ON THE SUM PRODUCT ESTIMATES AND TWO VARIABLES EXPANDERS

Chun-Yen Shen

Abstract
Let \mathbb{F}_{p} be the finite field of a prime order p. Let $F: \mathbb{F}_{p} \times \mathbb{F}_{p} \rightarrow \mathbb{F}_{p}$ be a function defined by $F(x, y)=x(f(x)+b y)$, where $b \in \mathbb{F}_{p}^{*}$ and $f: \mathbb{F}_{p} \rightarrow \mathbb{F}_{p}$ is any function. We prove that if $A \subset \mathbb{F}_{p}$ and $|A|<p^{1 / 2}$ then

$$
|A+A|+|F(A, A)| \gtrsim|A|^{\frac{13}{12}}
$$

Taking $f=0$ and $b=1$, we get the well-known sum-product theorem by Bourgain, Katz and Tao, and Bourgain, Glibichuk and Konyagin, and also improve the previous known exponent from $\frac{14}{13}$ to $\frac{13}{12}$.

1. Introduction

The sum product phenomenon has received a great deal of attention, since Erdös and Szemerédi made their well known conjecture that for any $\epsilon>0$ one has

$$
\max (|A+A|,|A A|) \geq C_{\epsilon}|A|^{2-\epsilon}
$$

where A is a finite subset of integers,

$$
A+A=\{a+b: a \in A, b \in A\}
$$

and

$$
A A=\{a b: a \in A, b \in A\}
$$

Later, much work has been done to find the explicit exponents, and the best result to date is due to Solymosi [11], who showed that

$$
\max (|A+A|,|A A|) \gtrsim|A|^{\frac{4}{3}}
$$

In the finite field setting, the problem becomes more complicated and the first non-trivial sum-product estimate was obtained by Bourgain, Katz and Tao [4] with subsequent refinement by Bourgain, Glibichuk and

[^0]Konyagin [3]. They proved that if $A \subset \mathbb{F}_{p}, p$ prime, and $|A| \leq p^{1-\delta}$ for some $\delta>0$, then there exists $\epsilon=\epsilon(\delta)>0$ such that $\max (|A+A|,|A A|) \gtrsim$ $|A|^{1+\epsilon}$. Since then there have been several generalizations and applications of this theorem (see [1], [2], [5]-[10], [12]). For example, it was shown by Bourgain [1] that if $A, B \subset \mathbb{F}_{p}$ and $p^{\delta}<|B| \leq|A|<p^{1-\delta}$ for some $\delta>0$, then the following bound holds:

$$
\max (|A+B|,|A B|) \gtrsim p^{\epsilon}|A|
$$

for some $\epsilon>0$. In addition, he also showed that the function $F(x, y)=$ $x^{2}+x y$ from $\mathbb{F}_{p} \times \mathbb{F}_{p}$ to \mathbb{F}_{p} possesses an expanding property in the sense that $|F(A, B)| \gtrsim p^{\epsilon}$ for some $\epsilon>\delta$ whenever $|A| \sim|B| \sim p^{\delta}$, $0<\delta<1$. Another generalization was made by $\mathrm{Vu}[\mathbf{1 3}]$ who characterized the polynomials which satisfy

$$
\max (|A+A|,|P(A, A)|) \gtrsim|A| \min \left(\left(\frac{|A|^{2}}{k^{4} p}\right)^{1 / 4},\left(\frac{p}{k|A|}\right)^{1 / 3}\right)
$$

where k is the degree of the polynomial (see, also [6] for some improvements in the case $P(x, y)=x y$ which corresponds to the sum-product problem). However, this result is nontrivial only when $|A|>p^{\frac{1}{2}}$. In this paper we construct a family of two variables functions of the form

$$
F(x, y)=x(f(x)+y)
$$

which satisfy $|F(A, A)| \gtrsim|A|^{1+\epsilon}$, and also prove a stronger sum product estimate in the most nontrivial range $|A|<p^{\frac{1}{2}}$: namely, if $A \subset \mathbb{F}_{p}$ with $|A|<p^{\frac{1}{2}}$ then

$$
\max (|A+A|,|F(A, A)|) \gtrsim|A|^{\frac{13}{12}}
$$

where $F: \mathbb{F}_{p} \times \mathbb{F}_{p} \rightarrow \mathbb{F}_{p}$ be a function defined by $F(x, y)=x(f(x)+b y)$, where $b \in \mathbb{F}_{p}^{*}$ and $f: \mathbb{F}_{p} \rightarrow \mathbb{F}_{p}$ is any function.
Remark 1.1. Taking $f=0$ and $b=1$, we get the above mentioned sum product theorem from $[\mathbf{3}]$ and $[\mathbf{4}]$ and also improve the exponent in $[9]$ from $\frac{14}{13}$ to $\frac{13}{12}$. In addition, the exponent $\frac{13}{12}$ appears in the work of Bourgain and Garaev [2] in the form $|A-A|+|A A| \gtrsim|A|^{13 / 12}$. Nevertheless, our method is different from the one of $[\mathbf{2}]$ and applies equally well to the more general case.

2. Preliminaries

Throughout this paper A will denote a nonempty subset in the prime field \mathbb{F}_{p}. If B is a set then we will denote its cardinality by $|B|$. Whenever
X and Y are quantities we will use

$$
X \lesssim Y
$$

to mean

$$
X \leq C Y
$$

where the constant C is universal (i.e. independent of p and A). The constant C may vary from line to line. We will use

$$
X \lesssim Y
$$

to mean

$$
X \leq C(\log |A|)^{\alpha} Y
$$

and $X \approx Y$ to mean $X \lesssim Y$ and $Y \lesssim X$, where C and α may vary from line to line but are universal.

We give some preliminary lemmas. Lemma 2.1 was proven in $[\mathbf{8}],[\mathbf{9}]$, Lemma 2.2 was proven in [9].
Lemma 2.1. Let $A_{1} \subset \mathbb{F}_{p}$ with $1<\left|A_{1}\right|<p^{\frac{1}{2}}$. Then for any elements $a_{1}, a_{2}, b_{1}, b_{2}$ so that

$$
\frac{b_{1}-b_{2}}{a_{1}-a_{2}}+1 \notin \frac{A_{1}-A_{1}}{A_{1}-A_{1}}
$$

we have that for any $A^{\prime} \subset A_{1}$ with $\left|A^{\prime}\right| \gtrsim\left|A_{1}\right|$

$$
\left|\left(a_{1}-a_{2}\right) A^{\prime}+\left(a_{1}-a_{2}\right) A^{\prime}+\left(b_{1}-b_{2}\right) A^{\prime}\right| \gtrsim\left|A_{1}\right|^{2} .
$$

In particular such $a_{1}, a_{2}, b_{1}, b_{2}$ exist unless $\frac{A_{1}-A_{1}}{A_{1}-A_{1}}=\mathbb{F}_{p}$. In case $\frac{A_{1}-A_{1}}{A_{1}-A_{1}}=\mathbb{F}_{p}$, we may find $a_{1}, a_{2}, b_{1}, b_{2} \in A_{1}$ so that

$$
\left|\left(a_{1}-a_{2}\right) A_{1}+\left(b_{1}-b_{2}\right) A_{1}\right| \gtrsim\left|A_{1}\right|^{2}
$$

Lemma 2.2. Let X, B_{1}, \ldots, B_{k} be any subsets of \mathbb{F}_{p}. Then there is $X^{\prime} \subset X$ with $\left|X^{\prime}\right|>\frac{1}{2}|X|$ so that

$$
\left|X^{\prime}+B_{1}+\cdots+B_{k}\right| \lesssim \frac{\left|X+B_{1}\right| \ldots\left|X+B_{k}\right|}{|X|^{k-1}}
$$

Lemma 2.3. Let C and D be sets with $|D| \gtrsim \frac{|C|}{K}$ and with $|C+D| \leq$ $K|C|$. Then there is a $C^{\prime} \subset C$ with $\left|C^{\prime}\right| \geq \frac{9}{10}|C|$ so that C^{\prime} can be covered by $\sim K^{2}$ translates of D. Similarly, there is a $C^{\prime \prime} \subset C$ with $\left|C^{\prime \prime}\right| \geq \frac{9}{10}|C|$ so that $C^{\prime \prime}$ can be covered by $\sim K^{2}$ translates of $-D$.

Proof: To prove the first half of the statement, it suffices to show that we can find one translate of D whose intersection with C is at least $|C| / K^{2}$. Once we find such a translate, we remove the intersection and then iterate. We stop when the size of the remaining part of C is less than $|C| / 10$.

To prove the second half of the statement we have to show there is a translate of D whose intersection with $-C$ is at least $|C| / K^{2}$. First, by the Cauchy-Schwartz inequality, we have that

$$
\left|\left(c, d, c^{\prime}, d^{\prime}\right) \in C \times D \times C \times D: c+d=c^{\prime}+d^{\prime}\right| \geq \frac{|C|^{2}|D|^{2}}{|C+D|}
$$

which implies that

$$
\left|\left(c, d, c^{\prime}, d^{\prime}\right) \in C \times D \times C \times D: c+d=c^{\prime}+d^{\prime}\right| \geq \frac{|C||D|^{2}}{K}
$$

The quantity on the left hand side is equal to

$$
\sum_{c \in C} \sum_{d^{\prime} \in D}\left|(c+D) \cap\left(C+d^{\prime}\right)\right|
$$

Thus we can find $c \in C$ and $d^{\prime} \in D$ so that

$$
\left|(c+D) \cap\left(C+d^{\prime}\right)\right| \geq \frac{|D|}{K} \gtrsim \frac{|C|}{K^{2}}
$$

Hence, $\left|\left(c-d^{\prime}+D\right) \cap C\right| \gtrsim|C| / K^{2}$ which is just what we wanted to prove. To prove the second half of the statement we start with the inequality

$$
\sum_{d \in D} \sum_{c \in C}|(C-d) \cap(c-D)| \geq \frac{|C||D|^{2}}{K}
$$

Proceeding as above, we find $c \in C$ and $d \in D$ such that

$$
|(c+d-D) \cap C| \gtrsim|C| / K^{2},
$$

and the result follows.

3. Explicit two variables expanding maps

Theorem 3.1. Let $A \subset \mathbb{F}_{p}$ with $|A|<p^{1-\delta}$ for some $\delta>0$. Then for any nonconstant polynomial f, we have

$$
|\{x(f(x)+y): x, y \in A\}| \gtrsim|A|^{1+\epsilon}
$$

for some $\epsilon>0$ that depends only on δ and on the degree of the polynomial f.

The key ingredient is the Szemerédi-Trotter incidence theorem in the affine plane \mathbb{F}_{p}^{2} which was proven in $[3],[4]$.
Theorem 3.2. Let P and L be the points and lines in \mathbb{F}_{p}^{2} and $|P|,|L| \leq$ $N<p^{\alpha}$ for some $0<\alpha<2$. Then

$$
|\{(p, \ell) \in P \times L: p \in \ell\}| \lesssim N^{\frac{3}{2}-\gamma}
$$

for some $\gamma>0$.

Proof: We proceed by contradiction. Suppose it is not true. Then we have

$$
|\{x(f(x)+y): x, y \in A\}| \lesssim|A|^{1+\epsilon}
$$

for some small ϵ. Let k be the degree of f and denote $C=\{x(f(x)+y)$: $x, y \in A\}$. By the Cauchy-Schwartz inequality, we have

$$
\sum_{x \in A} \sum_{x^{\prime} \in A}\left|x(f(x)+A) \cap x^{\prime}\left(f\left(x^{\prime}\right)+A\right)\right| \gtrsim|A|^{3-\epsilon} .
$$

Therefore, we can find $a_{0} \in A$ and $A_{1} \subset A$ such that

$$
\left|A_{1}\right| \gtrsim|A|^{1-\epsilon}
$$

and

$$
\mid\left(x ^ { \prime } (f (x ^ { \prime }) + A) \cap \left(\left.a_{0}\left(f\left(a_{0}\right)+A\right)|\gtrsim| A\right|^{1-\epsilon}, \quad \forall x^{\prime} \in A_{1} .\right.\right.
$$

Thus, for any $x_{1} \in A_{1}$, there is a subset $A_{x_{1}} \subset A$ with $\left|A_{x_{1}}\right|>|A|^{1-\epsilon}$ and

$$
x_{1}\left(f\left(x_{1}\right)+A_{x_{1}}\right) \subset a_{0}\left(f\left(a_{0}\right)+A\right) .
$$

Hence, for any $x \in A$ we have

$$
x\left(f(x)+\frac{x_{1}\left(f\left(x_{1}\right)+A_{x_{1}}\right)}{a_{0}}-f\left(a_{0}\right)\right) \subset C .
$$

Now, given $x \in A, x^{\prime} \in A_{1}$, let $\ell_{x, x^{\prime}}$ be the line

$$
\mu=\frac{x x^{\prime}}{a_{0}} \nu+\frac{x x^{\prime} f\left(x^{\prime}\right)}{a_{0}}+x f(x)-x f\left(a_{0}\right)
$$

and $L=\left\{\ell_{x, x^{\prime}}: x \in A, x^{\prime} \in A_{1}\right\}$. Then it is easy to verify that $|A|^{2-\epsilon} \frac{1}{k} \lesssim|L| \leq|A|\left|A_{1}\right|<|A|^{2}$. If we let $P=A \times C$ then $|P|=$ $|A| \times|C| \lesssim|A|^{2+\epsilon}$. Therefore we have $\left|\ell_{x, x^{\prime}} \cap P\right|>|A|^{1-\epsilon}$, and the total number of incidences between L and P is at least $|L||A|^{1-\epsilon} \gtrsim \frac{1}{k}|A|^{3-\epsilon}$. By applying Theorem 3.2, it follows that if ϵ is too small, it leads a contradiction and this completes the proof.

Remark 3.3. In Theorem 3.1 we assume that f is a nonconstant polynomial. If f is a constant, then we mention the recent preprint $[7]$, where explicit bounds have been obtained for this case.

4. Stronger sum product estimates

Theorem 4.1. Let $A \subset \mathbb{F}_{p}$ with $|A|<p^{\frac{1}{2}}$. Then

$$
\max (|A+A|,|F(A, A)|) \gtrsim|A|^{\frac{13}{12}}
$$

where $F(x, y)=x(f(x)+b y)$, f is any function from \mathbb{F}_{p} to \mathbb{F}_{p}, and $b \in \mathbb{F}_{p}^{*}$.

Proof: We start with $|A+A| \leq K|A|$ and $|F(A, A)| \leq K|A|$. By using Plünnecke's inequality, we can find $A^{\prime} \subset A$ with $\left|A^{\prime}\right| \gtrsim|A|$ so that

$$
\left|A^{\prime}+A^{\prime}+A^{\prime}\right| \lesssim K^{2}|A|
$$

and

$$
\left|A^{\prime}+A^{\prime}+A^{\prime}+A^{\prime}\right| \lesssim K^{3}|A|
$$

First, by the Cauchy-Schwartz inequality, we have that

$$
\sum_{a \in A^{\prime}} \sum_{a^{\prime} \in A^{\prime}}\left|a\left(f(a)+b A^{\prime}\right) \cap a^{\prime}\left(f\left(a^{\prime}\right)+b A^{\prime}\right)\right| \gtrsim \frac{\left|A^{\prime}\right|^{3}}{K}
$$

Therefore, following Garaev's arguments [5], we can find $A^{\prime \prime} \subset A^{\prime}$ and $a_{0} \in A^{\prime}$ so that

$$
\left|A^{\prime \prime}\right| \gtrsim K^{-\beta}\left|A^{\prime}\right|
$$

for some $\beta \geq 0$ and for every $a \in A^{\prime \prime}$ we have

$$
\left|a\left(f(a)+b A^{\prime}\right) \cap a_{0}\left(f\left(a_{0}\right)+b A^{\prime}\right)\right| \gtrsim K^{\beta-1}|A|
$$

As in the argument of Garaev, the worst case is $\beta=0$, so let's assume that for simplicity. There are two cases. In the first case, we have

$$
\frac{A^{\prime \prime}-A^{\prime \prime}}{A^{\prime \prime}-A^{\prime \prime}}=\mathbb{F}_{p}
$$

If so, applying Lemma 2.1, we can find $a_{1}, a_{2}, b_{1}, b_{2} \in A^{\prime \prime}$ so that

$$
\begin{aligned}
& \left|A^{\prime \prime}\right|^{2} \lesssim\left|\left(a_{1}-a_{2}\right) A^{\prime \prime}+\left(b_{1}-b_{2}\right) A^{\prime \prime}\right| \leq\left|a_{1} A^{\prime \prime}-a_{2} A^{\prime \prime}+b_{1} A^{\prime \prime}-b_{2} A^{\prime \prime}\right| \\
& \quad=\left|a_{1} f\left(a_{1}\right)+a_{1} b A^{\prime \prime}-a_{2} f\left(a_{2}\right)-a_{2} b A^{\prime \prime}+b_{1} f\left(b_{1}\right)+b_{1} b A^{\prime \prime}-b_{2} f\left(b_{2}\right)-b_{2} b A^{\prime \prime}\right| \\
& \quad=\left|a_{1}\left(f\left(a_{1}\right)+b A^{\prime \prime}\right)-a_{2}\left(f\left(a_{2}\right)+b A^{\prime \prime}\right)+b_{1}\left(f\left(b_{1}\right)+b A^{\prime \prime}\right)-b_{2}\left(f\left(b_{2}\right)+b A^{\prime \prime}\right)\right|
\end{aligned}
$$

Now we apply Lemma 2.3 to find a $A^{\prime \prime \prime}$ whose size is at least $6 / 10$ of $A^{\prime \prime}$ so that each of $a_{1}\left(f\left(a_{1}\right)+b A^{\prime \prime \prime}\right),-a_{2}\left(f\left(a_{2}\right)+b A^{\prime \prime \prime}\right), b_{1}\left(f\left(b_{1}\right)+\right.$ $\left.b A^{\prime \prime \prime}\right)$, and $-b_{2}\left(f\left(b_{2}\right)+b A^{\prime \prime \prime}\right)$ can be covered by $\sim K^{2}$ translates of $a_{0}\left(f\left(a_{0}\right)+b A^{\prime}\right)$. However, then $a_{1}\left(f\left(a_{1}\right)+b A^{\prime \prime \prime}\right)-a_{2}\left(f\left(a_{2}\right)+b A^{\prime \prime \prime}\right)+$ $b_{1}\left(f\left(b_{1}\right)+b A^{\prime \prime \prime}\right)-b_{2}\left(f\left(b_{2}\right)+b A^{\prime \prime \prime}\right)$ can be covered by $\sim K^{8}$ translates of $a_{0}\left(f\left(a_{0}\right)+b A^{\prime}\right)+a_{0}\left(f\left(a_{0}\right)+b A^{\prime}\right)+a_{0}\left(f\left(a_{0}\right)+b A^{\prime}\right)+a_{0}\left(f\left(a_{0}\right)+b A^{\prime}\right)$. Since $\left|a_{0}\left(f\left(a_{0}\right)+b A^{\prime}\right)+a_{0}\left(f\left(a_{0}\right)+b A^{\prime}\right)+a_{0}\left(f\left(a_{0}\right)+b A^{\prime}\right)+a_{0}\left(f\left(a_{0}\right)+b A^{\prime}\right)\right|=$ $\left|A^{\prime}+A^{\prime}+A^{\prime}+A^{\prime}\right| \lesssim K^{3}|A|$, by the definition of A^{\prime}. Thus we get

$$
\left|a_{1} A^{\prime \prime \prime}-a_{2} A^{\prime \prime \prime}+b_{1} A^{\prime \prime \prime}-b_{2} A^{\prime \prime \prime}\right| \lesssim K^{11}|A|
$$

Therefore,

$$
\left|A^{\prime}\right|^{2} \lesssim K^{11}|A|
$$

which implies that $K \gtrsim|A|^{1 / 11} \gtrsim|A|^{1 / 12}$, so that we have more than we need in this case. Thus we are left with the case that

$$
\frac{A^{\prime \prime}-A^{\prime \prime}}{A^{\prime \prime}-A^{\prime \prime}} \neq \mathbb{F}_{p}
$$

Applying Lemma 2.1, we can find $a_{1}, a_{2}, b_{1}, b_{2} \in A^{\prime \prime}$ such that

$$
\frac{b_{1}-b_{2}}{a_{1}-a_{2}}+1 \notin \frac{A^{\prime \prime}-A^{\prime \prime}}{A^{\prime \prime}-A^{\prime \prime}}
$$

Then we have

$$
\left|A^{\prime \prime}\right|^{2} \lesssim\left|\left(a_{1}-a_{2}\right) A^{\prime \prime}+\left(a_{1}-a_{2}\right) A^{\prime \prime}+\left(b_{1}-b_{2}\right) A^{\prime \prime}\right|
$$

Now by applying Lemma 2.2, we get

$$
\left|A^{\prime \prime}\right|^{2} \lesssim \frac{|A+A|}{|A|}\left|\left(a_{1}-a_{2}\right) A^{\prime \prime}+\left(b_{1}-b_{2}\right) A^{\prime \prime}\right|
$$

Applying the same argument as above, we get

$$
\left|A^{\prime}\right|^{2} \lesssim K^{12}|A|
$$

which implies that $K \gtrsim|A|^{1 / 12}$.
Theorem 4.2. Let $A, B \subset \mathbb{F}_{p}$ with $|B| \sim|A|<p^{\frac{1}{2}}$ then

$$
\max (|A+B|,|F(A, B)|) \gtrsim|A|^{\frac{15}{14}}
$$

where $F(x, y) \rightarrow x(f(x)+b y)$, f is any function from \mathbb{F}_{p} to \mathbb{F}_{p} and $b \in \mathbb{F}_{p}^{*}$. Remark 4.3. Taking $f=0, b=1$ and $A=B$, it corresponds to the result by Garaev [5] who showed that

$$
\max (|A+A|,|A A|) \gtrsim|A|^{\frac{15}{14}} .
$$

Proof: The proof is completely the same as the proof in Theorem 4.1. We start with $|A+B| \leq K|A|$ and $|F(A, B)| \leq K|A|$. By using Plünnecke's inequality, we have $|A+A| \leq K^{2}|A|$ and $|B+B+B+B| \leq K^{4}|A|$. Therefore, following the same arguments in the proof of Theorem 4.1, we can find $A^{\prime} \subset A$ with $\left|A^{\prime}\right| \gtrsim|A|$ such that either we have

$$
\left|A^{\prime}\right|^{2} \lesssim\left|\left(a_{1}-a_{2}\right) A^{\prime}+\left(b_{1}-b_{2}\right) A^{\prime}\right|
$$

or

$$
\left|A^{\prime}\right|^{2} \lesssim\left|\left(a_{1}-a_{2}\right) A^{\prime}+\left(a_{1}-a_{2}\right) A^{\prime}+\left(b_{1}-b_{2}\right) A^{\prime}\right|
$$

for some elements $a_{1}, a_{2}, b_{1}, b_{2} \in A^{\prime}$. The worst case is the second one, let us just deal with this case for simplicity. Therefore, by the same argument in the proof of Theorem 4.1, we get

$$
\left|A^{\prime}\right|^{2} \lesssim K^{14}|A|
$$

which implies that $K \gtrsim|A|^{1 / 14}$.

Acknowledgements. The author wishes to thank Nets Katz for helpful discussions and the referee for her/his valued comments in developing the final version of this article.

References

[1] J. Bourgain, More on the sum-product phenomenon in prime fields and its applications, Int. J. Number Theory 1(1) (2005), 1-32.
[2] J. Bourgain and M. Z. Garaev, On a variant of sum-product estimates and explicit exponential sum bounds in prime fields, Math. Proc. Cambridge Philos. Soc. 146(1) (2009), 1-21.
[3] J. Bourgain, A. A. Glibichuk, and S. V. Konyagin, Estimates for the number of sums and products and for exponential sums in fields of prime order, J. London Math. Soc. (2) $\mathbf{7 3 (2)}$ (2006), 380-398.
[4] J. Bourgain, N. Katz, and T. Tao, A sum-product estimate in finite fields, and applications, Geom. Funct. Anal. 14(1) (2004), 27-57.
[5] M. Z. Garaev, An explicit sum-product estimate in \mathbb{F}_{p}, Int. Math. Res. Not. IMRN 11 (2007), Art. ID rnm035, 11 pp.
[6] M. Z. Garaev, The sum-product estimate for large subsets of prime fields, Proc. Amer. Math. Soc. 136(8) (2008), 2735-2739.
[7] M. Z. Garaev and C.-Y. Shen, On the size of the set $A(A+1)$, Math. Z. (2009), in press.
[8] A. A. Glibichuk and S. V. Konyagin, Additive properties of product sets in fields of prime order, in: "Additive combinatorics", CRM Proc. Lecture Notes 43, Amer. Math. Soc., Providence, RI, 2007, pp. 279-286.
[9] N. H. Katz and C.-Y. Shen, A slight improvement to Garaev's sum product estimate, Proc. Amer. Math. Soc. 136(7) (2008), 2499-2504.
[10] N. H. Katz and C.-Y. Shen, Garaev's inequality in finite fields not of prime order, Online J. Anal. Comb. 3 (2008), 6 pp.
[11] J. Solymosi, An upper bound on the multiplicative energy, Preprint.
[12] T. Tao and V. Vu, "Additive combinatorics", Cambridge Studies in Advanced Mathematics 105, Cambridge University Press, Cambridge, 2006.
[13] V. H. Vu, Sum-product estimates via directed expanders, Math. Res. Lett. 15(2) (2008), 375-388.

Department of Mathematics
Indiana University
Bloomington, IN 47405
USA
E-mail address: shenc@indiana.edu

Primera versió rebuda el 25 de setembre de 2008, darrera versió rebuda el 20 de febrer de 2009.

[^0]: 2000 Mathematics Subject Classification. 11B75.
 Key words. Sums, products, expanders.

