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1. Introduction

Maximal functions are standard tools in harmonic analysis. They
are usually used to estimate absolute size, but recently there has been
interest in studying their regularity properties, see [1], [2], [3], [12],
[13], [14], [16], [18], [19], [20], [22], [23], [24], [26], [27], and [29]. A
starting point was the article [18] by Kinnunen, where he observed that
the Hardy–Littlewood maximal operator is bounded on W 1,p(Rn) for
1 < p ≤ ∞. In [23] and [24] Korry extended this result by showing that
the maximal operator preserves also fractional Sobolev spaces as well
as Besov and Triebel–Lizorkin spaces. Another kind of extension was
given in [21], where Kinnunen and Saksman showed that the fractional
maximal operator Mα, defined by

Mαu(x) = sup
r>0

rα

|B(x, r)|

ˆ
B(x,r)

|u(y)| dy,

is bounded from W 1,p(Rn) to W 1,p∗(Rn), where p∗ = np/(n− αp), and

from Lp(Rn) to Ẇ 1,q(Rn), where q = np/(n− (α− 1)p), and Ẇ 1,q(Rn)
is the homogenous Sobolev space. These results indicate that Mα has
similar smoothing properties as the Riesz potential.
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It is natural to ask whether these results can be seen as special
cases of the behaviour of the fractional maximal operator on Besov and
Triebel–Lizorkin spaces. In this paper, we show that this is indeed the
case, and that all these results can be obtained by the same rather simple
method. Instead of the standard fractional maximal operator, we con-
sider its variant, the so-called discrete fractional maximal operatorM∗α.
This allows us to present our results in a setting of doubling metric mea-
sure spaces. In this generality, the standard fractional maximal operator
behaves quite badly. Indeed, one can construct spaces, where the frac-
tional maximal function of a Lipschitz function fails to be continuous,
see [3] and [16]. SinceM∗α andMα are comparable, for many practical
purposes it does not matter which one we choose. The discrete fractional
maximal operator was introduced in [19] and further studied in [22], [1],
and [14].

Among the many possible definitions of Besov and Triebel–Lizorkin
spaces, the most suitable for our purposes is the one based on Haj lasz
type pointwise inequalities. This approach, introduced by Koskela, Yang,
and Zhou in [25], provides a new point of view to the classical Besov
and Triebel–Lizorkin spaces. On the other hand, it allows these spaces
to be defined in the setting of metric measure spaces.

By employing this definition, we can prove very general results using
only simple “telescoping” arguments and Poincaré type inequalities. As
special cases, we obtain versions of the results of Kinnunen and Saksman
as well as those of Korry, see Remark 3.5, and Theorems 4.7 and 4.8.
We prove our results in doubling metric measure spaces but they are
new even in Euclidean spaces. Our main results (Theorems 4.5 and 4.6)
imply that if α ≥ 0 and 0 < s + α < 1, then M∗α is bounded from

Ḟ sp,q(Rn) to Ḟ s+αp,q (Rn) for n/(n + s) < p, q < ∞ and from Ḃsp,q(Rn) to

Ḃs+αp,q (Rn) for n/(n + s) < p < ∞, 0 < q < ∞, see Section 4 for the
definition of Triebel–Lizorkin and Besov spaces.

2. Preliminaries and notation

We assume that X = (X, d, µ) is a metric measure space equipped
with a metric d and a Borel regular outer measure µ, which satisfies
0 < µ(U) <∞ whenever U is nonempty, open, and bounded. We assume
that the measure is doubling, that is, there exists a fixed constant cd > 0,
called the doubling constant, such that

(2.1) µ(B(x, 2r)) ≤ cdµ(B(x, r))

for every ball B(x, r) = {y ∈ X : d(y, x) < r}.
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The doubling condition implies that

(2.2)
µ(B(y, r))

µ(B(x,R))
≥ C

( r
R

)Q
for every 0 < r ≤ R and y ∈ B(x,R) for some C > 0 and Q > 1 that
only depend on cD. In fact, we may take Q = log2 cd.

For the boundedness of the fractional maximal operator in Lp, we
have to assume, in Theorems 2.1 and 3.4b), that the measure µ satisfies
the lower bound condition

(2.3) µ(B(x, r)) ≥ clrQ

with some constant cl > 0 for all x ∈ X and r > 0.
By saying that a function u : X → [−∞,∞] is locally integrable, we

mean that is integrable on balls. Similarly, the class of functions that
belong to Lp(B), p > 0, in all balls B, is denoted by Lploc(X). The
integral average of a locally integrable function u over a ball B is

uB =

 
B

u dµ =
1

µ(B)

ˆ
B

u dµ.

The fractional maximal function. Let α ≥ 0. The fractional maxi-
mal function of a locally integrable function u is

(2.4) Mαu(x) = sup
r>0

rα
 
B(x,r)

|u| dµ.

For α = 0, we have the usual Hardy–Littlewood maximal function

Mu(x) = sup
r>0

 
B(x,r)

|u| dµ.

The Hardy–Littlewood maximal operatorM is bounded in Lp in metric
measure spaces with a doubling measure when 1 < p ≤ ∞, see [11,
Theorem 14.13]. This, together with the Hölder inequality implies the
following Sobolev type inequality for the fractional maximal operator.
For the proof, see [4], [6] or [14, Theorem 3.2].

Theorem 2.1. Assume that measure lower bound condition (2.3) holds.
If p > 1 and 0 < α < Q/p, then there is a constant C > 0, depending
only on the doubling constant, constant in the measure lower bound, p
and α, such that

‖Mαu‖Lp∗ (X) ≤ C‖u‖Lp(X),

for every u ∈ Lp(X) with p∗ = Qp/(Q− αp).
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The discrete fractional maximal function. We begin the construc-
tion of the discrete maximal function with a covering of the space.
Let r > 0. Since the measure is doubling, there are balls B(xi, r),
i = 1, 2, . . . , such that

X =
⋃
i

B(xi, r) and
∑
i

χ
B(xi,6r) ≤ N <∞,

where χB(xi,6r) is the characteristic function of the ball B(xi, 6r). This
means that the dilated balls B(xi, 6r), i = 1, 2, . . . , are of bounded
overlap. The constant N depends only on the doubling constant and, in
particular, it is independent of r.

Then we construct a partition of unity subordinate to the covering
B(xi, r), i = 1, 2, . . . , of X. Indeed, there is a family of functions ϕi,
i = 1, 2, . . . , such that for each i, 0 ≤ ϕi ≤ 1, ϕi = 0 in X \ B(xi, 6r),
ϕi ≥ ν in B(xi, 3r), ϕi is Lipschitz with constant L/r with ν and L
depending only on the doubling constant, and∑

i

ϕi(x) = 1

for every x ∈ X.
The discrete convolution of a locally integrable function u at the

scale 3r is

ur(x) =
∑
i

ϕi(x)uB(xi,3r)

for every x ∈ X, and we write uαr = rαur.
Let rj , j = 1, 2, . . . , be an enumeration of the positive rationals and

let balls B(xi, rj), i = 1, 2, . . . , be a covering of X as above. The discrete
fractional maximal function of u in X is M∗αu,

M∗αu(x) = sup
j
|u|αrj (x)

for every x ∈ X. For α = 0, we obtain the Hardy–Littlewood type
discrete maximal function M∗u studied in [19], [22], and [1]. Observe
that the construction depends on the choice of the coverings, but we will
derive estimates that are independent of the chosen coverings.

The discrete fractional maximal function is easily seen to be compa-
rable to the standard fractional maximal function, that is,

(2.5) C−1Mαu ≤M∗αu ≤ CMαu,

where C > 1 depends only on the doubling constant, see [14, Lemma 5.1].
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Remark 2.2. If u is only locally integrable, thenM∗αu may well be iden-
tically infinite. However, if M∗αu(x0) < ∞ for some x0 ∈ X, then
M∗αu(x) <∞ for almost every x.

By (2.5), it suffices to show that if Mαu(x0) < ∞ for some x0 ∈ X,
then Mαu(x) <∞ for almost every x. This follows from the estimate

rα
 
B(x,r)

|u| dµ ≤ µ(B(x0, r + d(x, x0)))

µ(B(x, r))
Mαu(x0)

combined with the doubling condition and the fact that

lim
r→0

rα
 
B(x,r)

|u| dµ <∞,

whenever x is a Lebesgue point of u.

Throughout the paper, C will denote a positive constant whose value
is not necessarily the same at each occurrence. In the results of Sections 3
and 4, the constants C do not depend on the functions, gradients or
the coverings used in the definition of the discrete fractional maximal
function. They may depend on the doubling constant, the parameters
of the space and constants of lemmas that are used in the proof, for
example on constants of Poincaré type inequalities.

3. Fractional Haj lasz spaces

In this section, we study smoothing properties of the discrete frac-
tional maximal operator on fractional Haj lasz spaces, fractional Sobolev
spaces in metric spaces defined using a pointwise definition.

Let u : X → [−∞,∞] be a measurable function and let 0 ≤ s <∞. A
nonnegative measurable function g is an s-Haj lasz gradient of u if there
exists E ⊂ X with µ(E) = 0 such that for all x, y ∈ X \ E,

(3.1) |u(x)− u(y)| ≤ d(x, y)s(g(x) + g(y)).

The collection of all s-Haj lasz gradients of u is denoted by Ds(u).

Let 0≤s <∞ and 0 < p≤∞. A homogeneous Haj lasz space Ṁs,p(X)
consists of measurable functions u such that

‖u‖Ṁs,p(X) = inf
g∈Ds(u)

‖g‖Lp(X)

is finite. The Haj lasz space Ms,p(X) is Ṁs,p(X)∩Lp(X) equipped with
the norm (quasinorm when 0 < p < 1)

‖u‖Ms,p(X) = ‖u‖Lp(X) + ‖u‖Ṁs,p(X).

The spaceM1,p(X), a counterpart of a Sobolev space in a metric measure
space, was introduced in [9], see also for example [10]. The fractional
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spaces Ms,p(X) were introduced in [31] and studied for example in [17]
and [15]. Notice that M0,p(X) = Lp(X).

The pointwise definition of the Haj lasz spaces implies the validity
of Sobolev–Poincaré type inequalities without an assumption that the
space admits a weak Poincaré inequality.

The following lemma from [7, Lemma 2.2] is a generalisation of [10,
Theorem 8.7].

Lemma 3.1. Let 0 < s < ∞ and let 0 < p < Q/s. There exists a
constant C > 0 such that for all measurable functions u with g ∈ Ds(u),
all x ∈ X, and r > 0,

(3.2) inf
c∈R

( 
B(x,r)

|u(y)−c|p
∗(s) dµ(y)

)1/p∗(s)
≤ Crs

( 
B(x,2r)

gp dµ

)1/p
,

where p∗(s) = Qp/(Q− sp).

Since (Q/(Q+ s))∗(s) = 1, (3.2) implies that

(3.3) inf
c∈R

 
B(x,r)

|u− c| dµ ≤ Crs
( 

B(x,2r)

gQ/(Q+s) dµ

)(Q+s)/Q

.

Hence, if p ≥ Q/(Q + s) and g ∈ Ds(u) ∩ Lploc(X), then u is locally
integrable and

(3.4)

 
B(x,r)

|u− uB(x,r)| dµ ≤ Crs
( 

B(x,2r)

gp dµ

)1/p

.

Note that, by the integrability of u, the left sides of (3.3) and (3.4) are
comparable. Inequality (3.4) holds also when s = 0 and p ≥ 1. This
follows easily from (3.1).

In the proof of Theorem 3.3, we use the following simple result.

Lemma 3.2. If ui : X → [−∞,∞], i ∈ N, are measurable functions
with a common s-Haj lasz gradient g and u = supi ui is finite almost
everywhere, then g is an s-Haj lasz gradient of u.

Proof: As a supremum of countable many measurable functions, u is
measurable.

Let x, y ∈ X such that u(x) < ∞ and u(y) < ∞. We may assume
that u(x) ≥ u(y). Let ε > 0. There exists i such that u(x) ≤ ui(x) + ε.
Since u(y) ≥ ui(y) and g is an s-Haj lasz gradient of ui, we have

u(x)− u(y) ≤ ui(x)− ui(y) + ε ≤ d(x, y)s(g(x) + g(y)) + ε.

The claim follows by letting ε→ 0.
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Theorem 3.3. Let s ≥ 0, α ≥ 0 and let t ≥ Q/(Q+ s).

a) If 0 < s+ α ≤ 1, then there exists a constant C > 0 such that

g̃ = C
(
Mgt

)1/t
is an (s+α)-Haj lasz gradient of M∗αu whenever u : X → [−∞,∞]
is a measurable function such that M∗αu 6≡ ∞ and g ∈ Ltloc(X) is
an s-Haj lasz gradient of u.

b) If s+ α > 1, then there exists a constant C > 0 such that

g̃ = C
(
Mt(s+α−1)g

t
)1/t

is a 1-Haj lasz gradient of M∗αu whenever u : X → [−∞,∞] is a
measurable function such that M∗αu 6≡ ∞ and g ∈ Ltloc(X) is an
s-Haj lasz gradient of u.

Proof: Since M∗αu = M∗α|u| and since every s-Haj lasz gradient of u is
an s-Haj lasz gradient of |u|, we may assume that u ≥ 0.

We begin by proving the claims for uαr . Let r > 0, let g ∈ Ds(u) and
let x, y ∈ X.

Assume first that r ≥ d(x, y). Let Ixy be a set of indices i for which x
or y belongs to B(xi, 6r). Then, for each i ∈ Ixy, B(xi, 3r) ⊂ B(x, 10r) ⊂
B(xi, 17r). This together with the doubling condition, the properties of
the functions ϕi, the fact that there are bounded number of indices in Ixy
and Poincaré inequality (3.4) implies that

|uαr (x)− uαr (y)| ≤ rα
∑
i∈Ixy

|ϕi(x)− ϕi(y)||uB(xi,3r) − uB(x,10r)|

≤ Crα−1d(x, y)
∑
i∈Ixy

 
B(x,10r)

|u− uB(xi,3r)| dµ

≤ Crα−1d(x, y)

 
B(x,10r)

|u− uB(x,10r)| dµ

≤ Crs+α−1d(x, y)

( 
B(x,20r)

gt dµ

)1/t

.

(3.5)

If 0 < s+ α ≤ 1, then by (3.5) and the assumption r ≥ d(x, y), we have
that

|uαr (x)− uαr (y)| ≤ Cd(x, y)s+α
(
Mgt(x)

)1/t
.

If s+ α > 1, then by (3.5),

|uαr (x)− uαr (y)| ≤ Cd(x, y)
(
Mt(s+α−1)g

t(x)
)1/t

.
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This shows that Haj lasz gradient inequality (3.1) with desired exponent
holds when r ≥ d(x, y).

Assume then that r < d(x, y). Let R = d(x, y). Then B(y, r) ⊂
B(x, 2R) and

|uαr (x)− uαr (y)| ≤ rα
(∑
i∈Ix

ϕi(x)|uB(xi,3r) − uB(x,9R)|

+
∑
i∈Iy

ϕi(y)|uB(xi,3r) − uB(x,9R)|
)
,

(3.6)

where Ix is a set of indices i for which x belongs to B(xi, 6r) and Iy
the corresponding set for y. Let k ∈ N be the smallest integer such that
2kr ≥ R.

Assume first that 0 < s+ α ≤ 1. If i ∈ Ix, then

|uB(xi,3r) − uB(x,9R)| ≤ |uB(xi,3r) − uB(x,9r)|

+

k∑
i=1

|uB(x,2i9r) − uB(x,2i−19r)|

+ |uB(x,2k9r) − uB(x,9R)|.

(3.7)

By the doubling condition and Poincaré inequality (3.4), we have

rα|uB(xi,3r) − uB(x,9r)| ≤ Crα
 
B(x,9r)

|u− uB(x,9r)| dµ

≤ Crs+α
( 

B(x,18r)

gt dµ

)1/t

≤ CRs+α
(
Mgt(x)

)1/t
,

(3.8)

and, by the doubling condition, Poincaré inequality (3.4), the fact that
r ≤ 2i9r for all i, and the selection of k,

rα
k∑
i=1

|uB(x,2i9r)−uB(x,2i−19r)|≤Crα
k∑
i=1

 
B(x,2i9r)

|u−uB(x,2i9r)| dµ

≤C
k∑
i=1

(2i9r)s+α
( 

B(x,2i+19r)

gt dµ

)1/t
(3.9)

≤CRs+α
(
Mgt(x)

)1/t
.
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Similarly we obtain that

rα|uB(x,2k9r) − uB(x,9R)| ≤ CRs+α
( 

B(x,36R)

gt dµ

)1/t

≤ CRs+α
(
Mgt(x)

)1/t
.

(3.10)

If i ∈ Iy, we use balls B(y, 2i9r) instead of balls B(x, 2i9r) in (3.7).
Estimates corresponding (3.8) and (3.9) are as above (x replaced by y)
and, corresponding to (3.10),

rα|uB(y,2k9r) − uB(x,9R)| ≤ CRs+α
( 

B(x,38R)

gt dµ

)1/t

≤ CRs+α
(
Mgt(x)

)1/t
.

(3.11)

Now, by (3.6)–(3.11) and the fact R = d(x, y), we have

rα|uB(xi,3r) − uB(x,9R)| ≤ Cd(x, y)s+α
((
Mgt(x)

)1/t
+
(
Mgt(y)

)1/t)
.

If s + α > 1, then similar estimates as above show that if i ∈ Ix ∪ Iy,
then

(3.12) rα|uB(xi,3r) − uB(x,9R)| ≤ Cd(x, y)
((
Mt(s+α−1)g

t(x)
)1/t

+
(
Mt(s+α−1)g

t(y)
)1/t)

.

These estimates together with (3.6) and the fact that there are bounded
number of indices in Ix and Iy imply that Haj lasz gradient inequal-
ity (3.1) with desired exponent holds when r < d(x, y).

Thus, we have proved the claim for uαr . Since M∗αu 6≡ ∞, the claim
for M∗αu follows from Remark 2.2 and Lemma 3.2.

Theorem 3.4. Let s ≥ 0, α ≥ 0 and let Q/(Q+ s) < p <∞.

a) If 0 < s+ α ≤ 1, there exists a constant C > 0, such that

‖M∗αu‖Ṁs+α,p(X) ≤ C‖u‖Ṁs,p(X)

for all u ∈ Ṁs,p(X) with M∗αu 6≡ ∞.
b) If 1 < s + α ≤ 1 + Q/p and the measure lower bound condition

holds, there exists a constant C > 0 such that

‖M∗αu‖Ṁ1,q(X) ≤ C‖u‖Ṁs,p(X),

where q=Qp/(Q−(s+α−1)p), for all u ∈ Ṁs,p(X) withM∗αu 6≡∞.
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Proof: Let Q/(Q+ s) ≤ t < p. Let g ∈ Ds(u) ∩ Lp(X).

a) If 0 < s+ α ≤ 1, then by Theorem 3.3, the function C(Mgt)1/t is
an (s + α)-gradient of M∗αu. Since g ∈ Lp(X), the claim follows from
the boundedness of the Hardy–Littlewood maximal operator in Lr(X)
for r > 1.

b) If 1 < s + α ≤ 1 + Q/p, then by Theorem 3.3, the function
(Mt(s+α−1)g

t)1/t is a 1-gradient of M∗αu. Since g ∈ Lp(X), the claim
follows from Theorem 2.1.

Remark 3.5. In the cases s = 1 and s = 0 of Theorem 3.4b), we obtain
counterparts of the results [21, Theorem 2.1] and [21, Theorem 3.1] of
Kinnunen and Saksman.

Remark 3.6. As a special case of Theorems 3.3 and 3.4 we obtain the
following boundedness results for the discrete maximal operator M∗
in Ṁs,p(X). Let p > Q/(Q+ s). Let u ∈ Ṁs,p(X) with M∗αu 6≡ ∞ and
let g ∈ Ds(u) ∩ Lp(X).

If 0 < s ≤ 1, then g̃ = C(Mgt)1/t is an s-Haj lasz gradient of M∗u
for all t ≥ Q/(Q+ s) and

‖M∗u‖Ṁs,p(X) ≤ C‖u‖Ṁs,p(X).

If 1 < s ≤ 1 +Q/p, then g̃ = C(Mt(s−1)g
t)1/t is a 1-Haj lasz gradient

of M∗u for all t ≥ Q/(Q+ s) and

‖M∗u‖Ṁ1,q(X) ≤ C‖u‖Ṁs,p(X),

where q = Qp/(Q− (s− 1)p).
Moreover, when s = 1, we obtain boundedness results for the dis-

crete maximal operator M∗ in (homogeneous) Haj lasz spaces Ṁ1,p(X),
proved earlier for M1,p(X) in [19] and [22].

4. Haj lasz–Besov and Haj lasz–Triebel–Lizorkin spaces

In this section, we study smoothing properties of the discrete frac-
tional maximal operator in Besov and Triebel–Lizorkin spaces. For these
spaces, we use a definition based on pointwise inequalities, introduced
by Koskela, Yang, and Zhou in [25]. The constants C of the theorems
are independent of functions u, fractional gradients (gk), and of the con-
struction of discrete fractional maximal function M∗αu.

Let u : X → [−∞,∞] be a measurable function and let 0 < s <
∞. Following [25], we say that a sequence of nonnegative measurable
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functions (gk)k∈Z is a fractional s-Haj lasz gradient of u if there exists a
set E ⊂ X with µ(E) = 0 such that

|u(x)− u(y)| ≤ d(x, y)s(gk(x) + gk(y))

for all k ∈ Z and all x, y ∈ X \E satisfying 2−k−1 ≤ d(x, y) < 2−k. The
collection of all fractional s-Haj lasz gradients of u is denoted by Ds(u).

For 0 < p < ∞, 0 < q ≤ ∞, and a sequence (fk)k∈Z of measurable
functions, we write

‖(fk)k∈Z‖Lp(X,lq) = ‖‖(fk)k∈Z‖lq‖Lp(X)

and

‖(fk)k∈Z‖lq(Lp(X)) =
∥∥(‖fk‖Lp(X))k∈Z

∥∥
lq
,

where ‖(fk)‖lq = (
∑
k∈Z |fk|q)1/q if 0<q<∞ and ‖(fk)‖l∞=supk∈Z |fk|.

The homogeneous Haj lasz–Triebel–Lizorkin space Ṁs
p,q(X) consists

of measurable functions u such that

‖u‖Ṁs
p,q(X) = inf

(gk)∈Ds(u)
‖(gk)‖Lp(X,lq)

is finite. The Haj lasz–Triebel–Lizorkin space Ms
p,q(X) is Ṁs

p,q(X) ∩
Lp(X) equipped with the norm

‖u‖Ms
p,q(X) = ‖u‖Lp(X) + ‖u‖Ṁs

p,q(X).

The homogeneous Haj lasz–Besov space Ṅs
p,q(X) consists of measur-

able functions u such that

‖u‖Ṅsp,q(X) = inf
(gk)∈Ds(u)

‖(gk)‖lq(Lp(X))

is finite and the Haj lasz–Besov space Ns
p,q(X) is Ṅs

p,q(X) ∩ Lp(X)
equipped with the norm

‖u‖Nsp,q(X) = ‖u‖Lp(X) + ‖u‖Ṅsp,q(X).

Notice that Ṁs
p,∞(X) is the homogeneous fractional Haj lasz space

Ṁs,p(X), for the simple proof, see [25, Proposition 2.1]. The homoge-

neous Haj lasz–Triebel–Lizorkin space Ṁs
p,q(Rn) coincides with the clas-

sical homogeneous Triebel–Lizorkin space Ḟ sp,q(Rn) for s ∈ (0, 1), p ∈
(n/(n + s),∞) and q ∈ (n/(n + s),∞]. Similarly, Ṅs

p,q(Rn) coincides

with the classical homogeneous Besov space Ḃsp,q(Rn) for s ∈ (0, 1),
p ∈ (n/(n + s),∞), and q ∈ (0,∞] by [25, Theorem 1.2], see also
[7, Chapters 1,3] about the different definitions of Besov and Triebel–
Lizorkin spaces. For the definitions of F sp,q(Rn) and Bsp,q(Rn), see [30].
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If X supports a (weak) (1, p)-Poincaré inequality with p ∈ (1,∞),

then for all q ∈ (0,∞), the spaces Ṁ1
p,q(X) and Ṅ1

p,q(X) are trivial, that
is, they contain only constant functions, see [7, Theorem 4.1].

In the proofs, we will use a Poincaré type inequality from [7, Lem-
ma 2.1].

Lemma 4.1. Let 0 < s < ∞ and 0 < p < Q/s. Then for ev-
ery ε, ε′ ∈ (0, s) with ε < ε′ there exists a constant C > 0 such that
for all measurable functions u with (gj) ∈ Ds(u), x ∈ X, and k ∈ Z,

(4.1) inf
c∈R

( 
B(x,2−k)

|u(y)− c|p
∗(ε) dµ(y)

)1/p∗(ε)

≤ C2−kε
′ ∑
j≥k−2

2−j(s−ε
′)

( 
B(x,2−k+1)

gpj dµ

)1/p

,

where p∗(ε) = Qp/(Q− εp).

If u is locally integrable, (gj) ∈ Ds(u) and 0 < ε < ε′ < s < ∞,
then (4.1) with p = Q/(Q+ ε) and the Hölder inequality imply that for
t ≥ Q/(Q+ ε),

(4.2)

 
B(x,2−k)

|u− uB(x,2−k)| dµ

≤ C2−kε
′ ∑
j≥k−2

2−j(s−ε
′)

( 
B(x,2−k+1)

gtj dµ

)1/t

.

Remark 4.2. If Q/(Q + s) ≤ p < ∞, then Ṁs
p,q(X) ⊂ L1

loc(X). Indeed,

we have that Ṁs
p,q(X) ⊂ Ṁs

p,∞(X) = Ṁs,p(X) ⊂ Ṁs,Q/(Q+s)(X) ⊂
L1
loc(X), where the last inclusion follows from the discussion after Lem-

ma 3.1. Similarly, if Q/(Q + s) < p < ∞, then Ṅs
p,q(X) ⊂ L1

loc(X) by
[7, Theorem 2.1(iv)].

An analogous proof as that of Lemma 3.2 gives us the following lemma.

Lemma 4.3. If ui, i ∈ N, are measurable functions with a common
fractional s-Haj lasz gradient (gk)k∈Z and u = supi ui is finite almost
everywhere, then (gk)k∈Z is a fractional s-Haj lasz gradient of u.

We are now ready to state and prove our main results. Theorem 4.4
below gives a formula for an (s + α)-Haj lasz gradient of M∗α in terms
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of an s-Haj lasz gradient of u. This easily implies the desired bounded-
ness results forM∗α in homogeneous Haj lasz–Besov and Haj lasz–Triebel–
Lizorkin spaces. For related results concerning Riesz potentials in the
metric setting, see [32].

Theorem 4.4. Let s > 0 and α ≥ 0 be such that 0 < s + α < 1.
Let 0 < δ < 1 − s − α, 0 < ε < ε′ < s, and t ≥ Q/(Q + ε). There
is a constant C > 0, such that if u is locally integrable function with
M∗αu 6≡ ∞ and if (gk) ∈ Ds(u), then (Cg̃k), where

(4.3) g̃k =

k∑
j=−∞

2(j−k)δ
(
Mgtj

)1/t
+

∞∑
j=k−7

2(k−j)(s−ε
′)
(
Mgtj

)1/t
is a fractional (s+ α)-Haj lasz gradient of M∗αu.

Proof: Since M∗αu =M∗α|u| and since every fractional s-Haj lasz gradi-
ent of u is a fractional s-Haj lasz gradient of |u|, we may assume that
u ≥ 0.

Let k ∈ Z and let x, y ∈ X such that 2−k−1 ≤ d(x, y) < 2−k. We will
show that

|uαr (x)− uαr (y)| ≤ Cd(x, y)s+α(g̃k(x) + g̃k(y)),

where C is independent of r and k.
Assume first that d(x, y) > r. Then

|ur(x)− ur(y)| ≤ |ur(x)− uB(x,2−k+4)|+ |ur(y)− uB(x,2−k+4)|

≤
∑
i∈Ix

ϕi(x)|uB(xi,3r) − uB(x,2−k+4)|

+
∑
i∈Iy

ϕi(y)|uB(xi,3r) − uB(x,2−k+4)|,

where Ix is a set of indices i for which x belongs to B(xi, 6r) and Iy the
corresponding set for y. Let m ∈ Z be such that 2−m−1 < 9r ≤ 2−m.
Since r < d(x, y) < 2−k, it follows that m ≥ k − 4. If i ∈ Ix, we obtain

|uB(xi,3r) − uB(x,2−k+4)| ≤ |uB(xi,3r) − uB(x,2−m)|

+

m−1∑
l=k−4

|uB(x,2−l) − uB(x,2−l−1)|

≤ C
m∑

l=k−4

 
B(x,2−l)

|u− uB(x,2−l)| dµ
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and hence Poincaré inequality (4.2) implies that

|uB(xi,3r) − uB(x,2−k+4)| ≤ C
∞∑

l=k−4

2−lε
′
∞∑

j=l−2

2−j(s−ε
′)
(
Mgtj(x)

)1/t
= C

∞∑
j=k−6

2−j(s−ε
′)
(
Mgtj(x)

)1/t j+2∑
l=k−4

2−lε
′

≤ C2−kε
′
∞∑

j=k−6

2−j(s−ε
′)
(
Mgtj(x)

)1/t
= C2−ks

∞∑
j=k−6

2(k−j)(s−ε
′)
(
Mgtj(x)

)1/t
≤ C2−ksg̃k(x).

Similarly, if i ∈ Iy, then

|uB(xi,3r) − uB(x,2−k+4)| ≤ |uB(xi,3r) − uB(y,2−m)|

+

m−1∑
l=k−5

|uB(y,2−l) − uB(y,2−l−1)|

+ |uB(y,2−k+5) − uB(x,2−k+4)|

≤ C
m∑

l=k−5

 
B(y,2−l)

|u− uB(y,2−l)| dµ,

which implies that

|uB(xi,3r) − uB(x,2−k+4)| ≤ C2−ksg̃k(y).

It follows that

|uαr (x)− uαr (y)| ≤ Crα2−ks(g̃k(x) + g̃k(y))

≤ Cd(x, y)s+α(g̃k(x) + g̃k(y)).

Suppose then that d(x, y) ≤ r. Let Ixy be a set of indices i for which x
or y belongs to B(xi, 6r). Let l be such that 2−l−1 < 10r ≤ 2−l. Using
the doubling condition, the properties of the functions ϕi, the fact that
there are bounded number of indices in Ixy and Poincaré inequality (4.2),
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we have that

|uαr (x)− uαr (y)| ≤ rα
∞∑
i=1

|ϕi(x)− ϕi(y))||uB(xi,3r) − uB(x,2−l)|

≤ Cd(x, y)rα−12−lε
′
∞∑

j=l−2

2−j(s−ε
′)
(
Mgtj(x)

)1/t
.

(4.4)

Using the assumptions 0 < δ < 1−α− s, r ≥ d(x, y), and d(x, y) < 2−k,
we have that

d(x, y)rα−12−lε
′
≤ Cd(x, y)rs+α+δ−12l(s−ε

′+δ)

≤ Cd(x, y)s+α+δ2l(s−ε
′+δ)

≤ Cd(x, y)α+s2(l−k)δ+l(s−ε
′).

This together with (4.4) implies that

|uαr (x)− uαr (y)| ≤ Cd(x, y)s+α
∞∑

j=l−2

2(l−k)δ+(l−j)(s−ε′) (Mgtj(x)
)1/t

.

By splitting the sum in two parts and using the estimates l ≤ j + 2 and
l ≤ k, we obtain
∞∑

j=l−2

2(l−k)δ+(l−j)(s−ε′) (Mgtj(x)
)1/t

=

k−1∑
j=l−2

2(l−k)δ+(l−j)(s−ε′) (Mgtj(x)
)1/t

+

∞∑
j=k

2(l−k)δ+(l−j)(s−ε′) (Mgtj(x)
)1/t

≤ C
( k−1∑
j=−∞

2(j−k)δ
(
Mgtj(x)

)1/t
+

∞∑
j=k

2(k−j)(s−ε
′)
(
Mgtj(x)

)1/t)
,

which implies the claim for uαr . The claim for M∗αu follows by Re-
mark 2.2 and Lemma 4.3.

Theorem 4.5. Let s > 0 and α ≥ 0 be such that 0 < s + α < 1. Let
Q/(Q+ s) < p, q <∞. There exists a constant C > 0 such that

‖M∗αu‖Ṁs+α
p,q (X) ≤ C‖u‖Ṁs

p,q(X)

for all u ∈ Ṁs
p,q(X) with M∗αu 6≡ ∞.
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Proof: Let u∈Ṁs
p,q(X) and let (gk)∈Ds(u) be such that ‖(gk)‖Lp(X, lq)≤

2‖u‖Ṁs
p,q(X). By Remark 4.2 u is locally integrable.

Let δ = 1
2 (1 − (s + α)), ε = 1

2 max{s, s + Q−Qr
r }, and ε′ = 1

2 (ε + s),
where r = min{p, q}, and let t = Q/(Q + ε). Then 0 < ε < ε′ < s and
Q/(Q + s) < t < min{p, q}. By Theorem 4.4, (Cg̃k) defined by (4.3) is
a fractional (s+ α)-Haj lasz gradient of M∗αu.

By the selection of (gk), it suffices to show that (g̃k) ∈ Lp(X, lq)
with ‖(g̃k)k∈Z‖Lp(X,lq) ≤ C‖(gk)k∈Z‖Lp(X,lq). We estimate the Lp(X, lq)
norm of ( k∑

j=−∞
2(j−k)δ

(
Mgtj

)1/t)
k∈Z

,

the other part can be estimated similarly. If q ≥ 1, we have, by the
Hölder inequality, that∑

k∈Z

( k∑
j=−∞

2(j−k)δ
(
Mgtj

)1/t)q ≤ C∑
k∈Z

k∑
j=−∞

2(j−k)δ
(
Mgtj

)q/t
≤ C

∑
j∈Z

(
Mgtj

)q/t ∞∑
k=j

2(j−k)δ

≤ C
∑
j∈Z

(
Mgtj

)q/t
.

If 0 < q < 1, we obtain the same estimate by using the elementary
inequality (

∑
j aj)

q ≤
∑
j a

q
j for aj ≥ 0.

By the Fefferman–Stein vector valued maximal function theorem
from [5] (for a metric space version, see for example [28] or [8]), we
obtain now the desired estimate∥∥∥∥∥
( k∑
j=−∞

2(j−k)δ
(
Mgtj

)1/t)
k∈Z

∥∥∥∥∥
Lp(X,lq)

≤ C
∥∥(Mgtk

)
k∈Z

∥∥1/t
Lp/t(X,lq/t)

≤ C‖(gtk)k∈Z‖1/tLp/t(X, lq/t)

= C‖(gk)k∈Z‖Lp(X,lq).

Theorem 4.6. Let s > 0 and α ≥ 0 be such that 0 < s + α < 1. Let
Q/(Q+s) < p <∞ and 0 < q <∞. Then there exists a constant C > 0
such that

‖M∗αu‖Ṅs+αp,q (X) ≤ C‖u‖Ṅsp,q(X)

for all u ∈ Ṅs
p,q(X) with M∗αu 6≡ ∞.
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Proof: Let u∈Ṁs
p,q(X) and let (gk)∈Ds(u) be such that ‖(gk)‖lq(Lp(X))≤

2‖u‖Ṅsp,q(X). By Remark 4.2 u is locally integrable.

Let δ = 1
2 (1 − (s + α)), ε = 1

2 max{s, s + Q−Qp
p }, ε′ = 1

2 (ε + s),

and let t = Q/(Q + ε). Then 0 < ε < ε′ < s and Q/(Q + s) <
t < p. By Theorem 4.4, (Cg̃k) defined by (4.3) is a fractional (s + α)-
Haj lasz gradient of M∗αu. It suffices to show that ‖(g̃k)‖lq(Lp(X)) ≤
C‖(gk)‖lq(Lp(X)). Again, we estimate the first part of (g̃k) only. The
second part can be estimated similarly.

Assume first that p ≥ 1. By the Minkowski inequality and the Hardy–
Littlewood maximal theorem,

∥∥∥∥ k∑
j=−∞

2(j−k)δ
(
Mgtj

)1/t∥∥∥∥
Lp(X)

≤
k∑

j=−∞
2(j−k)δ

∥∥(Mgtj
)1/t∥∥

Lp(X)

≤
k∑

j=−∞
2(j−k)δ‖gj‖Lp(X).

If q ≥ 1, we have by the Hölder inequality,

∑
k∈Z

( k∑
j=−∞

2(j−k)δ‖gj‖Lp(X)

)q
≤ C

∑
k∈Z

k∑
j=−∞

2(j−k)δ‖gj‖qLp(X)

≤ C
∑
j∈Z
‖gj‖qLp(X)

∞∑
k=j

2(j−k)δ

≤ C
∑
j∈Z
‖gj‖qLp(X).

If 0 < q < 1, we use the inequality (
∑
j aj)

q ≤
∑
j a

q
j for aj ≥ 0 instead

of the Hölder inequality.
Assume then that Q/(Q+s) < p < 1. Then the inequality (

∑
j aj)

p ≤∑
j a

p
j and the Hardy–Littlewood maximal theorem imply that

∥∥∥∥ k∑
j=−∞

2(j−k)δ
(
Mgtj

)1/t∥∥∥∥p
Lp(X)

≤
k∑

j=−∞
2(j−k)δp

∥∥(Mgtj
)1/t∥∥p

Lp(X)

≤
k∑

j=−∞
2(j−k)δp‖gj‖pLp(X).
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If q ≥ p, we have by the Hölder inequality,∑
k∈Z

∥∥∥∥ k∑
j=−∞

2(j−k)δ
(
Mgtj

)1/t∥∥∥∥q
Lp(X)

≤
∑
k∈Z

( k∑
j=−∞

2(j−k)δp‖gj‖pLp(X)

)q/p

≤ C
∑
k∈Z

k∑
j=−∞

2(j−k)δp‖gj‖qLp(X)

≤ C
∑
j∈Z
‖gj‖qLp(X)

∞∑
k=j

2(j−k)δp

≤ C
∑
j∈Z
‖gj‖qLp(X).

If 0 < q < p, we use the inequality (
∑
j aj)

q/p ≤
∑
j a

q/p
j instead of the

Hölder inequality.

Theorems 4.5, 4.6, and the Hardy–Littlewood maximal theorem imply
the following results for the discrete maximal operator.

Theorem 4.7. Let 0 < s < 1.

a) If Q/(Q+ s) < p, q < ∞, then there exists a constant C > 0 such
that

‖M∗u‖Ṁs
p,q(X) ≤ C‖u‖Ṁs

p,q(X),

whenever u ∈ Ṁs
p,q(X) and M∗u 6≡ ∞.

b) If 1 < p, q <∞, then there exists a constant C > 0 such that

‖M∗u‖Ms
p,q(X) ≤ C‖u‖Ms

p,q(X),

for all u ∈Ms
p,q(X).

Theorem 4.8. Let 0 < s < 1.

a) If Q/(Q+s) < p <∞ and 0 < q <∞, there exists a constant C >
0 such that

‖M∗u‖Ṅsp,q(X) ≤ C‖u‖Ṅsp,q(X)

for all u ∈ Ṅs
p,q(X) with M∗u 6≡ ∞.

b) If 1 < p < ∞ and 0 < q < ∞, there exists a constant C > 0 such
that

‖M∗u‖Nsp,q(X) ≤ C‖u‖Nsp,q(X)

for all u ∈ Ns
p,q(X).
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spaces from generalized Poincaré inequalities, Studia Math. 181(1)
(2007), 1–16. DOI: 10.4064/sm181-1-1.
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