊂ C(g). In a similar way it can be
proved the inclusion A−2 ⊂ C(g). Therefore, A2 ⊕A−2 ⊂ C(g).

In order to complete the proof of part 7 we consider the vector sub-
space V of the elements of C(g) which are orthogonal to g and we will
assume without loss of generality that V 6= 0. Let v be a norm-one
element in V . By part 2, gv = ±v = vg. Therefore, v ∈ A2 ∪ A−2 and
V ⊂ A2∪A−2. Since a real vector space cannot be a union of two proper
vector subspaces, we obtain A2 ∩V = V or A−2 ∩V = V . So V ⊂ A2 or
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V ⊂ A−2 and this yields to C(g) ⊂ A2 or C(g) ⊂ Rg ⊕A−2. Therefore,
A−2 = 0 or A2 = Rg.

8. By part 7 we obtain (11). Since Lg is an isometric linear map (not
necessarily onto), for all x ∈ A2 and u ∈ A−2 we have (x | u) = (gx |
gu) = −(x | u) and consequently (x | u) = 0.

As a corollary of the above proposition we obtain the following El-
Mallah’s result (see [10, Theorem 3.7] and [9, Theorem 6]).

Corollary 3.7 (M. L. El-Mallah). Let A be a third-power associative
absolute valued algebra. If g 6= 0 is an idempotent commuting with all

the elements of A, then A is isometrically isomorphic to R, C, H, O,
?

C,
?

H, or
?

O.

Proof: By Proposition 3.6, the norm of A derives from an inner product
and either A = Rg ⊕ A−2 or A = A2, with A2 and A−2 the vector
subspaces given as in (11). If A = A2 then A has g as a unit element,
and as a consequence of the generalized Hurwitz Theorem, we get A
isometrically isomorphic to R, C, H, or O. In order to complete the
proof we now consider the case that A = Rg ⊕ A−2 with A−2 6= 0.
Now Lg (= Rg) is the unique linear map fixing g and mapping every
element of its orthogonal vector subspace to its opposite. By changing
the product of A by the new product ◦ given by x ◦ y = (gx)(yg), we
obtain a new algebra (A, ◦) having g as a unit element and being an
absolute valued algebra respect to the same norm that A. Taking into
account that dimA ≥ 2, now the generalized Hurwitz Theorem gives
(A, ◦) isometrically isomorphic to C, H, or O. Since xy = (Lg(x)) ◦
(Rg(y)) we obtain that if A = Rg ⊕ A−2 with A−2 6= 0 then A is

isometrically isomorphic to
?

C,
?

H, or
?

O.

Remark 3.8. In [7, Theorem 4.6] we have obtained the same conclusion
that in the above corollary even in the case that the third-power associa-
tive condition is substituted by the weaker assumption that the algebraic
identity (x2x2)x2 = x2(x2x2) holds in A.

4. The main theorem

Obviously R, C, H, O,
?

C,
?

H, and
?

O are third-power associative abso-
lute valued algebras with one idempotent commuting with all the idem-
potents. The next theorem, which is the main theorem of this paper,
shows that these algebras are the unique absolute valued algebras satis-
fying these conditions.
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Theorem 4.1. A third-power associative absolute valued algebra A has
a nonzero idempotent commuting with the remaining idempotents if and

only if A is isometrically isomorphic to R, C, H, O,
?

C,
?

H, or
?

O.

Proof: As we have pointed out R, C, H, O,
?

C,
?

H, and
?

O satisfy the
required conditions.

Now we assume a third-power associative algebra A having a nonzero
idempotent g commuting with all idempotents of A. By Proposition 3.6
and Corollary 3.7, it suffices to show that the vector subspace A1 = {x ∈
A : (Lg + Rg)x = x} is zero. We will prove this by contradiction. So
we will assume the existence of some norm-one element z in A1. By
Proposition 3.6, [z, g] 6= 0 and [z2, g] = 0. By Proposition 3.4, there
exists a nonzero idempotent e orthogonal to z such that

(12) − z2 = e 6= g.

By Proposition 3.1, there exist α, δ ∈ R such that −
(
αg+ δ(e+ z)

)2
is a

nonzero idempotent. In particular, δ 6= 0 and
(
αg + δ(e + z)

)2 ∈ C(g).
Furthermore, using (12) we obtain(
αg + δ(e+ z)

)2
= α2g + δ2(e+ z2 + 2ez) + αδg(e+ z) + αδ(e+ z)g

= α2g + 2δ2ez + αδ(ge+ eg) + αδ(gz + zg)

= α2g + 2αδge+ αδz + 2δ2ez,

which implies that ez ∈ C(g) + Rz. Writing ez = b + ρz with b ∈ C(g)
and ρ ∈ R, we see that [b, e] = [ez, e]−ρ[z, e] = 0. So, by Proposition 3.6,
b ∈ Rg + Re and ez ∈ Rg + Re+ Rz.

Now we assert that ez ∈ Re+Rz. Indeed, in the contrary case Rez+
Re+ Rz = Rg + Re+ Rz. The pairwise commutativity of the elements
of Rez + Re + Rz yields, in particular, to [g, z] = 0. This contradiction
proves that ez ∈ Re + Rz. So the restriction of the linear map Le can
be seen as an isometric linear map of the euclidean plane Re + Rz. By
orthogonality of e and z it follows that ez = ±z. Therefore, Re+Rz is a

subalgebra of A isometrically isomorphic to C or
?

C. Finally we conclude
the proof observing that both possibilities are impossible.

The case that Re + Rz is isometrically isomorphic to
?

C is ruled out

from the fact that under this assumption − 1
2e+

√
3
2 z would be a nonzero

idempotent which does not belong to C(g). Now we will assume Re+Rz
isometrically isomorphic to C. So ez = z. Since Re+Rg is a subalgebra

isometrically isomorphic to
?

C, we can assure the existence of some v0 ∈
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Rg + Re ⊂ C(g) satisfying v0
2 = −e, ev0 = −v0, and g = − 1

2e +
√
3
2 v0.

So z = gz+zg = − 1
2 (ez+ze)+

√
3
2 (v0z+zv0) = −z+

√
3
2 (v0z+zv0) and

consequently v0z + zv0 = 4√
3
z. Let λ and µ be arbitrary real numbers.

Then

(13) (λz+µv0)2 = λ2z2+µ2v0
2+λµ(zv0+v0z) = −(λ2+µ2)e+

4√
3
λµz.

On the other hand, for every pair of elements γe + λz + µv0 and γ′e +
λ′z + µ′v0 of Re+ Rz + Rv0 we have

(14) [γe+ λz + µv0, γ
′e+ λ′z + µ′v0] = (λµ′ − µλ′)[z, v0].

From (13) and (14) it follows

(15) [λz + µv0, (λz + µv0)2] = − 4√
3
λµ2[z, v0].

We have [z, v0] 6= 0, because [z, v0] = 0 implies [z, g] = 0. From (15) we
obtain that the commutativity of λz+µv0 with (λz+µv0)2 is equivalent
to the condition λµ2 = 0, which contradicts the third-power associativity
of A. This contradiction completes the proof.

Remark 4.2 (On the Urbanik and Wright Theorems). We can observe
that the arguments given in this paper do not depend neither on the
commutative nor on the noncommutative Urbanik and Wright Theo-
rem. The original proof of this last theorem given in [16] has a crucial
step which is devoted to show that in each unital absolute valued alge-
bra A the unital subalgebra Ax generated by any nonzero element x is
isomorphic to R or C. This implies the third-power associativity of A.
Now Theorem 4.1 can be considered in order to obtain as an immediate
consequence that A is isometrically isomorphic to R, C, H, or O (in the
original proof the same conclusion is obtained by invoking the Albert
theorem on the determination of the absolute valued algebraic algebras
with a unit element [2]). Since Proposition 3.1 implies the existence of
nonzero idempotents in any commutative absolute valued algebra, it is
also possible to obtain the commutative Urbanik and Wright Theorem
directly as a particular case of Theorem 4.1 (even it can be derived from
Corollary 3.7).

Another extension of the commutative Urbanik and Wright Theorem
is given in [8, Corollary 1.6], where it is proved that if A is a real commu-
tative algebra without nonzero zero divisors which is a prehilbert space
whose norm satisfies ‖a2‖ = ‖a‖2 for every a ∈ A and if, in addition, A
has a norm-one idempotent e such that ‖ea‖ = ‖a‖ for any a ∈ A, then

A is isomorphic to R, C, or
?

C.
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The following corollary is a particular case of Theorem 4.1.

Corollary 4.3 (A. Chandid). Let A be a third-power associative absolute
valued algebra. Then the nonzero idempotents of A commute pairwise if

and only if A is isometrically isomorphic to R, C, H, O, or
?

C. In partic-
ular, A has only one nonzero idempotent if and only if A is isometrically
isomorphic to R, C, H, or O.

Remark 4.4. Our main theorem also includes the characterization of
the power-associative absolute valued algebras given by M. L. El-Mallah
and A. Micali [11]. Indeed, if A is a power-associative absolute valued
algebra then A has some nonzero idempotent e. This can be obtained
either form Proposition 3.1 (see also the previous comments to it) or as
a consequence of the commutative Urbanik and Wright Theorem. Now
as in [15, p. 134] we obtain that e is the only nonzero idempotent of A,
and even that e is unit element of A.
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