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DEGREE OF THE FIRST INTEGRAL OF A PENCIL IN

P2 DEFINED BY LINS NETO
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Abstract: Let P4 be the linear family of foliations of degree 4 in P2 introduced by

A. Lins Neto, whose set of parameter with first integral Ip(P4) is dense and countable.

In this work, we will compute explicitly the degree of the rational first integral of the
foliations in this linear family, as a function of the parameter.
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Key words: Poincaré problem, pencil of foliations, first integral.

1. Introduction

One of the main problems in the theory of planar vector fields is to
characterize the ones which admit a first integral. The invariant algebraic
curves are a central object in integrability theory since 1878, year when
Darboux found connections between algebraic curves and the existence
of first integrals of polynomial vector fields. Thus, the first question was
to know if a polynomial vector field has or not invariant algebraic curves,
which was partially answered by Darboux in [4]. The most important
improvements of Darboux’s results were given by Poincaré in 1891, who
tried to answer the following question:

“Is it possible to decide if a foliation in P2 has a rational first
integral?”

This problem is known as the Poincaré Problem. In [14], he observed
that it is sufficient to bound the degree of a possible algebraic solution.
By imposing conditions on the singularities of the foliation he obtains
necessary conditions which guarantee the existence of a rational first
integral. More recently, this problem has been reformulated as follows:
given a foliation on P2, try to bound the degree of the generic solution
using information depending only on the foliation, for example on its
degree or on the eigenvalues of its singularities.

Several authors studied this problem, see for instance [1], [2], [5], [16].

The work of this author was partially supported by CNPQ.
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In 2002, Lins Neto [9] built some notable linear families of foliations
(which he later called pencil [10]) in P2, where the set of parameters in
which the foliation has a first integral is dense and countable. The impor-
tance of these families is that there is no bound depending only on the
degree and the analytic type of their singularities. One of such families is
the pencil P4 ={F4

α}α∈C, where F4
α is defined by the 1-form ω+αη, with

ω = (x3 − 1)x dy − (y3 − 1)y dx,

η = (x3 − 1)y2 dy − (y3 − 1)x2 dx.

It is well known that Ip(P4), the set of parameters of foliations in P4

which have a first integral, is the imaginary quadratic field Q(τ0), where
τ0 = e2πi/3.

The purpose of this work is to compute the degree of the foliations Fα
in P4 with rational first integral as a function of α. For this, we first relate
the pencil P4 with a pencil of linear foliations P∗4 in a complex torus
E × E, where E = C/〈1, τ0〉. Then we derive the formula of the degree
using the ideal norm of the ring Z[τ0] as sketched below. Consequently,
we are able to address the Poincaré Problem for the foliations in P4.

Given a foliation Ft ∈ P4, with t ∈ Ip(P4) there exists a unique
corresponding foliation Gα(t) ∈ P∗4 where α(t) = t−1

−2−τ0 . Then writing

α(t) = β1

α1
, with α1, β1 ∈ Z[τ0] and (α1, β1) = 1, we have proved the

following result:

Theorem. If dt is the degree of the first integral of F4
t then

dt = N(β1) +N(α1) +N(β1 − α1) +N(β1 + τ0α1),

where N(β) = a2 + b2 − ab, for β = a+ τ0b ∈ Z[τ0].

Furthermore, we show that the growth of the counting function πP4

(see Section 4.2), which associates to every n ∈ N, the number of ele-
ments in Ip(P4) for which the corresponding foliation has a first integral
of degree at most n, has quadratic order, that is

πP4
(n) = O(n2).

This is an improvement over a previous result due to Pereira [13, Propo-
sition 4].

2. Preliminaries

From now on, τ0 will denote the complex number e2πi/3. Let F be a
foliation associated with the 1-form ω. Given a singularity p of F , let λ1

and λ2 be the eigenvalues of the linear part of the vector field associated
to ω. Recall that p is of type (a : b) if [λ1 : λ2] = [a : b] ∈ P1. Moreover,
if p is of type (1 : 1) then p is called a radial singularity.
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2.1. The pencil P4 in P2 and the configuration C. In [9, §2.2],
Lins Neto defines the pencil P4 = {F4

α}α∈C of degree 4 in P2, where

F4
α is defined by the 1-form ω + αη, with

ω = (x3 − 1)x dy − (y3 − 1)y dx,

η = (x3 − 1)y2 dy − (y3 − 1)x2 dx.

Let us state some properties of the pencil P4:

(1) The tangency set of P4, given by ω ∧ η = 0, is the algebraic curve

∆(P4) =
{

[x : y : z] ∈ P2 : (x3 − z3)(y3 − z3)(x3 − y3) = 0
}
.

This curve is composed by nine invariant lines such that the set
of intersections of these lines is formed by twelve points. We
will denote such lines and points by L = {L1, . . . , L9} and P =
{e1, . . . , e12}, respectively.

(2) If α /∈ {1, τ0, τ2
0 ,∞} then F4

α has 21 non-degenerated singularities,
nine of them are simple singularities of type (−3 : 1), and the
remaining twelve are radial singularities contained in P . Recall
that in general, if a foliation has degree k, then it has k2 + k +
1 singularities [11]. In view of this, F4

α has degree 4.

(3) If α ∈ {1, τ0, τ2
0 ,∞} then Sing(F4

α) = P .

Consider C = {L, P} to be the configuration of the above stated twelve
points and nine lines in P2. These are shown graphically in Figure 1.

L = {L1, . . . , L9}

P = {e1, . . . , e12}
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Figure 1.
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2.2. The pencil P∗
4 and the configuration C∗. Let E0 = C/Γ0, with

Γ0 = 〈1, τ0〉, and X0 = E0 × E0. Take a system of coordinates (x, y)
in C2 and let φ : C2 → X0 be the natural projection.

Let P∗4 , using φ, the pencil X0 induced by the linear pencil in C2

(1) ωα = dy − αdx, α ∈ C.

Let ϕ : X0 → X0 be the holomorphic map defined by ϕ(x, y) =
(τ0x, τ0y). Denote as Fix(ϕ), the set fixed points of ϕ. Consider p1 = 0,
p2 = 2

3 + 1
3τ0 and p3 = 1

3 + 2
3τ0. Then it holds,

(1) ϕ3 = idX .

(2) Fix(ϕ) has nine elements, namely,
{

(pl, pk)
}3

l,k=1
.

Now consider the four elliptic curves in X0,

E0,1 = {0} × E0, E1,1 =
{

(x, x) : x ∈ E0

}
,

E1,0 = E0 × {0}, E1,−τ0 =
{

(x,−τ0x) : x ∈ E0

}
,

and let C be the set of these curves. For F ∈ C and p ∈ Fix(ϕ),
denote Fp = F + p. Hence, the set E := {Fp : p ∈ Fix(ϕ), F ∈ C }
consists of twelve elliptic curves. Since ϕ(Fp) = Fp and Fix(ϕ) ∩ Fp =
(Fix(ϕ)∩ F ) + p, we conclude that two different elliptic curves intersect
only in three fixed points of ϕ.

Denote E = {E1, . . . , E12} and Fix(ϕ) = {l1, . . . , l9}. Consider C∗ =(
Fix(ϕ), E

)
to be the configuration of points and elliptic curves in X0.

These are shown graphically in Figure 2.

Fix(ϕ) = {l1, . . . , l9}

E = {E1, . . . , E12}
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Figure 2.
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3. Relation between the pencils P∗
4 and P4

The relation between the pencils P∗4 and P4 was given by McQuillan
in [12], where he proved the following result.

Proposition 1 ([12, Example IV.3.0]). There exist a rational map
g : X0 99K P2 such that g∗(P4) = P∗4 .

We now give an idea of how the function g is constructed. We refer

the reader to [15] for the details. Let π : X̃ → X0 be obtained from X0

by blowing-up the nine fixed points of ϕ, and denote Dk = π−1(lk),

for k = 1, . . . , 9. So, there is an automorphism ϕ̃ : X̃ → X̃ such that

π ◦ ϕ̃ = ϕ ◦ π. If we define Ỹ = X̃/〈ϕ̃〉 then Ỹ is a smooth rational

surface. Moreover, the quotient map h̃ : X̃ → Ỹ is a finite morphism
with degree 3 and its ramification divisor is R =

∑9
i=1 3Dk.

Since h̃|Di : Di → D̃i := h̃(Di) is a biholomorphism, the rational

map h̃ maps Di onto a rational curve D̃i, with self-intersection −3, for

i = 1, . . . , 9. Furthermore, the map h̃ sends π∗Ei, the strict transforma-

tion of Ei, into a rational curve denoted by Ẽi, with self-intersection −1,
as shown in Figure 3.
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Figure 3.

Let π1 : Ỹ → Y0 be the blowing-down of the curves Ẽ1, . . . , Ẽ12. The
following lemma holds.

Lemma 2. With the previous notations we have that Y0 = P2.
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Proof: By the Riemann-Hurwitz formula for surfaces we have

c2(X̃) = 3c2(Ỹ )−
9∑
i=1

2χ(Dk),

where c2(X̃) = 9 and χ(Dk) = 2, for k = 1, . . . , 9. This implies that

c2(Ỹ ) = 15 and c2(Y0) = 3. Therefore, by the Noether formula (cf. [6]),
Y0 is a minimal surface with c2(y0) = 3. Recall that the only minimal
rational surfaces are P2 and the Hirzebruch surfaces Sn, for n 6= 1. We
conclude that Y0 = P2, since c2(P2) = 3 and c2(Sn) ≥ 4, for n 6= 1.

Let g the rational map defined by (see Figure 4)

g = π−1
1 ◦ h̃ ◦ π : X0 99K Y0 = P2.

Then g contracts each elliptic curve of C∗ into a point in P2 and sends
each point of C∗ into an algebraic curve L in P2 with self-intersection
one. In particular, L is a line in P2. Thus, the configuration of lines
and points g(C∗) consists in twelve points and nine lines of P2, denoted
by E∗ and Fix(ϕ)∗, respectively, satisfying the following properties:

(1) each line in Fix(ϕ)∗ contains four points of E∗;
(2) each point of E∗ belongs to two lines of Fix(ϕ)∗;

(3) if three points of E∗ are not in a line in Fix(ϕ)∗ then the points are
not aligned.

Then, according to [9, Proposition 1], unless an automorphism of P2, we
can suppose that this configuration is C =

(
Fix(ϕ)∗, E∗

)
, that has been

described in Section 2.2.
Since g : X0 → P2 is a rational map, such that g∗(P4) = P∗4 , we obtain

(2) Ip(P4) = Ip(P∗4 ).

We will see that is easier to obtain properties of the leaves of P∗4 (see
Section 3.1), because they are elliptic curves.

Recall that, if α ∈ C is fixed, the foliation Gα ∈ P∗4 in X0 is induced by
ωα = dy−αdx. Since the 1-form ωα is ϕ-invariant, Gα induces a foliation
g∗(Gα) in P2 as shown in Figure 4. Moreover, all the lines of Fix(ϕ)∗ are
invariant by g∗(Gα). Then, by [9, §2.2], there exists Λ(α) ∈ C such that

(3) g∗(Gα) = F4
Λ(α),

where F4
Λ(α) ∈ P4. In particular, by (3), Λ is a rational map.
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Proposition 3. The rational function Λ: C → C is a Möbius map
defined by Λ(α) = (τ2

0 − 1)α+ 1.

Proof: Since FΛ(0), FΛ(1), FΛ(−τ0) and FΛ(∞) have twelve singularities,
we have {

Λ(0),Λ(1),Λ(−τ0),Λ(∞)
}

= {1, τ0, τ2
0 ,∞}.

Moreover, the configurations C∗ in X and C in P2 (see Figures 1 and 2),
imply

g∗(F4
∞) = G∞, g∗(F4

1 ) = G0,

g∗(F4
τ2
0
) = G1, g∗(F4

τ0) = G−τ0 .

Let Lα be a generic leaf of Gα. Then g(Lα) is a leaf of F4
α, that intersects

g(C∗) in singularities of F4
α. Thus, Λ: C → C is an injective function

such that Λ(∞) =∞, Λ(0) = 1, Λ(1) = τ2
0 and Λ(−τ0) = τ0. Therefore

Λ(α) = (τ2
0 − 1)α+ 1 = (−2− τ0)α+ 1.
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Remark 4. If there exists an automorphism of P2 preserving the config-
uration C =

(
E∗,Fix(ϕ)∗

)
of points and lines, then Λ is a Möbius map

such that {
Λ(0),Λ(1),Λ(−τ0),Λ(∞)

}
= {1, τ0, τ2

0 ,∞}.

3.1. The set Ip(P∗
4 ) and some notions on elliptic curves. Fix

an elliptic curve E = C/Γ, where Γ = 〈1, τ〉 and let X = E × E. Let
P = {Hα}α∈C be the pencil of linear foliations in X induced by the

pencil of linear foliations in C2, given by the 1-forms

(4) ωα = dy − αdx, α ∈ C.

Let us define the set Ip(P) as

Ip(P) := {α ∈ C : Hα has an meromorphic first integral}.

For α ∈ C \ {0}, let Lα =
{(
π(x), π(αx)

)
: x ∈ C

}
be the leaf of Hα

passing through (0, 0). Thus,

#
(
Lα ∩ ({0} × E)

)
<∞⇐⇒ ∃ k ∈ N : kα(m+ τn) ∈ Γ, ∀ m,n ∈ Z,

⇐⇒ ∃ k ∈ N : kΓ(α) ⊂ Γ, where Γ(α) = αΓ.

By Jouanolou’s Theorem [8], the latter implies that, for α ∈ C \ {0},
Hα has an meromorphic first integral if, and only if, there exists k ∈ N
such that kΓ(α) ⊂ Γ. So we have proved the following proposition.

Proposition 5. Let P = {Hα}α∈C be a pencil of linear foliations in X,
as above. Then

Ip(P) = (Q + τQ) ∪ {∞}.

In particular,

Ip(P∗4 ) = (Q + τ0Q) ∪ {∞} = Q(τ0) ∪ {∞} = Ip(P4).

To calculate the degree of the first integral of a foliation in F4
α it is

sufficient to calculate the autointersection of two leaves of Gα. Thus, we
need to recall some properties of elliptic curves.

Let K ⊂ C be an algebraic number field and let OK be the ring of
algebraic integers contained in K. Given an ideal I of OK , we consider
the quotient ring OK/I which is finite (cf. [17, p. 106]). The ideal norm
of I, denoted by NOK (I), is the cardinality of OK/I.

The Dedekind Zeta function of K is defined, for a complex number s
with Re(s) > 1, by the Dirichlet series

ζK(s) =
∑
I⊂OK

1

NOK (I)s
,
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where I ranges through the non-zero ideals of the ring of integers OK
of K. This sum converges absolutely for all complex numbers s with
Re(s) > 1. Note that ζQ coincides with the Riemann zeta function.

Let E = C/Γ be an elliptic curve, where Γ = 〈1, τ〉 and define
End(E) := Hom(E,E). It is well known that the field End(E) ⊗ Q
is isomorphic to a number field K such that OK ' End(E). For α, β ∈
End(E), let us define the morphism ϕα,β : E → E × E as

ϕα,β(x) = (αx, βx),

where αx := α(x). Note that the image Eα,β of ϕα,β is an elliptic curve.
Given α, β, γ, δ ∈ End(E), then the intersection number of the elliptic
curves Eα,β and Eγ,δ is given by

(5) Eα,β · Eγ,δ =

NOK

(
det

(
α β
γ δ

))
NOK (α, β)NOK (γ, δ)

,

where NOK (a1, . . . , ar) is the norm of the ideal generated by a1, . . . , ar ∈
End(E) (cf. [7, Lemma 3]).

As an application let us consider the following example:

Example 6. Let τ0 = e2πi/3. If E = C/〈1, τ0〉 then End(E) ' Z[τ0].
For α = a+τ0b ∈ Z[τ0], the norm of the ideal 〈α〉 is given by NZ[τ0](α) =

|α|2 = a2 + b2 − ab. From equation (5), for α, β, γ, δ ∈ Z[τ0] such
that (α, β) = 1 and (γ, δ) = 1, the intersection number of the elliptic
curves Eα,β and Eγ,δ is

(6) Eα,β · Eγ,δ = NZτ0 (αδ − βγ).

4. Degree of the first integral of a foliation F4
t , t ∈ Q(τ0)

4.1. Computing the degree of the first integral of F4
t , t ∈ Q(τ0).

Let F4
t ∈ P4, with t ∈ Q(τ0). Then the foliation g∗(F4

t ) ∈ P∗4 is equal
to GΛ−1(t). Since Z[τ0] is a unique factorization domain, we can choose

α1, β1 ∈ Z[τ0] such that (α1, β1) = 1 and α = β1

α1
. In particular, Gα is

induced by the 1-form ω = α1 dy − β1 dx. Furthermore, fα1,β1
= α1y −

β1x is a first integral of Gα and

Eα1,β1 =
{

(α1x, β1x) : x ∈ E
}

is the leaf of Gα passing through (0, 0).
Let Ft be the rational first integral of F4

t and dt be the degree of Ft.
We want to determine dt. For this, take a generic irreducible fiber C
of Ft, of degree dt. We can suppose that C∗ := g∗(C) = Eα1,β1

+ p,
where p /∈ Fix(ϕ). Set C∗1,0 := E1,0 + p in X0 and let C1,0 = g(C∗1,0)
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be the curve obtained in P2. The idea for computing dt is to find the
relation between the intersection of C and C1,0 in P2 and the intersection
of C∗ and C∗1,0 in X0 (see Figure 5).

g
99K

C C1,0

C∗1,0
C∗

Gα : dy − αdx
α ∈ Q(τ0)

X0 P2

Fα = F4
Λ(α)

Figure 5.

We observe that

(7) dt deg(C1,0) = C · C1,0 = π∗1(C) · π∗1(C1,0).

Let C̃ and C̃1,0 the strict transforms of C and C1,0 by π1, respectively,
then

(8) π∗1(C) = C̃ +
∑

p∈E∗∩C
mpDp,

where mp is the multiplicity of C in p and Dp = π−1
1 (p). Furthermore,

(9) π∗1(C1,0) = C̃1,0 +
∑

p∈E∗∩C1,0

Dp,

where E∗ ∩ C1,0 = E∗ \ {e1, e6, e8}.
Since C1,0 ∩ L7 = {e10, e5, e9} (see Figure 1), where e10, e5, e9 are

radial singularities of F4
1 and C̃1,0 is a regular curve, we obtain that the

intersection multiplicity of the points in C1,0 ∩ L7 is 1. So, by Bezout’s
Theorem, deg(C1,0) deg(L7) = 3 = deg(C1,0). Thus, combining (8) and
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(9) in (7), we obtain

3dt = C̃ · C̃1,0 +
∑

p∈E∗∩C1,0

C̃ ·Dp +
∑

p∈E∗∩C
mpC̃1,0 ·Dp −

∑
p∈E∗∩C1,0

mp

= C̃ · C̃1,0 +
∑

p∈E∗∩C1,0

C̃ ·Dp +
∑

p∈E∗∩C1,0

mpC̃1,0 ·Dp −
∑

p∈E∗∩C1,0

mp.

Now, given p ∈ E∗ ∩ C1,0, we have

C̃1,0 ·Dp = C∗1,0 · Ep = 1,

C̃ ·Dp = C∗ · Ep = mp,

where Ep ∈ E is an elliptic curve in X0 such that g(Ep) = p. Hence,

(10) 3dt = C̃ · C̃1,0 +
∑

p∈E∗∩C1,0

C∗ · Ep.

Let C̃∗1,0 and C̃∗, be the strict transforms of C∗1,0 and C∗ by π,

respectively. Thus, C∗ ·C∗1,0 = C̃∗ ·C̃∗1,0. Since h̃∗C̃ = 3C̃∗ and h̃∗C̃1,0 =

3C̃∗1,0, by the Projection Formula, we have

3C∗ · 3C∗1,0 = 3C̃∗ · 3C̃∗1,0 = (h̃∗C̃ · h̃∗C̃1,0) = 3C̃ · C̃1,0,

where we conclude that

3C∗ · C∗1,0 = C̃ · C̃1,0.

Using this in (10), we obtain

3dt = 3C∗ · C∗1,0 +
∑

p∈E∗∩C∗
1,0

C∗ · Ep

= 3C∗ · E1,0 + 3C∗ · E0,1 + 3C∗ · E1,1 + 3C∗ · E1,−τ0 .

Therefore

3dt = 3Eα1,β1 · E1,0 + 3Eα1,β1 · E0,1 + 3Eα1,β1 · E1,1 + 3Eα1,β1 · E1,−τ0 .

Now, let us set N(α) := NZ[τ0](α), for α ∈ Z(τ0). Using Example 6,
we conclude

3dt = 3N(−β1) + 3N(α1) + 3N(α1 − β1) + 3N(−α1τ0 − β1).

Hence,

(11) dt = N(β1) +N(α1) +N(β1 − α1) +N(β1 + τ0α1),

where Λ(t) = α = β1

α1
. This proves our main result.
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Remark 7. In (11), if we take α = a+ τ0b and β = c+ τ0d then

dt = dt(a, b, c, d) = 3(a2 + b2 + c2 + d2 − ab− ac+ ad− bd− cd).

In particular, dt is a multiple of 3.

4.2. The growth of the pencil P4. In [13], Pereira defines the count-
ing function πC of an algebraic curve C included in Fol(2, d), the space
of foliations in P2 of degree d. Take P = {Fα}α∈C a line in Fol(2, d),

that is a pencil of foliations in P2. For n ∈ N, denote

En = {α ∈ C : Fα have a first integral of degree at most n}.

Thus, the counting function of P, πP : N→ N∪{+∞} is defined, for n ∈
N, as

πP(n) = #En.

Also in [13], the author observes the importance of study the func-
tion πP and shows the following example (cf. [13, Example 3]).

Example 8. Let P = {Fα}α∈C be a pencil in P2, where Fα is given by

αxdy − y dx.

In this case,

α ∈ Ip(P) \ {∞} ⇐⇒ α ∈ Q.
Take α = p

q ∈ Q, with p ∈ Z, q ∈ N and (p, q) = 1. If fp,q is the first

integral of Fα of degree dp,q then

dp,q =

{
max{p, q}, if p ≥ 0,

|p|+ q, if p < 0.

Thus,

πP(n) = 2 + 3

n∑
j=1

ϕ(j),

where ϕ is the Euler totient function. Now, since
n∑
j=1

ϕ(j) =
3n2

π2
+O

(
n ln(n)2/3 ln

(
ln(n)

)4/3)
,

(cf. [18, p. 178]), we have

lim
n→∞

πP(n)

n2
=

3

π2
.

Now, we will estimate πP4
(n), for n ∈ N, and see that the counting

function πP4 has the same behavior as in Example 8.
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Corollary 9. The function πP4
(n) satisfies

πP4
(n) = O(n2).

Proof: Indeed, in this case

t ∈ Ip(P4) ⇐⇒ Λ−1(t) = α ∈ Q(τ0) ∪ {∞},

where Λ(α) = (τ2
0 − 1)α+ 1. Suppose that α = β1

α1
, α1, β1 ∈ Z[τ0]. Then

πP4
(n) = #

{(
α1, β1

)
∈ (Z[τ0]× Z[τ0]) \ {0} : (α1, β1) = 1, dt ≤ n

}
,

where dt = N(β1) +N(α1) +N(β1 − α1) +N(β1 + τ0α1). Let

En = #

{(
α1, β1

)
∈ (Z[τ0]× Ip(P)) \ {0} : t =

β1

α1
,

(α1, β1) = 1, N(α1) ≤ n, N(β1) ≤ n
}
,

then

πP4
(n) ≤ En, ∀ n ∈ N.

Let H(n) = #
{
I ideal in Z[τ0] : NZ[τ0](I) ≤ n

}
then, by [3], we have

(1) H(n) = cn+O(n1/2), where c is a constant;

(2) lim
n→∞

E(n)
H(n)2 ≤

1
ζQ(τ0)(2) , where ζQ(τ0) is the Dedekind Zeta function

of Q(τ0) (see Section 2).

Therefore, by item (2), we conclude

lim
n→∞

πP4(n)

H(n)2
≤ 1

ζQ(τ0)(2)
.

In particular, πP4(n) = O(n2).
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galoisiennes. I, Astérisque 296 (2004), 167–190.

[11] A. Lins Neto and B. Azevedo Scárdua, “Folheações algébricas
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