DYNAMICS OF (PSEUDO) AUTOMORPHISMS OF 3-SPACE: PERIODICITY VERSUS POSITIVE ENTROPY

Eric Bedford* and Kyounghee Kim ${ }^{\dagger}$

Abstract

We study the iteration of the family of maps given by 3-step linear fractional recurrences. This family was studied earlier from the point of view of finding periodicities. In this paper we finish that study by determining all possible periods within this family. The novelty of our approach is that we apply the methods of complex dynamical systems. This leads to two classes of interesting pseudo automorphisms of infinite order. One of the classes consists of completely integrable maps. The other class consists of maps of positive entropy which have an invariant family of $K 3$ surfaces.

2010 Mathematics Subject Classification: 32F10, 32H50, 32M99, 14E07.
Key words: Pseudo-automorphism, rational 3 fold, $K 3$ surfaces, rational recurrences, birational map, dynamical degree, periodicity.

0. Introduction

We consider the family of birational maps of 3 -space which may be written in affine coordinates as

$$
\begin{equation*}
f_{\alpha, \beta}:\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(x_{2}, x_{3}, \frac{\alpha_{0}+\alpha_{1} x_{1}+\alpha_{2} x_{2}+\alpha_{3} x_{3}}{\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}}\right) . \tag{0.1}
\end{equation*}
$$

The algebraic iterates $f_{\alpha, \beta}^{n}:=f_{\alpha, \beta} \circ \cdots \circ f_{\alpha, \beta}$ are rational maps for all $n \in \mathbf{Z}$. Here we study the dynamics of $f=f_{\alpha, \beta}$, by which we mean the behavior of f^{n} as $n \rightarrow \pm \infty$. We have invertible dynamics since f has a rational inverse, but it does not behave like a diffeomorphism (or even a homeomorphism). There are two difficulties if we want to regard f as a mapping of points. First, there is the set of indeterminacy $\mathcal{I}(f)$; f blows up each point of $\mathcal{I}(f)$ to a variety of positive dimension. Second, there can be hypersurfaces E which are exceptional, in the sense that the codimension of $f(E-\mathcal{I}(f))$ is at least 2 . We will say that f is a pseudoautomorphism if neither f nor f^{-1} has an exceptional hypersurface. In dimension 2 , every pseudo-automorphism is in fact an automorphism.

[^0]However, for pseudo-automorphisms, indeterminate behaviors are possible in higher dimension which have no analogue in dimension 2.

Given a rational map $f: X \rightarrow X$ there is a well-defined pullback map on cohomology, $f^{*}: H^{*}(X) \rightarrow H^{*}(X)$. Passage to cohomology, however, may not be compatible with iteration because the identity $\left(f^{*}\right)^{n}=\left(f^{n}\right)^{*}$ may not be valid. Given a birational map f in dimension 2, Diller and Favre $[\mathbf{D i F}]$ showed that there is a new manifold $\pi: Y \rightarrow X$ such that the iterates of the induced map f_{Y} behave naturally on cohomology, in the sense that $\left(f_{Y}^{*}\right)^{n}=\left(f_{Y}^{n}\right)^{*}$. In dimension greater than 2 , however, no such theorem is known.

Given a rational map of \mathbf{P}^{n} we may consider modifications $\pi: X \rightarrow$ \mathbf{P}^{n}, where π is a morphism which is birational. This induces a rational map $f_{X}:=\pi^{-1} \circ f \circ \pi$ of X, which might have pointwise properties which are different from those of the original f. If f_{X} is a pseudoautomorphism, then f_{X} acts naturally on $H^{1,1}(X)$. The exponential rate of growth of f^{n} on $H^{p, p}: \delta_{p}(f):=\lim _{n \rightarrow \infty}\left\|\left.f^{n *}\right|_{H^{p, p}(X)}\right\|^{1 / n}$ is known as the $p^{\text {th }}$ dynamical degree and is a birational invariant (see [DS]).

Within the family (0.1) we find the first known examples of pseudoautomorphisms of positive entropy on blowups of \mathbf{P}^{3} :

Theorem 1. Suppose that $\alpha=(a, 0, \omega, 1)$ and $\beta=(0,1,0,0)$ where $a \in \mathbf{C} \backslash\{0\}$ and ω is a non-real cube root of the unity. Then there is a modification $\pi: Z \rightarrow \mathbf{P}^{3}$ such that f_{Z} is a pseudo-automorphism. The dynamical degrees $\delta_{1}(f)=\delta_{2}(f) \cong 1.28064>1$ are equal and are given by the largest root of $t^{8}-t^{5}-t^{4}-t^{3}+1$. The entropy of f_{Z} is the logarithm of the dynamical degree and is thus positive.

A mapping f is said to be reversible if it is conjugate to f^{-1}. Many maps that arise in mathematical physics are reversible because the relevant physical laws are invariant under time reversal. For the mappings in Theorems 1 and $3, f$ is reversible on the level of cohomology: f_{Z}^{*} is conjugate to $\left(f_{Z}^{-1}\right)^{*}=\left(f_{Z}^{*}\right)^{-1}$. The identity $\delta_{1}(f)=\delta_{2}(f)$ for such maps is a consequence of the duality between $H^{1,1}$ and $H^{2,2}$, so they are not cohomologically hyperbolic in the terminology of [G2].

Theorem 2. For the mappings in Theorem 1, there is a 1-parameter family of surfaces $S_{c} \subset Z, c \in \mathbf{C}$ which have the invariance $f S_{c}=S_{\omega c}$. For generic c, S_{c} is K3, and the restriction $\left.f^{3}\right|_{S_{c}}$ is an automorphism. For generic c and c^{\prime}, the surfaces S_{c} and $S_{c^{\prime}}$ are biholomorphically inequivalent, and the automorphisms $\left.f^{3}\right|_{S_{c}}$ and $\left.f^{3}\right|_{S_{c^{\prime}}}$ are not smoothly conjugate.

The surface S_{0} is invariant, and the restriction $f_{S_{0}}$ is an automorphism which has the same entropy as f. This is smaller than the entropy of the automorphism constructed in [M2, Theorem 1.2] and is thus the smallest known entropy for a projective $K 3$ surface automorphism.

Closely related to the dynamics of f_{Z} is the Green current, a $(1,1)$-current T^{+}which is expanded by f_{Z}^{*}, and a current T^{-}for f_{Z}^{-1}. The existence of the Green current is given by Diller and Guedj [DG] in the case where the expanded cohomology class is nef. For our case, we use a result of Bayraktar $[\mathbf{B a}]$. In $\S 7$ we obtain T^{+}, as well as the invariant $(2,2)$-current $T^{+} \wedge T^{-}$. The slices of $T^{ \pm}$and $T^{+} \wedge T^{-}$on the surfaces S_{c} give the expanded/contracted currents, as well as the unique invariant measure of maximal entropy for the automorphism $\left.f\right|_{S_{c}}$.

The following mappings have quadratic degree growth and complete integrability:

Theorem 3. Suppose that $\beta=(0,1,0,0)$ and either $\alpha=(0,0, \omega, 1)$ or $\alpha=(a, 0,1,1)$ where $a \in \mathbf{C} \backslash\{1\}, \omega \neq 1$, and $\omega^{3}=1$. Then the degree of f^{n} grows quadratically in n. Further, there is a modification $\pi: Z \rightarrow \mathbf{P}^{3}$ such that f_{Z} is a pseudo-automorphism. There is a twoparameter family of surfaces $S_{c}, c=\left(c_{1}, c_{2}\right) \in \mathbf{C}^{2}$ which are invariant under f^{3}. For generic c and c^{\prime}, S_{c} is a smooth K3 surface, and $S_{c} \cap S_{c^{\prime}}$ is a smooth elliptic curve.

For each of these maps, the family of invariant $K 3$ surfaces becomes singular at an invariant 8 -cycle \mathcal{R} of rational surfaces (see (7.2)). We show that the restriction $\left.f\right|_{\mathcal{R}}$ is not birationally conjugate to a surface automorphism: see Appendix C for the maps in Theorem 1 and Proposition 8.2 for the maps in Theorem 3. By Corollary 1.6, then, we have:

Theorem 4. Let f be a map from Theorems 1 and 3. If $a \neq 1$, then f is not birationally conjugate to an automorphism.

We note that for birational surface maps, the degree growth of the iterates determines whether the map is birationally conjugate to an automorphism: This occurs if and only if either (i) the degrees are bounded or degree growth is quadratic (see $[\mathbf{D i F}]$), or (ii) if the dynamical degree is a Salem number (see $[\mathbf{B C}]$). Theorem 4 shows that this result does not hold in dimension 3.

We will also determine which mappings $f_{\alpha, \beta}$ are periodic, or finite order, in the sense that $f^{p}=$ id for some $p>0$. In contrast to Theorem 4, it was shown by de Fernex and Ein [dFE] that if f is a rational map of finite order, then there is a modification f_{X} as above, which is an automorphism of X. If f_{X} is periodic, then f_{X}^{*} will also be periodic.

In (4.1) and (4.2) we identify conditions which are necessary for f to be periodic and are sufficient for the existence of a space $Z=Z_{\alpha, \beta}$ such that f_{Z} is a pseudo-automorphism. We show that for a map in (0.1), if f_{Z}^{*} is periodic, then f also turns out to be periodic. The birational map (0.1) may also be considered as a 3 -step linear fractional recurrence: given z_{0}, z_{1}, z_{2}, we define a sequence $\left\{z_{n}\right\}$ by

$$
\begin{equation*}
z_{n+3}=\frac{\alpha_{0}+\alpha_{1} z_{n}+\alpha_{2} z_{n+1}+\alpha_{3} z_{n+2}}{\beta_{0}+\beta_{1} z_{n}+\beta_{2} z_{n+1}+\beta_{3} z_{n+2}} . \tag{0.2}
\end{equation*}
$$

The recurrence (0.2) is said to be periodic if the sequence $\left\{z_{n}\right\}$ is periodic for all choices of initial terms z_{0}, z_{1} and z_{2}. Equivalently, $f_{\alpha, \beta}^{p}=\mathrm{id}$ for some p. For all $r>0$ there are r-step recurrences of the form (0.2). In [BK2] we determined the possible periods for 2-step linear fractional recurrences. McMullen [M1] has explained the periods that arise by showing that the corresponding (2-dimensional) $f_{\alpha, \beta}$ represent certain Coxeter elements.

Here we determine all possible periods for 3 -step recurrences (0.2). To rule out trivial cases, we assume that the coefficients satisfy (2.3), and we have:

Theorem 5. The only nontrivial periods for (0.2) are 8 and 12. Each periodic recurrence is equivalent to one of the following:
$(\operatorname{period} 8) \quad z_{n+3}=\frac{1+z_{n+1}+z_{n+2}}{z_{n}}, \quad z_{n+3}=\frac{-1-z_{n+1}+z_{n+2}}{z_{n}}$,
(period 12)

$$
z_{n+3}=\frac{\eta /(1-\eta)+\eta z_{n+1}+z_{n+2}}{\eta^{2}+z_{n}}, \quad \eta^{3}=-1
$$

In the notation of (0.1), the first case corresponds to $\beta=(0,1,0,0)$, $\alpha=(\pm 1,0, \pm 1,1)$, and the second case to $\beta=\left(\eta^{2}, 1,0,0\right), \alpha=(\eta /(1-$ $\eta), 0, \eta, 1)$.

Each of these mappings has a different structure; these structures are described in Theorems 6.9 and 6.10. The first period 8 recurrence above was found by Lyness $[\mathbf{L}]$, and the second one was found by Csörnyei and Laczkovich [CL] (see also [CGM, CGMs]). We note that the period 12 recurrences are the case $k=3$ of a general phenomenon exhibited in [BK3]: For each k, there are k-step linear fractional recurrences with period $4 k$. There is a literature dealing with r step recurrences of the form (0.2). We refer to the books $[\mathbf{K o L}],[\mathbf{K u L}],[\mathbf{G L}],[\mathbf{C a L}]$ and the extensive bibliographies they contain. That direction of research is largely concerned with the case where the structural parameters α, β, as well as the dynamical points, are real and positive. This avoids the difficulty
that the denominator in (0.2) might vanish, causing the expression to be undefined; but the restriction to positive numbers leads to a subdivision into a large number of distinct cases to be treated separately.

In working with the family $f_{\alpha, \beta}$, we work with the pointwise iterates as much as possible, but this runs into difficulties if the orbit enters the indeterminacy locus, which is frequently the case with the orbits of "interesting" points. We can often deal with this by blowing up certain subsets. In this way we convert these subsets into hypersurfaces, and we then deal with the hypersurfaces by passing to f^{*} on Pic. This allows us to convert many difficulties with indeterminate orbits into more tractable problems of Linear Algebra. Such a procedure is useful for covering the whole parameter space, since it allows us to determine properties of f^{*} for all mappings in a large family.

This paper is organized as follows. $\S 1$ assembles some general information about rational maps and the geometry of blowing up. $\S 2$ gives the specific behaviors of the maps (0.1). It is evident, then, that there are two possibilities, defined by (3.1), which we call "critical" and "non-critical," and in $\S 3$ we show that any periodic map must be critical. We study the structure of general critical maps in $\S 4$. In Theorem 5.1 we show that if f is a critical map satisfying (5.1), then f_{Z} is a pseudo-automorphism. Pseudo-automorphisms are discussed in $\S 5$, together with the possibilities for the induced map f_{Z}^{*} on cohomology. In $\S 6$ we determine the periodic mappings and give the proof of Theorem 5. In $\S 7$ we give the proof of Theorems 1 and 2. At the end of $\S 7$ we present a different pseudo-automorphism with positive entropy; it has properties similar to those given in Theorems 1 and 2, but we do not discuss it in detail. The proof of Theorem 3 is given in $\S 8$.

Acknowledgement. We wish to thank the referee for a careful reading of this paper and for finding some errors in an earlier version.

1. Rational maps

A rational map $f: \mathbf{P}^{d} \xrightarrow{d} \mathbf{P}^{d}$ is given by a $(d+1)$-tuple of homogeneous polynomials, all of the same degree: $f=\left[f_{0}: \cdots: f_{d}\right]$. We may divide f by g.c.d. $\left(f_{0}, \ldots, f_{d}\right)$ so that f_{i} 's have no common polynomial factor. We define the degree of $f, \operatorname{deg}(f)$, to be the (common) degree of the f_{j} 's. The indeterminacy locus of f is defined by

$$
\mathcal{I}(f)=\left\{x \in \mathbf{P}^{d}: f_{0}(x)=\cdots=f_{d}(x)=0\right\}
$$

and is a subvariety of codimension at least 2 , and f defines a holomorphic mapping $f: \mathbf{P}^{d} \backslash \mathcal{I}(f) \rightarrow \mathbf{P}^{d}$. If S is an irreducible subvariety of \mathbf{P}^{d}, and
$S \not \subset \mathcal{I}(f)$, we define the strict transform, written simply as $f(S)$, to be the closure of $f(S-\mathcal{I}(f))$. We say that an irreducible variety V is exceptional for a rational mapping f if $V \not \subset \mathcal{I}(f)$, and if the dimension of $f(V-\mathcal{I}(f))$ is strictly less than the dimension of V. Following $[\mathbf{D O}$, p. 64], we say that $f: X \rightarrow Y$ is a pseudo-isomorphism if f is birational, and if neither f nor f^{-1} has an exceptional hypersurface. It follows that if f is a pseudo-isomorphism, then $f: X \backslash \mathcal{I}(f) \rightarrow Y \backslash \mathcal{I}\left(f^{-1}\right)$ is biholomorphic. If $X=Y$, we say that f is a pseudo-automorphism.

Theorem 1.1. If $f: X \rightarrow Y$ is a pseudo-isomorphism between 3-dimensional manifolds, then the indeterminacy locus has no isolated points.

Proof: Suppose that there is an isolated point $p \in \mathcal{I}(f)$. Since f^{-1} has no exceptional hypersurfaces, f must blow p up to a curve $C^{\prime} \subset Y$. Now we consider the behavior of f^{-1} on C^{\prime}. We must have $C^{\prime} \subset \mathcal{I}\left(f^{-1}\right)$, for if f^{-1} is regular at a point $q \in C^{\prime}$, then f^{-1} must map an open subset of C^{\prime} to p. Thus the jacobian of f^{-1} must vanish at q. Since the jacobian vanishes on a hypersurface, f^{-1} would have an exceptional hypersurface containing q. Thus q must be indeterminate. Since the total transform of q under f^{-1} is given by $\bigcap_{\epsilon>0} \overline{\left(f^{-1}\left(B(q, \epsilon)-\mathcal{I}\left(f^{-1}\right)\right)\right)}$, it must be connected, and it must be a curve C containing p. But since p was an isolated point of $\mathcal{I}(f)$, there are nearby points $p^{\prime} \in C-\mathcal{I}(f)$. Since f is regular at these points, it must map them to q, and thus f must have an exceptional hypersurface. By this contradiction, we see that $\mathcal{I}(f)$ has no isolated points.

For a rational map $f: X \rightarrow X$, we consider the iterates $f^{j}=f \circ \cdots \circ f$, $j>0$. If Σ is an irreducible hypersurface, then $\Sigma \not \subset \mathcal{I}\left(f^{j}\right)$ for reasons of dimension, so we may consider the sequence of varieties $V_{j}:=f^{j}(\Sigma)$, for $j>0$. Since we will be interested in knowing to what extent the iterates of f behave like a pointwise-defined dynamical system, we note: If $S \not \subset \mathcal{I}(g)$ is irreducible and if $g(S) \not \subset \mathcal{I}(f)$, then $S \not \subset \mathcal{I}(f \circ g)$, and $f(g(S))=(f \circ g)(S)$. We may also define f at points of indeterminacy. Let $\gamma_{f}=\left\{(x, y) \in\left(\mathbf{P}^{d}-\mathcal{I}\right) \times \mathbf{P}^{d}: y=f(x)\right\}$ denote the graph of f at its regular points, and we let Γ denote the closure of γ_{f} inside $\mathbf{P}^{d} \times \mathbf{P}^{d}$. It follows that Γ is an irreducible variety of dimension d, and there are holomorphic projections $\pi_{j}: \Gamma \rightarrow \mathbf{P}^{d}, j=1,2$, onto the first and second factors, respectively, and we have $f=\pi_{2} \circ \pi_{1}^{-1}$ on $\mathbf{P}^{d}-\mathcal{I}$. For a point $p \in \mathbf{P}^{d}$, we define the total transform to be $f_{*} p:=\pi_{2}\left(\pi_{1}^{-1} p\right)$, and then we define $f_{*}(S):=\bigcup_{p \in S} f_{*} p$. It is easily seen that we have: If Σ is an irreducible hypersurface, then $f_{*}(g(\Sigma)) \supset(f \circ g)(\Sigma)$.

Proposition 1.2. Suppose that $f: X \rightarrow X$ is rational, and suppose that for each exceptional hypersurface E and for $m>0$, we have $f^{m}(E-$ $\mathcal{I}) \not \subset \mathcal{I}$. It follows that $\left(f^{*}\right)^{n}=\left(f^{n}\right)^{*}$ on $H^{1,1}(X)$ for $n \geq 0$.

Proof: It is sufficient to show that $\left(f^{*}\right)^{2}=\left(f^{2}\right)^{*}$ on $\operatorname{Pic}(X)$. If D is a divisor, then $f^{*} D$ is the divisor on X which is the same as $f^{-1} D$ on $X-\mathcal{I}$. Since \mathcal{I} has codimension at least 2 , we also have $\left(f^{2}\right)^{*} D=f^{*}\left(f^{*} D\right)$ on $X-\mathcal{I}-f^{-1}(\mathcal{I})$. By our hypothesis $f^{-1}(\mathcal{I})$ has codimension at least 2. Thus we have $\left(f^{2}\right)^{*} D=\left(f^{*}\right)^{2} D$ on X.

In a similar way, we may define $f^{*}: H^{p, q}(X) \rightarrow H^{p, q}(X)$. That is, if β is a (p, q) form on X, then the pullback $\pi_{2}^{*} \beta$ is a smooth form on Γ. We may let $\left[\pi_{2}^{*} \beta\right]$ denote the reinterpretation of the form as a current, and we may push it forward to obtain a current $f^{*} \beta=\pi_{1 *}\left[\pi_{2}^{*} \beta\right]$ on X. This pulls smooth forms back to currents and is well defined at the level of cohomology classes. If $\alpha \in H^{p^{\prime}, q^{\prime}}$ is an element of the dual cohomology group, then we have $\left\langle\alpha, f^{*} \beta\right\rangle=\left\langle\pi_{1}^{*} \alpha, \pi_{2}^{*} \beta\right\rangle$. Now if f is birational and $g=f^{-1}$, then

$$
\begin{equation*}
\left\langle g^{*} \alpha, \beta\right\rangle=\left\langle\pi_{1}^{*} \alpha, \pi_{2}^{*} \beta\right\rangle=\left\langle\alpha, f^{*} \beta\right\rangle . \tag{1.1}
\end{equation*}
$$

If we have $\left(f^{n}\right)^{*}=\left(f^{*}\right)^{n}$ on $H^{p, q}$ for $n \geq 0$, then this gives us $\left(g^{n}\right)^{*}=$ $\left(g^{*}\right)^{n}$ on $H^{p^{\prime}, q^{\prime}}$. If f and g have no exceptional hypersurfaces, then, as in Proposition 1.2, we have $(f g)^{*}=g^{*} f^{*}$. Taking $g=f^{-1}$, we have

Proposition 1.3. If f is a pseudo-automorphism, then $\left(f^{n}\right)^{*}=\left(f^{*}\right)^{n}$ on both $H^{1,1}$ and $H^{d-1, d-1}$ for all $n \in \mathbf{Z}$.

From this we get the following:
Proposition 1.4. Let $f: X \rightarrow X$ is a pseudo-automorphism on a d-dimensional manifold. If f^{*} and $\left(f^{*}\right)^{-1}$ are conjugate as linear transformations of $H^{1,1}$, then we have equality of the dynamical degrees $\delta_{1}(f)=$ $\delta_{d-1}(f)$.

Proof: If f^{*} and $\left(f^{*}\right)^{-1}$ are conjugate on $H^{1,1}$, then f^{*} on $H^{1,1}$ is conjugate to f^{*} on $H^{d-1, d-1}$. Since f is a pseudo-automorphism, the dynamical degree δ_{1} is equal to the modulus of the largest eigenvalue of f^{*} on $H^{1,1}$. Similarly, δ_{d-1} is given by the largest eigenvalue of f^{*} acting on $H^{d-1, d-1}$. Since these are linearly conjugate, they eigenvalues are the same.

Now let us define some specific blowup situations. This will serve to define the constructions we will use in the sequel, and it allows us to exhibit the models of indeterminate behavior that we will encounter.

Blowing up a point and a line which contains it. We use $\left(x_{0}, x_{1}, x_{2}\right) \mapsto$ $\left[x_{0}: x_{1}: x_{2}: 1\right]$ as local coordinates in a neighborhood of $e_{3}:=[0: 0:$ $0: 1] \in \mathbf{P}^{3}$. Let X_{1} be the space obtained by blowing up a point e_{3} and we let E_{3} denote the fiber over e_{3}. We may use

$$
\begin{equation*}
\pi_{1}: X_{1} \ni\left(s_{0}, s_{1}, \xi_{2}\right)_{1} \mapsto\left[\xi_{2} s_{0}: \xi_{2} s_{1}: \xi_{2}: 1\right] \in \mathbf{P}^{3} \tag{1.2}
\end{equation*}
$$

as a local coordinate system for a neighborhood of $E_{3} \cap\left\{x_{0}=x_{1}=0\right\}$ in X_{1}. It follows that the exceptional fiber $E_{3}=\left\{\xi_{2}=0\right\}$ in this coordinate system.

Let $\Sigma_{01}=\left\{x_{0}=x_{1}=0\right\} \subset \mathbf{P}^{3}$ denote the x_{2}-axis. The strict transform of Σ_{01} inside X_{1} may be written as $\Sigma_{01}=\left\{s_{0}=s_{1}=0\right\}$. Thus $\Sigma_{01} \cap E_{3}=\left\{s_{0}=s_{1}=\xi_{2}=0\right\}$. Let X_{2} be a complex manifold obtained by blowing up Σ_{01} in X_{1}. We can define a local coordinate system of X_{2} via $\pi_{2}: X_{2} \ni\left(t_{0}, \eta_{1}, \xi_{2}\right)_{2} \mapsto\left(t_{0} \eta_{1}, \eta_{1}, \xi_{2}\right)_{1} \in X_{1}$. Thus $\pi_{2} \circ \pi_{1}: X_{2} \rightarrow \mathbf{P}^{3}$ is given, in this coordinate neighborhood, by

$$
\begin{equation*}
\pi_{1} \circ \pi_{2}: X_{2} \ni\left(t_{0}, \eta_{1}, \xi_{2}\right)_{2} \mapsto\left[t_{0} \eta_{1} \xi_{2}: \eta_{1} \xi_{2}: \xi_{2}: 1\right] \in \mathbf{P}^{3} \tag{1.3}
\end{equation*}
$$

The inverse of π_{1} (resp. π_{2}) gives a model of indeterminate behavior that blows up the point $(0,0,0)$ (resp. the line $\left\{x_{1}=x_{2}=0\right\}$) to a hyperplane:

$$
\begin{align*}
& \pi_{1}^{-1}:\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(x_{1} / x_{3}, x_{2} / x_{3}, x_{3}\right), \\
& \pi_{2}^{-1}:\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(x_{1} / x_{2}, x_{2}, x_{3}\right) . \tag{1.4}
\end{align*}
$$

Blowing up two intersecting lines. Let $\pi_{1}: Z_{1} \rightarrow \mathbf{P}^{3}$ be the blowup of the x_{1}-axis $\Sigma_{02}=\left\{x_{0}=x_{2}=0\right\} \subset \mathbf{P}^{3}$. We use local coordinate system in Z_{1}

$$
\pi_{1}: Z_{1} \ni(\xi, x, s)_{Z 1} \mapsto[s \xi: x: s: 1] \in \mathbf{P}^{3}
$$

Let us denote the blowup fiber over the point $o=\Sigma_{01} \cap \Sigma_{02}=[0: 0: 0$: $1] \in \mathbf{P}^{3}$ as \mathcal{F}_{o}^{1} then in this coordinate system we have $\mathcal{F}_{o}^{1}=\{s=x=0\}$. The strict transform of the x_{2}-axis in Z_{1} is given by $\ell_{2}=\{\xi=x=0\}$ and $\mathcal{F}_{o}^{1} \cap \ell_{2}=(0,0,0)_{Z_{1}}$. Now let Z_{2} be the blowup of ℓ_{2} with a local coordinate system

$$
\begin{aligned}
\pi:=\pi_{1} \circ \pi_{2}:(t, \eta, s)_{Z_{2}} \in Z_{2} & \mapsto(t, t \eta, s)_{Z_{1}} \in Z_{1} \\
& \mapsto[t s: t \eta: s: 1] \in \mathbf{P}^{3}
\end{aligned}
$$

We denote the second (new) fiber over o as \mathcal{F}_{o}^{2}, so $\mathcal{F}_{o}^{2}=(0, \eta, 0)_{Z_{2}}$. Let us also use \mathcal{F}_{o}^{1} for its strict transform in Z_{2}, so $\mathcal{F}_{o}^{1} \cup \mathcal{F}_{o}^{2}=\pi_{2}^{-1} \circ \pi_{1}^{-1}\{o\}$ and $\mathcal{F}_{o}^{1}=(t, 0,0)_{Z_{2}}$.

Let $\tau\left[x_{0}: x_{1}: x_{2}: x_{3}\right]=\left[x_{0}: x_{2}: x_{1}: x_{3}\right]$ be the involution that interchanges the x_{1} - and x_{2}-axes. It follows that τ induces the involution $\tilde{\tau}=\pi^{-1} \circ \tau \circ \pi$ on Z_{2}. In coordinates, we have

$$
\begin{equation*}
\tilde{\tau}:(t, \eta, s) \mapsto(s / \eta, \eta, t \eta) \tag{1.5}
\end{equation*}
$$

which will serve as our third model of indeterminate behavior. We note that $\tilde{\tau}$ is regular on $\mathcal{F}_{o}^{2}-\mathcal{F}_{o}^{1}$, while each point of \mathcal{F}_{o}^{1} blows up to the variety \mathcal{F}_{o}^{1}.

Similarly we can blow up the $x_{2^{-}}$axis first and then the strict transform of x_{1}-axis. Performing similar computations, we obtain a blowup space $\hat{\pi}: Y_{2} \rightarrow \mathbf{C}^{3}$. The identity map ι on \mathbf{P}^{3} lifts to a map $\tilde{\iota}: Z_{2} \rightarrow Y_{2}$, which in local coordinates is similar to $\tilde{\tau}$.

Remark. Suppose that γ^{\prime} and $\gamma^{\prime \prime}$ are curves in \mathbf{P}^{3} which intersect transversally at points $\left\{p_{1}, \ldots, p_{N}\right\}$. We have local coordinate systems for $1 \leq j \leq N$ so that p_{j} is the origin, and γ^{\prime} (resp. $\gamma^{\prime \prime}$) coincides with the x-axis (resp. the y-axis) in a neighborhood of p_{j}. Since the operation of blowing up the axes is local near p_{j}, we may construct a blowup space $\pi: W \rightarrow \mathbf{P}^{3}$ in which γ^{\prime} and $\gamma^{\prime \prime}$ are both blown up, and over each p_{j} we are free to choose whether γ^{\prime} or $\gamma^{\prime \prime}$ was blown up first, independently of the choices over p_{k} for $k \neq j$.

Theorem 1.5. Let f be a birational map of X. Let $X_{0} \subset X$ be a hypersurface such that the strict transform is $f\left(X_{0}\right)=X_{0}$. Let $\varphi: X \rightarrow Y$ is a birational map which conjugates (f, X) to an automorphism (g, Y). Then there is a birational map $\hat{\varphi}: X \rightarrow \hat{Y}$ such that the strict transform $\hat{Y}_{0}:=\hat{\varphi}\left(X_{0}\right)$ is a nonsingular hypersurface, and the induced map $\hat{g}:=\hat{\varphi} \circ f \circ \hat{\varphi}^{-1}$ gives an automorphsm of \hat{Y}.

Proof: We may assume that X_{0} is irreducible. Since X_{0} is a hypersurface, we may take its strict transform $\varphi\left(X_{0}\right)$. If $\varphi\left(X_{0}\right)$ is a point in Y, then it is fixed by g. If $\pi_{1}: Y_{1} \rightarrow Y$ is the blowup of the point $\varphi\left(X_{0}\right)$, then g lifts to an automorphism of Y_{1}. Let $\varphi_{1}:=\pi_{1}^{-1} \circ \varphi$. If $\varphi_{1}\left(X_{0}\right)$ is again a point, we can repeat this blowing-up process until $\varphi_{1}\left(X_{0}\right)$ has dimension >0, which we may assume to be 1 . If the singular locus of $\varphi_{1}\left(X_{0}\right)$ is nonempty, it is finite and invariant under f_{1}. Now we can blow up the singular set of $\varphi_{1}\left(X_{0}\right)$ finitely many times and have a new blowup space $\pi_{2}: Y_{2} \rightarrow Y_{1}$. Since we were blowing up invariant sets, the induced birational map g_{2} of Y_{2} is again an automorphism. Now the
image $\varphi_{2}\left(X_{0}\right)$ must be a nonsingular curve, which must be invariant. We can blow up this curve, and repeat the process finitely many times so that $\varphi_{3}\left(X_{0}\right)$ has dimension >1. We continue this process until $\varphi_{N}\left(X_{0}\right)$ is a nonsingular hypersurface in Y_{N}, and now we set $\hat{Y}=Y_{N}$.

Corollary 1.6. Let f be a birational map of X. Let $X_{0} \subset X$ be a hypersurface for which the strict transform is $f\left(X_{0}\right)=X_{0}$. Let $\varphi: X \rightarrow Y$ is a birational map which conjugates (f, X) to an automorphism (g, Y). Then the restriction $\left(f_{X_{0}}, X_{0}\right)$ is birationally conjugate to an automorphism.

Proof of Theorem 4: Let f be as in Theorem 4. In Appendix C we study the restriction of f^{8} to the plane $\Sigma_{3}=\left\{\left[x_{0}: x_{1}: x_{2}: x_{3}\right] \in \mathbf{P}^{3}\right.$: $\left.x_{3}=0\right\}$. There we show that this restricted mapping is not birationally equivalent to an automorphism of Σ_{3}. Thus Theorem 4 is a consequence of Corollary 1.6.

2. Linear fractional recurrences

The maps (2.2) are among the Cremona transformations of 3 -space which are discussed in Chapter 10 of $[\mathbf{H}]$. We discuss general properties of these transformations, and for the generic parameters (2.10) we construct a new space $\pi: X \rightarrow \mathbf{P}^{3}$, such that passing to the induced map f_{X} effectively eliminates one of the exceptional components.

For $\left\{i_{1}, \ldots, i_{k}\right\} \subset\{0,1,2,3\}$, we use the notation

$$
\begin{equation*}
\Sigma_{i_{1} \cdots i_{k}}=\left\{x \in \mathbf{P}^{3}: x_{i_{j}}=0,1 \leq j \leq k\right\}, \tag{2.1}
\end{equation*}
$$

and for a vector $A=\left(A_{0}, \ldots, A_{3}\right)$ we will write $A \cdot x=A_{0} x_{0}+A_{1} x_{1}+$ $A_{2} x_{2}+A_{3} x_{3}$. In homogeneous coordinates the maps (0.1) take the form

$$
\begin{equation*}
f\left[x_{0}: x_{1}: x_{2}: x_{3}\right]=\left[x_{0} \beta \cdot x: x_{2} \beta \cdot x: x_{3} \beta \cdot x: x_{0} \alpha \cdot x\right] \tag{2.2}
\end{equation*}
$$

where $\alpha=\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right), \beta=\left(\beta_{0}, \beta_{1}, \beta_{2}, \beta_{3}\right)$. In the sequel, we will assume

$$
\begin{equation*}
\alpha \neq \lambda \beta, \quad \beta \neq\left(\beta_{0}, 0,0,0\right), \quad\left(\alpha_{1}, \beta_{1}\right) \neq(0,0) \tag{2.3}
\end{equation*}
$$

Note that if one of the first two conditions does not hold, then f is linear, and if the third condition does not hold, then f is independent of x_{1} and thus f is actually a 2 -step recurrence. If we set $\gamma=\beta_{1} \alpha-\alpha_{1} \beta$ and $\beta_{1} \neq 0$, then we have

$$
\mathcal{I}=\Sigma_{\beta \gamma} \cup \Sigma_{0 \beta} \cup\left\{e_{1}\right\}
$$

where $\Sigma_{\beta}=\{\beta \cdot x=0\}, \Sigma_{\gamma}=\{\gamma \cdot x=0\}, \Sigma_{0}=\left\{x_{0}=0\right\}, \Sigma_{\beta \gamma}=\Sigma_{\beta} \cap \Sigma_{\gamma}$, $\Sigma_{0 \beta}=\Sigma_{0} \cap \Sigma_{\beta}$, and $e_{1}=[0: 1: 0: 0]=\Sigma_{023}$.

The Jacobian determinant of f is given by $2 x_{0}(\gamma \cdot x)(\beta \cdot x)^{2}$. Thus we see that the exceptional hypersurfaces are $\mathcal{E}=\left\{\Sigma_{0}, \Sigma_{\beta}, \Sigma_{\gamma}\right\}$. The action of f on the exceptional varieties is given as follows: for $\lambda_{2}, \lambda_{3} \in \mathbf{C}$, $\left(\lambda_{2}, \lambda_{3}\right) \neq(0,0)$,

$$
\begin{array}{ll}
& \Sigma_{\beta} \mapsto e_{3}, \\
f: & \Sigma_{0} \cap\left\{\lambda_{2} x_{2}=\lambda_{3} x_{3}\right\} \mapsto\left[0: \lambda_{3}: \lambda_{2}: 0\right], \tag{2.4}\\
& \Sigma_{\gamma} \cap\left\{\lambda_{2} x_{2}=\lambda_{3} x_{3}\right\} \mapsto \Sigma_{B C} \cap\left\{\lambda_{2} x_{1}=\lambda_{3} x_{2}\right\},
\end{array}
$$

where we set $\check{\alpha}=\left(\alpha_{0}, \alpha_{2}, \alpha_{3}, 0\right), \check{\beta}=\left(\beta_{0}, \beta_{2}, \beta_{3}, 0\right)$, and

$$
B=\left(-\alpha_{1}, 0,0, \beta_{1}\right), \quad C=\beta_{1} \check{\alpha}-\alpha_{1} \check{\beta}
$$

Thus Σ_{β} is blown down to a point. The pencil of lines in Σ_{γ} passing through $e_{1} \in \Sigma_{0} \cap \Sigma_{\gamma}$ are all mapped to points in $\Sigma_{B C}$. The pencil of lines in Σ_{0} passing through e_{1} are all mapped to points on the line Σ_{03}, which is again one of the exceptional lines. We have strict transforms:

$$
\begin{equation*}
f: \Sigma_{0} \mapsto \Sigma_{03} \mapsto e_{1} \tag{2.5}
\end{equation*}
$$

The inverse is given by

$$
\begin{equation*}
f^{-1}\left[x_{0}: x_{1}: x_{2}: x_{3}\right]=\left[x_{0} B \cdot x: x_{0} \check{\alpha} \cdot x-x_{3} \check{\beta} \cdot x: x_{1} B \cdot x: x_{2} B \cdot x\right] \tag{2.6}
\end{equation*}
$$

and the indeterminacy locus is $\mathcal{I}\left(f^{-1}\right)=\Sigma_{0 B} \cup \Sigma_{B C} \cup\left\{e_{3}\right\}$. The Jacobian of f^{-1} is $2 x_{0}(C \cdot x)(B \cdot x)^{2}$, so the exceptional hypersurfaces are $\mathcal{E}\left(f^{-1}\right)=$ $\left\{\Sigma_{0}, \Sigma_{B}, \Sigma_{C}\right\}$ and for $\mu_{1}, \mu_{2} \in \mathbf{C},\left(\mu_{1}, \mu_{2}\right) \neq(0,0)$,

$$
\begin{array}{ll}
\Sigma_{B} \mapsto e_{1}, \\
f^{-1}: & \Sigma_{0} \cap\left\{\mu_{1} x_{1}=\mu_{2} x_{2}\right\} \mapsto \Sigma_{0 \beta} \cap\left\{\mu_{1} x_{2}=\mu_{2} x_{3}\right\}, \tag{2.7}\\
& \Sigma_{C} \cap\left\{\mu_{1} x_{1}=\mu_{2} x_{2}\right\} \mapsto \Sigma_{\beta \gamma} \cap\left\{\mu_{1} x_{2}=\mu_{2} x_{3}\right\} .
\end{array}
$$

Now let us construct the space $\pi_{1}: X_{1} \rightarrow \mathbf{P}^{3}$ by blowing up a point e_{1}, and then the space $\pi_{2}: X \rightarrow X_{1}$ obtained by blowing up a line Σ_{03}. We set

$$
\begin{equation*}
\pi=\pi_{1} \circ \pi_{2}: X \rightarrow \mathbf{P}^{3} \tag{2.8}
\end{equation*}
$$

Let S_{03} denote the blowup fiber over the strict transform of Σ_{03} in X_{1} and E_{1} for the strict transform of $\pi_{1}^{-1} e_{1}$ in X_{1}. For the induced map on X, the orbit of Σ_{0} becomes

$$
\begin{equation*}
f_{X}: \Sigma_{0} \rightarrow S_{03} \rightarrow E_{1} \rightarrow \Sigma_{B} \tag{2.9}
\end{equation*}
$$

If X and Y are irreducible, we will say that a rational map $f: X \rightarrow Y$ is dominant if the rank of $d f$ is equal to the dimension of Y on a dense open set. Let us define a generic condition:

$$
\begin{equation*}
\beta_{1} \neq 0, \quad \beta_{1} \alpha_{2} \neq \alpha_{1} \beta_{2}, \quad \text { and } \quad \beta_{1} \alpha_{3} \neq \alpha_{1} \beta_{3} \tag{2.10}
\end{equation*}
$$

For simplicity we use the same notation for both a variety and its strict transform, if there is no possibility of confusion.

Proposition 2.1. If (2.10) holds, then all the maps in (2.9) are dominant, so $\mathcal{E}\left(f_{X}\right)=\left\{\Sigma_{\beta}, \Sigma_{\gamma}\right\}$. Further, $\mathcal{I}\left(f_{X}\right)=\Sigma_{\beta 0} \cup \Sigma_{\beta \gamma}$.

Proof: Let us first consider the restriction to S_{03}. We may use the local coordinates for a neighborhood of $S_{03},\left(s_{0}, x_{2}, \xi_{3}\right)_{S_{03}} \mapsto\left[s_{0}: 1: x_{2}\right.$: $\left.s_{0} \xi_{3}\right]$. For the neighborhood of the exceptional fiber E_{1} over e_{1}, we use $\left(t_{0}, \zeta_{2}, \zeta_{3}\right)_{E_{1}} \mapsto\left[t_{0}: 1: t_{0} \zeta_{2}: t_{0} \zeta_{3}\right]$. It follows that $S_{03}=\left\{\left(0, x_{2}, \xi_{3}\right)_{S_{03}}\right\}$ and $E_{1}=\left\{\left(0, \zeta_{2}, \zeta_{3}\right)_{E_{1}}\right\}$. Using these local coordinates we have

$$
\left.f_{X}\right|_{S_{03}}:\left(0, x_{2}, \xi_{3}\right)_{S_{03}} \mapsto\left(0, \xi_{3}, \frac{\alpha_{1}+\alpha_{2} x_{2}}{\beta_{1}+\beta_{2} x_{2}}\right)_{E_{1}}
$$

To have a dominant map, it is required that $\beta_{1} \alpha_{2} \neq \alpha_{1} \beta_{2}$. For the restrictions of the induced birational map to Σ_{0} and E_{1} are given by linear maps:

$$
\begin{aligned}
& f_{X}: \Sigma_{0} \ni\left[0: x_{1}: x_{2}: x_{3}\right] \mapsto\left(0, \frac{x_{3}}{x_{2}}, \frac{\alpha_{1} x_{1}+\alpha_{2} x_{2}+\alpha_{3} x_{3}}{\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}}\right)_{S_{03}} \in S_{03} \\
& f_{X}: E_{1} \ni\left(0, \zeta_{2}, \zeta_{3}\right)_{E_{1}} \mapsto\left[\beta_{1}: \beta_{1} \zeta_{2}: \beta_{1} \zeta_{3}: \alpha_{1}\right] \in \Sigma_{B} .
\end{aligned}
$$

We see that $\left.f_{X}\right|_{E_{1}}$ is dominant because $\beta_{1} \neq 0$. And since $\beta_{1} \alpha_{2} \neq \alpha_{1} \beta_{2}$ and $\beta_{1} \alpha_{3} \neq \alpha_{1} \beta_{3}$, we see that $\left.f_{X}\right|_{\Sigma_{0}}$ is dominant.

Thus in passing to f_{X}, we have removed one exceptional hypersurface and one point of indeterminacy. There is a group of linear conjugacies acting on the family (0.2). For $(\lambda, c, \mu) \in \mathbf{C}^{*} \times \mathbf{C}^{*} \times \mathbf{C}$, we set

$$
\begin{align*}
& (\alpha, \beta) \mapsto(\lambda \alpha, \lambda \beta) \tag{2.11a}\\
& (\alpha, \beta) \mapsto\left(\alpha_{0}, c \alpha_{1}, c \alpha_{2}, c \alpha_{3}, c \beta_{0}, c^{2} \beta_{1}, c^{2} \beta_{2}, c^{2} \beta_{3}\right) \tag{2.11b}\\
& (\alpha, \beta) \mapsto\left(\alpha_{0}^{\prime}, \alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \alpha_{3}^{\prime}, \beta_{0}^{\prime}, \beta_{1}, \beta_{2}, \beta_{3}\right) \\
& \alpha_{0}^{\prime}=\alpha_{0}+\mu\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)+\mu\left(\beta_{0}+\mu \beta_{1}+\mu \beta_{2}+\mu \beta_{3}\right) \\
& \alpha_{1}^{\prime}=\alpha_{1}-\mu \beta_{1} \tag{2.11c}\\
& \alpha_{2}^{\prime}=\alpha_{2}-\mu \beta_{2}, \alpha_{3}^{\prime}=\alpha_{3}-\mu \beta_{3}, \beta_{0}^{\prime}=\beta_{0}+\mu\left(\beta_{1}+\beta_{2}+\beta_{3}\right) .
\end{align*}
$$

The first action corresponds to the homogeneity of f. The action (2.11b) corresponds to a scaling of $\left(x_{1}, x_{2}, x_{3}\right)$ in affine coordinates, and (2.11c) comes from translation by the vector (μ, μ, μ). Note that these actions preserve the form of the recurrence relation.

3. Non-critical maps

A map f of the form (2.2) is critical if (3.1) holds:

$$
\begin{equation*}
\beta_{2}=\beta_{3}=0, \quad \text { and } \quad \beta_{1} \alpha_{2} \alpha_{3} \neq 0 \tag{3.1}
\end{equation*}
$$

In this section we establish the following:
Theorem 3.1. If f is not critical, then f is not periodic.
We will use the following criterion:
Proposition 3.2. Suppose that $f: X \rightarrow X$ is periodic, i.e., f_{X}^{p} is the identity for some $p>1$. If $E \subset X$ is an exceptional hypersurface, then $f^{j} E \subset \mathcal{I}\left(f_{X}\right)$ for some $1 \leq j<p$.

Proof: Since E is exceptional, then $\operatorname{codim}(f(E)) \geq 2$. Let us consider the sequence of varieties $V_{j}:=f_{X}^{j}(E)$. If $V_{j} \not \subset \mathcal{I}\left(f_{X}\right)$ for all j, then applying the strict transform of f repeatedly, we have $f_{X}^{j+1}(E)=f_{X}\left(V_{j}\right)$ for all j, so $\operatorname{codim}\left(f\left(V_{j}\right)\right) \geq 2$ for all j. On the other hand, we must have $f_{X}^{p}(E)=E=V_{p}$.

The proof of Theorem 3.1 will involve several cases, so we start with some lemmas.

Lemma 3.3. Let $\pi: X \rightarrow \mathbf{P}^{3}$ be the complex manifold defined in (2.8). If $\beta_{1}=0$, then there is a exceptional hypersurface $V \subset X$ and a positive integer k such that $\left(f_{X}^{k}\right)^{n} V \not \subset \mathcal{I}\left(f_{X}^{k}\right)$ either for all $n \geq 1$ or for all $n \leq-1$.

Proof: Note that from the third assumption in (2.3), we have $\alpha_{1} \neq 0$. We use two local coordinate systems for the exceptional divisor S_{03} :

$$
(s, x, \xi)_{S_{03}^{(1)}} \mapsto[s \xi: x: 1: s], \quad \text { and } \quad(s, x, \xi)_{S_{03}^{(2)}} \mapsto[s: x: 1: s \xi]
$$

for the blowup divisor E_{1} we use the following two local coordinate systems:

$$
\left(t, \zeta_{2}, \zeta_{3}\right)_{E_{1}^{(0)}} \mapsto\left[t: 1: t \zeta_{2}: t \zeta_{3}\right], \quad \text { and } \quad\left(\zeta_{0}, \zeta_{2}, t\right)_{E_{1}^{(3)}} \mapsto\left[t \zeta_{0}: 1: t \zeta_{2}: t\right]
$$

Since $\beta \neq\left(\beta_{0}, 0,0,0\right)$, either $\beta_{3} \neq 0$ or $\beta_{2} \neq 0$.
Case $\beta_{3} \beta_{2} \neq 0$: In this case, the orbit of Σ_{β} is given by

$$
\begin{aligned}
f_{X}: \Sigma_{\beta} \mapsto e_{3} \mapsto\left(0,0, \alpha_{3} / \beta_{3}\right)_{S_{03}^{(2)}} & \mapsto\left(0, \alpha_{3} / \beta_{3}, \alpha_{2} / \beta_{2}\right)_{E_{1}^{(0)}} \\
& \mapsto e_{3} \in \Sigma_{0} \backslash \mathcal{I}\left(f_{X}\right) .
\end{aligned}
$$

Thus the orbit of Σ_{β} is pre-periodic and $f_{X}^{n} \Sigma_{\beta}$ is a regular point for all $n \geq 1$.

Case $\beta_{3} \neq 0$ and $\beta_{2}=0$: Since $\beta_{3} \neq 0$, we may assume that $\beta_{3}=1$. Notice that since both β_{1} and β_{2} are equal to zero, the second condition (2.10) is not satisfied and we have

$$
\Sigma_{0} \ni\left[0: x_{1}: x_{2}: x_{3}\right] \mapsto\left(0, x_{2} / x_{3},\left(\alpha_{1} x_{1}+\alpha_{2} x_{2}+\alpha_{3} x_{3}\right) / x_{3}\right)_{S_{03}^{(2)} \in S_{03},}
$$

$$
f_{X}: S_{03} \ni(0, x, \xi)_{S_{03}^{(2)}} \mapsto\left[0: \beta_{0}+\xi: 0: \alpha_{2}+\alpha_{1} x\right] \in \Sigma_{0},
$$

$$
\Sigma_{02} \ni\left[0: x_{1}: 0: x_{3}\right] \mapsto\left(0,0,\left(\alpha_{1} x_{1}+\alpha_{3} x_{3}\right) / x_{3}\right)_{S_{03}^{(2)}} \in S_{03} \cap \Sigma_{1}=\pi^{-1}\left(e_{2}\right)
$$

It follows that

$$
f_{X}: \Sigma_{0} \mapsto S_{03} \mapsto \Sigma_{02} \mapsto S_{03} \cap \Sigma_{1}
$$

We also have

$$
f_{X}: E_{1} \ni\left(0, \zeta_{2}, \zeta_{3}\right)_{E_{1}^{(0)}} \mapsto[0: 0: 0: 1]=e_{3} \in \Sigma_{0}
$$

(i) $\beta_{3} \neq 0, \beta_{2}=0$, and $\alpha_{2} \neq 0$: With these parameters, we have a two-cycle between Σ_{02} and the fiber over $e_{2},\left\{(0,0, \xi)_{S_{03}^{(2)}}\right\}$. Since $e_{3} \in \Sigma_{02}$ we have

$$
f_{X}: \Sigma_{\beta} \mapsto e_{3} \mapsto\left(0,0, \alpha_{3}\right)_{S_{03}^{(2)}} \mapsto\left[0: \beta_{0}+\alpha_{3}: 0: \alpha_{2}\right] \mapsto \cdots
$$

Both Σ_{02} and the fiber over e_{2} in S_{03} are disjoint from $\mathcal{I}\left(f_{X}\right)$, the forward orbit of Σ_{β} consists of points in $X-\mathcal{I}\left(f_{X}\right)$. In fact the curve $S_{03} \cap \Sigma_{1}=\pi^{-1}\left(e_{2}\right)$ is invariant under f_{X}^{2} :
$f_{X}^{2}: S_{03} \cap \Sigma_{1} \ni(0,0, \xi)_{S_{03}^{(2)}} \mapsto\left(0,0,\left(\alpha_{2} \alpha_{3}+\alpha_{1} \beta_{0}+\alpha_{1} \xi\right) / \alpha_{2}\right)_{S_{03}^{(2)}} \in S_{03} \cap \Sigma_{1}$.
Thus for all $n \geq 1,\left(f_{X}^{2}\right)^{n} \Sigma_{\beta}$ is a regular point in S_{03}.
(ii) $\beta_{3} \neq 0, \beta_{2}=0, \alpha_{2}=0$, and $\beta_{0}+\alpha_{3} \neq 0$: In this case the point e_{3} is periodic of period 3:

$$
f_{X}: \Sigma_{\beta} \mapsto e_{3} \mapsto\left(0,0, \alpha_{3}\right)_{S_{03}^{(2)}} \mapsto E_{1} \cap\left\{x_{2}=\alpha_{3} x_{1}\right\} \mapsto e_{3}
$$

Thus we have a hypersurface

$$
\begin{aligned}
V=\left\{\left(\alpha_{0} \alpha_{3}+2 \alpha_{0} \beta_{0}\right.\right. & \left.+\beta_{0}^{3}\right) x_{0}^{2}+\left(\alpha_{1} \alpha_{3}+\alpha_{1} \beta_{0}\right) x_{0} x_{1}+\alpha_{1} \beta_{0} x_{0} x_{2} \\
& \left.+\left(\alpha_{0}+\alpha_{3}^{2}+\alpha_{3} \beta_{0}+\beta_{0}^{2}\right) x_{0} x_{3}+\alpha_{1} x_{2} x_{3}=0\right\}
\end{aligned}
$$

such that $\left(f_{X}^{3}\right)^{n} V=e_{3}$ for all $n \geq 1$.
(iii) $\beta_{3} \neq 0, \beta_{2}=0, \alpha_{2}=0$, and $\beta_{0}+\alpha_{3}=0$: For this case, let us consider f^{2}. We see that

$$
f_{X}^{2}: S_{03} \ni(0, x, \xi)_{S_{03}^{(1)}} \mapsto\left(0,0, \frac{x \xi}{1+\beta_{0} \xi-\beta_{0} x \xi}\right)_{S_{03}^{(1)}} \in S_{03}
$$

It follows that S_{03} is still exceptional in this case and the point $(0,0,0)_{S_{03}^{(1)}} \notin \mathcal{I}\left(f_{X}^{2}\right)$ is fixed under f_{X}^{2}. Thus $\left(f_{X}^{2}\right)^{n} S_{03} \not \subset \mathcal{I}\left(f_{X}^{2}\right)$ for all $n \geq 1$.

Case $\beta_{3}=0$ and $\beta_{2} \neq 0$: Under the backward map, the hypersurface Σ_{0} is exceptional. We see

$$
\begin{array}{ll}
& \Sigma_{0} \ni\left[0: x_{1}: x_{2}: x_{3}\right] \mapsto\left(0, x_{1} / x_{2}, 0\right)_{E_{1}^{(3)} \in E_{1} \cap \Sigma_{0},} \\
f_{X}^{-1}: & E_{1} \ni\left(\zeta_{0}, \zeta_{2}, 0\right)_{E_{1}^{(3)}} \mapsto\left(0,\left(\beta_{2}-\alpha_{2} \zeta_{0}\right) /\left(\alpha_{1} \zeta_{0}\right), \zeta_{2} / \zeta_{0}\right)_{S_{03}^{(2)}} \in S_{03}, \\
& S_{03} \ni(0, x, \xi)_{S_{03}^{(2)}} \mapsto\left[0:-\alpha_{3}-\alpha_{2} x+\beta_{2} x \xi: \alpha_{1} x: \alpha_{1}\right] \in \Sigma_{0} .
\end{array}
$$

Let us set $p:=\Sigma_{0} \cap E_{1} \cap S_{03}$. It follows that the point p is fixed under f_{X}^{-1}. Since $p \in f_{X}^{-n} \Sigma_{0}$ for all $n \geq 1$, we see that $f_{X}^{-n} \Sigma_{0} \not \subset \mathcal{I}\left(f_{X}^{-1}\right)$ for all $n \geq 1$.

Now let us suppose that $\beta_{1} \neq 0$. Using actions (2.11a)-(2.11c), we may assume that $\beta_{1}=1$ and $\alpha_{1}=0$.

Lemma 3.4. Suppose that $\beta_{1}=1, \alpha_{1}=0$. If either $\beta_{2} \neq 0$ or $\beta_{3} \neq 0$, then Σ_{0} is exceptional and pre-periodic for f^{-1}.

Proof: Let us first assume that $\beta_{3} \neq 0$. Then

$$
f^{-1}: \Sigma_{0} \ni\left[0: x_{1}: x_{2}: x_{3}\right] \mapsto\left[0:-\left(\beta_{2} x_{1}+\beta_{3} x_{2}\right): x_{1}: x_{2}\right] \in \Sigma_{0 \beta}
$$

and $\Sigma_{0 \beta}$ is invariant under f^{-1} :

$$
\begin{aligned}
f^{-1}: & {\left[0:-\left(\beta_{2} x_{2}+\beta_{3} x_{3}\right): x_{2}: x_{3}\right] } \\
& \mapsto\left[0: \beta_{2}\left(\beta_{2} x_{2}+\beta_{3} x_{3}\right)-\beta_{3} x_{2}:-\left(\beta_{2} x_{2}+\beta_{3} x_{3}\right): x_{2}\right]
\end{aligned}
$$

Now suppose $\beta_{3}=0$ and $\beta_{2} \neq 0$. In this case we have

$$
\begin{aligned}
f^{-1}: \Sigma_{0} \ni\left[0: x_{1}: x_{2}: x_{3}\right] & \mapsto\left[0:-\beta_{2} x_{1}: x_{1}: x_{2}\right] \\
& \mapsto\left[0: \beta_{2}^{2}:-\beta_{2}: 1\right] \in \Sigma_{0 \beta} \backslash \mathcal{I}\left(f^{-1}\right)
\end{aligned}
$$

and this last point is fixed under f^{-1}.
Let $\pi: Z \rightarrow \mathbf{P}^{3}$ be the complex manifold obtained by blowing up e_{2} and Σ_{02} and let E_{2} and S_{02} be the corresponding blowup divisors. In the following lemma, we use the local coordinates $\left(s_{0}, x_{1}, \xi_{2}\right)_{S_{02}} \mapsto\left[s_{0}\right.$: $\left.x_{1}: s_{0} \xi_{2}: 1\right]$ in a neighborhood of $S_{02}=\left\{s_{0}=0\right\}$ and $\left(u_{0}, \eta_{1}, \eta_{3}\right)_{E_{2}} \mapsto$ [$u_{0}: \eta_{1} u_{0}: 1: \eta_{3} u_{0}$] in a neighborhood of $E_{2}=\left\{u_{0}=0\right\}$.

Lemma 3.5. Suppose that $\beta_{1}=1, \alpha_{1}=\beta_{2}=\beta_{3}=0$. If either $\alpha_{2}=0$ or $\alpha_{3}=0$, then S_{02} is exceptional and pre-periodic for f_{Z}^{2} or f_{Z}^{-2}.

Proof: If $\alpha_{2}=\alpha_{3}=0$, then the mapping is basically one-dimensional. In other word, the recurrence defined in (0.2) can be reduced to one-step recursion

$$
w_{k+1}=\frac{\alpha_{0}}{\beta_{0}+w_{k}} \quad \text { where } \quad w_{k}=z_{i+3 k}, \quad i=0,1,2 .
$$

Let us consider two cases separately:
(i) Case $\alpha_{3}=0$ and $\alpha_{2} \neq 0$:
$f_{Z}^{2}:\left(0, t, \xi_{2}\right)_{S_{02}} \mapsto\left(0, \frac{\beta_{0}+\xi_{2}}{\alpha_{2}}, 0\right)_{S_{02}} \mapsto\left(0, \frac{\beta_{0}}{\alpha_{2}}, 0\right)_{S_{02}} \mapsto\left(0, \frac{\beta_{0}}{\alpha_{2}}, 0\right)_{S_{02}}$.
(ii) Case $\alpha_{2}=0$ and $\alpha_{3} \neq 0$:

$$
\begin{aligned}
f_{Z}^{-2}:\left(0, t, \xi_{2}\right)_{S_{02}} \mapsto\left(0, \frac{\alpha_{3}}{\xi_{2}},-\beta_{0}\right)_{S_{02}} & \mapsto\left(0,-\frac{\alpha_{3}}{\beta_{0}},-\beta_{0}\right)_{S_{02}} \\
& \mapsto\left(0,-\frac{\alpha_{3}}{\beta_{0}},-\beta_{0}\right)_{S_{02}}
\end{aligned}
$$

Theorem 3.6. If f is not critical, then there exists a complex manifold X such that either there are a positive integer k and an exceptional hypersurface $E \subset X$ for an induced birational map f_{X}^{k} such that $\left(f_{X}^{k}\right)^{n} E \not \subset \mathcal{I}\left(f_{X}^{k}\right)$ for $n=1,2, \ldots$, or the analogous statement holds for f_{X}^{-1}.

Proof: Let X denote either the space X or Z in the lemmas above. This theorem follows from the Lemmas 3.3-3.5.

Proof of Theorem 3.1: If f is not critical, then Theorem 3.6 says that in each case that there are a positive integer k and an exceptional hypersurface that does not map into $\mathcal{I}\left(f_{X}^{k}\right)$. By Proposition 3.2, then, f^{k} is not periodic and therefore f is not periodic.

4. Critical maps

Here we study critical maps in general. Let us recall the condition for f being critical: $\beta_{2}=\beta_{3}=0$ and $\beta_{1} \alpha_{2} \alpha_{3} \neq 0$. Using the action (2.11a)-(2.11c) we may assume that a critical map satisfies:

$$
\begin{equation*}
\beta_{1}=1, \quad \beta_{2}=\beta_{3}=0, \quad \alpha_{1}=0, \quad \alpha_{2} \neq 0, \quad \alpha_{3}=1 \tag{4.1}
\end{equation*}
$$

In this section, we show (Lemma 4.2) that for every critical map there is a blowup space $\pi: Y \rightarrow X$ such that the induced map f_{Y} has only one exceptional hypersurface, which is Σ_{γ}. We determine the indeterminacy
locus of f_{Y} (Corollary 4.6) and the dynamical degree for the generic case (Theorem 4.8).
Proposition 4.1. If f is critical, then f^{-1} is conjugate to a critical map.

Proof: Let $\beta=\left(\beta_{0}, 1,0,0\right)$ and $\alpha=\left(\alpha_{0}, 0, \alpha_{2}, 1\right)$ be parameters of a critical map f. We consider a linear map $\phi:\left[x_{0}: x_{1}: x_{2}: x_{3}\right] \mapsto\left[x_{0}:\right.$ $\left.x_{3}: x_{2}: x_{1}\right]$. It follows that we have

$$
\begin{aligned}
\phi^{-1} \circ f^{-1} \circ \phi: & {\left[x_{0}: x_{1}: x_{2}: x_{3}\right] } \\
& \mapsto\left[x_{0} x_{1}: x_{2} x_{1}: x_{3} x_{1}: x_{0}\left(\alpha_{0} x_{0}-\beta_{0} x_{1}+x_{2}+\alpha_{2} x_{3}\right)\right]
\end{aligned}
$$

Thus f^{-1} is conjugate to a critical map of the form (2.2) with parameter values $\beta^{\prime}=(0,1,0,0)$ and $\alpha^{\prime}=\left(\alpha_{0},-\beta_{0}, 1, \alpha_{2}\right)$ which satisfy the condition (3.1).

Remark. By Proposition 4.1, each result for f corresponds to a result for f^{-1}. The translation between f and f^{-1} is guided by notation: $\beta \leftrightarrow B, \gamma \leftrightarrow C, 1 \leftrightarrow 3$: thus $f^{-1} \Sigma_{C}=\Sigma_{\beta \gamma}$, etc.

If (4.1) holds, it follows that $e_{3}=\Sigma_{0} \cap \Sigma_{\beta} \cap\left\{x_{2}=0\right\} \in \mathcal{I}$, and

$$
\begin{equation*}
f: \Sigma_{\beta} \rightarrow e_{3} \rightsquigarrow \Sigma_{01} \rightsquigarrow \Sigma_{0} \longrightarrow \Sigma_{03} \longrightarrow e_{1} \rightsquigarrow \Sigma_{B} . \tag{4.2}
\end{equation*}
$$

We define a new complex manifold $\pi_{Y}: Y \rightarrow \mathbf{P}^{3}$ by blowing up e_{1} and e_{3}, then the strict transform of Σ_{01}, followed by the strict transform of Σ_{03}. (Equivalently, we start with X and blow up the strict transform of e_{1} and Σ_{03}.) For $j=1,3$, we denote the exceptional divisor over e_{j} by E_{j} and the exceptional divisor over $\Sigma_{0 j}$ by $S_{0 j}$ for $j=1,3$. The induced birational map $f_{Y}: Y \rightarrow Y$ maps

$$
\begin{equation*}
f_{Y}: \Sigma_{\beta} \rightarrow E_{3} \rightarrow S_{01} \rightarrow \Sigma_{0} \rightarrow S_{03} \rightarrow E_{1} \rightarrow \Sigma_{B} \tag{4.3}
\end{equation*}
$$

Lemma 4.2. The maps in (4.4) are dominant; Σ_{γ} is the unique exceptional hypersurface for f_{Y}, and Σ_{C} is the unique exceptional hypersurface for f_{Y}^{-1}.

Proof: Using the local coordinates defined by $\left(t, \xi_{1}, \xi_{2}\right)_{E_{3}} \mapsto\left[t: t \xi_{1}\right.$: $\left.t \xi_{2}: 1\right]$ and $\left(s, \eta, x_{2}\right)_{S_{01}} \mapsto\left[s: s \eta: x_{2}: 1\right]$, we have

$$
\begin{aligned}
& \Sigma_{\beta} \backslash \Sigma_{\beta \gamma} \ni\left[x_{0}:-\beta_{0} x_{0}: x_{2}: x_{3}\right] \mapsto\left(0, \frac{x_{2}}{x_{0}}, \frac{x_{3}}{x_{0}}\right)_{E_{3}} \in E_{3}, \\
f_{Y}: & E_{3} \ni\left(0, \xi_{1}, \xi_{2}\right)_{E_{3}} \mapsto\left(0, \xi_{2}, \beta_{0}+\xi_{1}\right)_{S_{01}} \in S_{01}, \\
& S_{01} \backslash \Sigma_{\beta \gamma} \ni\left(0, \eta_{1}, x_{2}\right)_{S_{01}} \mapsto\left[0: x_{2}\left(\beta_{0}+\eta_{1}\right):\left(\beta_{0}+\eta_{1}\right): 1+\alpha_{2} x_{2}\right] \in \Sigma_{0} .
\end{aligned}
$$

In Proposition 2.1 we showed that the maps $\Sigma_{0} \rightarrow S_{03} \rightarrow E_{1} \rightarrow \Sigma_{B}$ are dominant. It follows that Σ_{γ} is the only exceptional hypersurface for f_{Y}, and Σ_{C} is the only one for f_{Y}^{-1}.

For $p \in \mathbf{P}^{3}$, we will say that a point of $\pi_{Y}^{-1} p$ is at level 1 if it could have been obtained by blowing up a point or a curve in \mathbf{P}^{3}. Thus the points of all fibers are of level 1 , unless they lie over e_{1}, e_{3}, or $e_{2}=\Sigma_{01} \cap \Sigma_{03}$. The fibers $E_{1} \cap S_{03}$ and $E_{3} \cap S_{01}$ represent the points of E_{1} and E_{3} which are at level 2. Over e_{2}, we define $\mathcal{F}_{e_{2}}^{1}:=S_{01} \cap \pi_{Y}^{-1} e_{2}$ and $\mathcal{F}_{e_{2}}^{2}:=S_{03} \cap \pi_{Y}^{-1} e_{2}$. We see that $\mathcal{F}_{e_{2}}^{i}$, for $i=1,2$ is at level i.

Now we determine the indeterminacy locus of f_{Y}. In the construction of Y, we see that new indeterminacy locus is generated when two centers of blowups intersect. Thus we have

$$
\mathcal{I}\left(f_{Y}\right) \subset \Sigma_{\beta \gamma} \cup\left(E_{1} \cap S_{03}\right) \cup\left(E_{3} \cap S_{01}\right) \cup \mathcal{F}_{e_{2}}^{1} \cup \mathcal{F}_{e_{2}}^{2} \cup \Sigma_{02} \cup \mathcal{F}_{0 \beta \gamma}
$$

where $\mathcal{F}_{0 \beta \gamma}:=\pi_{Y}^{-1}\left(\Sigma_{\beta \gamma} \cap \Sigma_{01}\right)$. We see that the three curves on level 2 are not indeterminate:

Lemma 4.3. If f is critical, then the indeterminacy loci $\mathcal{I}\left(f_{Y}\right)$ and $\mathcal{I}\left(f_{Y}^{-1}\right)$ do not contain $E_{1} \cap S_{03}, E_{3} \cap S_{01}$, or $\mathcal{F}_{e_{2}}^{2}$.

Proof: Let us first consider the blowup fiber over $E_{3} \cap \Sigma_{01}$. For this fiber let us use a local coordinate $\left(\xi_{0}, \xi_{1}, t_{2}\right)_{E_{3}} \mapsto\left[t_{2} \xi_{0}: t_{2} \xi_{1}: t_{2}\right.$: $1] \in \mathbf{P}^{3}$. It follows that the strict transform of $\Sigma_{01}=\left\{\left(0,0, t_{2}\right)_{E_{3}}\right\}$ and $E_{3} \cap \Sigma_{01}=(0,0,0)_{E_{3}}$. The local coordinates in a neighborhood of the second blowup fiber over $E_{3} \cap S_{01}$ are given by $\left(\eta_{0}, u_{1}, t_{2}\right)_{E_{3}^{01}} \mapsto$ $\left(\eta_{0} u_{1}, u_{1}, t_{2}\right)_{E_{3}} \mapsto\left[\eta_{0} u_{1} t_{2}: u_{1} t_{2}: t_{2}: 1\right] \in \mathbf{P}^{3}$ and we have the second blowup fiber $E_{3} \cap S_{01}=\left\{\left(\eta_{0}, 0,0\right)_{E_{3}^{01}}\right\}$. With these coordinates, we see that

$$
f_{Y}:\left(\eta_{0}, 0,0\right)_{E_{3}^{01}} \mapsto\left(0,0, \eta_{0}\right)_{S_{01}}=S_{01} \cap \Sigma_{0}
$$

where $\left(\xi, t, x_{3}\right)_{S_{01}} \mapsto\left[\xi t: t: 1: x_{3}\right]$ gives local coordinates near S_{01}. It follows that the second blowup fiber $E_{3} \cap S_{01}$ is not indeterminate for f_{Y}. The computations for f_{Y}^{-1} and for $E_{1} \cap S_{03}$ are essentially the same, and we see that $E_{1} \cap S_{03}$ and $E_{3} \cap S_{01}$ are not indeterminate for f_{Y} or f_{Y}^{-1}.

To consider the second blowup fiber $\mathcal{F}_{e_{2}}^{2}$, we use local coordinates $\left(\xi, s, x_{3}\right)_{01} \rightarrow\left[\xi s: s: 1: x_{3}\right]$. In this coordinates we see that $S_{01}=$ $\{s=0\}$ and the strict transform of $\Sigma_{03}=\left\{\xi=0, x_{3}=0\right\}$. Thus the local coordinates near the blowup of Σ_{03} are given by $(\eta, s, t)_{03} \mapsto$ $(\eta t, s, t)_{01} \mapsto[\eta t s: s: 1: t]$ and we have $\mathcal{F}_{e_{2}}^{2}=\left\{(\eta, 0,0)_{03}\right\}$. With these coordinates, we have

$$
f_{Y}: \mathcal{F}_{e_{2}}^{2} \ni\left(\eta_{0}, 0,0\right)_{03} \mapsto\left(0,0, \alpha_{2} \eta\right)_{E_{1}}=E_{1} \cap \Sigma_{0}
$$

where $\left(\xi_{0}, t_{2}, \xi_{3}\right)_{E_{1}} \mapsto\left[\xi_{0} t_{2}: 1: t_{2}: \xi_{3} t_{2}\right]$ is local coordinates near E_{1}. Similarly we see that $f_{Y}^{-1} \mathcal{F}_{e_{2}}^{2}=E_{3} \cap \Sigma_{0}$ and the mapping is dominant.

Recall from $\S 2$ that in \mathbf{P}^{3} each point on $\Sigma_{\beta \gamma}$ blows up to a line in Σ_{C}. Note that $\left[0: 0: 1:-\alpha_{2}\right]=\Sigma_{\beta \gamma} \cap \Sigma_{01}$, and let $\mathcal{F}_{0 \beta \gamma}:=\pi_{Y}^{-1}\left(\Sigma_{\beta \gamma} \cap\right.$ $\left.\Sigma_{01}\right)$. Note that the base point is the intersection of Σ_{01} and $\Sigma_{\beta \gamma}$, two indeterminate lines. Similarly, we write $\mathcal{F}_{0 B C}:=\pi_{Y}^{-1}\left(\Sigma_{B C} \cap \Sigma_{03}\right)=$ $\pi_{Y}^{-1}\left[0: 1:-\alpha_{2}: 0\right]$.

Lemma 4.4. If f is critical, the fiber curve $\mathcal{F}_{0 \beta \gamma}$ is a component of $\mathcal{I}\left(f_{Y}\right)$. Further $f_{Y}: \mathcal{F}_{0 \beta \gamma}-\Sigma_{\beta \gamma} \rightsquigarrow \mathcal{F}_{0 B C}$ in the following senses:
(i) If $p \in \mathcal{F}_{0 \beta \gamma}-\Sigma_{\beta \gamma}$, then $\left(f_{Y}\right)_{*}(p)=\mathcal{F}_{0 B C}$.
(ii) If $\pi: T_{i i} \rightarrow Y$ is the blowup of p with exceptional divisor E_{p}, and if $f_{T_{i i}}$ is the induced map, then the strict transform of $f_{T_{i i}}\left(E_{p}\right)=$ $\mathcal{F}_{0 B C}$.
(iii) If $\pi: T_{i i i} \rightarrow Y$ is the blowup of $\mathcal{F}_{0 \beta \gamma}$ and $\mathcal{F}_{0 B C}$, with exceptional divisors $E_{0 \beta \gamma}$ and $E_{0 B C}$, then the induced map $f_{T_{i i i}}: E_{0 \beta \gamma} \rightarrow$ $E_{0 B C}$ is dominant.
(iv) If π : $T_{i v} \rightarrow Y$ is the blowup of $p \in \mathcal{F}_{0 \beta \gamma}$ and $\mathcal{F}_{0 B C}$, then the image of the induced map $f_{T_{i v}}: E_{p} \rightarrow E_{0 B C}$ is a curve $\gamma \subset E_{0 B C}$.
(v) If $\hat{\pi}: T_{v} \rightarrow T_{i v}$ is the blowup of the curve γ in (iv), and let E_{γ} denote the exceptional divisor. Then the induced map $f_{T_{v}}: E_{p \rightarrow}$ E_{γ} is dominant.

Proof: Let us consider local coordinates in a neighborhood of the fiber $\mathcal{F}_{0 \beta \gamma}$ and local coordinates in a neighborhood of $\mathcal{F}_{0 B C}$: $\left(s_{0}, \eta_{1}, x\right)_{S_{01}} \sim\left[s_{0}: \eta_{1} s_{0}: 1: x\right] \in \mathbf{P}^{3} \quad$ and $\quad \mathcal{F}_{0 \beta \gamma}=\left\{s_{0}=0, x=-\alpha_{2}\right\}$, $\left(s_{0}, x, \eta_{3}\right)_{S_{03}} \sim\left[s_{0}: 1: x: \eta_{3} s_{0}\right] \in \mathbf{P}^{3} \quad$ and $\quad \mathcal{F}_{0 B C}=\left\{s_{0}=0, x=-\alpha_{2}\right\}$. Thus

$$
\begin{align*}
f_{Y}\left(s_{0}, \eta_{1}, x\right)_{S_{01}} & =\left[s_{0}\left(\beta_{0}+\eta_{1}\right): \beta_{0}+\eta_{1}: x\left(\beta_{0}+\eta_{1}\right): \alpha_{0} s_{0}+\alpha_{2}+x\right] \\
& =\left[s_{0}: 1: x: \frac{\alpha_{0} s_{0}+\alpha_{2}+x}{\beta_{0}+\eta_{1}}\right] \tag{4.4}\\
& =\left(s_{0}, x, \frac{\alpha_{0} s_{0}+\alpha_{2}+x}{s_{0}\left(\beta_{0}+\eta_{1}\right)}\right)_{S_{03}} .
\end{align*}
$$

The condition for $p \in \mathcal{F}_{0 \beta \gamma}-\Sigma_{\beta \gamma}$ is that $p=\left(0, \hat{\eta}_{1},-\alpha_{2}\right)_{S_{01}}$ with $\beta_{0}+\hat{\eta}_{1} \neq 0$. For such points p, we see from (4.4) that we get all points of $\mathcal{F}_{0 B C}$ as limits as we let $s_{0} \rightarrow 0$ and $x \rightarrow-\alpha_{2}$. This proves (i).

For (ii), we consider the map $\pi\left(t, \xi_{2}, \xi_{3}\right)=\left(t, t \xi_{2}+\hat{\eta}_{1}, t \xi_{3}-\alpha_{2}\right)_{S_{01}}=$ $\left(s_{0}, \eta_{1}, x\right)_{S_{01}}$, which gives the blowup at p. By (4.4), the induced map $f_{T}=f_{Y} \circ \pi$ is given in coordinates as

$$
f_{T}\left(t, \xi_{2}, \xi_{3}\right)=\left(t,-\alpha_{2}+t \xi_{3},\left(\alpha_{0}+\xi_{3}\right) /\left(\beta_{0}+\hat{\eta}_{1}+t \xi_{2}\right)\right)_{S_{03}}
$$

On $E_{p}=\{t=0\}$, we have $f_{T}\left(t, \xi_{2}, \xi_{3}\right)=\left(0,-\alpha_{2},\left(\alpha_{0}+\xi_{3}\right) /\left(\beta_{0}+\hat{\eta}_{1}\right)\right)_{S_{03}}$, whose image is $\mathcal{F}_{0 B C}$.

For (iii), we consider the blowup $\pi: T \rightarrow Y$, with coordinate system

$$
\pi_{0 \beta \gamma}\left(r_{1}, r_{2}, \mu\right)=\left(s_{0}=r_{1}, \eta_{1}=\mu, x=-\alpha_{2}+r_{1} r_{2}\right)_{S_{01}}
$$

near $\mathcal{F}_{0 \beta \gamma}$ and exceptional divisor $E_{0 \beta \gamma}=\left\{r_{1}=0\right\}$ and local coordinates

$$
\pi_{0 B C}\left(u_{1}, u_{2}, v\right)=\left(s_{0}=u_{1}, x=-\alpha_{2}+u_{1} u_{2}, \eta_{3}=v\right)_{S_{03}}
$$

near $\mathcal{F}_{0 B C}$ and exceptional divisor $E_{0 B C}=\left\{u_{1}=0\right\}$. It follows that

$$
f_{T}\left(r_{1}, r_{2}, \mu\right)=\pi_{0 B C}^{-1} \circ f_{Y} \circ \pi_{0 \beta \gamma}\left(r_{1}, r_{2}, \mu\right)=\left(r_{1}, r_{2}, \frac{\alpha_{0}+r_{2}}{\beta_{0}+\mu}\right)
$$

When we set $r_{1}=0$, we have a dominant map from $E_{0 \beta \gamma}$ to $E_{0 B C}$.
For (iv) we use the blowups defined earlier; $f_{T}=\pi_{0 B C}^{-1} \circ f \circ \pi$. In coordinates, this map is

$$
f_{T}\left(t, \xi_{2}, \xi_{3}\right)=\left(t, \xi_{3}, \frac{\alpha_{0}+\xi_{3}}{\beta_{0}+\hat{\eta}_{1}+t \xi_{2}}\right)_{0 B C}
$$

On the exceptional divisor $E_{p}=\{t=0\}$, we have $f_{T}\left(0, \xi_{2}, \xi_{3}\right)=$ $\left(0, \xi_{3},\left(\alpha_{0}+\xi_{3}\right) /\left(\beta_{0}+\hat{\eta}_{1}\right)\right)_{0 B C}$.

For (v) we parametrize the curve γ as $\xi_{3} \mapsto\left(0, \xi_{3}, \phi\left(\xi_{3}\right)\right)_{0 B C}$, where $\phi(s)=\left(\alpha_{0}+s\right) /\left(\beta_{0}+\hat{\eta}_{1}\right)$. The choose coordinates $\left(v_{1}, s, v_{2}\right)$ such that the blowup map $\hat{\pi}: T_{v} \rightarrow T_{i v}$ is given by $\hat{\pi}\left(v_{1}, s, v_{2}\right)=\left(v_{1}, s, v_{1} v_{2}+\phi(s)\right)_{T_{i v}}$, and the exceptional fiber is $E_{\gamma}=\left\{v_{1}=0\right\}$. The induced map is given by
$f_{T_{v}}\left(t, \xi_{2}, \xi_{3}\right)=\hat{\pi}^{-1}\left(f_{T_{i v}}\left(t, \xi_{2}, \xi_{3}\right)\right)=\left(t, \xi_{3}, \frac{1}{t}\left(\frac{\alpha_{0}+\xi_{3}}{\beta_{0}+\hat{\eta}_{1}+t \xi_{2}}-\phi\left(\xi_{3}\right)\right)\right)$.
Taking the limit as $t \rightarrow 0$ gives the $d / d t$ derivative of the last coordinate at $t=0$, and provides the map $f_{T_{v}}\left(0, \xi_{2}, \xi_{3}\right)=\left(0, \xi_{3},-\xi_{2}\left(\alpha_{0}+\xi_{3}\right) /\left(\beta_{0}+\right.\right.$ $\left.\hat{\eta}_{1}\right)^{2}$), so $f_{T_{v}}: E_{p} \rightarrow E_{\gamma}$ is dominant.

Let us define a set $S \subset Y$ to be totally invariant if it is completely invariant for the total transform, or if for all $p \in S$, we have $\left(f_{Y}\right)_{*} p \subset S$ and for all $p \notin S$ we have $\left(f_{Y}\right)_{*} p \cap S=\emptyset$.

Lemma 4.5. If f is critical, then Σ_{02} is indeterminate for f_{Y}. Each point of Σ_{02} blows up to $\mathcal{F}_{e_{2}}^{1}$, and $\mathcal{F}_{e_{2}}^{1}$ is mapped smoothly to Σ_{02}. The set $\Sigma_{02} \cup \mathcal{F}_{e_{2}}^{1}$ is totally invariant.

Proof: Recall that $f \Sigma_{02}=e_{2}$, and the point e_{2} was blown up. We consider points $\left[s: 1: s \xi: x\right.$] which are close to Σ_{02} when s is small. We see that

$$
\begin{aligned}
f_{Y}:[s: 1: s \xi: x] \mapsto\left[\frac{s}{x}: \frac{s \xi}{x}: 1: s\right. & \left.\frac{\alpha_{0} s+\alpha_{2} s \xi+x}{x\left(\beta_{0} s+1\right)}\right] \\
& =\left(\frac{1}{\xi}, \frac{s \xi}{x}, s \frac{\alpha_{0} s+\alpha_{2} s \xi+x}{x\left(\beta_{0} s+1\right)}\right)_{01}
\end{aligned}
$$

Letting $s \rightarrow 0$ we see that $f_{Y}[0: 1: 0: x] \rightsquigarrow\left\{(\eta, 0,0)_{01}\right\}$. Using the same local coordinates we also see that

$$
f_{Y}: \mathcal{F}_{e_{2}}^{1} \ni(\eta, 0,0)_{01} \mapsto\left[0: 1: 0: \frac{\alpha_{2} \eta}{\beta_{0} \eta+1}\right] \in \Sigma_{02}
$$

For the second statement, we notice that from (4.4) $f_{Y}\left(\left(\Sigma_{02} \cup \mathcal{F}_{e_{2}}^{1}\right)^{c}-\right.$ $\left.\mathcal{I}\left(f_{Y}\right)\right)$ is disjoint from the set $\Sigma_{02} \cup \mathcal{F}_{e_{2}}^{1}$. Since $\mathcal{I}\left(f_{Y}\right)=\Sigma_{\beta \gamma} \cup \mathcal{F}_{0 \beta \gamma} \cup \Sigma_{02}$ and $\Sigma_{\beta \gamma} \cap \Sigma_{02}=\emptyset$, we see that the sets $\Sigma_{02} \cup \mathcal{F}_{e_{2}}^{1}$ and $\Sigma_{\beta \gamma} \cup \mathcal{F}_{0 \beta \gamma}$ are disjoint. It follows that $\Sigma_{02} \cup \mathcal{F}_{e_{2}}^{1}$ is totally invariant.

From Lemma 4.3 we see that $\mathcal{I}\left(f_{Y}\right) \subset \Sigma_{\beta \gamma} \cup \mathcal{F}_{e_{2}}^{1} \cup \Sigma_{02} \cup \mathcal{F}_{0 \beta \gamma}$. In the proof of Lemma 4.5 we see that $\mathcal{F}_{e_{2}}^{1} \cap \mathcal{I}\left(f_{Y}\right)=\emptyset$. It follows that
Corollary 4.6. If f is critical, then $\mathcal{I}\left(f_{Y}\right)=\Sigma_{\beta \gamma} \cup \mathcal{F}_{0 \beta \gamma} \cup \Sigma_{02}$ has pure dimension 1.

The behavior of f_{Y} at Σ_{02} is, in suitable coordinates, given by the third model (1.5). The behavior of f_{Y} at $\mathcal{F}_{0 \beta \gamma}$, as seen in Lemma 4.4, is different from the model (1.5). Further, we note that by Proposition 4.1 and the remark following it, the analogues of Lemmas 4.2-4.5 all hold for f_{Y}^{-1}. For instance, Σ_{C} is the unique exceptional hypersurface for f_{Y}^{-1}, $\mathcal{I}\left(f_{Y}^{-1}\right)=\mathcal{F}_{e_{2}}^{1} \cup \mathcal{F}_{0 B C} \cup \Sigma_{B C}$, and each point of $\mathcal{F}_{0 B C}-\Sigma_{B C}$ blows up under f_{Y}^{-1} to $\mathcal{F}_{0 \beta \gamma}$.

Corollary 4.7. If f is critical, then $f_{Y}^{j} \Sigma_{\gamma} \cap\left(\Sigma_{02} \cup \mathcal{F}_{e_{2}}^{1}\right)=\emptyset$ for all $j \geq 0$.

Proof: By Lemma 4.5, it suffices to consider the case $j=0$. By (4.1), $e_{2} \notin \Sigma_{\gamma}$ in \mathbf{P}^{3}, so the fiber over e_{2} remains disjoint from Σ_{γ} inside Y. Now $e_{1}=\Sigma_{02} \cap \Sigma_{\gamma}$ in \mathbf{P}^{3} and we see that Σ_{02} and Σ_{γ} are separated when we blow up e_{1} to make Y.

Recall that the degree complexity is $\delta(f)=\lim _{n \rightarrow \infty}\left(\operatorname{deg}\left(f^{n}\right)\right)^{1 / n}$. If $\delta(f)>1$, then the degrees of the iterates f^{n} grow exponentially in n. In particular, f cannot be periodic if $\delta(f)>1$.

Theorem 4.8. If f is critical, and if $f_{Y}^{n} \Sigma_{\gamma} \not \subset \Sigma_{\beta \gamma} \cup \mathcal{F}_{0 \beta \gamma}$, then the first dynamical degree is $\delta(f) \sim 1.32472$, the largest root of $x^{3}-x-1$.

Proof: Using Corollary 4.7 we see that $f_{Y}^{m} \Sigma_{\gamma} \cap \mathcal{I}\left(f_{Y}\right)=\emptyset$ for all $m \geq 1$. Thus by Proposition 1.2 we have $\left(f_{Y}^{*}\right)^{m}=\left(f_{Y}^{m}\right)^{*}$ for all m. Thus $\delta(f)$ is the spectral radius of f_{Y}^{*}. Inside the Picard group $\operatorname{Pic}(Y)$, we let H_{Y} be the class of a generic hyperplane in Y, and we have

$$
\begin{array}{ll}
& H_{Y} \rightarrow 2 H_{Y}-E_{1}-E_{3}-S_{01}, \\
f_{Y}^{*}: & S_{01} \rightarrow E_{3} \rightarrow \Sigma_{\beta}=H_{Y}-E_{3}-S_{01}, \tag{4.5}\\
& E_{1} \rightarrow S_{03} \rightarrow \Sigma_{0}=H_{Y}-E_{1}-E_{3}-S_{01}-S_{03} .
\end{array}
$$

The computation of f_{Y}^{*} is standard; see $[\mathbf{B K 1}]$, $[\mathbf{B K 2}]$. The characteristic polynomial of this transformation is $\left(x^{2}+1\right)\left(x^{3}-x-1\right)$, so $\delta(f)$ is as claimed.

Now we give the existence of Green currents, which are invariant currents with the equidistribution properties given in the following:

Theorem 4.9. If f is as in Theorem 4.8, then there is a positive closed current T_{Y}^{+}in the class of α_{Y}^{+}with the properties: $f_{Y}^{*} T_{Y}^{+}=T_{Y}^{+}$, and if Ξ^{+} is a smooth form which represents α_{Y}^{+}, then $\lim _{n \rightarrow \infty} \delta_{1}(f)^{-n} f_{Y}^{n *} \Xi_{Y}^{+}=$ T_{Y}^{+}in the weak sense of currents on Y.

Proof: Recall from Corollary 4.6 that $\mathcal{I}\left(f_{Y}\right)=\Sigma_{02} \cup \Sigma_{\beta \gamma} \cup \mathcal{F}_{0 \beta \gamma}$. The total forward image of this set is $\pi_{2} \pi_{1}^{-1} \mathcal{I}\left(f_{Y}\right)=\mathcal{F}_{e_{2}}^{1} \cup \mathcal{F}_{0 B C} \cup \Sigma_{C}$. We will show that if $\sigma \subset \pi_{2} \pi_{1}^{-1} \mathcal{I}\left(f_{Y}\right)$ is any curve, then $\alpha_{Y}^{+} \cdot \sigma \geq 0$. The theorem will then be a consequence of Theorem 1.3 of $[\mathbf{B a}]$.

Up to a scalar multiple, we may write $\alpha_{Y}^{+}=H_{Y}-c_{1} E_{1}-c_{3} E_{3}-$ $c_{01} S_{01}-c_{03} S_{03}$. Then since f_{Y}^{*} is given by (4.5) we have $1>c_{1}>c_{3}>$ $c_{01}=c_{03}>0, c_{1}>c_{01}+c_{03}$, and $c_{1}+c_{3}=1$. Let us start with $\mathcal{F}_{0 \beta \gamma} \subset$ $\mathcal{I}\left(f_{Y}\right)$. Points of this curve are blown up to $\mathcal{F}_{0 B C}$. The curve $\sigma=\mathcal{F}_{0 B C}$ is the exceptional fiber inside S_{03} over the point $\Sigma_{B C} \cap \Sigma_{03} \in \mathbf{P}^{3}$. Thus $\sigma \cdot S_{03}=-1$, so $\alpha_{Y}^{+} \cdot \sigma=c_{03}>0$. Points of the indeterminate curve Σ_{02} blow up to $\sigma=\mathcal{F}_{e_{2}}^{1}$. In this case, we have that $\sigma \cdot S_{01}$ and $\sigma \cdot S_{03}$, are ± 1, with opposite signs, depending on the order of blowup of Σ_{01} and Σ_{03}. Thus $\sigma \cdot \alpha_{Y}^{+}= \pm c_{01} \mp c_{03}=0$.

The other possibility is that $\sigma \subset \Sigma_{C}$. In this case, we have $\sigma \cdot H=$ $\operatorname{deg}(\sigma)$. Further, if we let m_{3} denote the multiplicity of σ at e_{3}, then σ is represented by $\operatorname{deg}(\sigma) L-m_{1} \mathcal{F}_{01}^{1}-m_{2} \mathcal{F}_{03}^{1}-m_{3} \epsilon_{3}$, where \mathcal{F}_{01}^{1} and \mathcal{F}_{03}^{1} represent fibers of S_{01} and S_{03}, and $\epsilon_{3}=E_{3} \cap \Sigma_{C}$. The multiplicities m_{1}, m_{2}, m_{3} are bounded above by $\operatorname{deg}(\sigma)$. Since $\mathcal{F}_{01}^{1} \cdot S_{01}=\mathcal{F}_{03}^{1} \cdot S_{03}=$ $\epsilon_{3} \cdot E_{3}=-1$, we have $\sigma \cdot \alpha_{Y}^{+} \geq \operatorname{deg}(\sigma)\left(1-c_{01}-c_{03}-c_{3}\right)>0$.

5. Pseudo-automorphisms

In this section we assume that f is critical. We let $\mu_{j}:=f_{Y}^{j} \Sigma_{\gamma}$ denote the strict transforms of Σ_{γ} under the iterates of f_{Y} and we consider the condition:

$$
\begin{equation*}
f_{Y}^{N} \Sigma_{\gamma}=\Sigma_{\beta \gamma} \quad \text { for some } \quad N>1 \tag{5.1}
\end{equation*}
$$

Theorem 5.1. If a critical map f satisfies (5.1), then there is a blowup space $\pi: Z \rightarrow Y$ such that f_{Z} is a pseudo-automorphism.

Before giving the proof of Theorem 5.1 we give the statements of some lemmas that we will use. The proofs of these lemmas involve blowup computations similar to the proof of Lemma 4.4, so we omit them.

Lemma 5.2. Let $\pi: T \rightarrow Y$ be the blowup of the curve $\Sigma_{B C}$, and let E denote the exceptional fiber. Then the induced map f_{T} gives a dominant $\operatorname{map} f_{T}: \Sigma_{\gamma} \rightarrow E$.
Lemma 5.3. Let L be a line in Σ_{γ} passing through e_{1}, so L is exceptional for f_{Y} and is mapped to a point $p \in \Sigma_{B C}$. Let $\pi: T \rightarrow Y$ be the space obtained by blowing up p and then the line L. Let E_{p} and E_{L} denote the corresponding blowup divisors. Then the induced map $f_{T}: E_{L} \rightarrow E_{p}$ is dominant.

The indeterminacy locus is $\mathcal{I}\left(f_{Y}\right)=\Sigma_{\beta \gamma} \cup \mathcal{F}_{0 \beta \gamma} \cup \Sigma_{02}$. Note that the each point of Σ_{02} blows up to $\mathcal{F}_{e_{2}}^{1}$ and $\Sigma_{02} \cup \mathcal{F}_{e_{2}}^{1}$ is totally invariant by Lemma 4.5. If $p \in \Sigma_{\beta \gamma}-\mathcal{F}_{0 \beta \gamma}$, then there is a line $L_{p} \subset \Sigma_{C}$, passing through e_{3} such that $f_{*} p=L_{p}$. If $p=\Sigma_{\beta \gamma} \cap \mathcal{F}_{0 \beta \gamma}$, then $f_{*} p=L_{p} \cup \mathcal{F}_{0 B C}$.
Lemma 5.4. Suppose that $p \in \Sigma_{\beta \gamma}$. Let $\pi: T \rightarrow Y$ be the space obtained by blowing up p and L_{p}; let E_{p} and E_{L} denote the corresponding exceptional divisors. Then it follows that f_{T} induces a dominant map $f_{T}: E_{p} \rightarrow E_{L}$.

Proof of Theorem 5.1: With N as in (5.1) and $1 \leq j \leq N$, we consider the strict transform $\mu_{j}:=f_{Y}^{j}\left(\Sigma_{\gamma}\right)$. Let $\Lambda_{0}=\left\{\mu_{j}: \operatorname{dim}\left(\mu_{j}\right)=0\right\}$ and let $\Lambda_{1}=\left\{\mu_{j}: \operatorname{dim}\left(\mu_{j}\right)=1\right\}$. Let $\pi: Z \rightarrow X$ denote the space obtained by blowing up first the points in Λ_{0} and then the curves $\mu_{j} \in \Lambda_{1}$, in the order of increasing j. Let M_{j} denote the exceptional divisor over μ_{j}.

Now let $f_{Z}: Z \rightarrow Z$ denote the induced map. We will show that the exceptional set is $\mathcal{E}\left(f_{Z}\right)=\emptyset$. This will be sufficient, since a similar argument will show that $\mathcal{E}\left(f_{Z}^{-1}\right)=\emptyset$. Clearly, $\mathcal{E}\left(f_{Z}\right) \subset \Sigma_{\gamma} \cup \bigcup_{1 \leq j \leq N} M_{j}$. By Lemma 5.2, we have that $f_{Z}: \Sigma_{\gamma} \rightarrow M_{1}$ is dominant. Thus Σ_{γ} is not exceptional for f_{Z}. Now we will move forward in the space Z, following above the μ_{j}. As we move forward we see that for each j,
$f_{Z}: M_{j} \rightarrow M_{j+1}$ is dominant if there is a point of μ_{j} where f_{Y} is a local diffeomorphism. We may continue in this fashion unless one of the following happens: (a) $\mu_{j} \subset \Sigma_{\gamma}$, or (b) $\mu_{j} \subset \mathcal{I}\left(f_{Z}\right)$.

Case 1: $\mu_{j} \cap\left(\mathcal{F}_{0 \beta \gamma}-\Sigma_{\beta \gamma}\right)=\emptyset$ for all j. If (a) occurs, then μ_{j+1} is a point of $\mu_{1}=\Sigma_{B C}$. We know that $f_{Z}: M_{j} \rightarrow M_{j+1}$ is dominant by Lemma 5.3. Now for $j<\ell$, if $\mu_{\ell} \notin \mathcal{I}\left(f_{Y}\right)$, then f_{Y} is a local diffeomorphism in a neighborhood of μ_{ℓ}. Thus f_{Z} establishes an isomorphism between M_{ℓ} and $M_{\ell+1}$, and in particular is a dominant map. It is also possible that $\mu_{\ell} \in \mathcal{I}\left(f_{Y}\right)$. By the assumption of this case, we must have $\mu_{\ell} \in \Sigma_{\beta \gamma}$. Now we know that $f_{Z}: M_{\ell} \rightarrow M_{\ell+1}$ is dominant by Lemma 5.4. Now we continue with dominant maps until we reach $M_{N} \rightarrow \Sigma_{C}$, which is dominant by the proof of Lemma 5.2, applied to f_{Y}^{-1}.

Case 2: $\mu_{j}=\mathcal{F}_{0 \beta \gamma}$ for the first j for which $\mu_{j} \cap\left(\mathcal{F}_{0 \beta \gamma}-\Sigma_{\beta \gamma}\right) \neq \emptyset$. By Lemma 4.4(iii), we have that $f_{Z}: M_{j}=E_{0 \beta \gamma} \rightarrow M_{j+1}=E_{0 B C}$ is dominant. Thus we will continue to have dominant maps $M_{\ell} \rightarrow M_{\ell+1}$ until either (a) or (b) occurs. The only possibility that was not dealt with in Case 1 above is that μ_{ℓ} might be a point of $\mathcal{F}_{0 \beta \gamma}-\Sigma_{\beta \gamma}$. Now we will apply Lemma 4.4(ii) with $p=\mu_{\ell}$, so we conclude that $f_{Z}\left(E_{p}\right)$ is a curve in $E_{0 B C}=M_{j+1}$, and thus we must have $\mu_{\ell+1}=\mu_{j+1}$. On the other hand, we have continued by dominant maps of the blowup divisors M_{k}, $1 \leq k \leq \ell$. Thus we have that $f_{Y}^{\ell+1}: \Sigma_{\gamma} \rightarrow E_{0 B C}=M_{\ell+1}$ is dominant. On the other hand, we already had a dominant map $f_{Y}^{j+1}: \Sigma_{\gamma} \rightarrow E_{0 B C}$. This is not possible since f_{Y} is birational. We conclude that μ_{ℓ} is back in Case 1 for all $\ell>j$, which finishes the proof of Case 2.

Case 3: For some $\ell \geq 1, f_{Y}\left(\mathcal{F}_{0 B C}\right), f_{Y}^{2}\left(\mathcal{F}_{0 B C}\right), \ldots, f^{\ell}\left(\mathcal{F}_{0 B C}\right)$ are curves, and $f_{Y}^{\ell}\left(\mathcal{F}_{0 B C}\right)=\mathcal{F}_{0 \beta \gamma}$. Let us start with $\pi^{\prime}: Y^{\prime} \rightarrow Y$ which is the space Y blown up at the orbit of the curves $f_{Y}^{k} \mathcal{F}_{0 B C}$ for $0 \leq k \leq \ell$. Now we follow the proof of Cases 1 and 2 above, except that we define the $\mu_{j}:=$ $f_{Y^{\prime}}^{j}\left(\Sigma_{\gamma}\right)$ in terms of iteration of $f_{Y^{\prime}}$. The only difference now is that for (b), we might have a point $\mu_{j} \in \mathcal{F}_{0 \beta \gamma}-\Sigma_{\beta \gamma}$. In this case, we see from Lemma $4.4($ ii $)$ that μ_{j+1} must be a curve in $E_{0 B C}$, and by Lemma $4.4(\mathrm{v})$, the induced map on the blowup divisors is dominant. Thus we are effectively back in Case 1.

Case 4: None of the above. In this case, μ_{j} is a point of $\mathcal{F}_{0 \beta \gamma}-\Sigma_{\beta \gamma}$ for some j, and $\mathcal{F}_{0 B C}$ is not part of an invariant cycle of curves. We will show that this case does not occur. Suppose that j is the first time that μ_{j} is in $\mathcal{F}_{0 \beta \gamma}-\Sigma_{\beta \gamma}$. Then by Lemma 4.4(i), we have $\mu_{j+1}=\mathcal{F}_{0 B C}$. Now
the possibilities of the subsequent future of $\mu_{\ell}, \ell \geq j+1$ are either (a) or (b). Possibility (b) cannot happen first, for this would mean that μ_{ℓ} is a curve, and the only way that μ_{ℓ} can be contained in the indeterminacy locus $\mathcal{I}\left(f_{Y}\right)$ is that $\mu_{\ell}=\mathcal{F}_{0 \beta \gamma}$ or $\mu_{\ell}=\Sigma_{\beta \gamma}$. The first option is exactly Case 3, which is assumed not to happen. The with the second option, we now consider f_{Y}^{-1}, starting with Σ_{C}, going backwards through $\Sigma_{\beta \gamma}$, and continuing until we reach $\mu_{j+1}=\mathcal{F}_{0 B C}$. Thus we are in Case 2, with f_{Y} replaced by f_{Y}^{-1}. However, in this case μ_{j} cannot be a point of $\mathcal{F}_{0 \beta \gamma}$.

This shows that the future of μ_{ℓ} must first encounter possibility (a). Thus there exists ℓ_{0} such that $\mu_{\ell_{0}}$ is an exceptional line in Σ_{γ}, which means that $\mu_{\ell_{0}+1}$ is a point in μ_{1}. Now we consider the subsequent future of $\mu_{\ell+1}$. The orbit of μ_{1} enters $\mathcal{F}_{0 \beta \gamma}$ after j steps. We conclude that μ_{ℓ} must be contained in $\hat{\mu}:=\bigcup_{1 \leq k \leq \ell_{0}} \mu_{k}$ unless we have $\mu_{\ell} \in \mathcal{I}\left(f_{Y}\right)$ at some stage. The only possibilities for this are to have $\mu_{\ell} \in \Sigma_{\beta \gamma}$. There is no loss of generality for us to start with $\pi^{\prime}: Y^{\prime} \rightarrow Y$, which is the blowup of $\mathcal{F}_{0 \beta \gamma}$ and $\mathcal{F}_{0 B C}$, and we let $\mu_{j}:=f_{Y^{\prime}}^{j}\left(\Sigma_{\gamma}\right)$ be the strict transform inside of Y^{\prime}. In this case, we have dominant maps on all of the blowup divisors M_{ℓ}. Thus if $\mu_{\ell} \in \Sigma_{\beta \gamma}$, then by Lemma 5.4, we have $\mu_{\ell+1}=L_{\mu_{\ell}}$, as in the notation given just before Lemma 5.4. Thus $\mu_{\ell+1}$ is a curve, and as we move forward, this curve cannot become $\mu_{\ell_{1}}=\Sigma_{\beta \gamma}$ for some ℓ_{1} for the reason given in the previous paragraph. The other possibilities are either: (a) in which case we have $\mu_{\ell_{1}+1} \subset \mu_{1}$, or (b) $\mu_{\ell_{1}}=\mathcal{F}_{0 \beta \gamma}$, in which case we have $\mu_{\ell_{1}+1}=\mathcal{F}_{0 B C}$. With both of these possibilities, we are back inside of $\hat{\mu}$. Thus (5.1) cannot hold.

Figure 1. A hypothetical orbit: $d_{1}=2, u_{1}=4, d_{2}=7$, $u_{2}=9, m_{d}=m_{u}=2, N=11$.

Now let us introduce some notation to describe how the dimensions of the varieties μ_{j} can change. Let $m_{\mathcal{F}}$ be the number such that $\mu_{m_{\mathcal{F}}+2}=$ $\mathcal{F}_{0 \beta \gamma} \cap \Sigma_{\beta \gamma}$ if this case occurs. Otherwise we set $m_{\mathcal{F}}=\infty$. Similarly we set $m_{c \mathcal{F}}$ be the number such that $\mu_{m_{c \mathcal{F}}+1}=\mathcal{F}_{0 B C} \cap \Sigma_{B C}$ if this case occurs and $m_{c \mathcal{F}}=\infty$ otherwise. Let m_{d} be the number of positive integers $d_{1}<d_{2}<\cdots<d_{m_{d}}$ denote the iterates for which $1=\operatorname{dim} \mu_{d_{j}}>$
$\operatorname{dim} \mu_{d_{j}+1}=0$ and $\mu_{d_{j}+1} \neq \Sigma_{B C} \cap \mathcal{F}_{0 B C}$. Similarly, we let m_{u} be the number of positive integers $u_{1}<u_{2}<\cdots<u_{m_{u}}$ for which the dimensions go up, i.e., $0=\operatorname{dim} \mu_{u_{j}}<\operatorname{dim} \mu_{u_{j}+1}=1$ and $\mu_{u_{j}} \neq \Sigma_{\beta \gamma} \cap$ $\mathcal{F}_{0 \beta \gamma}$. We also let m_{s} be the number of positive integers $s_{1}<s_{2}<\cdots<$ $s_{m_{s}}$ such that $\mu_{s_{j}+2} \subset \mathcal{F}_{0 \beta \gamma}$ and $\mu_{s_{j}+2} \neq \mathcal{F}_{0 \beta \gamma} \cap \Sigma_{\beta \gamma}$.

To illustrate this numbering scheme, a hypothetical orbit of Σ_{γ} is given in Figure 1. Here we have assumed that we are in the simpler case $m_{\mathcal{F}}=m_{c \mathcal{F}}=\infty$ and $m_{s}=0$, which means that the orbit never enters $\mathcal{F}_{0 \beta \gamma}$.

We use the numbers $m_{s}, m_{u}, m_{d}, s_{j}, u_{j}, d_{j}, m_{\mathcal{F}}, m_{c \mathcal{F}}$ and N to define four Laurent polynomials:

$$
\begin{aligned}
Q_{1}:= & -1-\sum_{j=1}^{m_{d}} \frac{1}{t^{d_{j}}}+\frac{1}{t} \sum_{j=1}^{m_{s}} \frac{1}{t^{s_{j}}}+\frac{1}{t^{m_{\mathcal{F}}}}\left(\frac{1}{t}+\frac{1}{t^{2}}\right)-\frac{1}{t^{m_{c \mathcal{F}}}} \\
Q_{2}:= & \sum_{j=1}^{m_{s}} \frac{1}{t^{s_{j}}}\left(\frac{1}{t}+\frac{1}{t^{2}}+\frac{1}{t^{3}}+\frac{1}{t^{4}}\right)+\frac{1}{t^{m_{\mathcal{F}}}}\left(\frac{1}{t}+\frac{1}{t^{2}}\right)+\frac{1}{t^{m_{c \mathcal{F}}}}\left(\frac{1}{t}+\frac{1}{t^{2}}\right) \\
Q_{3}:= & -1-\sum_{j=1}^{m_{d}} \frac{1}{t^{d_{j}}}+\sum_{j=1}^{m_{s}} \frac{1}{t^{s_{j}}}\left(1+\frac{1}{t}-\frac{1}{t^{4}}\right) \\
& +\frac{1}{t^{m_{\mathcal{F}}}}\left(1+\frac{1}{t}+\frac{1}{t^{2}}\right)-\frac{1}{t^{m_{c \mathcal{F}}}}\left(1+\frac{1}{t^{2}}\right) \\
Q_{4}:= & -t-t \sum_{j=1}^{m_{d}} \frac{1}{t^{d_{j}}}-t \sum_{j=1}^{m_{u}} \frac{1}{t^{u_{j}}}-\frac{1}{t^{N-1}}-\sum_{j=1}^{m_{s}} \frac{1}{t^{s_{j}}}\left(\frac{1}{t}+\frac{1}{t^{3}}\right) \\
& +\frac{1}{t^{m_{\mathcal{F}}+1}}-\frac{t}{t^{m_{c \mathcal{F}}}}\left(1+\frac{1}{t^{2}}\right) .
\end{aligned}
$$

With the Q_{j}, we can write the characteristic polynomial for f_{Z}^{*} :
Theorem 5.5. If f is critical and (5.1) holds, then the dynamical degree of f is given by the largest root of the polynomial

$$
\begin{align*}
\chi_{f}(t):=t^{N-1}\left(t^{2}+1\right)\left[\left(Q_{1}-Q_{4}\right) t^{3}+\left(2 Q_{1}\right.\right. & \left.-Q_{2}-Q_{3}-Q_{4}\right) t^{2} \tag{5.2}\\
& \left.+\left(Q_{1}-Q_{3}\right) t+Q_{4}\right]
\end{align*}
$$

The calculation to establish (5.2) is lengthy, so we defer it to Appen$\operatorname{dix} \mathrm{A}$.

6. Periodic maps

In this section, we determine all possible periodic 3-step recurrences. By $\S 3$, we may assume (4.1). The question of periodicities for maps (4.1) with $\beta_{0}=0$ has been answered by Csörnyei and Laczkovich [CL]: they have shown that the only periodicities in this case are the two period 8 maps given in the theorem stated in the Introduction. We will consider the general case where β_{0} is possibly nonzero. We start by giving a necessary condition for a map to be periodic.

Proposition 6.1. If f is periodic and if E is an exceptional hypersurface, then there is an exceptional hypersurface E^{\prime} for f^{-1} such that $f^{n} E=E^{\prime}$ for some $n>0$ and the co-dimension of $f^{j} E$ is ≥ 2 for all $j=1, \ldots, n-1$.

Proof: Suppose f has period p. Since $f^{p} E=E$ and $\operatorname{codim} f E \geq 2$, it follows that there exists $0<n \leq p$ such that $\operatorname{codim} f^{n-1} E \geq 2$ and $\operatorname{codim} f^{n} E=1$. Thus $f^{n} E$ is an exceptional for f^{-1}.

Since f is critical, $\operatorname{dim} f^{j} \Sigma_{\beta}<2$ for $j=1,2$, and $f^{3} \Sigma_{\beta}=\Sigma_{0}$; further, $\operatorname{dim} f^{j} \Sigma_{0}<2$ for $j=1,2$, and $f^{3} \Sigma_{0}=\Sigma_{B}$. By Lemma 4.2 the only exceptional hypersurface for f_{Y} is Σ_{γ}, and the only exceptional hypersurface for f_{Y}^{-1} is Σ_{C}. This gives us the following necessary condition for f to be periodic.

Corollary 6.2. If f is periodic, then f is critical and there is some $n>0$ such that $f_{Y}^{n} \Sigma_{\gamma}=\Sigma_{\beta \gamma}$ and $f_{Y}^{-n} \Sigma_{C}=\Sigma_{B C}$.

Proof: If f is periodic, then so is f_{Y}. Since both f_{Y} and f_{Y}^{-1} have unique exceptional hypersurfaces, there exists $n \geq 0$ such that $f_{Y}^{n} \Sigma_{\gamma}=\Sigma_{\beta \gamma}$ which blows up to a hypersurface Σ_{C}. If f is periodic, then so is f^{-1} and thus $f_{Y}^{-n} \Sigma_{C}=\Sigma_{B C}$.

A polynomial $p(z)=\sum_{i=0}^{k} a_{i} z^{i}, a_{i} \in \mathbf{C}$ is said to be self-reciprocal if $p(z)= \pm z^{k} \overline{p(1 / \bar{z})}$.

Lemma 6.3. If f is periodic, then $\chi_{f}(t)$ is self-reciprocal, and $\chi_{f}=$ χ_{f-1}.

Proof: If f is periodic, then the characteristic polynomial of $f_{Z}^{*}, \chi(t)$ is a product of cyclotomic factors and thus $\chi(t)$ is self-reciprocal. Furthermore by Theorem $5.1 f_{Z}$ is a pseudo-automorphism and therefore $\left(f_{Z}^{*}\right)^{-1}=\left(f_{Z}^{-1}\right)^{*}$. It follows that χ_{f} and $\chi_{f^{-1}}$ are integer polynomials with the same roots.

Lemma 6.4. If f is periodic, then $m_{\mathcal{F}}=m_{c \mathcal{F}}=\infty$ and there is a non-negative integer m such that
(i) $m=m_{u}=m_{d}<N, 1<d_{1}<u_{1}<\cdots<d_{m}<u_{m}<N$ and
(ii) $N-u_{j}=d_{m+1-j}, N-d_{j}=u_{m+1-j}$ for $j=1, \ldots, m$.

Proof: From (5.2) we see that the characteristic polynomial $\chi=\chi_{f}(t)$ is given by $\chi(t)=t^{N-1}\left(t^{2}+1\right) \varphi(t)$, where

$$
\begin{align*}
\varphi(t)= & T_{s}(t-1)\left(t+1+\frac{1}{t}\right)+\frac{1}{t^{N-1}}\left(t^{N}\left(t^{3}-t-1\right)+\left(t^{3}+t^{2}-1\right)\right) \\
& +t\left(T_{d}\left(t^{3}-t-1\right)+T_{u}\left(t^{3}+t^{2}-1\right)\right) \tag{6.1}\\
& +\frac{1}{t^{m_{\mathcal{F}}+1}}\left(t^{3}+t^{2}-1\right)+\frac{1}{t^{m_{c \mathcal{F}}-1}}\left(t^{3}-1\right)
\end{align*}
$$

where $T_{s}=\sum_{j=1}^{m_{s}}\left(1 / t^{s_{j}}\right), T_{d}=\sum_{j=1}^{m_{d}}\left(1 / t^{d_{j}}\right)$, and $T_{u}=\sum_{j=1}^{m_{u}}\left(1 / t^{u_{j}}\right)$. By Lemma 6.3, $\chi(t)$ should be self-reciprocal. Since the first part of χ and the first line of (6.1) are self-reciprocal, it suffices to consider the case $m_{s}=0$ and $m_{u} m_{d} \neq 0$. In this case $\operatorname{dim} f_{Z}^{j} \Sigma_{\gamma}=\operatorname{dim} f_{Z}^{j+1} \Sigma_{\gamma}$ if and only if $j \notin\left\{u_{i}, i=1, \ldots, m_{u}\right\} \cup\left\{d_{i}, i=1, \ldots, m_{d}\right\} \cup\left\{m_{\mathcal{F}}+2, m_{c \mathcal{F}}\right\}$. Thus it is clear that we have $m=m_{u}+1=m_{d}+1<N$ such that $\hat{d}_{j} \in\left\{d_{i}, i=1, \ldots, m_{d}\right\} \cup\left\{m_{c \mathcal{F}}\right\}, \hat{u}_{j} \in\left\{u_{i}, i=1, \ldots, m_{u}\right\} \cup\left\{m_{\mathcal{F}}+2\right\}$, and $1<\hat{d}_{1}<\hat{u}_{1}<\cdots<\hat{d}_{m}<\hat{u}_{m}<N$ for some positive integer m. Thus we have

$$
\begin{aligned}
& f_{Z}: \Sigma_{\gamma} \rightarrow \Sigma_{B C} \rightarrow \cdots \rightarrow f_{Z}^{\hat{d}_{1}} \Sigma_{\gamma} \rightarrow p_{1} \in \Sigma_{B C} \rightarrow \cdots \rightarrow q_{1} \in \Sigma_{\beta \gamma} \\
& \quad \rightsquigarrow f_{Z}^{\hat{u}_{1}+1} \Sigma_{\gamma} \subset \Sigma_{C} \rightarrow \cdots \rightarrow f_{Z}^{\hat{d}_{2}} \Sigma_{\gamma} \rightarrow \cdots \rightarrow f_{Z}^{N} \Sigma_{\gamma}=\Sigma_{\beta \gamma} \rightsquigarrow \Sigma_{C} .
\end{aligned}
$$

By interchanging the roles of $\Sigma_{\beta}, \Sigma_{\gamma}$ and Σ_{B}, Σ_{C}, we see that the characteristic polynomial for f^{-1} is given by $\hat{\chi}_{f^{-1}}(t)=t^{N-1}\left(t^{2}+1\right) \hat{\varphi}(t)$ where

$$
\begin{align*}
\hat{\varphi}(t)= & \frac{1}{t^{N-1}}\left(t^{N}\left(t^{3}-t-1\right)+\left(t^{3}+t^{2}-1\right)\right) \\
& +t\left(T_{u}\left(t^{3}-t-1\right)+T_{d}\left(t^{3}+t^{2}-1\right)\right) \tag{6.2}\\
& +\frac{1}{t^{m_{c \mathcal{F}}+1}}\left(t^{3}+t^{2}-1\right)+\frac{1}{t^{m_{\mathcal{F}}-1}}\left(t^{3}-1\right)
\end{align*}
$$

Since both f and f^{-1} have the same characteristic polynomial, by comparing χ_{f} and $\chi_{f^{-1}}$ we see that $m_{\mathcal{F}}=m_{c \mathcal{F}}=\infty$ and d_{i}, u_{i} satisfy conditions (i) and (ii).

Lemma 6.5. Suppose f is periodic.
(i) If m is even, then for all $j=1, \ldots, m, 2 \leq u_{j}-d_{j} \leq d_{1}$.
(ii) If m is odd, then $1 \leq u_{(m+1) / 2}-d_{(m+1) / 2} \leq d_{1}$ and for all $j \neq$ $(m+1) / 2,2 \leq u_{j}-d_{j} \leq d_{1}$.

Proof: Suppose j_{*} is the smallest positive integer such that $u_{j_{*}}-d_{j_{*}}>$ d_{1}. Then we have the following: (1) $f_{Y}^{d_{j_{*}}} \Sigma_{\gamma}$ is an exceptional line in Σ_{γ}; (2) $f_{Y}^{d_{j_{*}}+i} \Sigma_{\gamma}$ is a point in $f_{Y}^{i} \Sigma_{\gamma}$ for $i=1, \ldots, d_{1}$; and (3) $f_{Y}^{d_{j_{*}}+d_{1}+1} \Sigma_{\gamma}=$ $f_{Y}^{d_{1}+1} \Sigma_{\gamma}$, which is a point in $\Sigma_{B C}$. It follows that the exceptional hypersurface Σ_{γ} is pre-periodic, which contradicts to the hypothesis f is periodic. If $u_{j}-d_{j}=1$, then $f_{Y}^{d_{j}+1} \Sigma_{\gamma}=\Sigma_{B C} \cap \Sigma_{\beta \gamma}=f_{Y}^{u_{j}} \Sigma_{\gamma}$. Thus the situation $u_{j}-d_{j}=1$ can happen at most once, and by Lemma 6.4 we see that $\left(N-d_{j}\right)-\left(N-u_{j}\right)=u_{m-j+1}-d_{m-j+1}=1$. It follows that $j=m-j+1$ and thus $j=(m+1) / 2$.

Lemma 6.6. Suppose f is critical and $m \geq 1$ then
(i) $d_{1} \neq 1,3,4$.
(ii) If $d_{1}=2$, then $m=1$, and either (i) $\alpha_{0}=\alpha_{2}=1$ and $\beta_{0}=0$ or (ii) $\alpha_{0}=\eta^{2} \alpha_{2}=\eta, \beta=\eta^{2}$ where $\eta^{2}-\eta+1=0$.
(iii) If $m \geq 2$ is odd, then for $j=1, \ldots, m-1, d_{j+1}-u_{j} \geq 5$.
(iv) If $m \geq 2$ is even, then for $1 \leq j \leq m-1$ and $j \neq m / 2, d_{j+1}-u_{j} \geq 5$ and $d_{m / 2+1}-u_{m / 2} \geq 4$.

Proof: (i) $d_{1}=1$ means $\Sigma_{B C}$ is a line through e_{1} in Σ_{γ}. Since $\Sigma_{B C}=$ $\left\{x_{3}=0, \alpha_{0} x_{0}+\alpha_{2} x_{1}+x_{2}=0\right\}$ and $\alpha_{2} \neq 0$, it follows that $e_{1} \notin \Sigma_{B C}$ and thus $d_{1} \neq 1$. Since $\Sigma_{B C} \subset \Sigma_{3}$, we have $f_{Y}^{3} \Sigma_{\gamma}=f_{Y}^{2} \Sigma_{B C} \subset \Sigma_{1}$ which doesn't contain e_{1}. Furthermore $f_{Y} \Sigma_{1}=\left\{\left[\beta_{0} x_{0}: \beta_{0} x_{2}: \beta_{0} x_{3}\right.\right.$: $\left.\left.\alpha_{0} x_{0}+\alpha_{2} x_{2}+x_{3}\right]\right\}$ if $\beta_{0} \neq 0$ and $f_{Y} \Sigma_{1}$ is a line in the blowup fiber E_{3} if $\beta_{0}=0$. It follows that $f_{Y}^{4} \Sigma_{\gamma}$ does not contain e_{1}. Therefore $d_{1} \neq 3$ or 4 . The statement for (ii) can be confirmed by direct computation. For each $j \leq m-1, f_{Y}^{u_{j}+1} \Sigma_{\gamma}$ is a line through e_{3} in Σ_{C} which can be parametrized as $t \mapsto\left\{\left[1: \mu:-\alpha_{0}-\alpha_{2} \mu: t\right]\right\}$ for some fixed $\mu \in \mathbf{C} \cup\{\infty\}$. By computing the forward iteration of $\left[1: \mu:-\alpha_{0}-\alpha_{2} \mu: t\right]$ we see that $d_{j+1}-u_{j} \neq 1,2$, or 3 . Furthermore $d_{j+1}-u_{j}=4$ if and only if $f_{Y}^{u_{j}+1} \Sigma_{\gamma}=\Sigma_{C} \cap\left\{\left(1+\alpha_{2} \beta_{0}\right) x_{0}+\alpha_{2} x_{1}=0\right\}$. It follows that $d_{j+1}-u_{j}=4$ occurs only once. Suppose $d_{j+1}-u_{j}=4$ for some $1 \leq j \leq m-1$. By Lemma 6.4 we see that $\left(N-u_{j}\right)-\left(N-d_{j+1}\right)=d_{m-j+1}-u_{m-j}=4$. It follows that $j+1=m-j+1$ and thus $j=m / 2$. The statements (iii) and (iv) follow.

Direct computation shows the following properties:

Lemma 6.7. Suppose f is critical, then $\hat{\varphi}(t)$ defined in (6.2) satisfies
(i) $\hat{\varphi}(1)=0$, and
(ii) $\hat{\varphi}^{\prime}(1)=7(m+1)-\left(N+\sum_{j=1}^{m}\left(u_{j}-d_{j}\right)\right)$.

Lemma 6.8. Suppose that $m \geq 2$ and that f is critical satisfying (5.1). Then

$$
N+\sum_{j=1}^{m}\left(u_{j}-d_{j}\right) \quad \begin{aligned}
& \geq 9 m+3 \quad \text { if } m \text { is odd } \\
& \geq 9 m+4 \quad \text { if } m \text { is even }
\end{aligned}
$$

Thus $\hat{\varphi}^{\prime}(1)<0$, so $\hat{\varphi}$ has a root greater than 1 .
Proof: Suppose m is even. By Lemma 6.4 we see that

$$
\begin{aligned}
N+\sum_{j=1}^{m}\left(u_{j}-d_{j}\right)=2 d_{1}+4\left(u_{1}-d_{1}\right) & +2\left(d_{2}-u_{1}\right)+\cdots+2\left(d_{m / 2}-u_{m / 2-1}\right) \\
& +4\left(u_{m / 2}-d_{m / 2}\right)+\left(d_{m / 2+1}-u_{m / 2}\right)
\end{aligned}
$$

By Lemma 6.6, (i) and (ii), we have $d_{1} \geq 5$. Applying Lemma 6.5(i) and Lemma 6.6(iv) we have

$$
N+\sum_{j=1}^{m}\left(u_{j}-d_{j}\right) \geq 2 \cdot 5+4 \cdot 2+2 \cdot 5+\cdots+4 \cdot 2+4=9 m+4
$$

Similarly when m is odd

$$
\begin{aligned}
N+\sum_{j=1}^{m}\left(u_{j}-d_{j}\right)= & 2 d_{1}+4\left(u_{1}-d_{1}\right)+2\left(d_{2}-u_{1}\right)+\cdots \\
& \cdots+2\left(d_{(m+1) / 2}-u_{(m-1) / 2}\right)+2\left(u_{(m+1) / 2}-d_{(m+1) / 2}\right)
\end{aligned}
$$

Again applying Lemma 6.5(ii) and Lemma 6.6(iii) we have

$$
N+\sum_{j=1}^{m}\left(u_{j}-d_{j}\right) \geq 2 \cdot 5+4 \cdot 2+2 \cdot 5+\cdots+2 \cdot 5+2=9 m+3
$$

Theorem 6.9. If f is periodic with $m=0$ and $m_{s}=0$, then f is one of the following:

- $\alpha=(-1,0,-1,1), \beta=(0,1,0,0): f_{\alpha \beta}$ has period 8 and there is a conic Q such that

$$
f_{Y}: \Sigma_{\gamma} \rightarrow \Sigma_{B C} \rightarrow Q \rightarrow \Sigma_{\beta \gamma} \rightsquigarrow \Sigma_{C}
$$

- $\alpha=(-1 / 2,0,-1,1), \beta=(1,1,0,0): f_{\alpha \beta}$ has period 12 , and

$$
f_{Y}: \Sigma_{\gamma} \rightarrow \Sigma_{B C} \rightarrow L_{1} \rightarrow L_{2} \rightarrow \Sigma_{\beta \gamma} \rightsquigarrow \Sigma_{C}
$$

where we set $L_{1}=\Sigma_{2} \cap\left\{x_{0}+x_{3}=0\right\}$ and $L_{2}=\Sigma_{1} \cap\left\{x_{0}+x_{2}=0\right\}$.

Proof: The polynomial defined in (5.2) is also given by

$$
\chi(t)=\left(t^{2}+1\right)\left(t^{N}\left(t^{3}-t-1\right)+t^{3}+t^{2}-1\right)
$$

It follows that $\chi(t)$ has a root bigger than 1 if and only if $N \geq 8$ and in case $N=7$ the matrix representation of f_{Z}^{*} has 3×3 Jordan block with eigenvalue 1. Thus we need to check the situation $f^{n+1} \Sigma_{\gamma}=\Sigma_{\beta \gamma}$ only for $n \leq 5$. For this, let us parametrize $\Sigma_{B C}=\left\{\left[1: t:-\alpha_{0}-\alpha_{2} t: 0\right]\right\}$ and let $\left[f_{0}^{(n)}: f_{1}^{(n)}: f_{2}^{(n)}: f_{3}^{(n)}\right]$ denote the $n^{\text {th }}$ iteration of $\Sigma_{B C}$. If $f^{n+1} \Sigma_{\gamma}=\Sigma_{\beta \gamma}$, then for all t we have

$$
\begin{equation*}
\beta_{0} f_{0}^{(n)}+f_{1}^{(n)}=0, \quad \text { and } \quad \alpha_{0} f_{0}^{(n)}+\alpha_{2} f_{2}^{(n)}+f_{3}^{(n)}=0 \tag{6.3}
\end{equation*}
$$

Since equations in (6.3) are polynomials in t whose coefficients are integer polynomials in the variables β_{0}, α_{0}, and α_{2}, we may use the computer show that for $0 \leq n \leq 5$, the only two possibilities are those listed above.

Theorem 6.10. If f is periodic with $m=1$ and $m_{s}=0$, then f is one of the following:

- $\alpha=(1,0,1,1), \beta=(0,1,0,0): f$ has period $8, \Sigma_{B C} \cap \Sigma_{\beta \gamma} \neq \emptyset$, and

$$
f_{Y}: \Sigma_{\gamma} \rightarrow \Sigma_{B C} \rightarrow \Sigma_{\gamma} \cap \Sigma_{2} \rightarrow \Sigma_{B C} \cap \Sigma_{\beta \gamma} \rightsquigarrow \Sigma_{C} \cap \Sigma_{2} \rightarrow \Sigma_{\beta \gamma} \rightsquigarrow \Sigma_{C} .
$$

- $\alpha=(\eta /(1-\eta), 0, \eta, 1), \beta=\left(\eta^{2}, 1,0,0\right)$ and $\eta^{3}=-1, \eta \neq-1: f_{\alpha \beta}$ has period 12, and

$$
\begin{aligned}
f_{Y}: \Sigma_{\gamma} \rightarrow \Sigma_{B C} \rightarrow \Sigma_{\gamma} \cap \Sigma_{2} \rightarrow p_{1} \in \Sigma_{B C} & \rightarrow p_{2} \in \Sigma_{\beta \gamma} \\
& \rightsquigarrow \Sigma_{C} \cap \Sigma_{1} \rightarrow \Sigma_{\beta \gamma} \rightsquigarrow \Sigma_{C}
\end{aligned}
$$

where $p_{1}=\left[1: 0:-\eta^{2}: 0\right] \in \Sigma_{B C}$ and $p_{2}=\left[1:-\eta^{2}: 0:-\eta^{2}\right] \in$ $\Sigma_{\beta \gamma}$.

Proof: From (5.2) the characteristic polynomial of f_{Z}^{*} is given by

$$
\chi(t)=t^{N-\left(u_{1}+d_{1}\right)}\left(t^{2}+1\right)\left(t^{d_{1}}+1\right)\left(t^{u_{1}}\left(t^{3}-t-1\right)+t^{3}+t^{2}-1\right)
$$

It follows that $\chi(t)$ has a root bigger than 1 if and only if $u_{1} \geq 8$. If $u_{1}=7$, the f_{Z}^{*} has a 3×3 Jordan block. Thus if f_{Z}^{*} is periodic, then $d_{1} \leq 5<u_{1}$. By direct computation of $f^{n} \Sigma_{\gamma}=f^{n-1} \Sigma_{B C}$ for $n=1, \ldots, 5$, we can easily check the two conditions (i) $f^{n-1} \Sigma_{B C} \subset \Sigma_{\gamma}$, (ii) $f^{n-1} \Sigma_{B C} \subset\left\{x_{3}=\lambda x_{2}\right\}$ for some $\lambda \in \mathbf{C}$ and thus we see that there are only two possibilities listed in this theorem.

Theorem 6.11. If $m \geq 2, m_{s}=0$, then f has exponential degree growth (and is not periodic).

Proof: By Lemmas 6.7 and 6.8 we see that $\chi_{N}(1)=0$ and $\chi_{N}^{\prime}(1)=$ $2 \hat{\varphi}^{\prime}(1)<0$. Since the leading coefficient of χ_{N} is 1 , there exist a real root which is strictly bigger than 1 . It follows that the dynamical degree of f is strictly bigger than 1 .

Theorem 6.12. If $1 \leq m_{s}<\infty$, then f is not periodic.
Proof: By Lemmas 6.7 and 6.8 we see that $\chi_{N}(1)=0$ and $\chi_{N}^{\prime}(1)=2(3+$ $\left.\hat{\varphi}^{\prime}(1)\right)=2(-2 m+1)$. It follows that if $m \geq 1$, then f has positive entropy. Now suppose $m=0$, we have $\chi_{N}(t)=\left(t^{2}+1\right)\left(t^{N}\left(t^{3}-t-1\right)+t^{N-1} T_{s}(t-1)\right.$ $\left.(t+1+1 / t)+t^{3}+t^{2}-1\right)$. If f is periodic, then the characteristic polynomial for f_{Z}^{*} should be self-reciprocal. It follows that $s_{j}+s_{m_{s}+1-j}=$ $N-4$. Thus we have

$$
\begin{aligned}
\chi_{N}(t)= & \left(t^{2}+1\right)\left(t^{N}\left(t^{3}-t-1\right)+t^{3}+t^{2}-1\right) \\
& +\frac{1}{2}\left(t^{2}+1\right) t^{N / 2+3}(t-1)(t+1+1 / t) \sum_{j=1}^{m_{s}}\left(t^{N / 2-2-s_{i}}+t^{-N / 2+2+s_{i}}\right) .
\end{aligned}
$$

By inspection we see that $s_{1} \geq 3$ and it follows that $N \geq 8 m_{s}+2$. We can also check that $\chi_{N}(1)=0$ and $\chi_{N}^{\prime}(1)=14-2 N+6 m_{s} \leq 10\left(1-m_{s}\right)$. Therefore if $m_{s}>1$, then f is not periodic. Now suppose $m_{s}=1$. If $s_{1}>3$, then $N>10$ and therefore $\chi_{N}^{\prime}(1)$ is strictly negative. It follows that if $s_{1}>3, f$ is not periodic. In case $s_{1}=3, m_{s}=1$, the matrix representation for f_{Z}^{*} has 3×3 Jordan block with eigenvalue 1 and all other eigenvalues have modulus 1 .

Proof of Theorem 5: The statement of Theorem 5 in the Introduction follows from Theorems 6.9-6.12.

We remark that in the proof of Theorem 6.12, we see that if $m_{s}=1$, $s_{1}=3$ and $m=0$, then the degree of f^{n} is quadratic in n. This case occurs for $\alpha=(a, 0,1,1)$ and $\beta=(0,1,0,0)$, which is the so-called Lyness process and will be discussed in $\S 8$.

7. Pseudo-automorphisms with positive entropy

In this section we consider the case

$$
\begin{equation*}
\beta=(0,1,0,0) \quad \text { and } \quad \alpha=(a, 0, \omega, 1) \tag{7.1}
\end{equation*}
$$

where $\omega^{2}+\omega+1=0$ and $a \in \mathbf{C} \backslash\{0\}$. With this choice of parameters, we see that f is critical and that $\Sigma_{B}=\Sigma_{3}$ and $\Sigma_{\beta}=\Sigma_{1}$. Since the maps $f: \Sigma_{3} \rightarrow \Sigma_{2} \rightarrow \Sigma_{1}$ are dominant, (4.4) gives an 8 -cycle of dominant maps

$$
\begin{equation*}
f_{Y}: \Sigma_{1} \rightarrow E_{3} \rightarrow S_{01} \rightarrow \Sigma_{0} \rightarrow S_{03} \rightarrow E_{1} \rightarrow \Sigma_{3} \rightarrow \Sigma_{2} \rightarrow \Sigma_{1} \tag{7.2}
\end{equation*}
$$

Since this 8 -cycle is fundamental to our understanding of f in this case, we will refer to the union of these 8 hypersurfaces as the rotor and denote it as \mathcal{R}. Clearly, f_{Y}^{8} fixes each component of the rotor; in addition, it has a relatively simple expression. On Σ_{3}, or example, we have:

$$
\begin{align*}
f_{Y}^{8}: & \Sigma_{3} \ni\left[x_{0}: x_{1}: x_{2}: 0\right] \\
& \mapsto\left[x_{0}\left(a x_{0}+\omega x_{2}\right)\left(a x_{0}+a x_{1}+\omega x_{2}\right)\right. \\
& : x_{1}\left(x_{1} x_{2}+a \omega x_{0}^{2}+a \omega x_{0} x_{1}+a \omega x_{0} x_{2}+\omega^{2} x_{0} x_{2}+\omega^{2} x_{2}^{2}\right) \tag{7.3}\\
& \left.: \omega x_{2}\left(a x_{0}+\omega x_{2}\right)\left(x_{1}+a \omega x_{0}+\omega^{2} x_{2}\right): 0\right] \in \Sigma_{3} .
\end{align*}
$$

The restriction of f_{Y}^{8} to the rotor is studied in Appendix C.
Note that by (7.1), $\Sigma_{B C}=\Sigma_{3} \cap \Sigma_{C}$ and $\Sigma_{\beta \gamma}=\Sigma_{1} \cap \Sigma_{\gamma}$. Using (7.2) we may verify that f_{Y} satisfies condition (5.1), which in this case is

$$
\begin{equation*}
f_{Y}^{j} \Sigma_{\gamma} \not \subset \mathcal{F}_{0 \beta \gamma} \text { for all } 1 \leq j \leq 10, \text { and } f_{Y}^{11} \Sigma_{\gamma}=\Sigma_{\beta \gamma} \tag{7.4}
\end{equation*}
$$

We define the space $\pi_{Z}: Z \rightarrow Y$ by successively blowing up the 11 curves $\gamma_{j}:=f_{Y}^{j} \Sigma_{\gamma}, 1 \leq j \leq 11$. The dynamical degree, being a birational invariant, is independent of the order in which the γ_{j} 's are blown up.

Theorem 7.1. The induced map f_{Z} is a pseudo-automorphism, and the dynamical degree of f is greater than 1 .
Proof: From (7.4) we see that f_{Y} satisfies conditions (5.1) and (5.2) in Theorem 5.1, so f_{Z} is a pseudo-automorphism. By Lemma 5.3, the characteristic polynomial of f_{Z}^{*} is $t^{11}\left(t^{3}-t-1\right)+t^{3}+t^{2}-1=(-1+$ $t)(1+t)\left(1+t^{4}\right)\left(1-t^{3}-t^{4}-t^{5}+t^{8}\right)$. Thus $\delta(f)$ is the largest root of this polynomial, which is approximately 1.28064 .

The space Z has been defined earlier, but now let us be more precise: we define Z as the space obtained by blowing up first $\gamma_{11} \subset Y$, then we blow up the strict transform of γ_{10} in the resulting space, followed by blowing up the strict transform of γ_{9}, and continuing this way until we blow up the strict transform of γ_{1}. We will use the notation Γ_{j} to denote the exceptional divisor of the blowup of γ_{j}. There are no points where three distinct γ_{j} 's intersect. If $p=\gamma_{j} \cap \gamma_{k}$, with $j>k$, then we blow up γ_{j} first, and we refer to the fiber in Γ_{j} over p as the first fiber over p, and write it as \mathcal{F}_{p}^{1}. We then blow up the strict transform of γ_{k}, and the blowup fiber over the point $\gamma_{k} \cap \Gamma_{j}$ is equal to $\Gamma_{j} \cap \Gamma_{k}$.

Let us describe some of the intersections of the γ_{j} 's. f is constant on each line in Σ_{γ} passing through e_{1}. Further, $\gamma_{1} \subset \Sigma_{3}, \gamma_{2} \subset \Sigma_{2}$, and $\gamma_{6} \subset \Sigma_{0}$, and $e_{1}=\Sigma_{0} \cap \Sigma_{2} \cap \Sigma_{3}$. We set $\ell_{2}=\Sigma_{\gamma} \cap \Sigma_{3}, \ell_{3}=\Sigma_{\gamma} \cap \Sigma_{2}$, and $\ell_{7}=\Sigma_{\gamma} \cap \Sigma_{0}$. Thus we have $f\left(\ell_{j}\right)=\gamma_{1} \cap \gamma_{j}$ for $j=2,3,7$. The curve $\gamma_{9} \subset \Sigma_{1}$ is a conic, and $\gamma_{9} \cap \gamma_{1}$ consists of two points. We let ℓ_{9}^{\prime}
and $\ell_{9}^{\prime \prime}$ denote the two lines in Σ_{γ} for which $f\left(\ell_{9}^{\prime} \cup \ell_{9}^{\prime \prime}\right)=\gamma_{1} \cap \gamma_{9}$. This accounts for all the curves γ_{j} which intersect γ_{1}. As a consequence of the order of blowup, the first fiber $\mathcal{F}_{f\left(\ell_{j}\right)}^{1}=\mathcal{F}_{\gamma_{1} \cap \gamma_{j}}^{1}, j=2,3,7$ is contained in Γ_{j} and similarly for $\ell_{9}^{\prime}, \ell_{9}^{\prime \prime}$.

There is a similar situation for the γ_{j} 's which intersect γ_{11}. The curves γ_{5}, γ_{9} and γ_{10} each intersect γ_{11} in a single point, and γ_{3}, which intersects γ_{11} in 2 points, and this accounts for all the intersection points between γ_{11} and the other γ_{j} 's.

Let us use the notation $\pi_{1}: Z_{1} \rightarrow Y$ for the manifold obtained by blowing up the curve $\gamma_{11} \subset Y$. This is the first blowup performed in the construction of Z. Let $f_{Z_{1}}: Z_{1} \rightarrow Z_{1}$ be the induced map. Since $\mathcal{I}\left(f_{Y}\right)=\gamma_{11} \cup \Sigma_{02} \cup \mathcal{F}_{0 \beta \gamma}^{1}$, it follows that $\mathcal{I}\left(f_{Z_{1}}\right) \subset \Sigma_{02} \cup \mathcal{F}_{0 \beta \gamma}^{1} \cup \gamma_{10} \cup \Gamma_{11}$.

Lemma 7.2. $\mathcal{I}\left(f_{Z_{1}}\right)=\mathcal{F}_{0 \beta \gamma}^{1} \cup \Sigma_{02} \cup \gamma_{10}$.
Proof: We have seen already that the indeterminacy locus is contained in $\Sigma_{02} \cup \mathcal{F}_{0 \beta \gamma}^{1} \cup \gamma_{10} \cup \Gamma_{11}$, so it suffices to show that $\mathcal{I}\left(f_{Z_{1}}\right) \cap \Gamma_{11}$ consists of the two points $\gamma_{10} \cap \Gamma_{11}$ and $\mathcal{F}_{0 \beta \gamma}^{1} \cap \Gamma_{11}$. Thus we look at $f_{Z_{1}}$ in coordinate charts that cover Γ_{11}. We will look first at $\Gamma_{11} \cap \pi^{-1}\left(\gamma_{11}-\gamma_{10}\right)$.

In the local coordinates $\left(s, \zeta, x_{3}\right)_{S_{01}} \mapsto\left[s: s \zeta: 1: x_{3}\right] \in \mathbf{P}^{3}$ in the neighborhood of $S_{01}-E_{1}=\{s=0, \zeta \neq \infty\}$, we have $\gamma_{11}=\{\zeta=$ 0 , as $\left.+\omega+x_{3}=0\right\}$ and $\mathcal{F}_{0 \beta \gamma}^{1} \cap \gamma_{11}=(0,0,-\omega)_{S_{01}}$. We use the local coordinate charts $(s, t, \eta)^{\prime}$ on U^{\prime} and $(s, \eta, t)^{\prime \prime}$ on $U^{\prime \prime}$ so that π_{1} is given by

$$
\begin{aligned}
& \pi^{\prime}: U^{\prime} \ni(s, t, \eta)^{\prime} \mapsto(s, t,-a s-\omega+t \eta)_{S_{01}}, \\
& \pi^{\prime \prime}: U^{\prime \prime} \ni(s, \eta, t)^{\prime \prime} \mapsto(s, t \eta,-a s-\omega+t)_{S_{01}}
\end{aligned}
$$

It is evident that $\Gamma_{11} \supset\{t=0\}$ in both coordinate charts, and $U^{\prime} \cup U^{\prime \prime} \supset$ $\pi_{1}^{-1}\left(\gamma_{11}-\gamma_{10}\right)$. The induced map $f \circ \pi_{1}: U^{\prime} \cup U^{\prime \prime} \rightarrow \mathbf{P}^{3}$ is given by

$$
\begin{align*}
& U^{\prime} \ni(s, t, \eta)^{\prime} \mapsto[s: 1:-a s+t \eta-\omega: \eta], \\
& U^{\prime \prime} \ni(s, \eta, t)^{\prime \prime} \mapsto[s \eta: \eta: \eta(-a s+t-\omega): 1] . \tag{7.5}
\end{align*}
$$

So we see that $\{t=0\}$ is mapped to Σ_{C}.
From (7.5) we see that the map $f \circ \pi_{1}: U^{\prime} \cup U^{\prime \prime} \rightarrow \mathbf{P}^{3}$ is everywhere regular. The only points of Σ_{C} which is blown up in the construction of Y are e_{3} and $[0: 1:-\omega: 0]$ which is the base point of $\mathcal{F}_{0 B C}^{1}$. By (7.5), the preimage of e_{3} is $(0,0,0)^{\prime \prime} \in U^{\prime \prime}$, and the preimage $[0: 1:-\omega: 0$] is $(0,0,0)^{\prime} \in U^{\prime}$. Working in local coordinates in Y over e_{3}, we find that $f \circ \pi_{1}: U^{\prime \prime} \rightarrow Y$ is everywhere regular. Thus we conclude that $f_{Y} \circ \pi_{1}: Z_{1} \rightarrow Y$ is regular on $\left(U^{\prime}-(0,0,0)^{\prime}\right) \cup U^{\prime \prime}$. Now in order to pass to $f_{Z_{1}}$ we need to consider the point $\gamma_{11} \cap \Sigma_{C}$ which is blown
up. However, this is the image point of $\gamma_{10} \cap \gamma_{11}$, which is not in our coordinate chart. We note that $(0,0,0)^{\prime}$ is the point $\mathcal{F}_{0 \beta \gamma}^{1} \cap \Gamma_{11}$, so we conclude that $f_{Z_{1}}$ is regular at all points of $\Gamma_{11}-\left(\pi_{1}^{-1}\left(\gamma_{11} \cap \gamma_{10}\right) \cup \mathcal{F}_{0 \beta \gamma}^{1}\right)$.

Now we consider $\Gamma_{11} \cap \pi^{-1}\left(\gamma_{11}-\mathcal{F}_{0 \beta \gamma}^{1}\right)$, which does not lie over any of the centers of blowup in the construction of Y. We use the local coordinates $\left(s, x_{2}, \zeta\right) \mapsto\left[1: s: x_{2}:-a-\omega x_{2}+s \zeta\right]$ in a neighborhood of $\{s=0, \zeta \neq \infty\} \subset \Gamma_{11}-\pi_{1}^{-1}\left(\mathcal{F}_{0 \beta \gamma}^{1}\right)$, and we get

$$
\begin{align*}
& f_{Z_{1}}: \Gamma_{11} \ni\left(0, x_{2}, \zeta\right) \mapsto\left[1: x_{2}:-a-\omega x_{2}: \zeta\right] \in \Sigma_{C} \tag{7.6}\\
& \quad \text { if }\left(0, x_{2}, \zeta\right) \neq(0,0, a \omega-a) .
\end{align*}
$$

Similarly using the local coordinates $\left(\zeta, x_{2}, s\right) \mapsto\left[1: s \zeta: x_{2}:-a-\omega x_{2}+\right.$ $s] \in \Gamma_{11}$, we have

$$
\begin{align*}
f_{Z_{1}}: \Gamma_{11} \ni\left(\zeta, x_{2}, 0\right) \mapsto\left[\zeta: x_{2} \zeta:\right. & \left.\zeta\left(-a-\omega x_{2}\right): 1\right] \in \Sigma_{C} \tag{7.7}\\
& \text { if }\left(\zeta, x_{2}, 0\right) \neq\left(\frac{1}{a \omega-a}, 0,0\right)
\end{align*}
$$

Since both $(0,0, a \omega-a)$ in (7.6) and $(1 /(a \omega-a), 0,0)$ in (7.7) correspond to the point $\gamma_{11} \cap \gamma_{10}$, combining with the previous conversation about $\Gamma_{11}-\pi_{1}^{-1}\left(\gamma_{11} \cap \gamma_{10}\right)$, we conclude that $f_{Z_{1}}$ is regular at all points of $\Gamma_{11}-\left(\gamma_{10} \cup \mathcal{F}_{0 \beta \gamma}^{1}\right)$.

Lemma 7.3. The three curves $\gamma_{5}, \gamma_{11}, \mathcal{F}_{0 \beta \gamma}^{1}$ intersect transversally inside Y, and $\gamma_{1}, \gamma_{7}, \mathcal{F}_{0 B C}^{1}$ intersect transversally inside Y. Thus, inside Z_{1}, the strict transform of $\mathcal{F}_{0 \beta \gamma}^{1}$ is disjoint from the strict transforms of $\gamma_{j}, 1 \leq j \leq 10$.

Proof: It suffices to prove the first statement. We may write $\gamma_{11} \subset \mathbf{P}^{3}$ as $s \mapsto[s: 0: 1:-a s-\omega]$. This intersects Σ_{01} in the point $[0: 0: 1:-\omega]$. We use the coordinate system $\pi:\left(u, \eta, x_{3}\right) \mapsto\left[u: u \eta: 1: x_{3}\right] \in \mathbf{P}^{3}$. Thus $\mathcal{F}_{0 \beta \gamma}^{1}=\left\{u=0, x_{3}=-\omega\right\}$. In this coordinate system, γ_{11} becomes $s \mapsto$ $(s, 0,-a s-\omega)$, so γ_{11} crosses S_{01} when $s=0$, at the point $(0,0,-\omega)$. On the other hand, if we map γ_{11} backward under f_{Y}^{-6}, we find an expression for γ_{5}. The base point is given by $[0: 0: 1: s$], and the fiber coordinate is given by $\eta=(1+a s)(1+a s+\omega(1+a-s)) /(a s(-1+s+a s-\omega(1+a-a s))$. Thus when the base point is $[0: 0: 1:-\omega]$, we have $\eta=0$. Thus all three curves meet at $\left(u, \eta, x_{3}\right)=(0,0,-\omega)$. The curve γ_{11} is transverse to S_{01}, but γ_{5} and $\mathcal{F}_{0 \beta \gamma}^{1}$ are tangential to S_{01}, so γ_{11} is transverse to the other two, and γ_{5} is transverse to $\left\{x_{3}=-\omega\right\}$, while $\mathcal{F}_{0 \beta \gamma}^{1}$ is tangential to this set.

For $2 \leq j \leq 11$, let $\pi_{j}: Z_{j} \rightarrow Z_{j-1}$ be the blowup of the strict transform of γ_{12-j} inside Z_{j-1} and $\pi: Z \rightarrow Y=\pi_{11} \circ \pi_{10} \circ \cdots \circ \pi_{1}$, that is, we blowup γ_{11} first, then γ_{10}, then γ_{9}, etc. Let $f_{Z_{j}}: Z_{j} \rightarrow Z_{j}$, $f_{Z}: Z \rightarrow Z$ denote the induced map.

Lemma 7.4. For $1 \leq j \leq 10, \mathcal{I}\left(f_{Z_{j}}\right)=\mathcal{F}_{0 \beta \gamma}^{1} \cup \Sigma_{02} \cup \gamma_{11-j}$.
Proof: Suppose p is a point of $\gamma_{j} \cap \gamma_{k}, 1 \leq j<k \leq 10$. Because of the order of blowup, γ_{k} is blown up before γ_{j} and γ_{k+1} is blown up before γ_{j+1}. Since f_{Y} is regular at p and the order of blowups at p is consistent with the order of blowups at $f_{Y}(p)$, the induced map $f_{Z_{i}}$ is a local biholomorphism in a neighborhood of the exceptional divisor over p for $12-j \leq i \leq 11$.

Notice that for all $1 \leq j \leq 11$ the strict transform of γ_{j} does not intersect Σ_{02} in Y. Suppose γ_{j} intersects $\mathcal{F}_{0 \beta \gamma}^{1}$ at a point q. Using the local coordinates in the neighborhood $\left(s, \zeta, x_{3}\right)_{S_{01}}$, we may assume that $q=\left(0, \zeta_{*},-\omega\right)_{S_{01}}$ and $\gamma_{j}(s)=\left(Q_{1}(s), Q_{2}(s)+\zeta_{*}, Q_{3}(s)-\omega\right)_{S_{01}}$, where $\gamma_{j}=\left\{\gamma_{j}(s), s \in \mathbf{C}\right\}$, and $\gamma_{j}(0)=q$. Consider two local coordinate charts covering the exceptional divisor over the point q :

$$
\begin{aligned}
(s, t, \eta) & \mapsto\left(Q_{1}(s), Q_{2}(s)+\zeta_{*}+t, Q_{3}(s)-\omega+t \eta\right)_{S_{01}} \\
(s, \eta, t) & \mapsto\left(Q_{1}(s), Q_{2}(s)+\zeta_{*}+t \eta, Q_{3}(s)-\omega+t\right)_{S_{01}}
\end{aligned}
$$

With a computation similar to Lemma 7.2, we see that the induced map is regular everywhere on the exceptional divisor over $\mathrm{q}, \mathcal{F}(q)$, except the point of intersection $\mathcal{F}(q) \cap \mathcal{F}_{0 \beta \gamma}^{1}$. Now since the curve γ_{11-j} is the pre-image of γ_{12-j}, we have $\mathcal{I}\left(f_{Z_{j}}\right)=\mathcal{F}_{0 \beta \gamma}^{1} \cup \Sigma_{02} \cup \gamma_{11-j}$.

From the previous lemma we have $\mathcal{I}\left(f_{Z_{10}}\right)=\mathcal{F}_{0 \beta \gamma}^{1} \cup \Sigma_{02} \cup \gamma_{1}$. Since Σ_{γ} is the pre-image of γ_{1}, we have $\mathcal{I}\left(f_{Z}\right) \subset \mathcal{F}_{0 \beta \gamma}^{1} \cup \Sigma_{02} \cup \Sigma_{\gamma}$. From (5.2) we see that for all most every line $\ell \subset \Sigma_{\gamma}$, through e_{1} in Σ_{γ}, f maps ℓ regularly to a point $q \in \gamma_{1}$. In our construction of Z, we blew up $\gamma_{11}, \ldots, \gamma_{2}$ before γ_{1}. Thus the map f_{Z} will map ℓ regularly to the fiber of Γ_{1} over q unless q is an intersection point of $\gamma_{1} \cap \gamma_{j}$ for some $2 \leq j \leq 11$.
Lemma 7.5. Suppose $q \in \gamma_{1} \cap \gamma_{j}$ for some $j=2, \ldots, 11$ and $\ell_{j} \subset \Sigma_{\gamma}$ be the line which mapped to q by f_{Y}. The line $\ell_{j} \subset \mathcal{I}\left(f_{Z}\right)$ and every point in ℓ_{j} blows up to the first blowup fiber \mathcal{F}_{q}^{1}.

Proof: Let us parametrize $\gamma_{1}=\left\{\gamma_{1}(t)=\left[-\frac{1}{a}(1+\omega t): t: 1: 0\right], t \in \mathbf{C}\right\}$. Let us set $q=\gamma_{1}\left(t_{*}\right)$ for some $t_{*} \in \mathbf{C}$ and $\gamma_{j}=\left\{\gamma_{j}(s)=\left[Q_{0}(s)-\right.\right.$ $\left.\left.\frac{1}{a}\left(1+\omega t_{*}\right): Q_{1}(s)+t_{*}: Q_{2}(s)+1: Q_{3}(s)\right]\right\}$. The line ℓ_{j} is given by the strict transform in Y of the line connecting e_{1} and $\tilde{q}=\left[-\frac{1}{a}\left(1+\omega t_{*}\right)\right.$: $\left.0: t_{*}: 1\right]$ in \mathbf{P}^{3}. To see the image of the line ℓ_{j}, we consider the set
$U=\left\{\left[-\frac{1}{a}\left(1+\omega t_{*}\right)+s \zeta: u: t_{*}+s: 1\right]\right\}$ which has the property that $U \cap\{s=0\}=\ell_{j}-\left\{e_{1}\right\}$. Since the point q is blown up twice, let us consider a local coordinate charts for $\pi_{12-j}^{-1}\left(\gamma_{j}\right)$:

$$
(v, \xi, s)_{\gamma_{j}} \mapsto\left[\frac{Q_{0}(s)-\frac{1}{a}\left(1+\omega t_{*}\right)}{Q_{2}(s)+1}+v: \frac{Q_{1}(s)+t_{*}}{Q_{2}(s)+1}+v \xi: 1: \frac{Q_{3}(s)}{Q_{2}(s)+1}\right]
$$

Using the induced map f_{Z}, we see that

$$
f_{Z}: \ell_{j} \ni\left[-\frac{1}{a}\left(1+\omega t_{*}\right): u: t_{*}: 1\right] \rightsquigarrow\{(0, \xi, 0), \xi \in \mathbf{C}\} \subset \Gamma_{j}
$$

that is, each point in ℓ_{j} blows up to a whole first blowup fiber over q.
Before Lemma 7.2, we enumerated the possibilities for lines ℓ and points q as in the hypotheses of Lemma 7.5. Thus we may combine Lemmas 7.2-7.5 to have the following theorem:

Theorem 7.6. The indeterminacy locus $\mathcal{I}\left(f_{Z}\right)=\Sigma_{02} \cup \mathcal{F}_{0 \beta \gamma}^{1} \cup \ell_{2} \cup \ell_{3} \cup$ $\ell_{7} \cup \ell_{9}^{\prime} \cup \ell_{9}^{\prime \prime}$. If ζ is a point of one of the lines ℓ, then f_{Z} blows up ζ to the first fiber $\mathcal{F}_{f(\ell)}^{1}$.

Now we give the existence of Green currents for the invariant class $\alpha=\alpha_{Z}^{+} \in H^{1,1}(Z)$.

Theorem 7.7. There is a positive closed current T_{Z}^{+}in the class of α_{Z}^{+} with the property: if Ξ^{+}is a smooth form which represents α_{Z}^{+}, then $\lim _{n \rightarrow \infty} \delta_{1}(f)^{-n} f_{Z}^{n *} \Xi_{Z}^{+}=T_{Z}^{+}$in the weak sense of currents on Z.

Proof: The map f_{Z}^{*} is given in Appendix A, where we are in Case (II). Working directly with the matrix (A.1), we see that the invariant class is given by:

$$
\alpha=H_{Z}-c_{1} \tilde{E}_{1}-c_{3} \tilde{E}_{3}-c_{01} \tilde{S}_{01}-c_{03} \tilde{S}_{03}-\sum_{j=1}^{11} c_{j}^{\prime} \mathcal{F}_{j}
$$

where $c_{1}, c_{3}>0, c_{1}+c_{3}=1, c_{11}^{\prime}>c_{10}^{\prime}>\cdots>c_{1}^{\prime}>0$, and $c_{01}=$ $c_{03}>c_{8}^{\prime}$. As in Theorem 4.9, we will show that $\alpha_{Z}^{+} \cdot \sigma \geq 0$ for each curve σ inside the forward image of $\mathcal{I}\left(f_{Z}\right)$. The result will follow from Theorem 1.3 of $[\mathbf{B a}]$.

Let us start with $\mathcal{F}_{0 \beta \gamma} \subset \mathcal{I}\left(f_{Z}\right)$. Points of this curve are blown up to $\mathcal{F}_{0 B C}$. The curve $\sigma=\mathcal{F}_{0 B C}$ is the exceptional fiber inside S_{03} over the point $\Sigma_{B C} \cap \Sigma_{03} \in \mathbf{P}^{3}$. Thus $\sigma \cdot S_{03}=-1$. In the construction of Z, γ_{7} will be blown up to create the exceptional divisor Γ_{7}. At this stage, by Lemma 7.3, σ and γ_{1} become separated. Thus $\sigma \cdot \Gamma_{1}=0$, and $\sigma \cdot \Gamma_{7}=1$, so $\alpha \cdot \sigma=c_{03}-c_{7}>0$.

Points of the indeterminate curve Σ_{02} blow up to $\sigma=\mathcal{F}_{e_{2}}^{1}$. In this case, we have that $\sigma \cdot S_{01}$ and $\sigma \cdot S_{03}$, are ± 1, with opposite signs, so $\sigma \cdot \alpha_{Z}^{+}= \pm c_{01} \mp c_{03}=0$ as was seen in the proof of Theorem 4.9.

The other possibility is $\ell \subset \mathcal{I}\left(f_{Z}\right)$, for one of the indeterminate lines in Σ_{γ}. This blows up to one of the first fibers $\sigma=\mathcal{F}_{\zeta}^{1}$. In this case, σ crosses Γ_{1} transversally, so $\sigma \cdot \Gamma_{1}=1$. On the other hand, $\sigma \subset \Gamma_{j}$ for some $j>1$, so we have $\sigma \cdot \Gamma_{j}=-1$. Thus $\sigma \cdot \alpha_{Z}^{+}=c_{j}^{\prime}-c_{1}^{\prime}>0$.

Remark. Considering the symmetry between f and f^{-1}, we find that $\mathcal{I}\left(f_{Z}^{-1}\right)=\Sigma_{02} \cup \mathcal{F}_{0 \beta \gamma}^{1} \cup \bigcup_{\zeta} \mathcal{F}_{\zeta}^{1}$, where the ζ 's are the intersection points of γ_{1} with the curves $\gamma_{2}, \gamma_{3}, \gamma_{7}$, and γ_{9}.

If we instead blow up the γ_{j} 's in the order $\gamma_{1}, \gamma_{2}, \ldots$, and call the resulting space \hat{Z}. Then we have $\mathcal{I}\left(f_{\hat{Z}}\right)=\Sigma_{02} \cup \mathcal{F}_{0 \beta \gamma}^{1} \cup \bigcup_{\zeta} \mathcal{F}_{\zeta}^{1}$, where the $\zeta \in \gamma_{11}$ are the points of intersection with $\gamma_{3}, \gamma_{5}, \gamma_{9}$, and γ_{10}. Each of these points ζ is blown up by $f_{\hat{Z}}$ to a line of the pencil in Σ_{C} passing through e_{3}.

Thus we can apply a similar argument to α_{Z}^{-}to obtain the Green current for f_{Z}^{-1}.

Corollary 7.8. There is a positive closed current T_{Z}^{-}in the class of α_{Z}^{-} with the property: if Ξ^{-}is a smooth form which represents α_{Z}^{-}, then $\lim _{n \rightarrow \infty} \delta_{1}(f)^{-n} f_{Z}^{-n *} \Xi_{Z}^{-}=T_{Z}^{-}$in the weak sense of currents on Z.

Next we show what happens to the invariant fibration when we lift it to Z. Let us set $P_{0}=x_{0} x_{1} x_{2} x_{3}$, and let P_{1} be a homogeneous quartic polynomial defined in Appendix B. For $c \in \mathbf{C}$, let us set $S_{c}=\left\{c P_{0}+P_{1}=\right.$ $0\}$, so the rotor \mathcal{R} corresponds to $c=\infty$. Since we have $f\left(S_{c}\right)=S_{\omega c}$, the surface S_{0} is invariant.

Proposition 7.9. The variety $S_{0}:=\left\{P_{1}=0\right\} \subset \mathbf{P}^{3}$ has singular points at e_{1}, e_{3} and the fixed points $p_{ \pm}$. If $p_{ \pm}$are blown up (in additional to the e_{1} and e_{3} which were blown up to construct Y), then the strict transform of S_{0} is a nonsingular $K 3$ surface.

Proof: Using the computer, we find that the critical points of P_{1} occur exactly at e_{1}, e_{3} and $p_{ \pm}=\left(x_{ \pm}, x_{ \pm}, x_{ \pm}\right) \in \mathbf{C}^{3}$ where $x_{ \pm}$are the roots of $x^{2}=a+(1+\omega) x$. (Mathematica, for instance, can do this.) Further, $p_{ \pm}$ are singular points of type A_{1}. The singular points e_{1} and e_{3} are type A_{1} unless $a=(1+2 \omega) /(1-\omega)$, in which case they are type A_{2}. In either case, it follows (see, for instance, [EJ, Lemma 3.1 and Remark 3.2]) that S_{0} is $K 3$.

Corollary 7.10. For all but finitely many values of $c \in \mathbf{C}$, the strict transform of S_{c} in Z is a nonsingular $K 3$ surface.

Let $\mathcal{P} \subset Y$ denote the (finite) set of all intersection points of distinct curves $\gamma_{j} \cap \gamma_{k}$. Since the γ_{j} lie in the rotor, we have $\mathcal{P} \subset \mathcal{R}$. The rotor is the union of 8 smooth hypersurfaces which intersect transversally, so the singular locus of \mathcal{R} is the set where two (or more) of these surfaces intersect. We will write \mathcal{P}_{s} (resp. \mathcal{P}_{r}) for the points of \mathcal{P} which are contained in the singular (resp. regular) locus of \mathcal{R}.

While Z itself depends on the order in which the curves γ_{j} are blown up, the following propositions are valid for any ordering of the blowups.

Proposition 7.11. For $p \in \mathcal{P}_{r}$, there is a unique $c_{p} \in \mathbf{C}$ such that $S_{c_{p}} \subset Y$ is singular at p. This is a conical singularity, and the strict transform $S_{c_{p}} \subset Z$ contains the first fiber $\mathcal{F}_{c_{p}}^{1}$.
Proof: Without loss of generality, we may choose coordinates (x, y, z) so that $p=0, L=z$ near p, and $\mathcal{R}=\{z=0\}$. Let us suppose that $p \in f_{Y}^{j} \Sigma_{B C} \cap f_{Y}^{k} \Sigma_{B C}$. Since the curves $f_{Y}^{j} \Sigma_{B C}$ are contained in \mathcal{R} and intersect transversally, we may suppose that near p the curves $f_{Y}^{j} \Sigma_{B C}$ and $f_{Y}^{k} \Sigma_{B C}$ coincide with the x - and y-axes. Thus the tangent to $\{M=$ $0\}$ at p is given by $z=0$, so we may suppose that $M=\lambda z+x y+\cdots$. The surfaces are then $S_{c}=\{M+c L=0\}=\{\lambda z+x y+c z+\cdots=0\}$. The surface S_{c} is singular if $c=-\lambda$. We blow up the x-axis by the coordinate change $(x, s, \eta) \mapsto(x, s, s \eta)$. The first fiber is $\mathcal{F}_{p}^{1}=\{x=s=0\}$. The strict transforms of the surfaces are $S_{c}=\{(\lambda+c) \eta+x=0\}$. The strict transform of the y-axis is now the s-axis, which is contained in each S_{c}. Otherwise, the S_{c} 's are disjoint. The strict transform of $S_{-\lambda}$ contains \mathcal{F}_{p}^{1}. After we blow up the s-axis, the surfaces are all disjoint and smooth.

Proposition 7.12. For $p \in \mathcal{P}_{s}, S_{c}$ is smooth at p for all $c \in \mathbf{C}$. The first fiber is contained in the rotor: $\mathcal{F}_{p}^{1} \subset \mathcal{R} \subset Z$.
Proof: We may assume that p is a normal crossing of two of the hypersurfaces of \mathcal{R}. Thus we may choose coordinates (x, y, z) such that $p=0$, and $L=x y$ near p. We may assume that $f_{Y}^{j} \Sigma_{B C}$ is the x-axis, and $f_{Y}^{k} \Sigma_{B C}$ is the y-axis. Since M contains both axes, we may assume that $M=z+\varphi$, where φ is divisible by $x y$. Thus $S_{c}=\{M+c L=$ $z+\varphi+c x y=0\}$ is smooth for all $c \in \mathbf{C}$. When we blow up the x-axis, we use coordinates $(x, s, \eta) \mapsto(x, s, s \eta)$. The strict transforms are then $S_{c}=\{s \eta+\tilde{\varphi}+c s x=0\}$, where $\tilde{\varphi}$ is divisible by $x s$. Dividing this equation by s, we have $S_{c}=\{\eta+\psi(x, s, \eta)+c x=0\}$, where $\psi(0, s, 0)=0$,
since S_{c} contains the s-axis (the strict transform of the y-axis). We have $\mathcal{F}_{p}^{1}=\{x=s=0\}$. Now we blow up the s-axis via the coordinates $(\xi, s, t) \mapsto(\xi t, s, t)=(x, s, \eta)$. This gives the new strict transforms $S_{c}=\{1+\hat{\psi}(\xi, s, t)+c \xi=0\}$, where $\hat{\psi}(\xi, s, t)=t^{-1} \psi(\xi t, s, t)$ is regular. The strict transform of \mathcal{F}_{p}^{1} is now $\{\xi=s=0\}$, which is disjoint from the $S_{c} \mathrm{~s}$.

If $p^{\prime} \in \gamma_{1} \cap \gamma_{9}$, then there is a unique $c^{\prime} \in \mathbf{C}$ be such that $S_{c^{\prime}}$ is singular at p^{\prime}. Let ℓ_{9}^{\prime} denote the line for which $f\left(\ell_{9}^{\prime}\right)=p^{\prime}$. By Theorem 7.6 and Proposition 7.11, it follows that f_{Z} maps ℓ_{9}^{\prime} to the strict transform of $S_{c^{\prime}}$ inside Z. Thus the total transform of ℓ_{9}^{\prime} under f_{Z}^{n} is contained in $S_{\omega^{n} c^{\prime}}$. Let $p^{\prime \prime}$ denote the other point of $\gamma_{1} \cap \gamma_{9}$, and let $c^{\prime \prime} \in \mathbf{C}$ denote the corresponding parameter. Let $\hat{S}=S_{c^{\prime}} \cup S_{\omega c^{\prime}} \cup S_{\omega^{2} c^{\prime}} \cup S_{c^{\prime \prime}} \cup S_{\omega c^{\prime \prime}} \cup S_{\omega^{2} c^{\prime \prime}}$. We see that \hat{S} is a f_{Z}-invariant set which contains $\ell_{9}^{\prime} \cup \ell_{9}^{\prime \prime}$. Let \mathcal{R} denote the strict transform of the rotor in Z. The sets \mathcal{R}, \hat{S}, and $\Sigma_{02} \cup \mathcal{F}_{e_{2}}^{1}$ are totally invariant, and we break the indeterminacy locus into three sets:

$$
\mathcal{I}\left(f_{Z}\right)=\left(\Sigma_{02} \cup \mathcal{F}_{e_{2}}^{1}\right) \cup\left(\mathcal{I}\left(f_{Z}\right) \cap \mathcal{R}\right) \cup\left(\mathcal{I}\left(f_{Z}\right) \cap \hat{S}\right)
$$

with $\mathcal{I}\left(f_{Z}\right) \cap \mathcal{R}=\ell_{2} \cup \ell_{3} \cup \ell_{7} \cup \mathcal{F}_{0 \beta \gamma}^{1}$, and $\mathcal{I}\left(f_{Z}\right) \cap \hat{S}=\ell_{9}^{\prime} \cup \ell_{9}^{\prime \prime}$. We set

$$
\Omega=Z-\left(\hat{S} \cup \mathcal{R} \cup \Sigma_{02} \cup \mathcal{F}_{e_{2}}^{1}\right)
$$

By Propositions 7.11 and $7.12, \mathcal{R}$ is disjoint from the strict transform of each S_{c}. Thus f_{Z} is regular on Ω, and Ω is invariant under f_{Z}.

Proposition 7.13. For every S_{c} in Ω the dynamical degree of the restriction is $\delta\left(f_{c}^{3}\right)=\delta_{1}(f)^{3}$.

Proof: Let us denote Γ a hypersurface in Z whose cohomology class in $H^{1,1}(Z)$ is H_{Z}. It follows that the degree of $f_{Z}^{-3 n} \Gamma$ grows like $\delta_{1}(f)^{3 n}$. On the other hand $S_{c} \subset \Omega$ does not contain an irreducible component of the indeterminacy locus for f_{Z}. It follows that we have $S_{c} \cap$ $\left(f_{Z}^{3}\right)^{-n} \Gamma=\left(f_{Z}^{3}\right)^{-n}\left(S_{c} \cap \Gamma\right)$. Because S_{c} is non-singular and f_{Z}^{3} is pseudoautomorphism, the degree of $\left(f_{Z}^{3}\right)^{-n}\left(S_{c} \cap \Gamma\right)=\left(f_{c}^{3}\right)^{-n}\left(S_{c} \cap \Gamma\right)$ is $4 \delta_{1}(f)^{3 n}$. Thus the dynamical degree of f_{c}^{3} is $\delta_{1}(f)^{3}$.

Using the fact that f_{Z} is regular on the large invariant set Ω, we avoid the difficulties that can occur in defining the entropy of a map (see [G1]).

Theorem 7.14. The entropy of f is $\log \delta_{1}(f)$.

Proof: Since f is equivalent to a pseudo automorphism, and f_{Z}^{*} is conjugate to $\left(f_{Z}^{*}\right)^{-1}$, both the first and the second dynamical degrees are equal. Combining the result in $[\mathbf{D S}]$ and the fact that $h_{\text {top }}(f) \geq h_{\text {top }}\left(f_{0}\right)$, we have the inequality

$$
\log \delta_{1}(f) \geq h_{\mathrm{top}}(f) \geq h_{\mathrm{top}}\left(f_{0}\right)=\log \delta_{1}(f)
$$

which gives the result.
Since $\Xi^{ \pm}$and f_{Z} are regular on Ω, the potential of $g^{ \pm}$is continuous on Ω. Thus we may define the wedge product $T_{2}:=T^{+} \wedge T^{-}$as a positive, closed $(2,2)$-current on Ω, and we have:

Proposition 7.15. $\lim _{n \rightarrow \infty} \delta_{1}(f)^{-2 n} f_{Z}^{* n} \Xi^{+} \wedge f_{Z}^{*-n} \Xi^{-}=T_{2}$ exists as a (2,2)-current on Ω.

We have seen that the restrictions $\left.f^{3}\right|_{S_{c}}$ are automorphisms, and there are invariant currents $\mu_{c}^{ \pm}$on S_{c}, as well as invariant measures $\mu_{c}:=$ $\mu_{c}^{+} \wedge \mu_{c}^{-}$(see [C]). The following property leads us to consider $T^{ \pm}$ and T_{2} as the "bifurcation currents" for the family $\left\{\left.f^{3}\right|_{S_{c}}\right\}$ (see [DuF]).

Theorem 7.16. For $S_{c} \subset \Omega$ the slices by S_{c} are well-defined and give the corresponding dynamical objects: $\left.T^{ \pm}\right|_{S_{c}}=\mu_{c}^{ \pm}$, and $\left.T_{2}\right|_{S_{c}}=\mu_{c}$.

Proof: If we set $h=f^{3}$, then the class $\left[S_{c}\right]$ is invariant under h^{*}. Thus $\alpha^{+} \cdot\left[S_{c}\right] \in H^{1,1}\left(S_{c}\right)$ is a class that is expanded by a factor of $\delta_{1}(f)$. It follows that the restriction $\left.\Xi^{+}\right|_{S_{c}}$ gives the expanded class, and this converges to μ_{c}^{+}. Similarly, the normalized pullbacks/push-forwards of $\Xi^{+} \wedge \Xi^{-}$on S_{c} will converge to μ_{c}.

Theorem 7.17. For generic c^{\prime}, $c^{\prime \prime}$, the maps $\left.f^{3}\right|_{S_{c^{\prime}}}$ and $\left.f^{3}\right|_{S_{c^{\prime \prime}}}$ are not smoothly conjugate, and the surfaces $S_{c^{\prime}}$ and $S_{c^{\prime \prime}}$ are not isomorphic.

Proof: There is an invariant 6 -cycle of curves, $\Gamma_{j}, j=0, \ldots, 5$ for f. For generic $c, \Gamma_{j} \cap S_{c}$ is a saddle 2 -cycle for $\left.f^{3}\right|_{S_{c}}$. The multipliers of this saddle cycle are not constant in c, so the maps $\left.f^{3}\right|_{S_{c}}$ are not smoothly conjugate. Since the automorphism group of S_{c} is disconnected, we see that the family $\left\{S_{c}\right\}$ cannot consist of surfaces which are all isomorphic to each other.

Remark. If $a_{2} \neq 1$ is a primitive $5^{\text {th }}$ root of unity and $a_{0}=b_{0}=0$, then we may repeat most of the arguments in this section for this map. In particular, we have:

Theorem 7.18. If a_{2} is a primitive $5^{\text {th }}$ root of unity, and $a_{0}=b_{0}=$ 0 , then f is equivalent to a pseudo-automorphism, and the dynamical degrees $\delta_{1}(f)=\delta_{2}(f) \approx 1.3211018>1$ are the largest root of $t^{19}\left(t^{3}-t-\right.$ $1)+t^{3}+t^{2}-1$. The entropy of f is $\log \delta_{1}(f)>0$. Furthermore there are two quartic polynomials which are invariant in the sense of (B.1). This gives a family of $K 3$ surfaces which are invariant under f^{5}.

8. Pseudo-automorphisms which are completely integrable

Let us consider two cases for maps of the form (2.2):

$$
\begin{array}{ll}
\alpha=(a, 0,1,1), \quad a \neq 1, & \text { and } \beta=(0,1,0,0), \\
\alpha=(0,0, \omega, 1), \quad \omega^{3}=1, \quad \omega \neq 1, & \text { and } \beta=(0,1,0,0) . \tag{8.1b}
\end{array}
$$

The map (8.1a) has been extensively studied under the name Lyness process. The maps (8.1a) and (8.1b) exhibit similarities to the maps in the previous section: they are critical maps, and the iterates of the critical image $\Sigma_{B C}$ go "once around" the rotor and land on $\Sigma_{\beta \gamma}$. The difference with $\S 7$ is that $f_{Y}^{4} \Sigma_{B C}=\mathcal{F}_{0 \beta \gamma}$ is an indeterminate curve, and by Lemma 4.4 this fiber is mapped to $\mathcal{F}_{0 B C}$, that is, $f_{Y}^{4} \Sigma_{B C}=\mathcal{F}_{0 \beta \gamma} \subset$ S_{01} and $f_{Y}^{5} \Sigma_{B C}=\mathcal{F}_{0 B C} \subset S_{03}$. Thus $\Sigma_{B C}$ arrives at $\Sigma_{\beta \gamma}$ one step faster than was the case in $\S 7$.

Let $\pi: Z \rightarrow Y$ denote the space obtained by blowing up the orbit $f^{j} \Sigma_{B C}, f^{-j} \Sigma_{\beta \gamma}, 0 \leq j \leq 4$ (one curve less than the construction in $\S 7$).

Theorem 8.1. The induced map f_{Z} is a pseudo-automorphism, and the iterates of f have quadratic degree growth.

Proof: Since $f_{Y}^{9} \Sigma_{B C}=\Sigma_{\beta \gamma}$ and $f_{Y}^{4} \Sigma_{B C}=\mathcal{F}_{0 \beta \gamma}, f_{Y}^{5} \Sigma_{B C}=\mathcal{F}_{0 B C}$, we see that f_{Y} satisfies the condition in Theorem 5.1. This theorem then follows from Theorems 5.1 and Lemma 5.3.

Proposition 8.2. In cases (8.1a) and (8.1b), the induced rotor map $\left.f^{8}\right|_{\Sigma_{3}}$ has linear degree growth. This map is not birationally conjugate to a surface automorphism.

Proof: In the case (8.1b), the restriction of f_{Y}^{8} to Σ_{3} is given by setting $a_{0}=0$ in (7.3), so we find the degree 2 birational map:

$$
\begin{aligned}
\left.f_{Y}^{8}\right|_{\Sigma_{3}}: & {\left[x_{0}: x_{1}: x_{2}: 0\right] } \\
& \mapsto\left[x_{0} \omega^{2} x_{2}: x_{1}\left(x_{1}+\omega^{2} x_{0}+\omega^{2} x_{2}\right): \omega^{2} x_{2}\left(x_{1}+\omega^{2} x_{2}\right): 0\right]
\end{aligned}
$$

This map has three distinct exceptional lines. Two of exceptional lines are mapped to fixed points $[1: 0:-1: 0]$ and $[0: 1:-a: 0]$. The
remaining exceptional line is mapped to a point of indeterminacy $e=$ $[1:-1: 0: 0]$. We let W be the blowup space obtained by blowing up Σ_{3} at e. The induced map has only two exceptional lines which are mapped to fixed points and therefore the induced map is algebraically stable. The action on Pic is given by the matrix $\left(\begin{array}{cc}2 & 1 \\ -1 & 0\end{array}\right)$ which has an eigenvalue 1 with 2×2 Jordan block. It follows that the degree of restriction map grows linearly.

The analysis in the case (8.1a) is essentially the same. The induced rotor map is now:

$$
\begin{aligned}
\left.f_{Y}^{8}\right|_{\Sigma_{3}}: & {\left[x_{0}: x_{1}: x_{2}: 0\right] } \\
& \mapsto\left[x_{0}\left(a x_{0}+a x_{1}+x_{2}\right): x_{1}\left(x_{0}+x_{1}+x_{2}\right): x_{2}\left(a x_{0}+x_{1}+x_{2}\right): 0\right]
\end{aligned}
$$

This map has three exceptional lines. Two of them are mapped to fixed points $[1: 0:-1]$ and $[0: 1:-a]$. The third exceptional line is mapped to $[1:-1: 0]$, which is indeterminate. After we blow up the point $[1:-1: 0]$, the induced map is algebraically stable and the action on Pic has an eigenvalue 1 with 2×2 Jordan block.

Finally, since the restriction of f_{W} to the rotor has linear degree growth. It follows from $[\mathbf{D i F}]$ that this restriction is not an automorphism.

We consider first the Lyness map, i.e., case (8.1a). This is known to be integrable, and the invariant polynomials are given in [CGMs] and $[\mathbf{K o L}]$. These invariant polynomials, which satisfy (B.1) with $t=1$, are:

$$
\begin{align*}
& Q_{0}=x_{0} x_{1} x_{2} x_{3} \\
& Q_{1}=\left(a x_{0}+x_{1}+x_{2}+x_{3}\right)\left(x_{0}+x_{1}\right)\left(x_{0}+x_{2}\right)\left(x_{0}+x_{3}\right) \tag{8.2}\\
& Q_{2}=\left(x_{0}\left(a x_{0}+x_{1}+x_{2}+x_{3}\right)+x_{1} x_{3}\right)\left(x_{0}+x_{1}+x_{2}\right)\left(x_{0}+x_{2}+x_{3}\right) .
\end{align*}
$$

The set $\left\{Q_{0}=0\right\}$ gives an invariant 8-cycle of rational surfaces, which is the rotor $\mathcal{R} \subset Y$. (Although $Q_{0}=0$ consists of 4 irreducible components in \mathbf{P}^{3}, it yields an 8-cycle inside Y because these components map through the indeterminacy locus, which is blown up to yield an additional 4 divisors.) The set $\left\{Q_{1}=0\right\}$ gives an invariant 4-cycle, and $\left\{Q_{2}=0\right\}$ gives an invariant 3-cycle; the components of the 8-, 4-, and 3 -cycles are rational surfaces. As we observed in $\S 4, f_{Y}$ induces dominant maps on each of these cycles. And as in Proposition 8.2, we may show that the restriction of f^{4} to the 4 -cycle, and the restriction of f^{3} to the 3 -cycle both have linear degree growth.

Let us define the surfaces $S_{c}=\left\{Q_{c}=0\right\}$ with $Q_{c}:=c_{0} Q_{0}+c_{1} Q_{1}+$ $c_{2} Q_{2}$. If we also write S_{c} for its strict transform inside Z, we have $f S_{c}=S_{c}$.

Theorem 8.3. For generic c, the surface S_{c} is an irreducible $K 3$ surface.

Proof: For generic c, we find that S_{c} has 16 singular points: two of them are e_{1}, e_{3}, which are type A_{2}, and there are 14 more which are of type A_{1}. In the construction of Z, we blew up e_{1} and e_{3}. Then we blew up $f^{j} \Sigma_{B C}, 0 \leq j \leq 10$, and the other 14 singular points are contained in these curves. It follows that the strict transform of S_{c} inside Z is smooth and thus $K 3$.

Theorem 8.4. For generic c and c^{\prime}, the intersection $S_{c} \cap S_{c^{\prime}}$ is an elliptic curve. The restriction of f^{3} to S_{c} has quadratic degree growth.

Proof: Since S_{c} is a $K 3$ surface, it has trivial canonical bundle. Thus the birational map f^{3} of S_{c} must be an automorphism. For generic c and $c^{\prime} \neq c$, the intersections $S_{c} \cap S_{c^{\prime}}$ give an invariant fibration of S_{c}. Since $f^{3} \mid S_{c}$ is an automorphism, then by $[\mathbf{D i F}]$ the intersection $S_{c} \cap S_{c^{\prime}}$ is an elliptic curve and the restriction of f to the family of $K 3$ surfaces has quadratic degree growth.

The map (8.1b) is similar. In this case the solutions to (B.1) take the form:

$$
\begin{align*}
R_{0}= & x_{0} x_{1} x_{2} x_{3} \\
R_{1}= & \left(x_{0}+\omega x_{1}\right)\left(x_{0}+\omega x_{2}\right)\left(x_{0}+\omega x_{3}\right)\left(x_{1}+\omega^{2} x_{2}+\omega x_{3}\right) \\
R_{2}= & \omega x_{1} x_{3}\left(x_{0}+\omega x_{1}\right)\left(x_{0}+\omega x_{3}\right) \tag{8.3}\\
& +\omega^{2} x_{0} x_{2}\left(x_{0}\left(x_{1}+\omega x_{3}\right)+x_{2}\left(\omega x_{1}+x_{3}\right)+\omega^{2} x_{0} x_{2}\right),
\end{align*}
$$

where $t_{R_{0}}=1, t_{R_{1}}=\omega^{2}$, and $t_{R_{2}}=\omega^{2}$. As before, we see that f_{Z} will have an invariant 8 -cycle given by the rotor $\mathcal{R} \subset Z$. And $\left\{R_{1}=0\right\}$ will give a 4 -cycle of rational surfaces. For generic c, the singularities of the surface $S_{c}=\left\{\sum c_{j} R_{j}=0\right\}$ are e_{1}, e_{3} (type A_{2}) and e_{2} (type A_{1}). As in Theorems 8.3 and 8.4, we have:

Theorem 8.5. In case (8.1b): for generic c, S_{c} is a $K 3$ surface, f^{3} is an automorphism of S_{c} with quadratic growth, and the intersections $S_{c} \cap S_{c^{\prime}}$ are elliptic curves.

A. Appendix: Computing the characteristic polynomial for f_{Z}^{*}

We continue to assume that f is a critical map for which (5.1) holds and let $\pi: Z \rightarrow \mathbf{P}^{3}$ be the space constructed in Theorem 5.1. We continue with the notation $\mu_{j}:=f_{Y}^{j}\left(\Sigma_{\gamma}\right)$. Recall that in Cases 1 and 2 in the proof of Theorem 5.1, the space Z was constructed by blowing up the varieties $\mu_{j}, 1 \leq j \leq N$. In this situation, we will consider f_{Z}^{*} acting on $\operatorname{Pic}(Z)$ in Lemma A. 1 below.

The remaining scenario in the proof of Theorem 5.1 is Case 3 (since Case 4 was shown not to happen), and in this case there is a cycle of curves $\gamma_{0}:=\mathcal{F}_{0 B C}, \gamma_{1}=f_{Y}\left(\mathcal{F}_{0 B C}\right), \ldots, \gamma_{\ell}=f_{Y}^{\ell}\left(\mathcal{F}_{0 B C}\right)=\mathcal{F}_{0 \beta \gamma}$. The space Z was constructed by blowing up the curves $\gamma_{0}, \ldots, \gamma_{\ell}$ and the varieties μ_{1}, \ldots, μ_{N}. We may choose whether to blow up the γ_{i} 's first and then the μ_{j} 's, or the other way around. For instance, if μ_{i} is a point of γ_{j}, we may blow up μ_{i} first and then blow up the strict transform of γ_{j} later. On the other hand, we may blow up γ_{j} first, writing Γ_{j} as the blowup divisor over γ_{j}. Then the fiber $\hat{\mu}_{i}:=\pi^{-1}\left(\mu_{i}\right)$ is a curve in Γ_{j}, and we may blow up the curve $\hat{\mu}_{i}$ later. If Z^{\prime} and $Z^{\prime \prime}$ are obtained by blowing up these varieties in different orders, then the identity map $\iota: Y \rightarrow Y$ induces a pseudo-isomorphism between Z^{\prime} and $Z^{\prime \prime}$, and this gives a natural identification between $\operatorname{Pic}\left(Z^{\prime}\right)$ and $\operatorname{Pic}\left(Z^{\prime \prime}\right)$.

In this case, Γ_{k} is taken by f_{Z}^{-1} to $\Gamma_{k-1}, 1 \leq k \leq \ell$, and Γ_{0} is taken to Γ_{ℓ}. Since f_{Z} is a pseudo-automorphsm, this is sufficient to determine its action on the cohomology classes $\left\{\Gamma_{k}\right\}$. We define $\hat{\Gamma} \subset \operatorname{Pic}(Z)$ to be the subspace spanned by the classes of the divisors $\Gamma_{0}, \ldots, \Gamma_{\ell}$, and thus $\hat{\Gamma}$ is invariant under f_{Z}^{*}. In this scenario, we will consider the quotient map induced by f_{Z}^{*} acting on the quotient space $\operatorname{Pic}(Z) / \hat{\Gamma}$, and it is this quotient map that we will represent in Lemma A.1.

Let $m_{u}, m_{d}, m_{s}, d_{j}, u_{j}, s_{j}$ and N be the numbers defined in $\S 5$. We define the $(N+5) \times(N+5)$ matrix

$$
\left(\begin{array}{ccccccccc}
2 & 0 & 1 & 0 & 1 & 0 & \cdots & 0 & 1 \tag{A.1}\\
-1 & 0 & -1 & 0 & 0 & 0 & \cdots & 0 & -1 \\
0 & 1 & -1 & 0 & 0 & 0 & \cdots & 0 & 0 \\
-1 & 0 & -1 & 0 & -1 & 0 & \cdots & 0 & 0 \\
-1 & 0 & -1 & 1 & -1 & 0 & \cdots & 0 & 0 \\
-1 & 0 & 0 & 0 & -1 & 0 & \cdots & 0 & -1 \\
* & & & & & & & & * \\
\vdots & & & & & & & & \vdots \\
* & & & & & & & & *
\end{array}\right)
$$

where the $*$'s indicate that the $7^{\text {th }}$ through the $N+5^{\text {th }}$ rows remain to be specified. We will define the $j^{\text {th }}$ row r_{j} in terms of the elements e_{k}, which are vectors of length $N+5$ in which the $k^{\text {th }}$ entry is 1 , and all other entries are 0 :
(a) if $j=N-d_{i}$ for some $i=1, \ldots, m_{d}$, then $r_{j+6}=e_{j+5}-e_{N+5}$;
(b) if $j=N-u_{i}$ for some $i=1, \ldots, m_{u}$, then $r_{j+6}=-e_{1}-e_{5}+e_{j+5}-$ e_{N+5}
(c) if $j=N-s_{i}$, for some $i=1, \ldots, m_{s}$,
$r_{j+2}=-e_{1}-e_{3}+e_{j+1}-e_{N+5}, \quad r_{j+3}=-e_{3}+e_{j+2}$,
$r_{j+4}=-e_{1}-e_{3}-e_{5}+e_{j+3}-e_{N+5}, \quad r_{j+5}=-e_{1}-e_{3}-e_{5}+e_{j+4}$,
$r_{j+6}=-e_{5}+e_{j+5} ;$
(d) if $j=N-m_{\mathcal{F}}$, then

$$
\begin{aligned}
r_{j+4} & =-2 e_{1}-e_{3}-2 e_{5}+e_{j+3}-e_{N+5} \\
r_{j+5} & =-e_{1}-e_{3}-e_{5}+e_{j+4} \\
r_{j+6} & =-e_{5}+e_{j+5}
\end{aligned}
$$

(e) if $j=N-m_{c \mathcal{F}}$, then

$$
\begin{aligned}
r_{j+4} & =-e_{1}-e_{3}+e_{j+3}-e_{N+5} \\
r_{j+5} & =-e_{3}+e_{j+2} \\
r_{j+6} & =-e_{1}-e_{3}-e_{5}+e_{j+3}-e_{N+5}
\end{aligned}
$$

(f) otherwise, $r_{j+6}=e_{j+5}$.

Let us define $\beta^{\prime}:=\left(\beta_{0}, 0,1,0\right)$ and $\beta^{\prime \prime}:=\left(\beta_{0}, 0,0,1\right)$, so we have

$$
\Sigma_{\beta^{\prime \prime}} \rightarrow \Sigma_{\beta^{\prime}} \rightarrow \Sigma_{\beta} \rightarrow E_{3} \rightarrow S_{01} \rightarrow \Sigma_{0} \rightarrow S_{03} \rightarrow E_{1} \rightarrow \Sigma_{3} \rightarrow \Sigma_{2} \rightarrow \Sigma_{1}
$$

Note that if $\beta_{0}=0$, then $\Sigma_{\beta}=\Sigma_{1}$, and this becomes the 8-cycle in (7.2). The following curves are important for computing f_{Z}^{*}
(A.2) f_{Y} :

$$
\begin{aligned}
& \ell_{\beta}:=\Sigma_{\beta} \cap\left\{\alpha_{2} x_{2}+\left(1+\alpha_{2} \beta_{0}\right) x_{0}=0\right\} \rightarrow f\left(\ell_{\beta}\right) \rightarrow \mathcal{F}_{0 \beta \gamma}, \\
& \ell_{\beta}^{\prime}:=\Sigma_{\beta^{\prime \prime}} \cap \Sigma_{\beta} \rightarrow E_{3} \cap \Sigma_{\beta^{\prime}} \rightarrow S_{01} \cap \Sigma_{\beta} \rightarrow \Sigma_{0} \cap E_{3} .
\end{aligned}
$$

Lemma A.1. There is a basis of $\operatorname{Pic}(Z)($ or $\operatorname{Pic}(Z) / \hat{\Gamma})$ with respect to which the matrix (A.1) represents f_{Z}^{*}.

Proof: We will use the notation \mathcal{F}_{j} for the blowup divisor of μ_{j}. There are three cases to consider.

Case (I): Whenever $1 \leq j \leq N$ and $\mu_{j} \subset \Sigma_{\beta}$, then $\mu_{j} \subset \Sigma_{\beta \gamma} \cup \ell_{\beta}$. In this case we have

$$
\begin{aligned}
f_{Z}^{*} H_{Z}= & 2 \mathcal{H}_{Z}-E_{1}-S_{01}-E_{3}-\sum_{i=1}^{m_{u}} \mathcal{F}_{u_{i}} \\
& -\sum_{i=1}^{m_{s}}\left(\mathcal{F}_{s_{i}+1}+\mathcal{F}_{s_{i}+2}+\mathcal{F}_{s_{i}+4}\right)-\mathcal{F}_{m_{\mathcal{F}}+1}-2 \mathcal{F}_{m_{\mathcal{F}}+2}-\mathcal{F}_{m_{c \mathcal{F}}+2} \\
\left\{\Sigma_{0}\right\}= & \mathcal{H}_{Z}-E_{1}-S_{03}-S_{01}-E_{3} \\
& -\sum_{i=1}^{m_{s}}\left(\mathcal{F}_{s_{i}+1}+\mathcal{F}_{s_{i}+2}+\mathcal{F}_{s_{i}+3}+\mathcal{F}_{s_{i}+4}\right) \\
& -\mathcal{F}_{m_{\mathcal{F}}+1}-\mathcal{F}_{m_{\mathcal{F}}+2}-\mathcal{F}_{m_{c \mathcal{F}}+1}-\mathcal{F}_{m_{c \mathcal{F}}+2} \\
\left\{\Sigma_{\beta}\right\}= & \mathcal{H}_{Z}-S_{01}-E_{3}-\mathcal{F}_{N}-\sum_{i=1}^{m_{u}} \mathcal{F}_{u_{i}} \\
& -\sum_{i=1}^{m_{s}}\left(\mathcal{F}_{s_{i}}+\mathcal{F}_{s_{i}+1}+\mathcal{F}_{s_{i}+2}\right)-\mathcal{F}_{m_{\mathcal{F}}}-\mathcal{F}_{m_{\mathcal{F}}+1}-2 \mathcal{F}_{m_{\mathcal{F}}+2} \\
\left\{\Sigma_{\gamma}\right\}= & \mathcal{H}_{Z}-E_{1}-\mathcal{F}_{N}-\sum_{i=1}^{m_{s}}\left(\mathcal{F}_{s_{i}+2}+\mathcal{F}_{s_{i}+4}\right) \\
& -\sum_{i=1}^{m_{u}} \mathcal{F}_{u_{i}}-\sum_{i=1}^{m_{d}} \mathcal{F}_{d_{i}}-\mathcal{F}_{m_{\mathcal{F}}+2}-\mathcal{F}_{m_{c \mathcal{F}}}-\mathcal{F}_{m_{c \mathcal{F}}+2}
\end{aligned}
$$

Since we have $f_{Z}^{*}: E_{1} \mapsto S_{03} \mapsto\left\{\Sigma_{0}\right\}, S_{01} \mapsto E_{3} \mapsto\left\{\Sigma_{\beta}\right\}, \mathcal{F}_{j} \mapsto$ \mathcal{F}_{j-1} for all $j=2, \ldots, N$, and $\mathcal{F}_{1} \mapsto\left\{\Sigma_{\gamma}\right\}$ using the ordered ba$\operatorname{sis}\left\{H_{Z}, E_{1}, S_{03}, S_{01}, E_{3}, \mathcal{F}_{N}, \mathcal{F}_{N-1}, \ldots, \mathcal{F}_{2}, \mathcal{F}_{1}\right\}$ for $\operatorname{Pic}(Z)$ we see that (A.1) is the matrix representation for f_{Z}^{*}.

Case (II): There are κ positive integers $1<p_{1}<\cdots<p_{\kappa}<N$ such that for $j=1, \ldots, \kappa, \mu_{p_{j}} \subset \Sigma_{\beta} \backslash\left(\ell_{\beta} \cup \Sigma_{\beta \gamma} \cup \ell_{\beta}^{\prime}\right)$.

For this case let us use the ordered basis

$$
\tilde{\mathcal{B}}=\left\{H_{Z}, \tilde{E}_{1}, \tilde{S}_{03}, \tilde{S}_{01}, \tilde{E}_{3}, \mathcal{F}_{N}, \mathcal{F}_{N-1}, \ldots, \mathcal{F}_{2}, \mathcal{F}_{1}\right\}
$$

for $\operatorname{Pic}(Z)$ where $\tilde{E}_{3}=E_{3}+\sum_{i=1}^{\kappa} \mathcal{F}_{p_{i}+1}, \tilde{S}_{01}=S_{01}+\sum_{i=1}^{\kappa} \mathcal{F}_{p_{i}+2}, \tilde{S}_{03}=$ $S_{03}+\sum_{i=1}^{\kappa} \mathcal{F}_{p_{i}+4}$, and $\tilde{E}_{1}=E_{1}+\sum_{i=1}^{\kappa} \mathcal{F}_{p_{i}+5}$. Using this new ordered
basis we can see that

$$
\begin{aligned}
& f_{Z}^{*}: \tilde{E}_{1} \mapsto \tilde{S}_{03} \mapsto\left\{\Sigma_{0}\right\} \\
& \quad+\sum_{i=1}^{\kappa} \mathcal{F}_{p_{i}+3}=\mathcal{H}_{Z}-\tilde{E}_{1}-\tilde{S}_{03}-\tilde{S}_{01}-\tilde{E}_{3} \\
& -\sum_{i=1}^{m_{s}}\left(\mathcal{F}_{s_{i}+1}+\mathcal{F}_{s_{i}+2}+\mathcal{F}_{s_{i}+3}+\mathcal{F}_{s_{i}+4}\right) \\
& \\
& \quad-\mathcal{F}_{m_{\mathcal{F}}+1}-\mathcal{F}_{m_{\mathcal{F}}+2}-\mathcal{F}_{m_{c \mathcal{F}}+1}-\mathcal{F}_{m_{c \mathcal{F}}+2}
\end{aligned}
$$

In a similar way we may compute f_{Z}^{*} of $H_{Z}, \tilde{S}_{01}, \tilde{E}_{3}$ and \mathcal{F}_{N} and see that the matrix representation with $\tilde{\mathcal{B}}$ is given by (A.1).

Case (III): There are τ integers $1<q_{1}<\cdots<q_{\tau}<N$ such that $\mu_{q_{j}} \subset \ell_{\beta}^{\prime}$ for $j=1, \ldots, \tau$.

Let us consider the ordered basis

$$
\hat{\mathcal{B}}=\left\{H_{Z}, \hat{E}_{1}, \hat{S}_{03}, \hat{S}_{01}, \hat{E}_{3}, \mathcal{F}_{N}, \mathcal{F}_{N-1}, \ldots, \mathcal{F}_{2}, \mathcal{F}_{1}\right\}
$$

for $\operatorname{Pic}(Z)$ where $\hat{E}_{3}=\tilde{E}_{3}+\sum_{i=1}^{\tau}\left(\mathcal{F}_{q_{i}+1}+\mathcal{F}_{q_{i}+3}\right), \hat{S}_{01}=\tilde{S}_{01}+\sum_{i=1}^{\tau}\left(\mathcal{F}_{q_{i}+2}+\right.$ $\left.\mathcal{F}_{q_{i}+4}\right), \hat{S}_{03}=\tilde{S}_{03}+\sum_{i=1}^{\tau}\left(\mathcal{F}_{q_{i}+4}+\mathcal{F}_{q_{i}+6}\right)$, and $\hat{E}_{1}=\tilde{E}_{1}+\sum_{i=1}^{\tau}\left(\mathcal{F}_{q_{i}+5}+\right.$ $\left.\mathcal{F}_{q_{i}+7}\right)$. Since $f_{Y}^{2} \ell_{\beta}^{\prime}=\Sigma_{\beta} \cap S_{01}$, we have

$$
\begin{aligned}
\left\{\Sigma_{\beta}\right\}= & \mathcal{H}_{Z}-\tilde{S}_{01}-\tilde{E}_{3}-\sum_{i=1}^{\tau}\left(\mathcal{F}_{q_{i}}+\mathcal{F}_{q_{i}+1}+2 \mathcal{F}_{q_{i}+2}+\mathcal{F}_{q_{i}+3}+\mathcal{F}_{q_{i}+4}\right)-\mathcal{F}_{N} \\
& -\sum_{i=1}^{m_{u}} \mathcal{F}_{u_{i}}-\sum_{i=1}^{m_{s}}\left(\mathcal{F}_{s_{i}}+\mathcal{F}_{s_{i}+1}+\mathcal{F}_{s_{i}+2}\right)-\mathcal{F}_{m_{\mathcal{F}}}-\mathcal{F}_{m_{\mathcal{F}}+1}-2 \mathcal{F}_{m_{\mathcal{F}}+2} \\
= & \mathcal{H}_{Z}-\hat{S}_{01}-\hat{E}_{3}-\sum_{i=1}^{\tau}\left(\mathcal{F}_{q_{i}}+\mathcal{F}_{q_{i}+2}\right)-\mathcal{F}_{N}-\sum_{i=1}^{m_{u}} \mathcal{F}_{u_{i}} \\
& -\sum_{i=1}^{m_{s}}\left(\mathcal{F}_{s_{i}}+\mathcal{F}_{s_{i}+1}+\mathcal{F}_{s_{i}+2}\right)-\mathcal{F}_{m_{\mathcal{F}}}-\mathcal{F}_{m_{\mathcal{F}}+1}-2 \mathcal{F}_{m_{\mathcal{F}}+2}
\end{aligned}
$$

It follows that we have

$$
\begin{aligned}
f_{Z}^{*}: & \hat{S}_{01} \mapsto \hat{E}_{3} \mapsto\left\{\Sigma_{\beta}\right\} \\
& +\sum_{i=1}^{\tau}\left(\mathcal{F}_{q_{i}}+\mathcal{F}_{q_{i}+2}\right)=\mathcal{H}_{Z}-\hat{S}_{01}-\hat{E}_{3}-\mathcal{F}_{N} \\
& -\sum_{i=1}^{m_{u}} \mathcal{F}_{u_{i}}-\mathcal{F}_{m_{s}}-\mathcal{F}_{m_{s}+1}-\mathcal{F}_{m_{s}+2}
\end{aligned}
$$

For the other basis elements, computations are essentially identical and thus we see that (A.1) represents f_{Z}^{*} with respect to the ordered basis $\hat{\mathcal{B}}$.

According to the previous lemma, we see that the characteristic polynomial of f_{Z}^{*} only depends on $m_{u}, m_{d}, m_{s}, d_{j}, u_{j}, s_{j}, m_{\mathcal{F}}, m_{c \mathcal{F}}$ and N.

Lemma A.2. The characteristic polynomial of f_{Z}^{*} is given by
$\pm t^{N-1}\left(t^{2}+1\right)\left[\left(Q_{1}-Q_{4}\right) t^{3}+\left(2 Q_{1}-Q_{2}-Q_{3}-Q_{4}\right) t^{2}+\left(Q_{1}-Q_{3}\right) t+Q_{4}\right]$.
Proof: We subtract $t I$ from the matrix (A.1) and perform a sequence of row operations on it. Step (i): we add or subtract the $6^{\text {th }}$ row to the rows whose last entry is 1 or -1 and then (ii) for $j=1, \ldots, N-1$, we subtract $1 / t^{j}$ times the $N+4-j^{\text {th }}$ row from $6^{\text {th }}$ row. This gives

$$
\operatorname{det}\left(f_{Z}^{*}-t I\right)=\operatorname{det}\left(\begin{array}{cc}
A & 0 \\
* & B
\end{array}\right)
$$

where

$$
\begin{aligned}
& A=\left(\begin{array}{cccccc}
1-t & 0 & 1 & 0 & 0 & -t \\
1-t & -t & 0 & 0 & 1 & 0 \\
0 & 1 & -1-t & 0 & 0 & 0 \\
-1 & 0 & -1 & -t & -1 & 0 \\
-1 & 0 & -1 & 1 & -1-t & 0 \\
Q_{1} & 0 & Q_{2} & 0 & Q_{3} & Q_{4}
\end{array}\right), \\
& B=\left(\begin{array}{cccccc}
-t & 0 & 0 & \cdots & 0 & 0 \\
1 & -t & 0 & \cdots & 0 & 0 \\
0 & 1 & -t & \cdots & 0 & 0 \\
\vdots & & \ddots & \ddots & & 0 \\
0 & & & \ddots & -t & 0 \\
0 & & & 1 & -t
\end{array}\right)
\end{aligned}
$$

with $Q_{1}, Q_{2}, Q_{3}, Q_{4}$ as in $\S 5$. We have

$$
\operatorname{det}\left(f_{Z}^{*}-t \mathrm{Id}\right)=(-1)^{N-1} t^{N-1} \operatorname{det}(A)
$$

and we evaluate $\operatorname{det}(A)$ to obtain the polynomial given above.

B. Appendix: Invariant polynomials

We will look for polynomials $P(x)=\sum a_{I} x^{I}$ which are invariant in the sense that

$$
\begin{equation*}
P \circ f=t \cdot j_{f} \cdot P \tag{B.1}
\end{equation*}
$$

where $t \neq 0$ is constant, and $j_{f}=2 x_{0}(\gamma \cdot x)(\beta \cdot x)^{2}$ is the Jacobian determinant. If P and Q are solutions to (B.1) with multipliers t_{P} and t_{Q}, then $\varphi=P / Q$ is a rational function with the invariance property: $\varphi \circ f=\left(t_{P} t_{Q}^{-1}\right) \varphi$. If P is a solution to (B.1), then P defines a meromorphic 3 -form Ω_{P} : on the set $x_{0} \neq 0$, it is given by $P\left(1, x_{1}, x_{2}, x_{3}\right)^{-1} d x_{1} \wedge d x_{2} \wedge d x_{3}$. This is invariant in the sense that $f^{*} \Omega_{P}=t_{P}^{-1} \Omega_{P}$. It follows that $\{P=0\}$ is an f-invariant surface which represents the canonical class in \mathbf{P}^{3} and its strict transforms are invariant surfaces which represent the canonical classes in Y and Z.

The equation (B.1) can be rewritten as a system of linear equations for the coefficients of the monomials in P. This system can be solved directly for all the maps in $\S 7$ and $\S 8$. For instance, in $\S 7, \omega$ is a non-real root of unity and $a_{0}=a \neq 0$, and we find a solution for $t=\omega^{2}$:

$$
\begin{aligned}
P_{1}= & (1-\omega)\left(a^{2} x_{0}^{4}+(1+a) x_{0} x_{1} x_{2}^{2}+x_{1}^{2} x_{3}^{2}+a x_{1} x_{2} x_{3}^{2}\right) \\
& -(2+\omega)\left(x_{0} x_{2}^{3}+(1+a) x_{0} x_{1}^{2} x_{3}+a x_{1} x_{2}^{2} x_{3}+a x_{0}^{2} x_{3}^{2}\right) \\
& +(1+2 \omega)\left(a x_{0}^{2} x_{1}^{2}+a x_{0} x_{1}^{2} x_{2}+a x_{1}^{2} x_{2} x_{3}+a x_{0} x_{2} x_{3}^{2}\right) \\
& +a x_{0}^{3} x_{1}(1+a+2 \omega-a \omega) \\
& +(1-2 a+2 \omega-a \omega)\left((1+a) x_{0}^{2} x_{1} x_{3}+x_{0} x_{2}^{2} x_{3}\right) \\
& +x_{0}^{2} x_{2}^{2}(1-a+2 \omega+a \omega) \\
& -(2-a+\omega+a \omega)\left((1+a) x_{0}^{2} x_{1} x_{2}+x_{0} x_{1} x_{3}^{2}\right)+a x_{0}^{3} x_{3}(1-2 a-\omega-a \omega) \\
& +(1+a) x_{0}^{2} x_{2} x_{3}(1+a-\omega+2 a \omega)+a x_{0}^{3} x_{2}(2+a+\omega+2 a \omega) .
\end{aligned}
$$

C. Appendix: The rotor map

Let $g:=\left.f_{Z}^{8}\right|_{\Sigma_{3}}$ denote the rotor map restricted to Σ_{3}, which is written in coordinates in (7.3). By factoring the jacobian determinant, we see
that there are four exceptional curves.

$$
\begin{aligned}
& \mathcal{C}_{1}=\left\{a x_{0}+\omega x_{2}=0\right\} \\
& \mathcal{C}_{2}=\left\{a x_{0}+a x_{1}+\omega x_{2}=0\right\}, \\
& \mathcal{C}_{3}=\left\{a \omega x_{0}+x_{1}+\omega^{2} x_{2}=0\right\}, \\
& \mathcal{C}_{4}=\left\{a \omega x_{0}^{2}+a \omega x_{0} x_{1}+a \omega x_{0} x_{2}+\omega^{2} x_{0} x_{2}+x_{1} x_{2}+\omega^{2} x_{2}^{2}=0\right\}
\end{aligned}
$$

Lemma C.1. If $a \neq \omega^{j}$ and $a^{j} \neq \omega^{j \pm 2}$ for all $j \geq 2$, then g is not birationally conjugate to an automorphism.

Proof: The exceptional curves \mathcal{C}_{2} and \mathcal{C}_{4} mapped to a three cycle: $g: \mathcal{C}_{2} \mapsto$ $[0: 1:-a \omega] \mapsto[0: 1:-a] \mapsto\left[0: 1:-a \omega^{2}\right] \mapsto[0: 1:-a \omega]$ and $g: \mathcal{C}_{4} \mapsto\left[1: 0-\omega^{2}\right] \mapsto[1: 0:-\omega] \mapsto[1: 0:-1] \mapsto\left[1: 0:-\omega^{2}\right]$. For \mathcal{C}_{3} we see that $g^{j} \mathcal{C}_{3}=\left[1:-\omega^{2}(\omega / a)^{j-1}: 0\right]$ for all $j \geq 1$. It follows that these three curves have orbits that do not encounter the indeterminacy locus of g. The remaining exceptional curve \mathcal{C}_{1} mapped to $e_{1}=[0: 1: 0]$, which is indeterminate. We let W be the space obtained by blowing up Σ_{3} at e_{1}, and we let E_{1} be the corresponding exceptional divisor. Under the induced map g_{W} we have $g_{W}\left(E_{1}\right)=E_{1}$ and the orbit of the strict transform of \mathcal{C}_{1} remains in E_{1} and does not encounter the indeterminacy locus of g_{W}.

Now if H denote the class of a generic line in W, then $\left\langle H, E_{1}\right\rangle$ is an ordered basis for $\operatorname{Pic}(W)$. The action on Pic is given by the matrix $g_{W}^{*}=\left(\begin{array}{cc}3 & 1 \\ -1 & 0\end{array}\right)$. The largest eigenvalue is $\lambda=(3+\sqrt{5}) / 2$ and invariant class is given by $\theta=\lambda H-E_{1}$. Since $\theta^{2}=\lambda^{2}-1 \neq 0$, it follows from $[\mathbf{D i F}$, Theorem 5.4] that g is not birationally conjugate to an automorphism.

Lemma C.2. If $a^{j}=\omega^{j-2}$ for some $j \geq 2$, then g is not birationally conjugate to an automorphism.

Proof: In case $a^{j}=\omega^{j-2}$ for some $j \geq 2$, the orbits of three exceptional curves $\mathcal{C}_{2}, \mathcal{C}_{3}$, and \mathcal{C}_{4} are the same as the previous lemma. After we blow up e_{1} on Σ_{3}, the strict transform of \mathcal{C}_{1} mapped to a point of indeterminacy after j-th iteration of g_{W}. We let W_{2} be the space obtained by blowing up W at $g_{W}^{k} \mathcal{C}_{1}$ for $k=1, \ldots, j$ and we let $F_{k}, 1 \leq k \leq j$ be the corresponding exceptional divisors. Under the induced map $g_{W_{2}}$, the exceptional line \mathcal{C}_{1} is removed and the orbits of remaining three exceptional curves do not encounter the indeterminacy locus of $g_{W_{2}}$.

Let $\left\langle H, F_{j}, F_{j-1}, \ldots, F_{1}, E_{1}\right\rangle$ be the ordered basis for $\operatorname{Pic}\left(W_{2}\right)$. The characteristic polynomial of the action on Pic is given by $t^{j+2}-4 t^{j+1}+$ $3 t^{j}+t^{2}-2 t+1$. It follows that the dynamical degree is not a Salem
number. Thus by $[\mathbf{D i F}], g$ is not birationally conjugate to an automorphism.

Lemma C.3. If $a^{j}=\omega^{j+2}$ for some $j \geq 2$, then g is not birationally conjugate to an automorphism.

Proof: When $a^{j}=\omega^{j+2}$, the orbit of \mathcal{C}_{3} is different from Lemma C.1, that is $g^{j+1} \mathcal{C}_{3}=[1:-1: 0]$, which is indeterminate. We let W_{3} be the space obtained by blowing up Σ_{3} at e_{1} and $g^{k} \mathcal{C}_{3}, 1 \leq k \leq j+1$, and we let E_{1} and $F_{k}, 1 \leq k \leq j+1$ be the corresponding exceptional divisors. Using the ordered basis $\left\langle H, F_{j+1}, F_{j}, \ldots, F_{1}, E_{1}\right\rangle$ for $\operatorname{Pic}\left(W_{3}\right)$, we see that the characteristic polynomial of the action on Pic is given by $t^{j+3}-3 t^{j+2}+t^{j+1}+t$. Similarly as in Lemma C.2, the dynamical degree is not a Salem number and therefore g is not birationally conjugate to an automorphism.

Lemma C.4. If $a=\omega$, then g is not birationally conjugate to an automorphism.

Proof: In this case we see that \mathcal{C}_{2} is mapped to a point of indeterminacy under 2 iterations and \mathcal{C}_{4} is also mapped to a point of indeterminacy under 3 iterations. After we blow up e_{1}, we can check that the orbits of other two remaining exceptional lines does not encounter the indeterminacy locus. After we blow up the orbit of \mathcal{C}_{2} and the orbit of \mathcal{C}_{4}, we see that the dynamical degree of g is given by the largest root of the polynomial $t^{3}-t^{2}-2 t-1$. Again since this number is not a Salem number we have our result.

Lemma C.5. If $a=\omega^{2}$, then g is not birationally conjugate to an automorphism.

Proof: If $a=\omega^{2}$ the each component of g has the same factor $x_{0}+x_{1}+$ $\omega^{2} x_{2}$. It follows that the restriction of f_{Y}^{8} to Σ_{3} is a degree 2 birational map. There are two exceptional lines and both exceptional lines are mapped to points of indeterminacy. After we blow up the points on the orbits of three exceptional lines, we see that the induced map has one exceptional line which is mapped to a point of indeterminacy. Once we blow up this point of indeterminacy, we see that the induced map has no exceptional lines and therefore the induced map is algebraically stable. Furthermore the characteristic polynomial of the action on Pic is $t(1+t)(t-1)^{3}$ and the action on Pic has 2×2 Jordan block. It follows that the degree of g grows linearly. According to $[\mathbf{D i F}]$, we have that g is not birationally conjugate to an automorphism.

Lemma C.6. If $a=1$, then the degree of g^{n} grows quadratically.
Proof: For this case all four exceptional curves are mapped to points of indeterminacy: $g: \mathcal{C}_{1} \mapsto e_{1}, \mathcal{C}_{2} \mapsto[0: 1:-\omega], \mathcal{C}_{3} \mapsto\left[1:-\omega^{2}: 0\right] \mapsto[1:$ $-1: 0]$ and $g: \mathcal{C}_{4} \mapsto\left[1: 0:-\omega^{2}\right]$. We let Z be the space obtained by blowing up Σ_{3} at all five points in the orbit of exceptional curves and we let $E_{1}, Q_{2}, Q_{3}, Q_{4}$, and Q_{5} be the corresponding exceptional divisors. Under the induced map g_{Z}, there is a unique exceptional line which is the strict transform of \mathcal{C}_{1}. The image $g_{Z} \mathcal{C}_{1}$ is a point of indeterminacy of g_{Z}. We blow up $g_{Z} \mathcal{C}_{1} \in E_{1}$ and denote the exceptional fiber by Q_{1}. We use $\left\langle H, Q_{1}, Q_{2}, Q_{3}, Q_{4}, Q_{5}, E_{1}\right\rangle$ as the ordered basis of Pic. The characteristic polynomial of the action on Pic is given by $(t-1)^{4}(t+$ 1) $\left(t^{2}+t+1\right)$ and the matrix representation of the action on Pic has $3 \times$ 3 Jordan block. It follows that the degrees of g^{n} grow quadratically.

References

[Ba] T. Bayraktar, Green currents for meromorphic maps of compact Kähler manifolds, J. Geom. Anal. 23(2) (2013), 970-998. DOI: 10.1007/s12220-012-9315-3.
[BK1] E. Bedford and K. Kim, On the degree growth of birational mappings in higher dimension, J. Geom. Anal. 14(4) (2004), 567-596. DOI: 10.1007/BF02922170.
[BK2] E. Bedford and K. Kim, Periodicities in linear fractional recurrences: degree growth of birational surface maps, Michigan Math. J. 54(3) (2006), 647-670. DOI: $10.1307 / \mathrm{mmj} / 1163789919$.
[BK3] E. Bedford and K. Kim, Linear fractional recurrences: periodicities and integrability, Ann. Fac. Sci. Toulouse Math. (6) 20 (2011), Fascicule Spécial, 33-56.
[BC] J. Blanc and S. Cantat, Dynamical degrees of birational transformations of projective surfaces, arXiv:1307.0361.
[CaL] E. Camouzis and G. Ladas, "Dynamics of third-order rational difference equations with open problems and conjectures", Advances in Discrete Mathematics and Applications 5, Chapman \& Hall/CRC, Boca Raton, FL, 2008.
[C] S. Cantat, Dynamique des automorphismes des surfaces K3, Acta Math. 187(1) (2001), 1-57. DOI: 10.1007/BF02392831.
[CGM] A. Cima, A. Gasull, and V. Mañosa, Dynamics of the third order Lyness' difference equation, J. Difference Equ. Appl. 13(10) (2007), 855-884. DOI: 10.1080/10236190701264735.
[CGMs] A. Cima, A. Gasull, and F. Mañosas, On periodic rational difference equations of order k, J. Difference Equ. Appl. 10(6) (2004), 549-559. DOI: 10.1080/10236190410001667977.
[CL] M. Csörnyei and M. Laczkovich, Some periodic and nonperiodic recursions, Monatsh. Math. 132(3) (2001), 215-236. DOI: 10.1007/s006050170042.
[dFE] T. de Fernex and L. Ein, Resolution of indeterminacy of pairs, in: "Algebraic geometry", de Gruyter, Berlin, 2002, pp. 165-177.
[DiF] J. Diller and C. Favre, Dynamics of bimeromorphic maps of surfaces, Amer. J. Math. 123(6) (2001), 1135-1169. DOI: ajm. 2001.0038.
[DG] J. Diller and V. Guedj, Regularity of dynamical Green's functions, Trans. Amer. Math. Soc. 361(9) (2009), 4783-4805. DOI: 10.1090/S0002-9947-09-04740-0.
[DS] T.-C. Dinh and N. Sibony, Une borne supérieure pour l'entropie topologique d'une application rationnelle, Ann. of Math. (2) 161(3) (2005), 1637-1644. DOI: 10.4007/annals. 2005.161.1637.
[DO] I. Dolgachev and D. Ortland, Point sets in projective spaces and theta functions, Astérisque 165 (1988), 210 pp. (1989).
[DuF] R. Dujardin and C. Favre, Distribution of rational maps with a preperiodic critical point, Amer. J. Math. 130(4) (2008), 979-1032. DOI: 10.1353/ajm.0.0009.
[EJ] A.-S. Elsenhans and J. Jahnel, Determinantal quartics and the computation of the Picard group, arXiv:1010.1923v1.
[GL] E. A. Grove and G. Ladas, "Periodicities in nonlinear difference equations", Advances in Discrete Mathematics and Applications 4, Chapman \& Hall/CRC, Boca Raton, FL, 2005.
[G1] V. Guedj, Entropie topologique des applications méromorphes, Ergodic Theory Dynam. Systems 25(6) (2005), 1847-1855. DOI: 10.1017/S0143385705000192.
[G2] V. GuEDJ, Propriétés ergodiques des applications rationnelles, in: "Quelques aspects des systèmes dynamiques polynomiaux, Panor. Synthèses 30, Soc. Math. France, Paris, 2010, pp. 97-202.
[H] H. P. Hudson, "Cremona transformations in plane and space", Cambridge, Cambridge University Press, 1927.
[KoL] V. L. Kocić and G. Ladas, "Global behavior of nonlinear difference equations of higher order with applications", Mathematics and its Applications 256, Kluwer Academic Publishers Group, Dordrecht, 1993.
[KuL] M. R. S. Kulenović and G. Ladas, "Dynamics of second order rational difference equations", With open problems and conjectures. Chapman \& Hall/CRC, Boca Raton, FL, 2002.
[L] R. C. Lyness, Cycles, The Mathematical Gazette 26, MNote 1581 (1942), p. 62; 29, MNote 1847 (1945), p. 231; 45, MNote 2952 (1961), p. 207.
[M1] C. T. McMullen, Dynamics on blowups of the projective plane, Publ. Math. Inst. Hautes Études Sci. 105 (2007), 49-89. DOI: 10.1007/s10240-007-0004-x.
[M2] C. T. McMullen, K3 surfaces, entropy and glue, J. Reine Angew. Math. 658 (2011), 1-25. DOI: 10.1515/CRELLE.2011. 048.

Eric Bedford:
Indiana University
Bloomington, IN 47405
USA
Current address:
Stony Brook University
Stony Brook, NY, 11794
USA
E-mail address: bedford@indiana.edu
Kyounghee Kim:
Florida State University
Tallahassee, FL 32306
USA
E-mail address: kim@math.fsu.edu

Primera versió rebuda el 29 de juny de 2012, darrera versió rebuda el 2 de juliol de 2013.

[^0]: *Supported in part by the NSF.
 ${ }^{\dagger}$ Supported in part by the NSA.

