
Publ. Mat. 58 (2014), 65–119

DOI: 10.5565/PUBLMAT 58114 04

DYNAMICS OF (PSEUDO) AUTOMORPHISMS OF

3-SPACE: PERIODICITY VERSUS POSITIVE ENTROPY

Eric Bedford∗ and Kyounghee Kim†

Abstract: We study the iteration of the family of maps given by 3-step linear frac-

tional recurrences. This family was studied earlier from the point of view of finding
periodicities. In this paper we finish that study by determining all possible periods

within this family. The novelty of our approach is that we apply the methods of

complex dynamical systems. This leads to two classes of interesting pseudo automor-
phisms of infinite order. One of the classes consists of completely integrable maps.

The other class consists of maps of positive entropy which have an invariant family

of K3 surfaces.
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0. Introduction

We consider the family of birational maps of 3-space which may be
written in affine coordinates as

(0.1) fα,β : (x1, x2, x3) 7→
(
x2, x3,

α0 + α1x1 + α2x2 + α3x3

β0 + β1x1 + β2x2 + β3x3

)
.

The algebraic iterates fnα,β := fα,β ◦ · · · ◦fα,β are rational maps for all
n ∈ Z. Here we study the dynamics of f = fα,β , by which we mean the
behavior of fn as n→ ±∞. We have invertible dynamics since f has a
rational inverse, but it does not behave like a diffeomorphism (or even
a homeomorphism). There are two difficulties if we want to regard f
as a mapping of points. First, there is the set of indeterminacy I(f);
f blows up each point of I(f) to a variety of positive dimension. Second,
there can be hypersurfaces E which are exceptional, in the sense that the
codimension of f(E−I(f)) is at least 2. We will say that f is a pseudo-
automorphism if neither f nor f−1 has an exceptional hypersurface. In
dimension 2, every pseudo-automorphism is in fact an automorphism.
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However, for pseudo-automorphisms, indeterminate behaviors are possi-
ble in higher dimension which have no analogue in dimension 2.

Given a rational map f : X 99K X there is a well-defined pullback map
on cohomology, f∗ : H∗(X)→ H∗(X). Passage to cohomology, however,
may not be compatible with iteration because the identity (f∗)n = (fn)∗

may not be valid. Given a birational map f in dimension 2, Diller and
Favre [DiF] showed that there is a new manifold π : Y → X such that
the iterates of the induced map fY behave naturally on cohomology, in
the sense that (f∗Y )n = (fnY )∗. In dimension greater than 2, however, no
such theorem is known.

Given a rational map of Pn we may consider modifications π : X →
Pn, where π is a morphism which is birational. This induces a rational
map fX := π−1 ◦ f ◦ π of X, which might have pointwise properties
which are different from those of the original f . If fX is a pseudo-
automorphism, then fX acts naturally on H1,1(X). The exponential rate
of growth of fn on Hp,p: δp(f) := limn→∞ ||fn∗|Hp,p(X)||1/n is known as

the pth dynamical degree and is a birational invariant (see [DS]).
Within the family (0.1) we find the first known examples of pseudo-

automorphisms of positive entropy on blowups of P3:

Theorem 1. Suppose that α = (a, 0, ω, 1) and β = (0, 1, 0, 0) where
a ∈ C \ {0} and ω is a non-real cube root of the unity. Then there is a
modification π : Z → P3 such that fZ is a pseudo-automorphism. The
dynamical degrees δ1(f) = δ2(f) ∼= 1.28064 > 1 are equal and are given
by the largest root of t8 − t5 − t4 − t3 + 1. The entropy of fZ is the
logarithm of the dynamical degree and is thus positive.

A mapping f is said to be reversible if it is conjugate to f−1. Many
maps that arise in mathematical physics are reversible because the rele-
vant physical laws are invariant under time reversal. For the mappings
in Theorems 1 and 3, f is reversible on the level of cohomology: f∗Z is

conjugate to (f−1
Z )∗ = (f∗Z)−1. The identity δ1(f) = δ2(f) for such maps

is a consequence of the duality between H1,1 and H2,2, so they are not
cohomologically hyperbolic in the terminology of [G2].

Theorem 2. For the mappings in Theorem 1, there is a 1-parameter
family of surfaces Sc ⊂ Z, c ∈ C which have the invariance fSc = Sωc.
For generic c, Sc is K3, and the restriction f3|Sc

is an automorphism.
For generic c and c′, the surfaces Sc and Sc′ are biholomorphically in-
equivalent, and the automorphisms f3|Sc and f3|Sc′ are not smoothly
conjugate.
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The surface S0 is invariant, and the restriction fS0
is an automorphism

which has the same entropy as f . This is smaller than the entropy of
the automorphism constructed in [M2, Theorem 1.2] and is thus the
smallest known entropy for a projective K3 surface automorphism.

Closely related to the dynamics of fZ is the Green current, a (1, 1)-cur-
rent T+ which is expanded by f∗Z , and a current T− for f−1

Z . The ex-
istence of the Green current is given by Diller and Guedj [DG] in the
case where the expanded cohomology class is nef. For our case, we use
a result of Bayraktar [Ba]. In §7 we obtain T+, as well as the invariant
(2, 2)-current T+∧T−. The slices of T± and T+∧T− on the surfaces Sc
give the expanded/contracted currents, as well as the unique invariant
measure of maximal entropy for the automorphism f |Sc

.
The following mappings have quadratic degree growth and complete

integrability:

Theorem 3. Suppose that β = (0, 1, 0, 0) and either α = (0, 0, ω, 1)
or α = (a, 0, 1, 1) where a ∈ C \ {1}, ω 6= 1, and ω3 = 1. Then the
degree of fn grows quadratically in n. Further, there is a modification
π : Z → P3 such that fZ is a pseudo-automorphism. There is a two-
parameter family of surfaces Sc, c = (c1, c2) ∈ C2 which are invariant
under f3. For generic c and c′, Sc is a smooth K3 surface, and Sc ∩Sc′
is a smooth elliptic curve.

For each of these maps, the family of invariant K3 surfaces becomes
singular at an invariant 8-cycle R of rational surfaces (see (7.2)). We
show that the restriction f |R is not birationally conjugate to a surface
automorphism: see Appendix C for the maps in Theorem 1 and Propo-
sition 8.2 for the maps in Theorem 3. By Corollary 1.6, then, we have:

Theorem 4. Let f be a map from Theorems 1 and 3. If a 6= 1, then f
is not birationally conjugate to an automorphism.

We note that for birational surface maps, the degree growth of the
iterates determines whether the map is birationally conjugate to an au-
tomorphism: This occurs if and only if either (i) the degrees are bounded
or degree growth is quadratic (see [DiF]), or (ii) if the dynamical degree
is a Salem number (see [BC]). Theorem 4 shows that this result does
not hold in dimension 3.

We will also determine which mappings fα,β are periodic, or finite
order, in the sense that fp = id for some p > 0. In contrast to Theorem 4,
it was shown by de Fernex and Ein [dFE] that if f is a rational map
of finite order, then there is a modification fX as above, which is an
automorphism of X. If fX is periodic, then f∗X will also be periodic.
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In (4.1) and (4.2) we identify conditions which are necessary for f to
be periodic and are sufficient for the existence of a space Z = Zα,β such
that fZ is a pseudo-automorphism. We show that for a map in (0.1),
if f∗Z is periodic, then f also turns out to be periodic. The birational
map (0.1) may also be considered as a 3-step linear fractional recurrence:
given z0, z1, z2, we define a sequence {zn} by

(0.2) zn+3 =
α0 + α1zn + α2zn+1 + α3zn+2

β0 + β1zn + β2zn+1 + β3zn+2
.

The recurrence (0.2) is said to be periodic if the sequence {zn} is periodic
for all choices of initial terms z0, z1 and z2. Equivalently, fpα,β = id for

some p. For all r > 0 there are r-step recurrences of the form (0.2).
In [BK2] we determined the possible periods for 2-step linear fractional
recurrences. McMullen [M1] has explained the periods that arise by
showing that the corresponding (2-dimensional) fα,β represent certain
Coxeter elements.

Here we determine all possible periods for 3-step recurrences (0.2).
To rule out trivial cases, we assume that the coefficients satisfy (2.3),
and we have:

Theorem 5. The only nontrivial periods for (0.2) are 8 and 12. Each
periodic recurrence is equivalent to one of the following:

(period 8) zn+3 =
1 + zn+1 + zn+2

zn
, zn+3 =

−1− zn+1 + zn+2

zn
,

(period 12) zn+3 =
η/(1− η) + ηzn+1 + zn+2

η2 + zn
, η3 = −1.

In the notation of (0.1), the first case corresponds to β = (0, 1, 0, 0),
α = (±1, 0,±1, 1), and the second case to β = (η2, 1, 0, 0), α = (η/(1 −
η), 0, η, 1).

Each of these mappings has a different structure; these structures are
described in Theorems 6.9 and 6.10. The first period 8 recurrence above
was found by Lyness [L], and the second one was found by Csörnyei
and Laczkovich [CL] (see also [CGM, CGMs]). We note that the pe-
riod 12 recurrences are the case k = 3 of a general phenomenon exhibited
in [BK3]: For each k, there are k-step linear fractional recurrences with
period 4k. There is a literature dealing with r step recurrences of the
form (0.2). We refer to the books [KoL], [KuL], [GL], [CaL] and the ex-
tensive bibliographies they contain. That direction of research is largely
concerned with the case where the structural parameters α, β, as well
as the dynamical points, are real and positive. This avoids the difficulty
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that the denominator in (0.2) might vanish, causing the expression to be
undefined; but the restriction to positive numbers leads to a subdivision
into a large number of distinct cases to be treated separately.

In working with the family fα,β , we work with the pointwise iterates
as much as possible, but this runs into difficulties if the orbit enters
the indeterminacy locus, which is frequently the case with the orbits of
“interesting” points. We can often deal with this by blowing up certain
subsets. In this way we convert these subsets into hypersurfaces, and we
then deal with the hypersurfaces by passing to f∗ on Pic. This allows us
to convert many difficulties with indeterminate orbits into more tractable
problems of Linear Algebra. Such a procedure is useful for covering the
whole parameter space, since it allows us to determine properties of f∗

for all mappings in a large family.
This paper is organized as follows. §1 assembles some general informa-

tion about rational maps and the geometry of blowing up. §2 gives the
specific behaviors of the maps (0.1). It is evident, then, that there are two
possibilities, defined by (3.1), which we call “critical” and “non-critical,”
and in §3 we show that any periodic map must be critical. We study the
structure of general critical maps in §4. In Theorem 5.1 we show that if
f is a critical map satisfying (5.1), then fZ is a pseudo-automorphism.
Pseudo-automorphisms are discussed in §5, together with the possibil-
ities for the induced map f∗Z on cohomology. In §6 we determine the
periodic mappings and give the proof of Theorem 5. In §7 we give the
proof of Theorems 1 and 2. At the end of §7 we present a different
pseudo-automorphism with positive entropy; it has properties similar to
those given in Theorems 1 and 2, but we do not discuss it in detail. The
proof of Theorem 3 is given in §8.

Acknowledgement. We wish to thank the referee for a careful reading
of this paper and for finding some errors in an earlier version.

1. Rational maps

A rational map f : Pd 99K Pd is given by a (d + 1)-tuple of homoge-
neous polynomials, all of the same degree: f = [f0 : · · · : fd]. We may
divide f by g. c.d.(f0, . . . , fd) so that fi’s have no common polynomial
factor. We define the degree of f , deg(f), to be the (common) degree of
the fj ’s. The indeterminacy locus of f is defined by

I(f) = {x ∈ Pd : f0(x) = · · · = fd(x) = 0}

and is a subvariety of codimension at least 2, and f defines a holomorphic
mapping f : Pd \I(f)→ Pd. If S is an irreducible subvariety of Pd, and
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S 6⊂ I(f), we define the strict transform, written simply as f(S), to
be the closure of f(S − I(f)). We say that an irreducible variety V is
exceptional for a rational mapping f if V 6⊂ I(f), and if the dimension
of f(V − I(f)) is strictly less than the dimension of V . Following [DO,
p. 64], we say that f : X 99K Y is a pseudo-isomorphism if f is birational,
and if neither f nor f−1 has an exceptional hypersurface. It follows
that if f is a pseudo-isomorphism, then f : X \ I(f) → Y \ I(f−1) is
biholomorphic. If X = Y , we say that f is a pseudo-automorphism.

Theorem 1.1. If f : X 99K Y is a pseudo-isomorphism between 3-di-
mensional manifolds, then the indeterminacy locus has no isolated points.

Proof: Suppose that there is an isolated point p ∈ I(f). Since f−1 has
no exceptional hypersurfaces, f must blow p up to a curve C ′ ⊂ Y . Now
we consider the behavior of f−1 on C ′. We must have C ′ ⊂ I(f−1), for
if f−1 is regular at a point q ∈ C ′, then f−1 must map an open subset
of C ′ to p. Thus the jacobian of f−1 must vanish at q. Since the jacobian
vanishes on a hypersurface, f−1 would have an exceptional hypersurface
containing q. Thus q must be indeterminate. Since the total transform
of q under f−1 is given by

⋂
ε>0 (f−1(B(q, ε)− I(f−1))), it must be

connected, and it must be a curve C containing p. But since p was an
isolated point of I(f), there are nearby points p′ ∈ C − I(f). Since f
is regular at these points, it must map them to q, and thus f must have
an exceptional hypersurface. By this contradiction, we see that I(f) has
no isolated points.

For a rational map f : X 99K X, we consider the iterates f j = f◦· · ·◦f ,
j > 0. If Σ is an irreducible hypersurface, then Σ 6⊂ I(f j) for reasons
of dimension, so we may consider the sequence of varieties Vj := f j(Σ),
for j > 0. Since we will be interested in knowing to what extent the
iterates of f behave like a pointwise-defined dynamical system, we note:
If S 6⊂ I(g) is irreducible and if g(S) 6⊂ I(f), then S 6⊂ I(f ◦ g), and
f(g(S)) = (f ◦ g)(S). We may also define f at points of indeterminacy.
Let γf = {(x, y) ∈ (Pd − I) × Pd : y = f(x)} denote the graph of f at
its regular points, and we let Γ denote the closure of γf inside Pd ×Pd.
It follows that Γ is an irreducible variety of dimension d, and there are
holomorphic projections πj : Γ→ Pd, j = 1, 2, onto the first and second

factors, respectively, and we have f = π2 ◦ π−1
1 on Pd − I. For a point

p ∈ Pd, we define the total transform to be f∗p := π2(π−1
1 p), and then

we define f∗(S) :=
⋃
p∈S f∗p. It is easily seen that we have: If Σ is an

irreducible hypersurface, then f∗(g(Σ)) ⊃ (f ◦ g)(Σ).
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Proposition 1.2. Suppose that f : X 99K X is rational, and suppose
that for each exceptional hypersurface E and for m > 0, we have fm(E−
I) 6⊂ I. It follows that (f∗)n = (fn)∗ on H1,1(X) for n ≥ 0.

Proof: It is sufficient to show that (f∗)2 = (f2)∗ on Pic(X). If D is a
divisor, then f∗D is the divisor onX which is the same as f−1D onX−I.
Since I has codimension at least 2, we also have (f2)∗D = f∗(f∗D) on
X − I − f−1(I). By our hypothesis f−1(I) has codimension at least 2.
Thus we have (f2)∗D = (f∗)2D on X.

In a similar way, we may define f∗ : Hp,q(X) → Hp,q(X). That is,
if β is a (p, q) form on X, then the pullback π∗2β is a smooth form on Γ.
We may let [π∗2β] denote the reinterpretation of the form as a current,
and we may push it forward to obtain a current f∗β = π1∗[π

∗
2β] on X.

This pulls smooth forms back to currents and is well defined at the level
of cohomology classes. If α ∈ Hp′,q′ is an element of the dual cohomology
group, then we have 〈α, f∗β〉 = 〈π∗1α, π∗2β〉. Now if f is birational and
g = f−1, then

(1.1) 〈g∗α, β〉 = 〈π∗1α, π∗2β〉 = 〈α, f∗β〉.

If we have (fn)∗ = (f∗)n on Hp,q for n ≥ 0, then this gives us (gn)∗ =

(g∗)n on Hp′,q′ . If f and g have no exceptional hypersurfaces, then, as
in Proposition 1.2, we have (fg)∗ = g∗f∗. Taking g = f−1, we have

Proposition 1.3. If f is a pseudo-automorphism, then (fn)∗ = (f∗)n

on both H1,1 and Hd−1,d−1 for all n ∈ Z.

From this we get the following:

Proposition 1.4. Let f : X 99K X is a pseudo-automorphism on a d-di-
mensional manifold. If f∗ and (f∗)−1 are conjugate as linear transfor-
mations of H1,1, then we have equality of the dynamical degrees δ1(f) =
δd−1(f).

Proof: If f∗ and (f∗)−1 are conjugate on H1,1, then f∗ on H1,1 is con-
jugate to f∗ on Hd−1,d−1. Since f is a pseudo-automorphism, the dy-
namical degree δ1 is equal to the modulus of the largest eigenvalue of f∗

on H1,1. Similarly, δd−1 is given by the largest eigenvalue of f∗ acting
on Hd−1,d−1. Since these are linearly conjugate, they eigenvalues are the
same.
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Now let us define some specific blowup situations. This will serve to
define the constructions we will use in the sequel, and it allows us to
exhibit the models of indeterminate behavior that we will encounter.

Blowing up a point and a line which contains it. We use (x0, x1, x2) 7→
[x0 : x1 : x2 : 1] as local coordinates in a neighborhood of e3 := [0 : 0 :
0 : 1] ∈ P3. Let X1 be the space obtained by blowing up a point e3 and
we let E3 denote the fiber over e3. We may use

(1.2) π1 : X1 3 (s0, s1, ξ2)1 7→ [ξ2s0 : ξ2s1 : ξ2 : 1] ∈ P3

as a local coordinate system for a neighborhood of E3 ∩ {x0 = x1 = 0}
in X1. It follows that the exceptional fiber E3 = {ξ2 = 0} in this
coordinate system.

Let Σ01 = {x0 = x1 = 0} ⊂ P3 denote the x2-axis. The strict
transform of Σ01 inside X1 may be written as Σ01 = {s0 = s1 = 0}.
Thus Σ01 ∩ E3 = {s0 = s1 = ξ2 = 0}. Let X2 be a complex manifold
obtained by blowing up Σ01 in X1. We can define a local coordinate
system of X2 via π2 : X2 3 (t0, η1, ξ2)2 7→ (t0η1, η1, ξ2)1 ∈ X1. Thus
π2 ◦ π1 : X2 → P3 is given, in this coordinate neighborhood, by

(1.3) π1 ◦ π2 : X2 3 (t0, η1, ξ2)2 7→ [t0η1ξ2 : η1ξ2 : ξ2 : 1] ∈ P3.

The inverse of π1 (resp. π2) gives a model of indeterminate behavior
that blows up the point (0, 0, 0) (resp. the line {x1 = x2 = 0}) to a
hyperplane:

π−1
1 : (x1, x2, x3) 7→ (x1/x3, x2/x3, x3),

π−1
2 : (x1, x2, x3) 7→ (x1/x2, x2, x3).

(1.4)

Blowing up two intersecting lines. Let π1 : Z1 → P3 be the blowup of
the x1-axis Σ02 = {x0 = x2 = 0} ⊂ P3. We use local coordinate system
in Z1

π1 : Z1 3 (ξ, x, s)Z1 7→ [sξ : x : s : 1] ∈ P3.

Let us denote the blowup fiber over the point o = Σ01 ∩Σ02 = [0 : 0 : 0 :
1] ∈ P3 as F1

o then in this coordinate system we have F1
o = {s = x = 0}.

The strict transform of the x2-axis in Z1 is given by `2 = {ξ = x = 0}
and F1

o ∩ `2 = (0, 0, 0)Z1
. Now let Z2 be the blowup of `2 with a local

coordinate system

π := π1 ◦ π2 : (t, η, s)Z2 ∈ Z2 7→ (t, tη, s)Z1 ∈ Z1

7→ [ts : tη : s : 1] ∈ P3.
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We denote the second (new) fiber over o as F2
o , so F2

o = (0, η, 0)Z2
. Let

us also use F1
o for its strict transform in Z2, so F1

o ∪F2
o = π−1

2 ◦ π
−1
1 {o}

and F1
o = (t, 0, 0)Z2 .

Let τ [x0 : x1 : x2 : x3] = [x0 : x2 : x1 : x3] be the involution that
interchanges the x1- and x2-axes. It follows that τ induces the involution
τ̃ = π−1 ◦ τ ◦ π on Z2. In coordinates, we have

(1.5) τ̃ : (t, η, s) 7→ (s/η, η, tη),

which will serve as our third model of indeterminate behavior. We note
that τ̃ is regular on F2

o − F1
o , while each point of F1

o blows up to the
variety F1

o .
Similarly we can blow up the x2- axis first and then the strict trans-

form of x1-axis. Performing similar computations, we obtain a blowup
space π̂ : Y2 → C3. The identity map ι on P3 lifts to a map ι̃ : Z2 → Y2,
which in local coordinates is similar to τ̃ .

Remark. Suppose that γ′ and γ′′ are curves in P3 which intersect
transversally at points {p1, . . . , pN}. We have local coordinate systems
for 1 ≤ j ≤ N so that pj is the origin, and γ′ (resp. γ′′) coincides with
the x-axis (resp. the y-axis) in a neighborhood of pj . Since the operation
of blowing up the axes is local near pj , we may construct a blowup space
π : W → P3 in which γ′ and γ′′ are both blown up, and over each pj we
are free to choose whether γ′ or γ′′ was blown up first, independently of
the choices over pk for k 6= j.

Theorem 1.5. Let f be a birational map of X. Let X0 ⊂ X be a hy-
persurface such that the strict transform is f(X0) = X0. Let ϕ : X → Y
is a birational map which conjugates (f,X) to an automorphism (g, Y ).

Then there is a birational map ϕ̂ : X → Ŷ such that the strict trans-
form Ŷ0 := ϕ̂(X0) is a nonsingular hypersurface, and the induced map

ĝ := ϕ̂ ◦ f ◦ ϕ̂−1 gives an automorphsm of Ŷ .

Proof: We may assume that X0 is irreducible. Since X0 is a hypersur-
face, we may take its strict transform ϕ(X0). If ϕ(X0) is a point in Y ,
then it is fixed by g. If π1 : Y1 → Y is the blowup of the point ϕ(X0),
then g lifts to an automorphism of Y1. Let ϕ1 := π−1

1 ◦ ϕ. If ϕ1(X0) is
again a point, we can repeat this blowing-up process until ϕ1(X0) has
dimension > 0, which we may assume to be 1. If the singular locus
of ϕ1(X0) is nonempty, it is finite and invariant under f1. Now we can
blow up the singular set of ϕ1(X0) finitely many times and have a new
blowup space π2 : Y2 → Y1. Since we were blowing up invariant sets,
the induced birational map g2 of Y2 is again an automorphism. Now the
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image ϕ2(X0) must be a nonsingular curve, which must be invariant. We
can blow up this curve, and repeat the process finitely many times so
that ϕ3(X0) has dimension > 1. We continue this process until ϕN (X0)

is a nonsingular hypersurface in YN , and now we set Ŷ = YN .

Corollary 1.6. Let f be a birational map of X. Let X0 ⊂ X be a hy-
persurface for which the strict transform is f(X0) = X0. Let ϕ : X → Y
is a birational map which conjugates (f,X) to an automorphism (g, Y ).
Then the restriction (fX0 , X0) is birationally conjugate to an automor-
phism.

Proof of Theorem 4: Let f be as in Theorem 4. In Appendix C we
study the restriction of f8 to the plane Σ3 = {[x0 : x1 : x2 : x3] ∈ P3 :
x3 = 0}. There we show that this restricted mapping is not birationally
equivalent to an automorphism of Σ3. Thus Theorem 4 is a consequence
of Corollary 1.6.

2. Linear fractional recurrences

The maps (2.2) are among the Cremona transformations of 3-space
which are discussed in Chapter 10 of [H]. We discuss general proper-
ties of these transformations, and for the generic parameters (2.10) we
construct a new space π : X → P3, such that passing to the induced
map fX effectively eliminates one of the exceptional components.

For {i1, . . . , ik} ⊂ {0, 1, 2, 3}, we use the notation

(2.1) Σi1···ik = {x ∈ P3 : xij = 0, 1 ≤ j ≤ k},
and for a vector A = (A0, . . . , A3) we will write A · x = A0x0 + A1x1 +
A2x2 +A3x3. In homogeneous coordinates the maps (0.1) take the form

(2.2) f [x0 : x1 : x2 : x3] = [x0β · x : x2β · x : x3β · x : x0α · x],

where α = (α0, α1, α2, α3), β = (β0, β1, β2, β3). In the sequel, we will
assume

(2.3) α 6= λβ, β 6= (β0, 0, 0, 0), (α1, β1) 6= (0, 0).

Note that if one of the first two conditions does not hold, then f is linear,
and if the third condition does not hold, then f is independent of x1 and
thus f is actually a 2-step recurrence. If we set γ = β1α − α1β and
β1 6= 0, then we have

I = Σβγ ∪ Σ0β ∪ {e1},
where Σβ = {β ·x = 0}, Σγ = {γ ·x = 0}, Σ0 = {x0 = 0}, Σβγ = Σβ∩Σγ ,
Σ0β = Σ0 ∩ Σβ , and e1 = [0 : 1 : 0 : 0] = Σ023.
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The Jacobian determinant of f is given by 2x0(γ ·x)(β ·x)2. Thus we
see that the exceptional hypersurfaces are E = {Σ0,Σβ ,Σγ}. The action
of f on the exceptional varieties is given as follows: for λ2, λ3 ∈ C,
(λ2, λ3) 6= (0, 0),

(2.4) f :
Σβ 7→ e3,
Σ0 ∩ {λ2x2 = λ3x3} 7→ [0 : λ3 : λ2 : 0],
Σγ ∩ {λ2x2 = λ3x3} 7→ ΣBC ∩ {λ2x1 = λ3x2},

where we set α̌ = (α0, α2, α3, 0), β̌ = (β0, β2, β3, 0), and

B = (−α1, 0, 0, β1), C = β1α̌− α1β̌.

Thus Σβ is blown down to a point. The pencil of lines in Σγ passing
through e1 ∈ Σ0 ∩ Σγ are all mapped to points in ΣBC . The pencil of
lines in Σ0 passing through e1 are all mapped to points on the line Σ03,
which is again one of the exceptional lines. We have strict transforms:

(2.5) f : Σ0 7→ Σ03 7→ e1.

The inverse is given by

(2.6) f−1[x0 : x1 : x2 : x3] = [x0B ·x : x0α̌ ·x−x3β̌ ·x : x1B ·x : x2B ·x],

and the indeterminacy locus is I(f−1) = Σ0B∪ΣBC∪{e3}. The Jacobian
of f−1 is 2x0(C ·x)(B ·x)2, so the exceptional hypersurfaces are E(f−1) =
{Σ0,ΣB ,ΣC} and for µ1, µ2 ∈ C, (µ1, µ2) 6= (0, 0),

(2.7) f−1 :
ΣB 7→ e1,
Σ0 ∩ {µ1x1 = µ2x2} 7→ Σ0β ∩ {µ1x2 = µ2x3},
ΣC ∩ {µ1x1 = µ2x2} 7→ Σβγ ∩ {µ1x2 = µ2x3}.

Now let us construct the space π1 : X1 → P3 by blowing up a point e1,
and then the space π2 : X → X1 obtained by blowing up a line Σ03. We
set

(2.8) π = π1 ◦ π2 : X → P3.

Let S03 denote the blowup fiber over the strict transform of Σ03 in X1

and E1 for the strict transform of π−1
1 e1 in X1. For the induced map

on X, the orbit of Σ0 becomes

(2.9) fX : Σ0 → S03 → E1 → ΣB .

If X and Y are irreducible, we will say that a rational map f : X 99K Y
is dominant if the rank of df is equal to the dimension of Y on a dense
open set. Let us define a generic condition:

(2.10) β1 6= 0, β1α2 6= α1β2, and β1α3 6= α1β3.
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For simplicity we use the same notation for both a variety and its
strict transform, if there is no possibility of confusion.

Proposition 2.1. If (2.10) holds, then all the maps in (2.9) are domi-
nant, so E(fX) = {Σβ ,Σγ}. Further, I(fX) = Σβ0 ∪ Σβγ .

Proof: Let us first consider the restriction to S03. We may use the local
coordinates for a neighborhood of S03, (s0, x2, ξ3)S03

7→ [s0 : 1 : x2 :
s0ξ3]. For the neighborhood of the exceptional fiber E1 over e1, we use
(t0, ζ2, ζ3)E1 7→ [t0 : 1 : t0ζ2 : t0ζ3]. It follows that S03 = {(0, x2, ξ3)S03}
and E1 = {(0, ζ2, ζ3)E1

}. Using these local coordinates we have

fX |S03 : (0, x2, ξ3)S03 7→
(

0, ξ3,
α1 + α2x2

β1 + β2x2

)
E1

.

To have a dominant map, it is required that β1α2 6= α1β2. For the
restrictions of the induced birational map to Σ0 and E1 are given by
linear maps:

fX : Σ0 3 [0 : x1 : x2 : x3] 7→
(

0,
x3

x2
,
α1x1 + α2x2 + α3x3

β1x1 + β2x2 + β3x3

)
S03

∈ S03,

fX : E1 3 (0, ζ2, ζ3)E1
7→ [β1 : β1ζ2 : β1ζ3 : α1] ∈ ΣB .

We see that fX |E1
is dominant because β1 6= 0. And since β1α2 6= α1β2

and β1α3 6= α1β3, we see that fX |Σ0
is dominant.

Thus in passing to fX , we have removed one exceptional hypersurface
and one point of indeterminacy. There is a group of linear conjugacies
acting on the family (0.2). For (λ, c, µ) ∈ C∗ ×C∗ ×C, we set

(α, β) 7→ (λα, λβ),(2.11a)

(α, β) 7→ (α0, cα1, cα2, cα3, cβ0, c
2β1, c

2β2, c
2β3),

(α, β) 7→ (α′0, α
′
1, α
′
2, α
′
3, β
′
0, β1, β2, β3),

(2.11b)

α′0 = α0 + µ(α1 + α2 + α3) + µ(β0 + µβ1 + µβ2 + µβ3),

α′1 = α1 − µβ1,

α′2 = α2 − µβ2, α
′
3 = α3 − µβ3, β

′
0 = β0 + µ(β1 + β2 + β3).

(2.11c)

The first action corresponds to the homogeneity of f . The action (2.11b)
corresponds to a scaling of (x1, x2, x3) in affine coordinates, and (2.11c)
comes from translation by the vector (µ, µ, µ). Note that these actions
preserve the form of the recurrence relation.
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3. Non-critical maps

A map f of the form (2.2) is critical if (3.1) holds:

(3.1) β2 = β3 = 0, and β1α2α3 6= 0.

In this section we establish the following:

Theorem 3.1. If f is not critical, then f is not periodic.

We will use the following criterion:

Proposition 3.2. Suppose that f : X → X is periodic, i.e., fpX is the
identity for some p > 1. If E ⊂ X is an exceptional hypersurface, then
f jE ⊂ I(fX) for some 1 ≤ j < p.

Proof: Since E is exceptional, then codim(f(E)) ≥ 2. Let us consider

the sequence of varieties Vj := f jX(E). If Vj 6⊂ I(fX) for all j, then

applying the strict transform of f repeatedly, we have f j+1
X (E) = fX(Vj)

for all j, so codim(f(Vj)) ≥ 2 for all j. On the other hand, we must have
fpX(E) = E = Vp.

The proof of Theorem 3.1 will involve several cases, so we start with
some lemmas.

Lemma 3.3. Let π : X → P3 be the complex manifold defined in (2.8).
If β1 = 0, then there is a exceptional hypersurface V ⊂ X and a positive
integer k such that (fkX)nV 6⊂ I(fkX) either for all n ≥ 1 or for all
n ≤ −1.

Proof: Note that from the third assumption in (2.3), we have α1 6= 0.
We use two local coordinate systems for the exceptional divisor S03:

(s, x, ξ)
S

(1)
03
7→ [sξ : x : 1 : s], and (s, x, ξ)

S
(2)
03
7→ [s : x : 1 : sξ]

for the blowup divisor E1 we use the following two local coordinate
systems:

(t, ζ2, ζ3)
E

(0)
1
7→ [t : 1 : tζ2 : tζ3], and (ζ0, ζ2, t)E(3)

1
7→ [tζ0 : 1 : tζ2 : t].

Since β 6= (β0, 0, 0, 0), either β3 6= 0 or β2 6= 0.

Case β3β2 6= 0: In this case, the orbit of Σβ is given by

fX : Σβ 7→ e3 7→ (0, 0, α3/β3)
S

(2)
03
7→ (0, α3/β3, α2/β2)

E
(0)
1

7→ e3 ∈ Σ0 \ I(fX).
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Thus the orbit of Σβ is pre-periodic and fnXΣβ is a regular point for
all n ≥ 1.

Case β3 6= 0 and β2 = 0: Since β3 6= 0, we may assume that β3 = 1.
Notice that since both β1 and β2 are equal to zero, the second condi-
tion (2.10) is not satisfied and we have

fX :

Σ03 [0 : x1 : x2 : x3] 7→(0, x2/x3, (α1x1+α2x2+α3x3)/x3)
S

(2)
03
∈S03,

S033(0, x, ξ)
S

(2)
03
7→ [0 : β0 + ξ : 0 : α2 + α1x] ∈ Σ0,

Σ023 [0 :x1 :0 :x3] 7→(0, 0, (α1x1+α3x3)/x3)
S

(2)
03
∈S03∩Σ1 =π−1(e2).

It follows that

fX : Σ0 7→ S03 7→ Σ02 7→ S03 ∩ Σ1.

We also have

fX : E1 3 (0, ζ2, ζ3)
E

(0)
1
7→ [0 : 0 : 0 : 1] = e3 ∈ Σ0.

(i) β3 6= 0, β2 = 0, and α2 6= 0: With these parameters, we have a
two-cycle between Σ02 and the fiber over e2, {(0, 0, ξ)

S
(2)
03
}. Since

e3 ∈ Σ02 we have

fX : Σβ 7→ e3 7→ (0, 0, α3)
S

(2)
03
7→ [0 : β0 + α3 : 0 : α2] 7→ · · ·

Both Σ02 and the fiber over e2 in S03 are disjoint from I(fX), the
forward orbit of Σβ consists of points in X − I(fX). In fact the
curve S03 ∩ Σ1 = π−1(e2) is invariant under f2

X :

f2
X : S03∩Σ1 3 (0, 0, ξ)

S
(2)
03
7→(0, 0, (α2α3+α1β0+α1ξ)/α2)

S
(2)
03
∈ S03∩Σ1.

Thus for all n ≥ 1, (f2
X)nΣβ is a regular point in S03.

(ii) β3 6= 0, β2 = 0, α2 = 0, and β0 + α3 6= 0: In this case the point e3

is periodic of period 3:

fX : Σβ 7→ e3 7→ (0, 0, α3)
S

(2)
03
7→ E1 ∩ {x2 = α3x1} 7→ e3.

Thus we have a hypersurface

V = {(α0α3 + 2α0β0 + β3
0)x2

0 + (α1α3 + α1β0)x0x1 + α1β0x0x2

+ (α0 + α2
3 + α3β0 + β2

0)x0x3 + α1x2x3 = 0}

such that (f3
X)nV = e3 for all n ≥ 1.

(iii) β3 6= 0, β2 = 0, α2 = 0, and β0 + α3 = 0: For this case, let us
consider f2. We see that

f2
X : S03 3 (0, x, ξ)

S
(1)
03
7→
(

0, 0,
xξ

1 + β0ξ − β0xξ

)
S

(1)
03

∈ S03.
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It follows that S03 is still exceptional in this case and the point
(0, 0, 0)

S
(1)
03
6∈ I(f2

X) is fixed under f2
X . Thus (f2

X)nS03 6⊂ I(f2
X)

for all n ≥ 1.

Case β3 = 0 and β2 6= 0: Under the backward map, the hypersurface Σ0

is exceptional. We see

f−1
X :

Σ0 3 [0 : x1 : x2 : x3] 7→ (0, x1/x2, 0)
E

(3)
1
∈ E1 ∩ Σ0,

E1 3 (ζ0, ζ2, 0)
E

(3)
1
7→ (0, (β2 − α2ζ0)/(α1ζ0), ζ2/ζ0)

S
(2)
03
∈ S03,

S03 3 (0, x, ξ)
S

(2)
03
7→ [0 : −α3 − α2x+ β2xξ : α1x : α1] ∈ Σ0.

Let us set p := Σ0 ∩ E1 ∩ S03. It follows that the point p is fixed
under f−1

X . Since p ∈ f−nX Σ0 for all n ≥ 1, we see that f−nX Σ0 6⊂ I(f−1
X )

for all n ≥ 1.

Now let us suppose that β1 6= 0. Using actions (2.11a)–(2.11c), we
may assume that β1 = 1 and α1 = 0.

Lemma 3.4. Suppose that β1 = 1, α1 = 0. If either β2 6= 0 or β3 6= 0,
then Σ0 is exceptional and pre-periodic for f−1.

Proof: Let us first assume that β3 6= 0. Then

f−1 : Σ0 3 [0 : x1 : x2 : x3] 7→ [0 : −(β2x1 + β3x2) : x1 : x2] ∈ Σ0β

and Σ0β is invariant under f−1:

f−1 : [0 : −(β2x2 + β3x3) : x2 : x3]

7→ [0 : β2(β2x2 + β3x3)− β3x2 : −(β2x2 + β3x3) : x2].

Now suppose β3 = 0 and β2 6= 0. In this case we have

f−1 : Σ0 3 [0 : x1 : x2 : x3] 7→ [0 : −β2x1 : x1 : x2]

7→ [0 : β2
2 : −β2 : 1] ∈ Σ0β \ I(f−1)

and this last point is fixed under f−1.

Let π : Z → P3 be the complex manifold obtained by blowing up e2

and Σ02 and let E2 and S02 be the corresponding blowup divisors. In
the following lemma, we use the local coordinates (s0, x1, ξ2)S02

7→ [s0 :
x1 : s0ξ2 : 1] in a neighborhood of S02 = {s0 = 0} and (u0, η1, η3)E2

7→
[u0 : η1u0 : 1 : η3u0] in a neighborhood of E2 = {u0 = 0}.

Lemma 3.5. Suppose that β1 = 1, α1 = β2 = β3 = 0. If either α2 = 0
or α3 = 0, then S02 is exceptional and pre-periodic for f2

Z or f−2
Z .
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Proof: If α2 = α3 = 0, then the mapping is basically one-dimensional.
In other word, the recurrence defined in (0.2) can be reduced to one-step
recursion

wk+1 =
α0

β0 + wk
where wk = zi+3k, i = 0, 1, 2.

Let us consider two cases separately:

(i) Case α3 = 0 and α2 6= 0:

f2
Z : (0, t, ξ2)S02

7→
(

0,
β0 + ξ2
α2

, 0

)
S02

7→
(

0,
β0

α2
, 0

)
S02

7→
(

0,
β0

α2
, 0

)
S02

.

(ii) Case α2 = 0 and α3 6= 0:

f−2
Z : (0, t, ξ2)S02

7→
(

0,
α3

ξ2
,−β0

)
S02

7→
(

0,−α3

β0
,−β0

)
S02

7→
(

0,−α3

β0
,−β0

)
S02

.

Theorem 3.6. If f is not critical, then there exists a complex man-
ifold X such that either there are a positive integer k and an excep-
tional hypersurface E ⊂ X for an induced birational map fkX such that
(fkX)nE 6⊂ I(fkX) for n = 1, 2, . . . , or the analogous statement holds

for f−1
X .

Proof: Let X denote either the space X or Z in the lemmas above. This
theorem follows from the Lemmas 3.3–3.5.

Proof of Theorem 3.1: If f is not critical, then Theorem 3.6 says that in
each case that there are a positive integer k and an exceptional hyper-
surface that does not map into I(fkX). By Proposition 3.2, then, fk is
not periodic and therefore f is not periodic.

4. Critical maps

Here we study critical maps in general. Let us recall the condition
for f being critical: β2 = β3 = 0 and β1α2α3 6= 0. Using the ac-
tion (2.11a)–(2.11c) we may assume that a critical map satisfies:

(4.1) β1 = 1, β2 = β3 = 0, α1 = 0, α2 6= 0, α3 = 1.

In this section, we show (Lemma 4.2) that for every critical map there is
a blowup space π : Y → X such that the induced map fY has only one
exceptional hypersurface, which is Σγ . We determine the indeterminacy
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locus of fY (Corollary 4.6) and the dynamical degree for the generic case
(Theorem 4.8).

Proposition 4.1. If f is critical, then f−1 is conjugate to a critical
map.

Proof: Let β = (β0, 1, 0, 0) and α = (α0, 0, α2, 1) be parameters of a
critical map f . We consider a linear map φ : [x0 : x1 : x2 : x3] 7→ [x0 :
x3 : x2 : x1]. It follows that we have

φ−1 ◦ f−1 ◦ φ : [x0 : x1 : x2 : x3]

7→ [x0x1 : x2x1 : x3x1 : x0(α0x0 − β0x1 + x2 + α2x3)].

Thus f−1 is conjugate to a critical map of the form (2.2) with param-
eter values β′ = (0, 1, 0, 0) and α′ = (α0,−β0, 1, α2) which satisfy the
condition (3.1).

Remark. By Proposition 4.1, each result for f corresponds to a result
for f−1. The translation between f and f−1 is guided by notation:
β ↔ B, γ ↔ C, 1↔ 3: thus f−1ΣC = Σβγ , etc.

If (4.1) holds, it follows that e3 = Σ0 ∩ Σβ ∩ {x2 = 0} ∈ I, and

(4.2) f : Σβ 99K e3  Σ01  Σ0 99K Σ03 99K e1  ΣB .

We define a new complex manifold πY : Y → P3 by blowing up e1 and e3,
then the strict transform of Σ01, followed by the strict transform of Σ03.
(Equivalently, we start with X and blow up the strict transform of e1

and Σ03.) For j = 1, 3, we denote the exceptional divisor over ej by Ej
and the exceptional divisor over Σ0j by S0j for j = 1, 3. The induced
birational map fY : Y → Y maps

(4.3) fY : Σβ → E3 → S01 → Σ0 → S03 → E1 → ΣB .

Lemma 4.2. The maps in (4.4) are dominant; Σγ is the unique excep-
tional hypersurface for fY , and ΣC is the unique exceptional hypersurface
for f−1

Y .

Proof: Using the local coordinates defined by (t, ξ1, ξ2)E3
7→ [t : tξ1 :

tξ2 : 1] and (s, η, x2)S01
7→ [s : sη : x2 : 1], we have

fY :

Σβ \ Σβγ 3 [x0 : −β0x0 : x2 : x3] 7→ (0, x2

x0
, x3

x0
)E3
∈ E3,

E3 3 (0, ξ1, ξ2)E3 7→ (0, ξ2, β0 + ξ1)S01 ∈ S01,
S01\Σβγ 3(0, η1, x2)S01 7→ [0 : x2(β0+η1) : (β0+η1) : 1+α2x2]∈Σ0.

In Proposition 2.1 we showed that the maps Σ0 → S03 → E1 → ΣB are
dominant. It follows that Σγ is the only exceptional hypersurface for fY ,

and ΣC is the only one for f−1
Y .
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For p ∈ P3, we will say that a point of π−1
Y p is at level 1 if it could have

been obtained by blowing up a point or a curve in P3. Thus the points of
all fibers are of level 1, unless they lie over e1, e3, or e2 = Σ01∩Σ03. The
fibers E1∩S03 and E3∩S01 represent the points of E1 and E3 which are
at level 2. Over e2, we define F1

e2 := S01∩π−1
Y e2 and F2

e2 := S03∩π−1
Y e2.

We see that F ie2 , for i = 1, 2 is at level i.
Now we determine the indeterminacy locus of fY . In the construction

of Y , we see that new indeterminacy locus is generated when two centers
of blowups intersect. Thus we have

I(fY ) ⊂ Σβγ ∪ (E1 ∩ S03) ∪ (E3 ∩ S01) ∪ F1
e2 ∪ F

2
e2 ∪ Σ02 ∪ F0βγ ,

where F0βγ := π−1
Y (Σβγ ∩ Σ01). We see that the three curves on level 2

are not indeterminate:

Lemma 4.3. If f is critical, then the indeterminacy loci I(fY ) and
I(f−1

Y ) do not contain E1 ∩ S03, E3 ∩ S01, or F2
e2 .

Proof: Let us first consider the blowup fiber over E3 ∩ Σ01. For this
fiber let us use a local coordinate (ξ0, ξ1, t2)E3 7→ [t2ξ0 : t2ξ1 : t2 :
1] ∈ P3. It follows that the strict transform of Σ01 = {(0, 0, t2)E3}
and E3 ∩ Σ01 = (0, 0, 0)E3

. The local coordinates in a neighborhood
of the second blowup fiber over E3 ∩ S01 are given by (η0, u1, t2)E01

3
7→

(η0u1, u1, t2)E3 7→ [η0u1t2 : u1t2 : t2 : 1] ∈ P3 and we have the second
blowup fiber E3 ∩ S01 = {(η0, 0, 0)E01

3
}. With these coordinates, we see

that

fY : (η0, 0, 0)E01
3
7→ (0, 0, η0)S01 = S01 ∩ Σ0,

where (ξ, t, x3)S01
7→ [ξt : t : 1 : x3] gives local coordinates near S01. It

follows that the second blowup fiber E3∩S01 is not indeterminate for fY .
The computations for f−1

Y and for E1∩S03 are essentially the same, and

we see that E1 ∩ S03 and E3 ∩ S01 are not indeterminate for fY or f−1
Y .

To consider the second blowup fiber F2
e2 , we use local coordinates

(ξ, s, x3)01 → [ξs : s : 1 : x3]. In this coordinates we see that S01 =
{s = 0} and the strict transform of Σ03 = {ξ = 0, x3 = 0}. Thus
the local coordinates near the blowup of Σ03 are given by (η, s, t)03 7→
(ηt, s, t)01 7→ [ηts : s : 1 : t] and we have F2

e2 = {(η, 0, 0)03}. With these
coordinates, we have

fY : F2
e2 3 (η0, 0, 0)03 7→ (0, 0, α2η)E1

= E1 ∩ Σ0,

where (ξ0, t2, ξ3)E1 7→ [ξ0t2 : 1 : t2 : ξ3t2] is local coordinates near E1.
Similarly we see that f−1

Y F2
e2 =E3∩Σ0 and the mapping is dominant.
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Recall from §2 that in P3 each point on Σβγ blows up to a line in ΣC .

Note that [0 : 0 : 1 : −α2] = Σβγ ∩ Σ01, and let F0βγ := π−1
Y (Σβγ ∩

Σ01). Note that the base point is the intersection of Σ01 and Σβγ , two

indeterminate lines. Similarly, we write F0BC := π−1
Y (ΣBC ∩ Σ03) =

π−1
Y [0 : 1 : −α2 : 0].

Lemma 4.4. If f is critical, the fiber curve F0βγ is a component of I(fY).
Further fY : F0βγ − Σβγ  F0BC in the following senses:

(i) If p ∈ F0βγ − Σβγ , then (fY )∗(p) = F0BC .
(ii) If π : Tii → Y is the blowup of p with exceptional divisor Ep, and

if fTii
is the induced map, then the strict transform of fTii

(Ep) =
F0BC .

(iii) If π : Tiii → Y is the blowup of F0βγ and F0BC , with exceptional
divisors E0βγ and E0BC , then the induced map fTiii : E0βγ 99K
E0BC is dominant.

(iv) If π : Tiv → Y is the blowup of p ∈ F0βγ and F0BC , then the image
of the induced map fTiv

: Ep 99K E0BC is a curve γ ⊂ E0BC .
(v) If π̂ : Tv → Tiv is the blowup of the curve γ in (iv), and let Eγ

denote the exceptional divisor. Then the induced map fTv
: Ep 99K

Eγ is dominant.

Proof: Let us consider local coordinates in a neighborhood of the
fiber F0βγ and local coordinates in a neighborhood of F0BC :

(s0, η1, x)S01 ∼ [s0 : η1s0 : 1 : x] ∈ P3 and F0βγ = {s0 = 0, x = −α2},
(s0, x, η3)S03

∼ [s0 : 1 : x : η3s0] ∈ P3 and F0BC ={s0 = 0, x = −α2}.
Thus

fY (s0, η1, x)S01
= [s0(β0+η1) : β0+η1 : x(β0+η1) : α0s0+α2+x]

=

[
s0 : 1 : x :

α0s0 + α2 + x

β0 + η1

]
=

(
s0, x,

α0s0 + α2 + x

s0(β0 + η1)

)
S03

.

(4.4)

The condition for p ∈ F0βγ − Σβγ is that p = (0, η̂1,−α2)S01
with

β0 + η̂1 6= 0. For such points p, we see from (4.4) that we get all points
of F0BC as limits as we let s0 → 0 and x→ −α2. This proves (i).

For (ii), we consider the map π(t, ξ2, ξ3) = (t, tξ2 + η̂1, tξ3 − α2)S01
=

(s0, η1, x)S01 , which gives the blowup at p. By (4.4), the induced map
fT = fY ◦ π is given in coordinates as

fT (t, ξ2, ξ3) = (t,−α2 + tξ3, (α0 + ξ3)/(β0 + η̂1 + tξ2))S03
.
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On Ep={t = 0}, we have fT (t, ξ2, ξ3) = (0,−α2, (α0 + ξ3)/(β0 + η̂1))S03
,

whose image is F0BC .

For (iii), we consider the blowup π : T → Y , with coordinate system

π0βγ(r1, r2, µ) = (s0 = r1, η1 = µ, x = −α2 + r1r2)S01

near F0βγ and exceptional divisor E0βγ = {r1 = 0} and local coordinates

π0BC(u1, u2, v) = (s0 = u1, x = −α2 + u1u2, η3 = v)S03

near F0BC and exceptional divisor E0BC = {u1 = 0}. It follows that

fT (r1, r2, µ) = π−1
0BC ◦ fY ◦ π0βγ(r1, r2, µ) =

(
r1, r2,

α0 + r2

β0 + µ

)
.

When we set r1 = 0, we have a dominant map from E0βγ to E0BC .

For (iv) we use the blowups defined earlier; fT = π−1
0BC ◦ f ◦ π. In

coordinates, this map is

fT (t, ξ2, ξ3) =

(
t, ξ3,

α0 + ξ3
β0 + η̂1 + tξ2

)
0BC

.

On the exceptional divisor Ep = {t = 0}, we have fT (0, ξ2, ξ3) =
(0, ξ3, (α0 + ξ3)/(β0 + η̂1))0BC .

For (v) we parametrize the curve γ as ξ3 7→ (0, ξ3, φ(ξ3))0BC , where
φ(s) = (α0+s)/(β0+η̂1). The choose coordinates (v1, s, v2) such that the
blowup map π̂ : Tv → Tiv is given by π̂(v1, s, v2) = (v1, s, v1v2 +φ(s))Tiv

,
and the exceptional fiber is Eγ = {v1 = 0}. The induced map is given
by

fTv
(t, ξ2, ξ3) = π̂−1(fTiv

(t, ξ2, ξ3))=

(
t, ξ3,

1

t

(
α0 + ξ3

β0 + η̂1 + tξ2
− φ(ξ3)

))
.

Taking the limit as t→ 0 gives the d/dt derivative of the last coordinate
at t = 0, and provides the map fTv

(0, ξ2, ξ3) = (0, ξ3,−ξ2(α0 + ξ3)/(β0 +
η̂1)2), so fTv

: Ep → Eγ is dominant.

Let us define a set S ⊂ Y to be totally invariant if it is completely
invariant for the total transform, or if for all p ∈ S, we have (fY )∗p ⊂ S
and for all p /∈ S we have (fY )∗p ∩ S = ∅.

Lemma 4.5. If f is critical, then Σ02 is indeterminate for fY . Each
point of Σ02 blows up to F1

e2 , and F1
e2 is mapped smoothly to Σ02. The

set Σ02 ∪ F1
e2 is totally invariant.
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Proof: Recall that fΣ02 = e2, and the point e2 was blown up. We
consider points [s : 1 : sξ : x] which are close to Σ02 when s is small. We
see that

fY : [s : 1 : sξ : x] 7→
[
s

x
:
sξ

x
: 1 : s

α0s+ α2sξ + x

x(β0s+ 1)

]

=

(
1

ξ
,
sξ

x
, s
α0s+ α2sξ + x

x(β0s+ 1)

)
01

.

Letting s → 0 we see that fY [0 : 1 : 0 : x]  {(η, 0, 0)01}. Using the
same local coordinates we also see that

fY : F1
e2 3 (η, 0, 0)01 7→

[
0 : 1 : 0 :

α2η

β0η + 1

]
∈ Σ02.

For the second statement, we notice that from (4.4) fY ((Σ02 ∪ F1
e2)c −

I(fY )) is disjoint from the set Σ02∪F1
e2 . Since I(fY ) = Σβγ∪F0βγ∪Σ02

and Σβγ ∩ Σ02 = ∅, we see that the sets Σ02 ∪ F1
e2 and Σβγ ∪ F0βγ are

disjoint. It follows that Σ02 ∪ F1
e2 is totally invariant.

From Lemma 4.3 we see that I(fY ) ⊂ Σβγ ∪F1
e2 ∪Σ02 ∪F0βγ . In the

proof of Lemma 4.5 we see that F1
e2 ∩ I(fY ) = ∅. It follows that

Corollary 4.6. If f is critical, then I(fY ) = Σβγ ∪F0βγ ∪Σ02 has pure
dimension 1.

The behavior of fY at Σ02 is, in suitable coordinates, given by the
third model (1.5). The behavior of fY at F0βγ , as seen in Lemma 4.4, is
different from the model (1.5). Further, we note that by Proposition 4.1
and the remark following it, the analogues of Lemmas 4.2–4.5 all hold
for f−1

Y . For instance, ΣC is the unique exceptional hypersurface for f−1
Y ,

I(f−1
Y ) = F1

e2 ∪ F0BC ∪ ΣBC , and each point of F0BC − ΣBC blows up

under f−1
Y to F0βγ .

Corollary 4.7. If f is critical, then f jY Σγ ∩ (Σ02 ∪ F1
e2) = ∅ for all

j ≥ 0.

Proof: By Lemma 4.5, it suffices to consider the case j = 0. By (4.1),
e2 /∈ Σγ in P3, so the fiber over e2 remains disjoint from Σγ inside Y .
Now e1 = Σ02 ∩ Σγ in P3 and we see that Σ02 and Σγ are separated
when we blow up e1 to make Y .

Recall that the degree complexity is δ(f) = limn→∞(deg(fn))1/n. If
δ(f) > 1, then the degrees of the iterates fn grow exponentially in n. In
particular, f cannot be periodic if δ(f) > 1.
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Theorem 4.8. If f is critical, and if fnY Σγ 6⊂ Σβγ ∪F0βγ , then the first
dynamical degree is δ(f) ∼ 1.32472, the largest root of x3 − x− 1.

Proof: Using Corollary 4.7 we see that fmY Σγ ∩I(fY ) = ∅ for all m ≥ 1.
Thus by Proposition 1.2 we have (f∗Y )m = (fmY )∗ for all m. Thus δ(f) is
the spectral radius of f∗Y . Inside the Picard group Pic(Y ), we let HY be
the class of a generic hyperplane in Y , and we have

(4.5) f∗Y :
HY → 2HY − E1 − E3 − S01,
S01 → E3 → Σβ = HY − E3 − S01,
E1 → S03 → Σ0 = HY − E1 − E3 − S01 − S03.

The computation of f∗Y is standard; see [BK1], [BK2]. The character-
istic polynomial of this transformation is (x2 + 1)(x3− x− 1), so δ(f) is
as claimed.

Now we give the existence of Green currents, which are invariant
currents with the equidistribution properties given in the following:

Theorem 4.9. If f is as in Theorem 4.8, then there is a positive closed
current T+

Y in the class of α+
Y with the properties: f∗Y T

+
Y = T+

Y , and if Ξ+

is a smooth form which represents α+
Y , then limn→∞ δ1(f)−nfn∗Y Ξ+

Y =

T+
Y in the weak sense of currents on Y .

Proof: Recall from Corollary 4.6 that I(fY ) = Σ02 ∪ Σβγ ∪ F0βγ . The

total forward image of this set is π2π
−1
1 I(fY ) = F1

e2 ∪ F0BC ∪ ΣC . We

will show that if σ ⊂ π2π
−1
1 I(fY ) is any curve, then α+

Y · σ ≥ 0. The
theorem will then be a consequence of Theorem 1.3 of [Ba].

Up to a scalar multiple, we may write α+
Y = HY − c1E1 − c3E3 −

c01S01 − c03S03. Then since f∗Y is given by (4.5) we have 1 > c1 > c3 >
c01 = c03 > 0, c1 > c01 + c03, and c1 + c3 = 1. Let us start with F0βγ ⊂
I(fY ). Points of this curve are blown up to F0BC . The curve σ = F0BC

is the exceptional fiber inside S03 over the point ΣBC ∩Σ03 ∈ P3. Thus
σ ·S03 = −1, so α+

Y · σ = c03 > 0. Points of the indeterminate curve Σ02

blow up to σ = F1
e2 . In this case, we have that σ ·S01 and σ ·S03, are ±1,

with opposite signs, depending on the order of blowup of Σ01 and Σ03.
Thus σ · α+

Y = ±c01 ∓ c03 = 0.
The other possibility is that σ ⊂ ΣC . In this case, we have σ ·H =

deg(σ). Further, if we let m3 denote the multiplicity of σ at e3, then σ is
represented by deg(σ)L −m1F1

01 −m2F1
03 −m3ε3, where F1

01 and F1
03

represent fibers of S01 and S03, and ε3 = E3 ∩ ΣC . The multiplicities
m1, m2, m3 are bounded above by deg(σ). Since F1

01 ·S01 = F1
03 ·S03 =

ε3 · E3 = −1, we have σ · α+
Y ≥ deg(σ)(1− c01 − c03 − c3) > 0.
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5. Pseudo-automorphisms

In this section we assume that f is critical. We let µj := f jY Σγ denote
the strict transforms of Σγ under the iterates of fY and we consider the
condition:

(5.1) fNY Σγ = Σβγ for some N > 1.

Theorem 5.1. If a critical map f satisfies (5.1), then there is a blowup
space π : Z → Y such that fZ is a pseudo-automorphism.

Before giving the proof of Theorem 5.1 we give the statements of some
lemmas that we will use. The proofs of these lemmas involve blowup
computations similar to the proof of Lemma 4.4, so we omit them.

Lemma 5.2. Let π : T → Y be the blowup of the curve ΣBC , and let E
denote the exceptional fiber. Then the induced map fT gives a dominant
map fT : Σγ 99K E.

Lemma 5.3. Let L be a line in Σγ passing through e1, so L is exceptional
for fY and is mapped to a point p ∈ ΣBC . Let π : T → Y be the space
obtained by blowing up p and then the line L. Let Ep and EL denote the
corresponding blowup divisors. Then the induced map fT : EL 99K Ep is
dominant.

The indeterminacy locus is I(fY ) = Σβγ ∪F0βγ ∪Σ02. Note that the
each point of Σ02 blows up to F1

e2 and Σ02 ∪ F1
e2 is totally invariant by

Lemma 4.5. If p ∈ Σβγ − F0βγ , then there is a line Lp ⊂ ΣC , passing
through e3 such that f∗p = Lp. If p = Σβγ∩F0βγ , then f∗p = Lp∪F0BC .

Lemma 5.4. Suppose that p ∈ Σβγ . Let π : T → Y be the space ob-
tained by blowing up p and Lp; let Ep and EL denote the corresponding
exceptional divisors. Then it follows that fT induces a dominant map
fT : Ep 99K EL.

Proof of Theorem 5.1: With N as in (5.1) and 1 ≤ j ≤ N , we consider

the strict transform µj := f jY (Σγ). Let Λ0 = {µj : dim(µj) = 0} and let
Λ1 = {µj : dim(µj) = 1}. Let π : Z → X denote the space obtained by
blowing up first the points in Λ0 and then the curves µj ∈ Λ1, in the
order of increasing j. Let Mj denote the exceptional divisor over µj .

Now let fZ : Z 99K Z denote the induced map. We will show that the
exceptional set is E(fZ) = ∅. This will be sufficient, since a similar argu-
ment will show that E(f−1

Z ) = ∅. Clearly, E(fZ) ⊂ Σγ ∪
⋃

1≤j≤N Mj . By
Lemma 5.2, we have that fZ : Σγ 99K M1 is dominant. Thus Σγ is
not exceptional for fZ . Now we will move forward in the space Z,
following above the µj . As we move forward we see that for each j,
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fZ : Mj 99K Mj+1 is dominant if there is a point of µj where fY is a
local diffeomorphism. We may continue in this fashion unless one of the
following happens: (a) µj ⊂ Σγ , or (b) µj ⊂ I(fZ).

Case 1: µj ∩ (F0βγ − Σβγ) = ∅ for all j. If (a) occurs, then µj+1 is a
point of µ1 = ΣBC . We know that fZ : Mj 99K Mj+1 is dominant by
Lemma 5.3. Now for j < `, if µ` /∈ I(fY ), then fY is a local diffeo-
morphism in a neighborhood of µ`. Thus fZ establishes an isomorphism
between M` and M`+1, and in particular is a dominant map. It is also
possible that µ` ∈ I(fY ). By the assumption of this case, we must
have µ` ∈ Σβγ . Now we know that fZ : M` 99K M`+1 is dominant
by Lemma 5.4. Now we continue with dominant maps until we reach
MN 99K ΣC , which is dominant by the proof of Lemma 5.2, applied
to f−1

Y .

Case 2: µj = F0βγ for the first j for which µj ∩ (F0βγ − Σβγ) 6= ∅.
By Lemma 4.4(iii), we have that fZ : Mj = E0βγ 99K Mj+1 = E0BC is
dominant. Thus we will continue to have dominant maps M` 99K M`+1

until either (a) or (b) occurs. The only possibility that was not dealt with
in Case 1 above is that µ` might be a point of F0βγ −Σβγ . Now we will
apply Lemma 4.4(ii) with p = µ`, so we conclude that fZ(Ep) is a curve
in E0BC = Mj+1, and thus we must have µ`+1 = µj+1. On the other
hand, we have continued by dominant maps of the blowup divisors Mk,
1 ≤ k ≤ `. Thus we have that f `+1

Y : Σγ 99K E0BC = M`+1 is dominant.

On the other hand, we already had a dominant map f j+1
Y : Σγ 99K E0BC .

This is not possible since fY is birational. We conclude that µ` is back
in Case 1 for all ` > j, which finishes the proof of Case 2.

Case 3: For some ` ≥ 1, fY (F0BC), f2
Y (F0BC), . . . , f `(F0BC) are curves,

and f `Y (F0BC)=F0βγ . Let us start with π′ : Y ′→Y which is the space Y
blown up at the orbit of the curves fkY F0BC for 0 ≤ k ≤ `. Now we
follow the proof of Cases 1 and 2 above, except that we define the µj :=

f jY ′(Σγ) in terms of iteration of fY ′ . The only difference now is that
for (b), we might have a point µj ∈ F0βγ − Σβγ . In this case, we
see from Lemma 4.4(ii) that µj+1 must be a curve in E0BC , and by
Lemma 4.4(v), the induced map on the blowup divisors is dominant.
Thus we are effectively back in Case 1.

Case 4: None of the above. In this case, µj is a point of F0βγ −Σβγ for
some j, and F0BC is not part of an invariant cycle of curves. We will
show that this case does not occur. Suppose that j is the first time that
µj is in F0βγ−Σβγ . Then by Lemma 4.4(i), we have µj+1 = F0BC . Now
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the possibilities of the subsequent future of µ`, ` ≥ j + 1 are either (a)
or (b). Possibility (b) cannot happen first, for this would mean that µ` is
a curve, and the only way that µ` can be contained in the indeterminacy
locus I(fY ) is that µ` = F0βγ or µ` = Σβγ . The first option is exactly
Case 3, which is assumed not to happen. The with the second option,
we now consider f−1

Y , starting with ΣC , going backwards through Σβγ ,
and continuing until we reach µj+1 = F0BC . Thus we are in Case 2,

with fY replaced by f−1
Y . However, in this case µj cannot be a point

of F0βγ .
This shows that the future of µ` must first encounter possibility (a).

Thus there exists `0 such that µ`0 is an exceptional line in Σγ , which
means that µ`0+1 is a point in µ1. Now we consider the subsequent future
of µ`+1. The orbit of µ1 enters F0βγ after j steps. We conclude that µ`
must be contained in µ̂ :=

⋃
1≤k≤`0 µk unless we have µ` ∈ I(fY ) at some

stage. The only possibilities for this are to have µ` ∈ Σβγ . There is no
loss of generality for us to start with π′ : Y ′ → Y , which is the blowup
of F0βγ and F0BC , and we let µj := f jY ′(Σγ) be the strict transform
inside of Y ′. In this case, we have dominant maps on all of the blowup
divisors M`. Thus if µ` ∈ Σβγ , then by Lemma 5.4, we have µ`+1 = Lµ`

,
as in the notation given just before Lemma 5.4. Thus µ`+1 is a curve,
and as we move forward, this curve cannot become µ`1 = Σβγ for some `1
for the reason given in the previous paragraph. The other possibilities
are either: (a) in which case we have µ`1+1 ⊂ µ1, or (b) µ`1 = F0βγ , in
which case we have µ`1+1 = F0BC . With both of these possibilities, we
are back inside of µ̂. Thus (5.1) cannot hold.

Σγ ΣC

ΣBC Σβγ

1 2

3 4

5 6 7 10 11

8 9

Figure 1. A hypothetical orbit: d1 = 2, u1 = 4, d2 = 7,
u2 =9, md=mu = 2, N=11.

Now let us introduce some notation to describe how the dimensions of
the varieties µj can change. Let mF be the number such that µmF+2 =
F0βγ ∩ Σβγ if this case occurs. Otherwise we set mF = ∞. Similarly
we set mcF be the number such that µmcF+1 = F0BC ∩ ΣBC if this
case occurs and mcF =∞ otherwise. Let md be the number of positive
integers d1 < d2 < · · · < dmd

denote the iterates for which 1 = dimµdj >
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dimµdj+1 = 0 and µdj+1 6= ΣBC ∩ F0BC . Similarly, we let mu be
the number of positive integers u1 < u2 < · · · < umu for which the
dimensions go up, i.e., 0 = dimµuj < dimµuj+1 = 1 and µuj 6= Σβγ ∩
F0βγ . We also let ms be the number of positive integers s1 < s2 < · · · <
sms

such that µsj+2 ⊂ F0βγ and µsj+2 6= F0βγ ∩ Σβγ .
To illustrate this numbering scheme, a hypothetical orbit of Σγ is

given in Figure 1. Here we have assumed that we are in the simpler
case mF = mcF = ∞ and ms = 0, which means that the orbit never
enters F0βγ .

We use the numbers ms, mu, md, sj , uj , dj , mF , mcF and N to
define four Laurent polynomials:

Q1 := −1−
md∑
j=1

1

tdj
+

1

t

ms∑
j=1

1

tsj
+

1

tmF

(
1

t
+

1

t2

)
− 1

tmcF
,

Q2 :=

ms∑
j=1

1

tsj

(
1

t
+

1

t2
+

1

t3
+

1

t4

)
+

1

tmF

(
1

t
+

1

t2

)
+

1

tmcF

(
1

t
+

1

t2

)
,

Q3 := −1−
md∑
j=1

1

tdj
+

ms∑
j=1

1

tsj

(
1 +

1

t
− 1

t4

)

+
1

tmF

(
1 +

1

t
+

1

t2

)
− 1

tmcF

(
1 +

1

t2

)
,

Q4 := −t− t
md∑
j=1

1

tdj
− t

mu∑
j=1

1

tuj
− 1

tN−1
−

ms∑
j=1

1

tsj

(
1

t
+

1

t3

)

+
1

tmF+1
− t

tmcF

(
1 +

1

t2

)
.

With the Qj , we can write the characteristic polynomial for f∗Z :

Theorem 5.5. If f is critical and (5.1) holds, then the dynamical degree
of f is given by the largest root of the polynomial

(5.2) χf (t) := tN−1(t2 + 1)
[
(Q1 −Q4)t3 + (2Q1 −Q2 −Q3 −Q4)t2

+ (Q1 −Q3)t+Q4

]
.

The calculation to establish (5.2) is lengthy, so we defer it to Appen-
dix A.
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6. Periodic maps

In this section, we determine all possible periodic 3-step recurrences.
By §3, we may assume (4.1). The question of periodicities for maps (4.1)
with β0 = 0 has been answered by Csörnyei and Laczkovich [CL]: they
have shown that the only periodicities in this case are the two period 8
maps given in the theorem stated in the Introduction. We will consider
the general case where β0 is possibly nonzero. We start by giving a
necessary condition for a map to be periodic.

Proposition 6.1. If f is periodic and if E is an exceptional hyper-
surface, then there is an exceptional hypersurface E′ for f−1 such that
fnE = E′ for some n > 0 and the co-dimension of f jE is ≥ 2 for all
j = 1, . . . , n− 1.

Proof: Suppose f has period p. Since fpE = E and codim fE ≥ 2, it
follows that there exists 0 < n ≤ p such that codim fn−1E ≥ 2 and
codim fnE = 1. Thus fnE is an exceptional for f−1.

Since f is critical, dim f jΣβ < 2 for j = 1, 2, and f3Σβ = Σ0; further,
dim f jΣ0 < 2 for j = 1, 2, and f3Σ0 = ΣB . By Lemma 4.2 the only
exceptional hypersurface for fY is Σγ , and the only exceptional hyper-

surface for f−1
Y is ΣC . This gives us the following necessary condition

for f to be periodic.

Corollary 6.2. If f is periodic, then f is critical and there is some
n > 0 such that fnY Σγ = Σβγ and f−nY ΣC = ΣBC .

Proof: If f is periodic, then so is fY . Since both fY and f−1
Y have unique

exceptional hypersurfaces, there exists n ≥ 0 such that fnY Σγ = Σβγ
which blows up to a hypersurface ΣC . If f is periodic, then so is f−1

and thus f−nY ΣC = ΣBC .

A polynomial p(z) =
∑k
i=0 aiz

i, ai ∈ C is said to be self-reciprocal if

p(z) = ±zkp(1/z).

Lemma 6.3. If f is periodic, then χf (t) is self-reciprocal, and χf =
χf−1 .

Proof: If f is periodic, then the characteristic polynomial of f∗Z , χ(t)
is a product of cyclotomic factors and thus χ(t) is self-reciprocal. Fur-
thermore by Theorem 5.1 fZ is a pseudo-automorphism and therefore
(f∗Z)−1 = (f−1

Z )∗. It follows that χf and χf−1 are integer polynomials
with the same roots.
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Lemma 6.4. If f is periodic, then mF = mcF = ∞ and there is a
non-negative integer m such that

(i) m = mu = md < N , 1 < d1 < u1 < · · · < dm < um < N and
(ii) N − uj = dm+1−j , N − dj = um+1−j for j = 1, . . . ,m.

Proof: From (5.2) we see that the characteristic polynomial χ = χf (t)
is given by χ(t) = tN−1(t2 + 1)ϕ(t), where

ϕ(t) = Ts(t− 1)

(
t+1+

1

t

)
+

1

tN−1

(
tN (t3−t−1) + (t3+t2−1)

)
+ t(Td(t

3 − t− 1) + Tu(t3 + t2 − 1))

+
1

tmF+1
(t3 + t2 − 1) +

1

tmcF−1
(t3 − 1),

(6.1)

where Ts =
∑ms

j=1(1/tsj ), Td =
∑md

j=1(1/tdj ), and Tu =
∑mu

j=1(1/tuj ).

By Lemma 6.3, χ(t) should be self-reciprocal. Since the first part of χ
and the first line of (6.1) are self-reciprocal, it suffices to consider the

case ms = 0 and mumd 6= 0. In this case dim f jZΣγ = dim f j+1
Z Σγ if and

only if j 6∈ {ui, i = 1, . . . ,mu} ∪ {di, i = 1, . . . ,md} ∪ {mF + 2,mcF}.
Thus it is clear that we have m = mu + 1 = md + 1 < N such that
d̂j ∈ {di, i = 1, . . . ,md} ∪ {mcF}, ûj ∈ {ui, i = 1, . . . ,mu} ∪ {mF + 2},
and 1 < d̂1 < û1 < · · · < d̂m < ûm < N for some positive integer m.
Thus we have

fZ : Σγ → ΣBC → · · · → f d̂1Z Σγ → p1 ∈ ΣBC → · · · → q1 ∈ Σβγ

 f û1+1
Z Σγ ⊂ ΣC → · · · → f d̂2Z Σγ → · · · → fNZ Σγ = Σβγ  ΣC .

By interchanging the roles of Σβ , Σγ and ΣB , ΣC , we see that the
characteristic polynomial for f−1 is given by χ̂f−1(t) = tN−1(t2 + 1)ϕ̂(t)
where

ϕ̂(t) =
1

tN−1

(
tN (t3 − t− 1) + (t3 + t2 − 1)

)
+ t(Tu(t3 − t− 1) + Td(t

3 + t2 − 1))

+
1

tmcF+1
(t3 + t2 − 1) +

1

tmF−1
(t3 − 1).

(6.2)

Since both f and f−1 have the same characteristic polynomial, by com-
paring χf and χf−1 we see that mF = mcF = ∞ and di, ui satisfy
conditions (i) and (ii).
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Lemma 6.5. Suppose f is periodic.

(i) If m is even, then for all j = 1, . . . ,m, 2 ≤ uj − dj ≤ d1.
(ii) If m is odd, then 1 ≤ u(m+1)/2 − d(m+1)/2 ≤ d1 and for all j 6=

(m+ 1)/2, 2 ≤ uj − dj ≤ d1.

Proof: Suppose j∗ is the smallest positive integer such that uj∗ − dj∗ >
d1. Then we have the following: (1) f

dj∗
Y Σγ is an exceptional line in Σγ ;

(2) f
dj∗+i
Y Σγ is a point in f iY Σγ for i = 1, . . . , d1; and (3) f

dj∗+d1+1
Y Σγ =

fd1+1
Y Σγ , which is a point in ΣBC . It follows that the exceptional hy-

persurface Σγ is pre-periodic, which contradicts to the hypothesis f is

periodic. If uj − dj = 1, then f
dj+1
Y Σγ = ΣBC ∩Σβγ = f

uj

Y Σγ . Thus the
situation uj − dj = 1 can happen at most once, and by Lemma 6.4 we
see that (N − dj) − (N − uj) = um−j+1 − dm−j+1 = 1. It follows that
j = m− j + 1 and thus j = (m+ 1)/2.

Lemma 6.6. Suppose f is critical and m ≥ 1 then

(i) d1 6= 1, 3, 4.
(ii) If d1 = 2, then m = 1, and either (i) α0 = α2 = 1 and β0 = 0 or

(ii) α0 = η2α2 = η, β = η2 where η2 − η + 1 = 0.
(iii) If m ≥ 2 is odd, then for j = 1, . . . ,m− 1, dj+1 − uj ≥ 5.
(iv) If m ≥ 2 is even, then for 1 ≤ j ≤ m−1 and j 6= m/2, dj+1−uj ≥ 5

and dm/2+1 − um/2 ≥ 4.

Proof: (i) d1 = 1 means ΣBC is a line through e1 in Σγ . Since ΣBC =
{x3 = 0, α0x0 + α2x1 + x2 = 0} and α2 6= 0, it follows that e1 6∈ ΣBC
and thus d1 6= 1. Since ΣBC ⊂ Σ3, we have f3

Y Σγ = f2
Y ΣBC ⊂ Σ1

which doesn’t contain e1. Furthermore fY Σ1 = {[β0x0 : β0x2 : β0x3 :
α0x0 + α2x2 + x3]} if β0 6= 0 and fY Σ1 is a line in the blowup fiber E3

if β0 = 0. It follows that f4
Y Σγ does not contain e1. Therefore d1 6= 3

or 4. The statement for (ii) can be confirmed by direct computation.

For each j ≤ m − 1, f
uj+1
Y Σγ is a line through e3 in ΣC which can be

parametrized as t 7→ {[1 : µ : −α0−α2µ : t]} for some fixed µ ∈ C∪{∞}.
By computing the forward iteration of [1 : µ : −α0 − α2µ : t] we see
that dj+1 − uj 6= 1, 2, or 3. Furthermore dj+1 − uj = 4 if and only if

f
uj+1
Y Σγ = ΣC∩{(1+α2β0)x0 +α2x1 = 0}. It follows that dj+1−uj = 4

occurs only once. Suppose dj+1 − uj = 4 for some 1 ≤ j ≤ m − 1. By
Lemma 6.4 we see that (N −uj)− (N − dj+1) = dm−j+1−um−j = 4. It
follows that j + 1 = m − j + 1 and thus j = m/2. The statements (iii)
and (iv) follow.

Direct computation shows the following properties:
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Lemma 6.7. Suppose f is critical, then ϕ̂(t) defined in (6.2) satisfies

(i) ϕ̂(1) = 0, and
(ii) ϕ̂′(1) = 7(m+ 1)− (N +

∑m
j=1(uj − dj)).

Lemma 6.8. Suppose that m ≥ 2 and that f is critical satisfying (5.1).
Then

N +

m∑
j=1

(uj − dj)
≥ 9m+ 3 if m is odd,
≥ 9m+ 4 if m is even.

Thus ϕ̂′(1) < 0, so ϕ̂ has a root greater than 1.

Proof: Suppose m is even. By Lemma 6.4 we see that

N+

m∑
j=1

(uj−dj)=2d1+4(u1−d1)+2(d2−u1) + · · ·+2(dm/2−um/2−1)

+4(um/2 − dm/2) + (dm/2+1−um/2).

By Lemma 6.6, (i) and (ii), we have d1 ≥ 5. Applying Lemma 6.5(i) and
Lemma 6.6(iv) we have

N +

m∑
j=1

(uj − dj) ≥ 2 · 5 + 4 · 2 + 2 · 5 + · · ·+ 4 · 2 + 4 = 9m+ 4.

Similarly when m is odd

N+

m∑
j=1

(uj−dj) = 2d1 + 4(u1 − d1) + 2(d2 − u1) + · · ·

· · ·+2(d(m+1)/2 − u(m−1)/2)+2(u(m+1)/2−d(m+1)/2).

Again applying Lemma 6.5(ii) and Lemma 6.6(iii) we have

N +

m∑
j=1

(uj − dj) ≥ 2 · 5 + 4 · 2 + 2 · 5 + · · ·+ 2 · 5 + 2 = 9m+ 3.

Theorem 6.9. If f is periodic with m = 0 and ms = 0, then f is one
of the following:

• α = (−1, 0,−1, 1), β = (0, 1, 0, 0): fαβ has period 8 and there is a
conic Q such that

fY : Σγ → ΣBC → Q→ Σβγ  ΣC .

• α = (−1/2, 0,−1, 1), β = (1, 1, 0, 0): fαβ has period 12, and

fY : Σγ → ΣBC → L1 → L2 → Σβγ  ΣC ,

where we set L1 = Σ2∩{x0 +x3 = 0} and L2 = Σ1∩{x0 +x2 = 0}.
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Proof: The polynomial defined in (5.2) is also given by

χ(t) = (t2 + 1)
(
tN (t3 − t− 1) + t3 + t2 − 1

)
.

It follows that χ(t) has a root bigger than 1 if and only if N ≥ 8 and in
case N = 7 the matrix representation of f∗Z has 3× 3 Jordan block with
eigenvalue 1. Thus we need to check the situation fn+1Σγ = Σβγ only
for n ≤ 5. For this, let us parametrize ΣBC = {[1 : t : −α0 − α2t : 0]}
and let [f

(n)
0 : f

(n)
1 : f

(n)
2 : f

(n)
3 ] denote the nth iteration of ΣBC . If

fn+1Σγ = Σβγ , then for all t we have

(6.3) β0f
(n)
0 + f

(n)
1 = 0, and α0f

(n)
0 + α2f

(n)
2 + f

(n)
3 = 0.

Since equations in (6.3) are polynomials in t whose coefficients are integer
polynomials in the variables β0, α0, and α2, we may use the computer
show that for 0 ≤ n ≤ 5, the only two possibilities are those listed
above.

Theorem 6.10. If f is periodic with m = 1 and ms = 0, then f is one
of the following:

• α = (1, 0, 1, 1), β = (0, 1, 0, 0): f has period 8, ΣBC ∩ Σβγ 6= ∅,
and

fY : Σγ → ΣBC → Σγ ∩ Σ2 → ΣBC ∩ Σβγ  ΣC ∩ Σ2 → Σβγ  ΣC .

• α = (η/(1− η), 0, η, 1), β = (η2, 1, 0, 0) and η3 = −1, η 6= −1: fαβ
has period 12, and

fY : Σγ → ΣBC → Σγ ∩ Σ2 → p1 ∈ ΣBC → p2 ∈ Σβγ

 ΣC ∩ Σ1 → Σβγ  ΣC ,

where p1 = [1 : 0 : −η2 : 0] ∈ ΣBC and p2 = [1 : −η2 : 0 : −η2] ∈
Σβγ .

Proof: From (5.2) the characteristic polynomial of f∗Z is given by

χ(t) = tN−(u1+d1)(t2 + 1)(td1 + 1)
(
tu1(t3 − t− 1) + t3 + t2 − 1

)
.

It follows that χ(t) has a root bigger than 1 if and only if u1 ≥ 8.
If u1 = 7, the f∗Z has a 3 × 3 Jordan block. Thus if f∗Z is periodic,
then d1 ≤ 5 < u1. By direct computation of fnΣγ = fn−1ΣBC for
n = 1, . . . , 5, we can easily check the two conditions (i) fn−1ΣBC ⊂ Σγ ,
(ii) fn−1ΣBC ⊂ {x3 = λx2} for some λ ∈ C and thus we see that there
are only two possibilities listed in this theorem.

Theorem 6.11. If m ≥ 2, ms = 0, then f has exponential degree growth
(and is not periodic).
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Proof: By Lemmas 6.7 and 6.8 we see that χN (1) = 0 and χ′N (1) =
2ϕ̂′(1) < 0. Since the leading coefficient of χN is 1, there exist a real
root which is strictly bigger than 1. It follows that the dynamical degree
of f is strictly bigger than 1.

Theorem 6.12. If 1 ≤ ms <∞, then f is not periodic.

Proof: By Lemmas 6.7 and 6.8 we see that χN (1)=0 and χ′N (1)=2(3+
ϕ̂′(1))=2(−2m+1). It follows that if m ≥ 1, then f has positive entropy.
Now suppose m = 0, we have χN (t)=(t2+1)

(
tN (t3−t−1)+tN−1Ts(t−1)

(t+ 1 + 1/t) + t3 + t2 − 1
)
. If f is periodic, then the characteristic poly-

nomial for f∗Z should be self-reciprocal. It follows that sj + sms+1−j =
N − 4. Thus we have

χN (t)=(t2 + 1)
(
tN (t3 − t− 1) + t3 + t2 − 1

)
+

1

2
(t2+1)tN/2+3(t−1)(t+1+1/t)

ms∑
j=1

(
tN/2−2−si +t−N/2+2+si

)
.

By inspection we see that s1 ≥ 3 and it follows that N ≥ 8ms + 2. We
can also check that χN (1) = 0 and χ′N (1) = 14−2N+6ms ≤ 10(1−ms).
Therefore if ms > 1, then f is not periodic. Now suppose ms = 1. If
s1 > 3, then N > 10 and therefore χ′N (1) is strictly negative. It follows
that if s1 > 3, f is not periodic. In case s1 = 3, ms = 1, the matrix
representation for f∗Z has 3 × 3 Jordan block with eigenvalue 1 and all
other eigenvalues have modulus 1.

Proof of Theorem 5: The statement of Theorem 5 in the Introduction
follows from Theorems 6.9–6.12.

We remark that in the proof of Theorem 6.12, we see that if ms = 1,
s1 = 3 and m = 0, then the degree of fn is quadratic in n. This case
occurs for α = (a, 0, 1, 1) and β = (0, 1, 0, 0), which is the so-called
Lyness process and will be discussed in §8.

7. Pseudo-automorphisms with positive entropy

In this section we consider the case

(7.1) β = (0, 1, 0, 0) and α = (a, 0, ω, 1),

where ω2 + ω + 1 = 0 and a ∈ C \ {0}. With this choice of parameters,
we see that f is critical and that ΣB = Σ3 and Σβ = Σ1. Since the maps
f : Σ3 → Σ2 → Σ1 are dominant, (4.4) gives an 8-cycle of dominant
maps

(7.2) fY : Σ1 → E3 → S01 → Σ0 → S03 → E1 → Σ3 → Σ2 → Σ1.
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Since this 8-cycle is fundamental to our understanding of f in this case,
we will refer to the union of these 8 hypersurfaces as the rotor and denote
it as R. Clearly, f8

Y fixes each component of the rotor; in addition, it
has a relatively simple expression. On Σ3, or example, we have:

f8
Y : Σ3 3 [x0 : x1 : x2 : 0]

7→ [x0(ax0 + ωx2)(ax0 + ax1 + ωx2)

: x1(x1x2 + aωx2
0 + aωx0x1 + aωx0x2 + ω2x0x2 + ω2x2

2)

: ωx2(ax0 + ωx2)(x1 + aωx0 + ω2x2) : 0] ∈ Σ3.

(7.3)

The restriction of f8
Y to the rotor is studied in Appendix C.

Note that by (7.1), ΣBC = Σ3 ∩ΣC and Σβγ = Σ1 ∩Σγ . Using (7.2)
we may verify that fY satisfies condition (5.1), which in this case is

(7.4) f jY Σγ 6⊂ F0βγ for all 1 ≤ j ≤ 10, and f11
Y Σγ = Σβγ .

We define the space πZ : Z → Y by successively blowing up the 11 curves
γj := f jY Σγ , 1 ≤ j ≤ 11. The dynamical degree, being a birational
invariant, is independent of the order in which the γj ’s are blown up.

Theorem 7.1. The induced map fZ is a pseudo-automorphism, and the
dynamical degree of f is greater than 1.

Proof: From (7.4) we see that fY satisfies conditions (5.1) and (5.2)
in Theorem 5.1, so fZ is a pseudo-automorphism. By Lemma 5.3, the
characteristic polynomial of f∗Z is t11(t3 − t − 1) + t3 + t2 − 1 = (−1 +
t)(1 + t)(1 + t4)(1 − t3 − t4 − t5 + t8). Thus δ(f) is the largest root of
this polynomial, which is approximately 1.28064.

The space Z has been defined earlier, but now let us be more precise:
we define Z as the space obtained by blowing up first γ11 ⊂ Y , then
we blow up the strict transform of γ10 in the resulting space, followed
by blowing up the strict transform of γ9, and continuing this way until
we blow up the strict transform of γ1. We will use the notation Γj to
denote the exceptional divisor of the blowup of γj . There are no points
where three distinct γj ’s intersect. If p = γj ∩ γk, with j > k, then we
blow up γj first, and we refer to the fiber in Γj over p as the first fiber
over p, and write it as F1

p . We then blow up the strict transform of γk,
and the blowup fiber over the point γk ∩ Γj is equal to Γj ∩ Γk.

Let us describe some of the intersections of the γj ’s. f is constant
on each line in Σγ passing through e1. Further, γ1 ⊂ Σ3, γ2 ⊂ Σ2, and
γ6 ⊂ Σ0, and e1 = Σ0 ∩ Σ2 ∩ Σ3. We set `2 = Σγ ∩ Σ3, `3 = Σγ ∩ Σ2,
and `7 = Σγ ∩ Σ0. Thus we have f(`j) = γ1 ∩ γj for j = 2, 3, 7. The
curve γ9 ⊂ Σ1 is a conic, and γ9 ∩ γ1 consists of two points. We let `′9



98 E. Bedford, K. Kim

and `′′9 denote the two lines in Σγ for which f(`′9 ∪ `′′9) = γ1 ∩ γ9. This
accounts for all the curves γj which intersect γ1. As a consequence of the
order of blowup, the first fiber F1

f(`j) = F1
γ1∩γj , j = 2, 3, 7 is contained

in Γj and similarly for `′9, `′′9 .
There is a similar situation for the γj ’s which intersect γ11. The

curves γ5, γ9 and γ10 each intersect γ11 in a single point, and γ3, which
intersects γ11 in 2 points, and this accounts for all the intersection points
between γ11 and the other γj ’s.

Let us use the notation π1 : Z1 → Y for the manifold obtained by
blowing up the curve γ11 ⊂ Y . This is the first blowup performed in
the construction of Z. Let fZ1

: Z1 99K Z1 be the induced map. Since
I(fY ) = γ11∪Σ02∪F1

0βγ , it follows that I(fZ1
) ⊂ Σ02∪F1

0βγ ∪γ10∪Γ11.

Lemma 7.2. I(fZ1
) = F1

0βγ ∪ Σ02 ∪ γ10.

Proof: We have seen already that the indeterminacy locus is contained
in Σ02∪F1

0βγ∪γ10∪Γ11, so it suffices to show that I(fZ1
)∩Γ11 consists of

the two points γ10∩Γ11 and F1
0βγ∩Γ11. Thus we look at fZ1

in coordinate

charts that cover Γ11. We will look first at Γ11 ∩ π−1(γ11 − γ10).
In the local coordinates (s, ζ, x3)S01

7→ [s : sζ : 1 : x3] ∈ P3 in the
neighborhood of S01 − E1 = {s = 0, ζ 6= ∞}, we have γ11 = {ζ =
0, as + ω + x3 = 0} and F1

0βγ ∩ γ11 = (0, 0,−ω)S01
. We use the local

coordinate charts (s, t, η)′ on U ′ and (s, η, t)′′ on U ′′ so that π1 is given
by

π′ : U ′ 3 (s, t, η)′ 7→ (s, t,−as− ω + tη)S01 ,

π′′ : U ′′ 3 (s, η, t)′′ 7→ (s, tη,−as− ω + t)S01
.

It is evident that Γ11 ⊃ {t = 0} in both coordinate charts, and U ′∪U ′′ ⊃
π−1

1 (γ11 − γ10). The induced map f ◦ π1 : U ′ ∪ U ′′ → P3 is given by

U ′ 3 (s, t, η)′ 7→ [s : 1 : −as+ tη − ω : η],

U ′′ 3 (s, η, t)′′ 7→ [sη : η : η(−as+ t− ω) : 1].
(7.5)

So we see that {t = 0} is mapped to ΣC .
From (7.5) we see that the map f ◦ π1 : U ′ ∪ U ′′ → P3 is everywhere

regular. The only points of ΣC which is blown up in the construction
of Y are e3 and [0 : 1 : −ω : 0] which is the base point of F1

0BC . By (7.5),
the preimage of e3 is (0, 0, 0)′′ ∈ U ′′, and the preimage [0 : 1 : −ω : 0]
is (0, 0, 0)′ ∈ U ′. Working in local coordinates in Y over e3, we find
that f ◦ π1 : U ′′ → Y is everywhere regular. Thus we conclude that
fY ◦ π1 : Z1 → Y is regular on (U ′ − (0, 0, 0)′) ∪ U ′′. Now in order
to pass to fZ1 we need to consider the point γ11 ∩ ΣC which is blown
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up. However, this is the image point of γ10 ∩ γ11, which is not in our
coordinate chart. We note that (0, 0, 0)′ is the point F1

0βγ ∩ Γ11, so we

conclude that fZ1
is regular at all points of Γ11−(π−1

1 (γ11∩γ10)∪F1
0βγ).

Now we consider Γ11 ∩ π−1(γ11 − F1
0βγ), which does not lie over any

of the centers of blowup in the construction of Y . We use the local
coordinates (s, x2, ζ) 7→ [1 : s : x2 : −a− ωx2 + sζ] in a neighborhood of
{s = 0, ζ 6=∞} ⊂ Γ11 − π−1

1 (F1
0βγ), and we get

(7.6) fZ1
: Γ11 3 (0, x2, ζ) 7→ [1 : x2 : −a− ωx2 : ζ] ∈ ΣC

if (0, x2, ζ) 6= (0, 0, aω − a).

Similarly using the local coordinates (ζ, x2, s) 7→ [1 : sζ : x2 : −a−ωx2 +
s] ∈ Γ11, we have

(7.7) fZ1
: Γ11 3 (ζ, x2, 0) 7→ [ζ : x2ζ : ζ(−a− ωx2) : 1] ∈ ΣC

if (ζ, x2, 0) 6=
(

1

aω − a
, 0, 0

)
.

Since both (0, 0, aω − a) in (7.6) and (1/(aω − a), 0, 0) in (7.7) corre-
spond to the point γ11 ∩ γ10, combining with the previous conversation
about Γ11− π−1

1 (γ11 ∩ γ10), we conclude that fZ1 is regular at all points
of Γ11 − (γ10 ∪ F1

0βγ).

Lemma 7.3. The three curves γ5, γ11, F1
0βγ intersect transversally in-

side Y , and γ1, γ7, F1
0BC intersect transversally inside Y . Thus, in-

side Z1, the strict transform of F1
0βγ is disjoint from the strict transforms

of γj, 1 ≤ j ≤ 10.

Proof: It suffices to prove the first statement. We may write γ11 ⊂ P3 as
s 7→ [s : 0 : 1 : −as− ω]. This intersects Σ01 in the point [0 : 0 : 1 : −ω].
We use the coordinate system π : (u, η, x3) 7→ [u : uη : 1 : x3] ∈ P3. Thus
F1

0βγ = {u = 0, x3 = −ω}. In this coordinate system, γ11 becomes s 7→
(s, 0,−as−ω), so γ11 crosses S01 when s = 0, at the point (0, 0,−ω). On
the other hand, if we map γ11 backward under f−6

Y , we find an expression
for γ5. The base point is given by [0 : 0 : 1 : s], and the fiber coordinate is
given by η = (1+as)(1+as+ω(1+a−s))/(as(−1+s+as−ω(1+a−as)).
Thus when the base point is [0 : 0 : 1 : −ω], we have η = 0. Thus all
three curves meet at (u, η, x3) = (0, 0,−ω). The curve γ11 is transverse
to S01, but γ5 and F1

0βγ are tangential to S01, so γ11 is transverse to the

other two, and γ5 is transverse to {x3 = −ω}, while F1
0βγ is tangential

to this set.
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For 2 ≤ j ≤ 11, let πj : Zj → Zj−1 be the blowup of the strict
transform of γ12−j inside Zj−1 and π : Z → Y = π11 ◦ π10 ◦ · · · ◦ π1,
that is, we blowup γ11 first, then γ10, then γ9, etc. Let fZj : Zj 99K Zj ,
fZ : Z 99K Z denote the induced map.

Lemma 7.4. For 1 ≤ j ≤ 10, I(fZj
) = F1

0βγ ∪ Σ02 ∪ γ11−j.

Proof: Suppose p is a point of γj ∩ γk, 1 ≤ j < k ≤ 10. Because of
the order of blowup, γk is blown up before γj and γk+1 is blown up
before γj+1. Since fY is regular at p and the order of blowups at p is
consistent with the order of blowups at fY (p), the induced map fZi

is a
local biholomorphism in a neighborhood of the exceptional divisor over p
for 12− j ≤ i ≤ 11.

Notice that for all 1 ≤ j ≤ 11 the strict transform of γj does not
intersect Σ02 in Y . Suppose γj intersects F1

0βγ at a point q. Using the

local coordinates in the neighborhood (s, ζ, x3)S01 , we may assume that
q = (0, ζ∗,−ω)S01

and γj(s) = (Q1(s), Q2(s) + ζ∗, Q3(s) − ω)S01
, where

γj = {γj(s), s ∈ C}, and γj(0) = q. Consider two local coordinate
charts covering the exceptional divisor over the point q:

(s, t, η) 7→ (Q1(s), Q2(s) + ζ∗ + t, Q3(s)− ω + tη)S01 ,

(s, η, t) 7→ (Q1(s), Q2(s) + ζ∗ + tη,Q3(s)− ω + t)S01
.

With a computation similar to Lemma 7.2, we see that the induced map
is regular everywhere on the exceptional divisor over q, F(q), except
the point of intersection F(q) ∩ F1

0βγ . Now since the curve γ11−j is the

pre-image of γ12−j , we have I(fZj
) = F1

0βγ ∪ Σ02 ∪ γ11−j .

From the previous lemma we have I(fZ10) = F1
0βγ ∪ Σ02 ∪ γ1. Since

Σγ is the pre-image of γ1, we have I(fZ) ⊂ F1
0βγ ∪Σ02 ∪Σγ . From (5.2)

we see that for all most every line ` ⊂ Σγ , through e1 in Σγ , f maps `
regularly to a point q ∈ γ1. In our construction of Z, we blew up
γ11, . . . , γ2 before γ1. Thus the map fZ will map ` regularly to the fiber
of Γ1 over q unless q is an intersection point of γ1∩γj for some 2 ≤ j ≤ 11.

Lemma 7.5. Suppose q ∈ γ1∩γj for some j = 2, . . . , 11 and `j ⊂ Σγ be
the line which mapped to q by fY . The line `j ⊂ I(fZ) and every point
in `j blows up to the first blowup fiber F1

q .

Proof: Let us parametrize γ1 = {γ1(t) = [− 1
a (1 + ωt) : t : 1 : 0], t ∈ C}.

Let us set q = γ1(t∗) for some t∗ ∈ C and γj = {γj(s) = [Q0(s) −
1
a (1 + ωt∗) : Q1(s) + t∗ : Q2(s) + 1 : Q3(s)]}. The line `j is given by the

strict transform in Y of the line connecting e1 and q̃ = [− 1
a (1 + ωt∗) :

0 : t∗ : 1] in P3. To see the image of the line `j , we consider the set
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U = {[− 1
a (1 + ωt∗) + sζ : u : t∗ + s : 1]} which has the property that

U ∩ {s = 0} = `j − {e1}. Since the point q is blown up twice, let us

consider a local coordinate charts for π−1
12−j(γj):

(v, ξ, s)γj 7→
[
Q0(s)− 1

a (1 + ωt∗)

Q2(s) + 1
+v :

Q1(s) + t∗
Q2(s) + 1

+ vξ : 1 :
Q3(s)

Q2(s) + 1

]
.

Using the induced map fZ , we see that

fZ : `j 3 [−1

a
(1 + ωt∗) : u : t∗ : 1] {(0, ξ, 0), ξ ∈ C} ⊂ Γj ,

that is, each point in `j blows up to a whole first blowup fiber over q.

Before Lemma 7.2, we enumerated the possibilities for lines ` and
points q as in the hypotheses of Lemma 7.5. Thus we may combine
Lemmas 7.2–7.5 to have the following theorem:

Theorem 7.6. The indeterminacy locus I(fZ) = Σ02 ∪F1
0βγ ∪ `2 ∪ `3 ∪

`7 ∪ `′9 ∪ `′′9 . If ζ is a point of one of the lines `, then fZ blows up ζ to
the first fiber F1

f(`).

Now we give the existence of Green currents for the invariant class
α = α+

Z ∈ H1,1(Z).

Theorem 7.7. There is a positive closed current T+
Z in the class of α+

Z

with the property: if Ξ+ is a smooth form which represents α+
Z , then

limn→∞ δ1(f)−nfn∗Z Ξ+
Z = T+

Z in the weak sense of currents on Z.

Proof: The map f∗Z is given in Appendix A, where we are in Case (II).
Working directly with the matrix (A.1), we see that the invariant class
is given by:

α = HZ − c1Ẽ1 − c3Ẽ3 − c01S̃01 − c03S̃03 −
11∑
j=1

c′jFj ,

where c1, c3 > 0, c1 + c3 = 1, c′11 > c′10 > · · · > c′1 > 0, and c01 =
c03 > c′8. As in Theorem 4.9, we will show that α+

Z · σ ≥ 0 for each
curve σ inside the forward image of I(fZ). The result will follow from
Theorem 1.3 of [Ba].

Let us start with F0βγ ⊂ I(fZ). Points of this curve are blown up
to F0BC . The curve σ = F0BC is the exceptional fiber inside S03 over
the point ΣBC ∩ Σ03 ∈ P3. Thus σ · S03 = −1. In the construction
of Z, γ7 will be blown up to create the exceptional divisor Γ7. At this
stage, by Lemma 7.3, σ and γ1 become separated. Thus σ · Γ1 = 0, and
σ · Γ7 = 1, so α · σ = c03 − c7 > 0.
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Points of the indeterminate curve Σ02 blow up to σ = F1
e2 . In this

case, we have that σ · S01 and σ · S03, are ±1, with opposite signs, so
σ · α+

Z = ±c01 ∓ c03 = 0 as was seen in the proof of Theorem 4.9.
The other possibility is ` ⊂ I(fZ), for one of the indeterminate lines

in Σγ . This blows up to one of the first fibers σ = F1
ζ . In this case,

σ crosses Γ1 transversally, so σ · Γ1 = 1. On the other hand, σ ⊂ Γj for
some j > 1, so we have σ · Γj = −1. Thus σ · α+

Z = c′j − c′1 > 0.

Remark. Considering the symmetry between f and f−1, we find that
I(f−1

Z ) = Σ02 ∪ F1
0βγ ∪

⋃
ζ F1

ζ , where the ζ’s are the intersection points
of γ1 with the curves γ2, γ3, γ7, and γ9.

If we instead blow up the γj ’s in the order γ1, γ2, . . . , and call the

resulting space Ẑ. Then we have I(fẐ) = Σ02 ∪ F1
0βγ ∪

⋃
ζ F1

ζ , where
the ζ ∈ γ11 are the points of intersection with γ3, γ5, γ9, and γ10. Each
of these points ζ is blown up by fẐ to a line of the pencil in ΣC passing
through e3.

Thus we can apply a similar argument to α−Z to obtain the Green

current for f−1
Z .

Corollary 7.8. There is a positive closed current T−Z in the class of α−Z
with the property: if Ξ− is a smooth form which represents α−Z , then

limn→∞ δ1(f)−nf−n∗Z Ξ−Z = T−Z in the weak sense of currents on Z.

Next we show what happens to the invariant fibration when we lift it
to Z. Let us set P0 = x0x1x2x3, and let P1 be a homogeneous quartic
polynomial defined in Appendix B. For c ∈ C, let us set Sc = {cP0+P1 =
0}, so the rotor R corresponds to c = ∞. Since we have f(Sc) = Sωc,
the surface S0 is invariant.

Proposition 7.9. The variety S0 := {P1 = 0} ⊂ P3 has singular points
at e1, e3 and the fixed points p±. If p± are blown up (in additional
to the e1 and e3 which were blown up to construct Y ), then the strict
transform of S0 is a nonsingular K3 surface.

Proof: Using the computer, we find that the critical points of P1 occur
exactly at e1, e3 and p± = (x±, x±, x±) ∈ C3 where x± are the roots of
x2 = a+(1+ω)x. (Mathematica, for instance, can do this.) Further, p±
are singular points of type A1. The singular points e1 and e3 are type A1

unless a = (1 + 2ω)/(1 − ω), in which case they are type A2. In either
case, it follows (see, for instance, [EJ, Lemma 3.1 and Remark 3.2]) that
S0 is K3.
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Corollary 7.10. For all but finitely many values of c ∈ C, the strict
transform of Sc in Z is a nonsingular K3 surface.

Let P ⊂ Y denote the (finite) set of all intersection points of distinct
curves γj ∩ γk. Since the γj lie in the rotor, we have P ⊂ R. The rotor
is the union of 8 smooth hypersurfaces which intersect transversally, so
the singular locus of R is the set where two (or more) of these surfaces
intersect. We will write Ps (resp. Pr) for the points of P which are
contained in the singular (resp. regular) locus of R.

While Z itself depends on the order in which the curves γj are blown
up, the following propositions are valid for any ordering of the blowups.

Proposition 7.11. For p ∈ Pr, there is a unique cp ∈ C such that
Scp ⊂ Y is singular at p. This is a conical singularity, and the strict

transform Scp ⊂ Z contains the first fiber F1
cp .

Proof: Without loss of generality, we may choose coordinates (x, y, z)
so that p = 0, L = z near p, and R = {z = 0}. Let us suppose that

p ∈ f jY ΣBC ∩ fkY ΣBC . Since the curves f jY ΣBC are contained in R and

intersect transversally, we may suppose that near p the curves f jY ΣBC
and fkY ΣBC coincide with the x- and y-axes. Thus the tangent to {M =
0} at p is given by z = 0, so we may suppose that M = λz + xy + · · · .
The surfaces are then Sc = {M+cL = 0} = {λz+xy+cz+· · · = 0}. The
surface Sc is singular if c = −λ. We blow up the x-axis by the coordinate
change (x, s, η) 7→ (x, s, sη). The first fiber is F1

p = {x = s = 0}. The
strict transforms of the surfaces are Sc = {(λ + c)η + x = 0}. The
strict transform of the y-axis is now the s-axis, which is contained in
each Sc. Otherwise, the Sc’s are disjoint. The strict transform of S−λ
contains F1

p . After we blow up the s-axis, the surfaces are all disjoint
and smooth.

Proposition 7.12. For p ∈ Ps, Sc is smooth at p for all c ∈ C. The
first fiber is contained in the rotor: F1

p ⊂ R ⊂ Z.

Proof: We may assume that p is a normal crossing of two of the hy-
persurfaces of R. Thus we may choose coordinates (x, y, z) such that

p = 0, and L = xy near p. We may assume that f jY ΣBC is the x-axis,
and fkY ΣBC is the y-axis. Since M contains both axes, we may assume
that M = z + ϕ, where ϕ is divisible by xy. Thus Sc = {M + cL =
z + ϕ+ cxy = 0} is smooth for all c ∈ C. When we blow up the x-axis,
we use coordinates (x, s, η) 7→ (x, s, sη). The strict transforms are then
Sc = {sη+ ϕ̃+ csx = 0}, where ϕ̃ is divisible by xs. Dividing this equa-
tion by s, we have Sc = {η + ψ(x, s, η) + cx = 0}, where ψ(0, s, 0) = 0,
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since Sc contains the s-axis (the strict transform of the y-axis). We
have F1

p = {x = s = 0}. Now we blow up the s-axis via the coordi-
nates (ξ, s, t) 7→ (ξt, s, t) = (x, s, η). This gives the new strict transforms

Sc = {1 + ψ̂(ξ, s, t) + cξ = 0}, where ψ̂(ξ, s, t) = t−1ψ(ξt, s, t) is regular.
The strict transform of F1

p is now {ξ = s = 0}, which is disjoint from
the Scs.

If p′ ∈ γ1∩γ9, then there is a unique c′ ∈ C be such that Sc′ is singular
at p′. Let `′9 denote the line for which f(`′9) = p′. By Theorem 7.6 and
Proposition 7.11, it follows that fZ maps `′9 to the strict transform of Sc′

inside Z. Thus the total transform of `′9 under fnZ is contained in Sωnc′ .
Let p′′ denote the other point of γ1 ∩ γ9, and let c′′ ∈ C denote the
corresponding parameter. Let Ŝ = Sc′ ∪Sωc′ ∪Sω2c′ ∪Sc′′ ∪Sωc′′ ∪Sω2c′′ .
We see that Ŝ is a fZ-invariant set which contains `′9 ∪ `′′9 . Let R denote

the strict transform of the rotor in Z. The sets R, Ŝ, and Σ02 ∪F1
e2 are

totally invariant, and we break the indeterminacy locus into three sets:

I(fZ) = (Σ02 ∪ F1
e2) ∪ (I(fZ) ∩R) ∪ (I(fZ) ∩ Ŝ)

with I(fZ) ∩R = `2 ∪ `3 ∪ `7 ∪ F1
0βγ , and I(fZ) ∩ Ŝ = `′9 ∪ `′′9 . We set

Ω = Z − (Ŝ ∪R ∪ Σ02 ∪ F1
e2).

By Propositions 7.11 and 7.12, R is disjoint from the strict transform of
each Sc. Thus fZ is regular on Ω, and Ω is invariant under fZ .

Proposition 7.13. For every Sc in Ω the dynamical degree of the re-
striction is δ(f3

c ) = δ1(f)3.

Proof: Let us denote Γ a hypersurface in Z whose cohomology class in
H1,1(Z) is HZ . It follows that the degree of f−3n

Z Γ grows like δ1(f)3n.
On the other hand Sc ⊂ Ω does not contain an irreducible compo-
nent of the indeterminacy locus for fZ . It follows that we have Sc ∩
(f3
Z)−nΓ = (f3

Z)−n(Sc∩Γ). Because Sc is non-singular and f3
Z is pseudo-

automorphism, the degree of (f3
Z)−n(Sc∩Γ) = (f3

c )−n(Sc∩Γ) is 4 δ1(f)3n.
Thus the dynamical degree of f3

c is δ1(f)3.

Using the fact that fZ is regular on the large invariant set Ω, we avoid
the difficulties that can occur in defining the entropy of a map (see [G1]).

Theorem 7.14. The entropy of f is log δ1(f).
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Proof: Since f is equivalent to a pseudo automorphism, and f∗Z is con-
jugate to (f∗Z)−1, both the first and the second dynamical degrees are
equal. Combining the result in [DS] and the fact that htop(f) ≥ htop(f0),
we have the inequality

log δ1(f) ≥ htop(f) ≥ htop(f0) = log δ1(f)

which gives the result.

Since Ξ± and fZ are regular on Ω, the potential of g± is continuous
on Ω. Thus we may define the wedge product T2 := T+ ∧ T− as a
positive, closed (2, 2)-current on Ω, and we have:

Proposition 7.15. limn→∞ δ1(f)−2nf∗Z
nΞ+∧ f∗Z

−nΞ− = T2 exists as a
(2, 2)-current on Ω.

We have seen that the restrictions f3|Sc
are automorphisms, and there

are invariant currents µ±c on Sc, as well as invariant measures µc :=
µ+
c ∧ µ−c (see [C]). The following property leads us to consider T±

and T2 as the “bifurcation currents” for the family {f3|Sc} (see [DuF]).

Theorem 7.16. For Sc ⊂ Ω the slices by Sc are well-defined and give
the corresponding dynamical objects: T±|Sc

= µ±c , and T2|Sc
= µc.

Proof: If we set h = f3, then the class [Sc] is invariant under h∗. Thus
α+ · [Sc] ∈ H1,1(Sc) is a class that is expanded by a factor of δ1(f).
It follows that the restriction Ξ+|Sc gives the expanded class, and this
converges to µ+

c . Similarly, the normalized pullbacks/push-forwards of
Ξ+ ∧ Ξ− on Sc will converge to µc.

Theorem 7.17. For generic c′, c′′, the maps f3|Sc′ and f3|Sc′′ are not
smoothly conjugate, and the surfaces Sc′ and Sc′′ are not isomorphic.

Proof: There is an invariant 6-cycle of curves, Γj , j = 0, . . . , 5 for f . For
generic c, Γj ∩ Sc is a saddle 2-cycle for f3|Sc

. The multipliers of this
saddle cycle are not constant in c, so the maps f3|Sc are not smoothly
conjugate. Since the automorphism group of Sc is disconnected, we see
that the family {Sc} cannot consist of surfaces which are all isomorphic
to each other.

Remark. If a2 6= 1 is a primitive 5th root of unity and a0 = b0 = 0, then
we may repeat most of the arguments in this section for this map. In
particular, we have:
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Theorem 7.18. If a2 is a primitive 5th root of unity, and a0 = b0 =
0, then f is equivalent to a pseudo-automorphism, and the dynamical
degrees δ1(f) = δ2(f) ≈ 1.3211018 > 1 are the largest root of t19(t3− t−
1) + t3 + t2 − 1. The entropy of f is log δ1(f) > 0. Furthermore there
are two quartic polynomials which are invariant in the sense of (B.1).
This gives a family of K3 surfaces which are invariant under f5.

8. Pseudo-automorphisms which are completely
integrable

Let us consider two cases for maps of the form (2.2):

α = (a, 0, 1, 1), a 6= 1, and β = (0, 1, 0, 0),(8.1a)

α = (0, 0, ω, 1), ω3 = 1, ω 6= 1, and β = (0, 1, 0, 0).(8.1b)

The map (8.1a) has been extensively studied under the name Lyness
process. The maps (8.1a) and (8.1b) exhibit similarities to the maps
in the previous section: they are critical maps, and the iterates of the
critical image ΣBC go “once around” the rotor and land on Σβγ . The
difference with §7 is that f4

Y ΣBC = F0βγ is an indeterminate curve, and
by Lemma 4.4 this fiber is mapped to F0BC , that is, f4

Y ΣBC = F0βγ ⊂
S01 and f5

Y ΣBC = F0BC ⊂ S03. Thus ΣBC arrives at Σβγ one step faster
than was the case in §7.

Let π : Z → Y denote the space obtained by blowing up the orbit
f jΣBC , f−jΣβγ , 0 ≤ j ≤ 4 (one curve less than the construction in §7).

Theorem 8.1. The induced map fZ is a pseudo-automorphism, and the
iterates of f have quadratic degree growth.

Proof: Since f9
Y ΣBC = Σβγ and f4

Y ΣBC = F0βγ , f
5
Y ΣBC = F0BC , we

see that fY satisfies the condition in Theorem 5.1. This theorem then
follows from Theorems 5.1 and Lemma 5.3.

Proposition 8.2. In cases (8.1a) and (8.1b), the induced rotor map f8|Σ3

has linear degree growth. This map is not birationally conjugate to a sur-
face automorphism.

Proof: In the case (8.1b), the restriction of f8
Y to Σ3 is given by setting

a0 = 0 in (7.3), so we find the degree 2 birational map:

f8
Y |Σ3

: [x0 : x1 : x2 : 0]

7→ [x0ω
2x2 : x1(x1 + ω2x0 + ω2x2) : ω2x2(x1 + ω2x2) : 0].

This map has three distinct exceptional lines. Two of exceptional lines
are mapped to fixed points [1 : 0 : −1 : 0] and [0 : 1 : −a : 0]. The
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remaining exceptional line is mapped to a point of indeterminacy e =
[1 : −1 : 0 : 0]. We let W be the blowup space obtained by blowing up Σ3

at e. The induced map has only two exceptional lines which are mapped
to fixed points and therefore the induced map is algebraically stable. The
action on Pic is given by the matrix

(
2 1
−1 0

)
which has an eigenvalue 1

with 2 × 2 Jordan block. It follows that the degree of restriction map
grows linearly.

The analysis in the case (8.1a) is essentially the same. The induced
rotor map is now:

f8
Y |Σ3 : [x0 : x1 : x2 : 0]

7→ [x0(ax0+ax1+ x2) : x1(x0 + x1 + x2) : x2(ax0+x1+ x2) : 0].

This map has three exceptional lines. Two of them are mapped to fixed
points [1 : 0 : −1] and [0 : 1 : −a]. The third exceptional line is
mapped to [1 : −1 : 0], which is indeterminate. After we blow up the
point [1 : −1 : 0], the induced map is algebraically stable and the action
on Pic has an eigenvalue 1 with 2× 2 Jordan block.

Finally, since the restriction of fW to the rotor has linear degree
growth. It follows from [DiF] that this restriction is not an automor-
phism.

We consider first the Lyness map, i.e., case (8.1a). This is known
to be integrable, and the invariant polynomials are given in [CGMs]
and [KoL]. These invariant polynomials, which satisfy (B.1) with t = 1,
are:

Q0 = x0x1x2x3,

Q1 = (ax0 + x1 + x2 + x3)(x0 + x1)(x0 + x2)(x0 + x3),

Q2 = (x0(ax0+x1+x2+x3)+x1x3)(x0 + x1 + x2)(x0 + x2 + x3).

(8.2)

The set {Q0 = 0} gives an invariant 8-cycle of rational surfaces, which
is the rotor R ⊂ Y . (Although Q0 = 0 consists of 4 irreducible com-
ponents in P3, it yields an 8-cycle inside Y because these components
map through the indeterminacy locus, which is blown up to yield an
additional 4 divisors.) The set {Q1 = 0} gives an invariant 4-cycle, and
{Q2 = 0} gives an invariant 3-cycle; the components of the 8-, 4-, and
3-cycles are rational surfaces. As we observed in §4, fY induces domi-
nant maps on each of these cycles. And as in Proposition 8.2, we may
show that the restriction of f4 to the 4-cycle, and the restriction of f3

to the 3-cycle both have linear degree growth.
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Let us define the surfaces Sc = {Qc = 0} with Qc := c0Q0 + c1Q1 +
c2Q2. If we also write Sc for its strict transform inside Z, we have
fSc = Sc.

Theorem 8.3. For generic c, the surface Sc is an irreducible K3 sur-
face.

Proof: For generic c, we find that Sc has 16 singular points: two of
them are e1, e3, which are type A2, and there are 14 more which are of
type A1. In the construction of Z, we blew up e1 and e3. Then we blew
up f jΣBC , 0 ≤ j ≤ 10, and the other 14 singular points are contained in
these curves. It follows that the strict transform of Sc inside Z is smooth
and thus K3.

Theorem 8.4. For generic c and c′, the intersection Sc ∩ Sc′ is an
elliptic curve. The restriction of f3 to Sc has quadratic degree growth.

Proof: Since Sc is a K3 surface, it has trivial canonical bundle. Thus
the birational map f3 of Sc must be an automorphism. For generic c
and c′ 6= c, the intersections Sc ∩ Sc′ give an invariant fibration of Sc.
Since f3|Sc is an automorphism, then by [DiF] the intersection Sc ∩Sc′
is an elliptic curve and the restriction of f to the family of K3 surfaces
has quadratic degree growth.

The map (8.1b) is similar. In this case the solutions to (B.1) take the
form:

R0 = x0x1x2x3,

R1 = (x0 + ωx1)(x0 + ωx2)(x0 + ωx3)(x1 + ω2x2 + ωx3),

R2 = ωx1x3(x0 + ωx1)(x0 + ωx3)

+ ω2x0x2

(
x0(x1 + ωx3) + x2(ωx1 + x3) + ω2x0x2

)
,

(8.3)

where tR0
= 1, tR1

= ω2, and tR2
= ω2. As before, we see that fZ will

have an invariant 8-cycle given by the rotor R ⊂ Z. And {R1 = 0} will
give a 4-cycle of rational surfaces. For generic c, the singularities of the
surface Sc = {

∑
cjRj = 0} are e1, e3 (type A2) and e2 (type A1). As in

Theorems 8.3 and 8.4, we have:

Theorem 8.5. In case (8.1b): for generic c, Sc is a K3 surface, f3 is an
automorphism of Sc with quadratic growth, and the intersections Sc∩Sc′
are elliptic curves.
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A. Appendix: Computing the characteristic polynomial
for f∗

Z

We continue to assume that f is a critical map for which (5.1) holds
and let π : Z → P3 be the space constructed in Theorem 5.1. We con-
tinue with the notation µj := f jY (Σγ). Recall that in Cases 1 and 2 in
the proof of Theorem 5.1, the space Z was constructed by blowing up
the varieties µj , 1 ≤ j ≤ N . In this situation, we will consider f∗Z acting
on Pic(Z) in Lemma A.1 below.

The remaining scenario in the proof of Theorem 5.1 is Case 3 (since
Case 4 was shown not to happen), and in this case there is a cycle of
curves γ0 := F0BC , γ1 = fY (F0BC), . . . , γ` = f `Y (F0BC) = F0βγ . The
space Z was constructed by blowing up the curves γ0, . . . , γ` and the
varieties µ1, . . . , µN . We may choose whether to blow up the γi’s first
and then the µj ’s, or the other way around. For instance, if µi is a point
of γj , we may blow up µi first and then blow up the strict transform
of γj later. On the other hand, we may blow up γj first, writing Γj
as the blowup divisor over γj . Then the fiber µ̂i := π−1(µi) is a curve
in Γj , and we may blow up the curve µ̂i later. If Z ′ and Z ′′ are obtained
by blowing up these varieties in different orders, then the identity map
ι : Y → Y induces a pseudo-isomorphism between Z ′ and Z ′′, and this
gives a natural identification between Pic(Z ′) and Pic(Z ′′).

In this case, Γk is taken by f−1
Z to Γk−1, 1 ≤ k ≤ `, and Γ0 is taken

to Γ`. Since fZ is a pseudo-automorphsm, this is sufficient to determine
its action on the cohomology classes {Γk}. We define Γ̂ ⊂ Pic(Z) to be
the subspace spanned by the classes of the divisors Γ0, . . . ,Γ`, and thus
Γ̂ is invariant under f∗Z . In this scenario, we will consider the quotient

map induced by f∗Z acting on the quotient space Pic(Z)/Γ̂, and it is this
quotient map that we will represent in Lemma A.1.

Let mu, md, ms, dj , uj , sj and N be the numbers defined in §5. We
define the (N + 5)× (N + 5) matrix

(A.1)



2 0 1 0 1 0 · · · 0 1
−1 0 −1 0 0 0 · · · 0 −1
0 1 −1 0 0 0 · · · 0 0
−1 0 −1 0 −1 0 · · · 0 0
−1 0 −1 1 −1 0 · · · 0 0
−1 0 0 0 −1 0 · · · 0 −1
∗ ∗
...

...
∗ ∗


,
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where the ∗’s indicate that the 7th through the N + 5th rows remain to
be specified. We will define the jth row rj in terms of the elements ek,
which are vectors of length N + 5 in which the kth entry is 1, and all
other entries are 0:

(a) if j = N − di for some i = 1, . . . ,md, then rj+6 = ej+5 − eN+5;

(b) if j = N−ui for some i = 1, . . . ,mu, then rj+6 = −e1−e5 +ej+5−
eN+5;

(c) if j = N − si, for some i = 1, . . . ,ms,

rj+2 = −e1 − e3 + ej+1 − eN+5, rj+3 = −e3 + ej+2,
rj+4 = −e1 − e3 − e5 + ej+3 − eN+5, rj+5 = −e1 − e3 − e5 + ej+4,
rj+6 = −e5 + ej+5;

(d) if j = N −mF , then

rj+4 = −2e1 − e3 − 2e5 + ej+3 − eN+5,
rj+5 = −e1 − e3 − e5 + ej+4,
rj+6 = −e5 + ej+5;

(e) if j = N −mcF , then

rj+4 = −e1 − e3 + ej+3 − eN+5,
rj+5 = −e3 + ej+2,
rj+6 = −e1 − e3 − e5 + ej+3 − eN+5;

(f) otherwise, rj+6 = ej+5.

Let us define β′ := (β0, 0, 1, 0) and β′′ := (β0, 0, 0, 1), so we have

Σβ′′ → Σβ′ → Σβ → E3 → S01 → Σ0 → S03 → E1 → Σ3 → Σ2 → Σ1.

Note that if β0 = 0, then Σβ = Σ1, and this becomes the 8-cycle in (7.2).
The following curves are important for computing f∗Z

(A.2) fY :
`β := Σβ ∩ {α2x2 + (1 + α2β0)x0 = 0} → f(`β)→ F0βγ ,
`′β := Σβ′′ ∩ Σβ → E3 ∩ Σβ′ → S01 ∩ Σβ → Σ0 ∩ E3.

Lemma A.1. There is a basis of Pic(Z) (or Pic(Z)/Γ̂) with respect to
which the matrix (A.1) represents f∗Z .



Pseudo Automorphisms of 3-Space 111

Proof: We will use the notation Fj for the blowup divisor of µj . There
are three cases to consider.

Case (I): Whenever 1 ≤ j ≤ N and µj ⊂ Σβ , then µj ⊂ Σβγ ∪ `β . In
this case we have

f∗ZHZ = 2HZ − E1 − S01 − E3 −
mu∑
i=1

Fui

−
ms∑
i=1

(Fsi+1 + Fsi+2 + Fsi+4)−FmF+1 − 2FmF+2 −FmcF+2,

{Σ0} = HZ − E1 − S03 − S01 − E3

−
ms∑
i=1

(Fsi+1 + Fsi+2 + Fsi+3 + Fsi+4)

−FmF+1 −FmF+2 −FmcF+1 −FmcF+2,

{Σβ} = HZ − S01 − E3 −FN −
mu∑
i=1

Fui

−
ms∑
i=1

(Fsi + Fsi+1 + Fsi+2)−FmF −FmF+1 − 2FmF+2,

{Σγ} = HZ − E1 −FN −
ms∑
i=1

(Fsi+2 + Fsi+4)

−
mu∑
i=1

Fui
−

md∑
i=1

Fdi −FmF+2 −FmcF −FmcF+2.

Since we have f∗Z : E1 7→ S03 7→ {Σ0}, S01 7→ E3 7→ {Σβ}, Fj 7→
Fj−1 for all j = 2, . . . , N , and F1 7→ {Σγ} using the ordered ba-
sis {HZ , E1, S03, S01, E3,FN ,FN−1, . . . ,F2,F1} for Pic(Z) we see that
(A.1) is the matrix representation for f∗Z .

Case (II): There are κ positive integers 1 < p1 < · · · < pκ < N such that

for j = 1, . . . , κ, µpj ⊂ Σβ \
(
`β ∪ Σβγ ∪ `′β

)
.

For this case let us use the ordered basis

B̃ = {HZ , Ẽ1, S̃03, S̃01, Ẽ3,FN ,FN−1, . . . ,F2,F1}

for Pic(Z) where Ẽ3 = E3 +
∑κ
i=1 Fpi+1, S̃01 = S01 +

∑κ
i=1 Fpi+2,S̃03 =

S03 +
∑κ
i=1 Fpi+4, and Ẽ1 = E1 +

∑κ
i=1 Fpi+5. Using this new ordered
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basis we can see that

f∗Z : Ẽ1 7→ S̃03 7→ {Σ0}

+

κ∑
i=1

Fpi+3 = HZ − Ẽ1 − S̃03 − S̃01 − Ẽ3

−
ms∑
i=1

(Fsi+1 + Fsi+2 + Fsi+3 + Fsi+4)

−FmF+1 −FmF+2 −FmcF+1 −FmcF+2.

In a similar way we may compute f∗Z of HZ , S̃01, Ẽ3 and FN and see

that the matrix representation with B̃ is given by (A.1).

Case (III): There are τ integers 1 < q1 < · · · < qτ < N such that
µqj ⊂ `′β for j = 1, . . . , τ .

Let us consider the ordered basis

B̂ = {HZ , Ê1, Ŝ03, Ŝ01, Ê3,FN ,FN−1, . . . ,F2,F1}

for Pic(Z) where Ê3 = Ẽ3+
∑τ
i=1(Fqi+1+Fqi+3), Ŝ01 = S̃01+

∑τ
i=1(Fqi+2+

Fqi+4), Ŝ03 = S̃03 +
∑τ
i=1(Fqi+4 +Fqi+6), and Ê1 = Ẽ1 +

∑τ
i=1(Fqi+5 +

Fqi+7). Since f2
Y `
′
β = Σβ ∩ S01, we have

{Σβ} = HZ−S̃01−Ẽ3−
τ∑
i=1

(Fqi +Fqi+1+2Fqi+2+Fqi+3+Fqi+4)−FN

−
mu∑
i=1

Fui−
ms∑
i=1

(Fsi +Fsi+1+Fsi+2)−FmF−FmF+1−2FmF+2

= HZ − Ŝ01 − Ê3 −
τ∑
i=1

(Fqi + Fqi+2)−FN −
mu∑
i=1

Fui

−
ms∑
i=1

(Fsi + Fsi+1 + Fsi+2)−FmF −FmF+1 − 2FmF+2.
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It follows that we have

f∗Z : Ŝ01 7→ Ê3 7→ {Σβ}

+

τ∑
i=1

(Fqi + Fqi+2) = HZ − Ŝ01 − Ê3 −FN

−
mu∑
i=1

Fui
−Fms

−Fms+1 −Fms+2.

For the other basis elements, computations are essentially identical and
thus we see that (A.1) represents f∗Z with respect to the ordered basis B̂.

According to the previous lemma, we see that the characteristic poly-
nomial of f∗Z only depends on mu, md, ms, dj , uj , sj , mF , mcF and N .

Lemma A.2. The characteristic polynomial of f∗Z is given by

±tN−1(t2+1)
[
(Q1−Q4)t3+(2Q1 −Q2 −Q3 −Q4)t2+(Q1 −Q3)t+Q4

]
.

Proof: We subtract tI from the matrix (A.1) and perform a sequence of
row operations on it. Step (i): we add or subtract the 6th row to the
rows whose last entry is 1 or −1 and then (ii) for j = 1, . . . , N − 1, we
subtract 1/tj times the N + 4− jth row from 6th row. This gives

det(f∗Z − t I) = det

(
A 0
∗ B

)
,

where

A =


1− t 0 1 0 0 −t
1− t −t 0 0 1 0

0 1 −1− t 0 0 0
−1 0 −1 −t −1 0
−1 0 −1 1 −1− t 0
Q1 0 Q2 0 Q3 Q4

 ,

B =



−t 0 0 · · · 0 0
1 −t 0 · · · 0 0
0 1 −t · · · 0 0
...

. . .
. . . 0

0
. . . −t 0

0 1 −t
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with Q1, Q2, Q3, Q4 as in §5. We have

det(f∗Z − t Id) = (−1)N−1tN−1 det(A),

and we evaluate det(A) to obtain the polynomial given above.

B. Appendix: Invariant polynomials

We will look for polynomials P (x) =
∑
aIx

I which are invariant in
the sense that

(B.1) P ◦ f = t · jf · P,

where t 6= 0 is constant, and jf = 2x0(γ · x)(β · x)2 is the Jacobian
determinant. If P and Q are solutions to (B.1) with multipliers tP
and tQ, then ϕ = P/Q is a rational function with the invariance prop-

erty: ϕ ◦ f = (tP t
−1
Q )ϕ. If P is a solution to (B.1), then P de-

fines a meromorphic 3-form ΩP : on the set x0 6= 0, it is given by
P (1, x1, x2, x3)−1 dx1 ∧ dx2 ∧ dx3. This is invariant in the sense that
f∗ΩP = t−1

P ΩP . It follows that {P = 0} is an f -invariant surface which
represents the canonical class in P3 and its strict transforms are invariant
surfaces which represent the canonical classes in Y and Z.

The equation (B.1) can be rewritten as a system of linear equations
for the coefficients of the monomials in P . This system can be solved
directly for all the maps in §7 and §8. For instance, in §7, ω is a non-real
root of unity and a0 = a 6= 0, and we find a solution for t = ω2:

P1 = (1− ω)
(
a2x4

0 + (1 + a)x0x1x
2
2 + x2

1x
2
3 + ax1x2x

2
3

)
− (2 + ω)

(
x0x

3
2 + (1 + a)x0x

2
1x3 + ax1x

2
2x3 + ax2

0x
2
3

)
+ (1 + 2ω)

(
ax2

0x
2
1 + ax0x

2
1x2 + ax2

1x2x3 + ax0x2x
2
3

)
+ ax3

0x1(1 + a+ 2ω − aω)

+ (1− 2a+ 2ω − aω)
(
(1 + a)x2

0x1x3 + x0x
2
2x3

)
+ x2

0x
2
2(1− a+ 2ω + aω)

− (2−a+ω+aω)
(
(1+a)x2

0x1x2+x0x1x
2
3

)
+ax3

0x3(1−2a−ω−aω)

+ (1 + a)x2
0x2x3(1 + a− ω + 2aω) + ax3

0x2(2 + a+ ω + 2aω).

C. Appendix: The rotor map

Let g := f8
Z |Σ3

denote the rotor map restricted to Σ3, which is written
in coordinates in (7.3). By factoring the jacobian determinant, we see
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that there are four exceptional curves.

C1 = {ax0 + ωx2 = 0},
C2 = {ax0 + ax1 + ωx2 = 0},
C3 = {aωx0 + x1 + ω2x2 = 0},
C4 = {aωx2

0 + aωx0x1 + aωx0x2 + ω2x0x2 + x1x2 + ω2x2
2 = 0}.

Lemma C.1. If a 6= ωj and aj 6= ωj±2 for all j ≥ 2, then g is not
birationally conjugate to an automorphism.

Proof: The exceptional curves C2 and C4 mapped to a three cycle: g : C2 7→
[0 : 1 : −aω] 7→ [0 : 1 : −a] 7→ [0 : 1 : −aω2] 7→ [0 : 1 : −aω] and
g : C4 7→ [1 : 0 − ω2] 7→ [1 : 0 : −ω] 7→ [1 : 0 : −1] 7→ [1 : 0 : −ω2].
For C3 we see that gjC3 = [1 : −ω2(ω/a)j−1 : 0] for all j ≥ 1. It
follows that these three curves have orbits that do not encounter the in-
determinacy locus of g. The remaining exceptional curve C1 mapped to
e1 = [0 : 1 : 0], which is indeterminate. We let W be the space obtained
by blowing up Σ3 at e1, and we let E1 be the corresponding exceptional
divisor. Under the induced map gW we have gW (E1) = E1 and the orbit
of the strict transform of C1 remains in E1 and does not encounter the
indeterminacy locus of gW .

Now if H denote the class of a generic line in W , then 〈H,E1〉 is
an ordered basis for Pic(W ). The action on Pic is given by the matrix

g∗W =
(

3 1
−1 0

)
. The largest eigenvalue is λ = (3 +

√
5)/2 and invariant

class is given by θ = λH−E1. Since θ2 = λ2−1 6= 0, it follows from [DiF,
Theorem 5.4] that g is not birationally conjugate to an automorphism.

Lemma C.2. If aj = ωj−2 for some j ≥ 2, then g is not birationally
conjugate to an automorphism.

Proof: In case aj = ωj−2 for some j ≥ 2, the orbits of three exceptional
curves C2, C3, and C4 are the same as the previous lemma. After we blow
up e1 on Σ3, the strict transform of C1 mapped to a point of indeter-
minacy after j-th iteration of gW . We let W2 be the space obtained by
blowing up W at gkWC1 for k = 1, . . . , j and we let Fk, 1 ≤ k ≤ j be the
corresponding exceptional divisors. Under the induced map gW2

, the ex-
ceptional line C1 is removed and the orbits of remaining three exceptional
curves do not encounter the indeterminacy locus of gW2 .

Let 〈H,Fj , Fj−1, . . . , F1, E1〉 be the ordered basis for Pic(W2). The
characteristic polynomial of the action on Pic is given by tj+2− 4tj+1 +
3tj + t2 − 2t + 1. It follows that the dynamical degree is not a Salem
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number. Thus by [DiF], g is not birationally conjugate to an automor-
phism.

Lemma C.3. If aj = ωj+2 for some j ≥ 2, then g is not birationally
conjugate to an automorphism.

Proof: When aj = ωj+2, the orbit of C3 is different from Lemma C.1,
that is gj+1C3 = [1 : −1 : 0], which is indeterminate. We let W3 be
the space obtained by blowing up Σ3 at e1 and gkC3, 1 ≤ k ≤ j + 1,
and we let E1 and Fk, 1 ≤ k ≤ j + 1 be the corresponding exceptional
divisors. Using the ordered basis 〈H,Fj+1, Fj , . . . , F1, E1〉 for Pic(W3),
we see that the characteristic polynomial of the action on Pic is given by
tj+3−3tj+2 + tj+1 + t. Similarly as in Lemma C.2, the dynamical degree
is not a Salem number and therefore g is not birationally conjugate to
an automorphism.

Lemma C.4. If a = ω, then g is not birationally conjugate to an auto-
morphism.

Proof: In this case we see that C2 is mapped to a point of indeterminacy
under 2 iterations and C4 is also mapped to a point of indeterminacy
under 3 iterations. After we blow up e1, we can check that the orbits
of other two remaining exceptional lines does not encounter the indeter-
minacy locus. After we blow up the orbit of C2 and the orbit of C4, we
see that the dynamical degree of g is given by the largest root of the
polynomial t3 − t2 − 2t − 1. Again since this number is not a Salem
number we have our result.

Lemma C.5. If a = ω2, then g is not birationally conjugate to an
automorphism.

Proof: If a = ω2 the each component of g has the same factor x0 + x1 +
ω2x2. It follows that the restriction of f8

Y to Σ3 is a degree 2 birational
map. There are two exceptional lines and both exceptional lines are
mapped to points of indeterminacy. After we blow up the points on
the orbits of three exceptional lines, we see that the induced map has
one exceptional line which is mapped to a point of indeterminacy. Once
we blow up this point of indeterminacy, we see that the induced map
has no exceptional lines and therefore the induced map is algebraically
stable. Furthermore the characteristic polynomial of the action on Pic
is t(1+ t)(t−1)3 and the action on Pic has 2×2 Jordan block. It follows
that the degree of g grows linearly. According to [DiF], we have that g
is not birationally conjugate to an automorphism.
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Lemma C.6. If a = 1, then the degree of gn grows quadratically.

Proof: For this case all four exceptional curves are mapped to points of
indeterminacy: g : C1 7→ e1, C2 7→ [0 : 1 : −ω], C3 7→ [1 : −ω2 : 0] 7→ [1 :
−1 : 0] and g : C4 7→ [1 : 0 : −ω2]. We let Z be the space obtained by
blowing up Σ3 at all five points in the orbit of exceptional curves and we
let E1, Q2, Q3, Q4, and Q5 be the corresponding exceptional divisors.
Under the induced map gZ , there is a unique exceptional line which is
the strict transform of C1. The image gZC1 is a point of indeterminacy
of gZ . We blow up gZC1 ∈ E1 and denote the exceptional fiber by Q1.
We use 〈H,Q1, Q2, Q3, Q4, Q5, E1〉 as the ordered basis of Pic. The
characteristic polynomial of the action on Pic is given by (t − 1)4(t +
1)(t2 + t+ 1) and the matrix representation of the action on Pic has 3×
3 Jordan block. It follows that the degrees of gn grow quadratically.
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third order Lyness’ difference equation, J. Difference Equ. Appl.
13(10) (2007), 855–884. DOI: 10.1080/10236190701264735.

http://dx.doi.org/10.1007/s12220-012-9315-3
http://dx.doi.org/10.1007/BF02922170
http://dx.doi.org/10.1307/mmj/1163789919
http://arxiv.org/abs/1307.0361
http://dx.doi.org/10.1007/BF02392831
http://dx.doi.org/10.1080/10236190701264735


118 E. Bedford, K. Kim

[CGMs] A. Cima, A. Gasull, and F. Mañosas, On periodic rational
difference equations of order k, J. Difference Equ. Appl. 10(6)
(2004), 549–559. DOI: 10.1080/10236190410001667977.

[CL] M. Csörnyei and M. Laczkovich, Some periodic and non-
periodic recursions, Monatsh. Math. 132(3) (2001), 215–236.
DOI: 10.1007/s006050170042.

[dFE] T. de Fernex and L. Ein, Resolution of indeterminacy of
pairs, in: “Algebraic geometry”, de Gruyter, Berlin, 2002,
pp. 165–177.

[DiF] J. Diller and C. Favre, Dynamics of bimeromorphic maps
of surfaces, Amer. J. Math. 123(6) (2001), 1135–1169. DOI:

ajm.2001.0038.
[DG] J. Diller and V. Guedj, Regularity of dynamical Green’s

functions, Trans. Amer. Math. Soc. 361(9) (2009), 4783–4805.
DOI: 10.1090/S0002-9947-09-04740-0.

[DS] T.-C. Dinh and N. Sibony, Une borne supérieure pour
l’entropie topologique d’une application rationnelle, Ann. of
Math. (2) 161(3) (2005), 1637–1644. DOI: 10.4007/annals.

2005.161.1637.
[DO] I. Dolgachev and D. Ortland, Point sets in projective

spaces and theta functions, Astérisque 165 (1988), 210 pp.
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