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ON THE SUM PRODUCT ESTIMATES AND TWO

VARIABLES EXPANDERS

Chun-Yen Shen

Abstract

Let Fp be the finite field of a prime order p. Let F : Fp ×Fp → Fp

be a function defined by F (x, y) = x(f(x) + by), where b ∈ F
∗

p

and f : Fp → Fp is any function. We prove that if A ⊂ Fp and

|A| < p1/2 then

|A + A| + |F (A,A)| ' |A|
13

12 .

Taking f = 0 and b = 1, we get the well-known sum-product
theorem by Bourgain, Katz and Tao, and Bourgain, Glibichuk
and Konyagin, and also improve the previous known exponent
from 14

13
to 13

12
.

1. Introduction

The sum product phenomenon has received a great deal of attention,
since Erdös and Szemerédi made their well known conjecture that for
any ǫ > 0 one has

max(|A + A|, |AA|) ≥ Cǫ|A|2−ǫ,

where A is a finite subset of integers,

A + A = {a + b : a ∈ A, b ∈ A},

and
AA = {ab : a ∈ A, b ∈ A}.

Later, much work has been done to find the explicit exponents, and the
best result to date is due to Solymosi [11], who showed that

max(|A + A|, |AA|) ' |A|
4

3 .

In the finite field setting, the problem becomes more complicated and the
first non-trivial sum-product estimate was obtained by Bourgain, Katz
and Tao [4] with subsequent refinement by Bourgain, Glibichuk and
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Konyagin [3]. They proved that if A ⊂ Fp, p prime, and |A| ≤ p1−δ for
some δ > 0, then there exists ǫ = ǫ(δ) > 0 such that max(|A+A|, |AA|) &
|A|

1+ǫ
. Since then there have been several generalizations and applica-

tions of this theorem (see [1], [2], [5]–[10], [12]). For example, it was
shown by Bourgain [1] that if A, B ⊂ Fp and pδ < |B| ≤ |A| < p1−δ for
some δ > 0, then the following bound holds:

max(|A + B|, |AB|) & pǫ|A|,

for some ǫ > 0. In addition, he also showed that the function F (x, y) =
x2 + xy from Fp × Fp to Fp possesses an expanding property in the
sense that |F (A, B)| & pǫ for some ǫ > δ whenever |A| ∼ |B| ∼ pδ,
0<δ<1. Another generalization was made by Vu [13] who characterized
the polynomials which satisfy

max(|A + A|, |P (A, A)|) & |A|min

(

(

|A|2

k4p

)1/4

,

(

p

k|A|

)1/3
)

,

where k is the degree of the polynomial (see, also [6] for some improve-
ments in the case P (x, y) = xy which corresponds to the sum-product

problem). However, this result is nontrivial only when |A| > p
1

2 . In this
paper we construct a family of two variables functions of the form

F (x, y) = x(f(x) + y)

which satisfy |F (A, A)| & |A|1+ǫ, and also prove a stronger sum product

estimate in the most nontrivial range |A| < p
1

2 : namely, if A ⊂ Fp with

|A| < p
1

2 then

max(|A + A|, |F (A, A)|) ' |A|
13

12 ,

where F : Fp ×Fp → Fp be a function defined by F (x, y) = x(f(x)+ by),
where b ∈ F

∗
p and f : Fp → Fp is any function.

Remark 1.1. Taking f = 0 and b = 1, we get the above mentioned
sum product theorem from [3] and [4] and also improve the exponent
in [9] from 14

13
to 13

12
. In addition, the exponent 13

12
appears in the work

of Bourgain and Garaev [2] in the form |A − A| + |AA| ' |A|13/12.
Nevertheless, our method is different from the one of [2] and applies
equally well to the more general case.

2. Preliminaries

Throughout this paper A will denote a nonempty subset in the prime
field Fp. If B is a set then we will denote its cardinality by |B|. Whenever
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X and Y are quantities we will use

X . Y,

to mean
X ≤ CY,

where the constant C is universal (i.e. independent of p and A). The
constant C may vary from line to line. We will use

X / Y,

to mean
X ≤ C(log |A|)αY,

and X ≈ Y to mean X / Y and Y / X , where C and α may vary from
line to line but are universal.

We give some preliminary lemmas. Lemma 2.1 was proven in [8], [9],
Lemma 2.2 was proven in [9].

Lemma 2.1. Let A1 ⊂ Fp with 1 < |A1| < p
1

2 . Then for any ele-
ments a1, a2, b1, b2 so that

b1 − b2

a1 − a2

+ 1 /∈
A1 − A1

A1 − A1

,

we have that for any A′ ⊂ A1 with |A′| & |A1|

|(a1 − a2)A
′ + (a1 − a2)A

′ + (b1 − b2)A
′| & |A1|

2.

In particular such a1, a2, b1, b2 exist unless A1−A1

A1−A1
= Fp. In case

A1−A1

A1−A1
= Fp, we may find a1, a2, b1, b2 ∈ A1 so that

|(a1 − a2)A1 + (b1 − b2)A1| & |A1|
2.

Lemma 2.2. Let X, B1, . . . , Bk be any subsets of Fp. Then there is
X ′ ⊂ X with |X ′| > 1

2
|X | so that

|X ′ + B1 + · · · + Bk| .
|X + B1| . . . |X + Bk|

|X |k−1
.

Lemma 2.3. Let C and D be sets with |D| & |C|
K and with |C + D| ≤

K|C|. Then there is a C′ ⊂ C with |C′| ≥ 9

10
|C| so that C′ can be

covered by ∼ K2 translates of D. Similarly, there is a C′′ ⊂ C with
|C′′| ≥ 9

10
|C| so that C′′ can be covered by ∼ K2 translates of −D.

Proof: To prove the first half of the statement, it suffices to show that we
can find one translate of D whose intersection with C is at least |C|/K2.
Once we find such a translate, we remove the intersection and then iter-
ate. We stop when the size of the remaining part of C is less than |C|/10.
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To prove the second half of the statement we have to show there is a
translate of D whose intersection with −C is at least |C|/K2. First, by
the Cauchy-Schwartz inequality, we have that

|(c, d, c′, d′) ∈ C × D × C × D : c + d = c′ + d′| ≥
|C|2|D|2

|C + D|
,

which implies that

|(c, d, c′, d′) ∈ C × D × C × D : c + d = c′ + d′| ≥
|C||D|2

K
.

The quantity on the left hand side is equal to
∑

c∈C

∑

d′∈D

|(c + D) ∩ (C + d′)|.

Thus we can find c ∈ C and d′ ∈ D so that

|(c + D) ∩ (C + d′)| ≥
|D|

K
&

|C|

K2
.

Hence, |(c−d′+D)∩C| & |C|/K2 which is just what we wanted to prove.
To prove the second half of the statement we start with the inequality

∑

d∈D

∑

c∈C

|(C − d) ∩ (c − D)| ≥
|C||D|2

K
.

Proceeding as above, we find c ∈ C and d ∈ D such that

|(c + d − D) ∩ C| & |C|/K2,

and the result follows.

3. Explicit two variables expanding maps

Theorem 3.1. Let A ⊂ Fp with |A| < p1−δ for some δ > 0. Then for
any nonconstant polynomial f , we have

|{x(f(x) + y) : x, y ∈ A}| & |A|1+ǫ

for some ǫ > 0 that depends only on δ and on the degree of the polyno-
mial f .

The key ingredient is the Szemerédi-Trotter incidence theorem in the
affine plane F

2
p which was proven in [3], [4].

Theorem 3.2. Let P and L be the points and lines in F
2
p and |P |, |L| ≤

N < pα for some 0 < α < 2. Then

|{(p, ℓ) ∈ P × L : p ∈ ℓ}| . N
3

2
−γ

for some γ > 0.
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Proof: We proceed by contradiction. Suppose it is not true. Then we
have

|{x(f(x) + y) : x, y ∈ A}| . |A|1+ǫ

for some small ǫ. Let k be the degree of f and denote C = {x(f(x)+y) :
x, y ∈ A}. By the Cauchy-Schwartz inequality, we have

∑

x∈A

∑

x′∈A

|x(f(x) + A) ∩ x′(f(x′) + A)| & |A|3−ǫ.

Therefore, we can find a0 ∈ A and A1 ⊂ A such that

|A1| ' |A|1−ǫ

and

|(x′(f(x′) + A) ∩ (a0(f(a0) + A)| & |A|1−ǫ, ∀ x′ ∈ A1.

Thus, for any x1 ∈ A1, there is a subset Ax1
⊂ A with |Ax1

| > |A|1−ǫ

and
x1(f(x1) + Ax1

) ⊂ a0(f(a0) + A).

Hence, for any x ∈ A we have

x

(

f(x) +
x1(f(x1) + Ax1

)

a0

− f(a0)

)

⊂ C.

Now, given x ∈ A, x′ ∈ A1, let ℓx,x′ be the line

µ =
xx′

a0

ν +
xx′f(x′)

a0

+ xf(x) − xf(a0)

and L = {ℓx,x′ : x ∈ A, x′ ∈ A1}. Then it is easy to verify that
|A|2−ǫ 1

k . |L| ≤ |A||A1| < |A|2. If we let P = A × C then |P | =

|A| × |C| . |A|2+ǫ. Therefore we have |ℓx,x′ ∩P | > |A|1−ǫ, and the total
number of incidences between L and P is at least |L||A|1−ǫ & 1

k |A|3−ǫ.
By applying Theorem 3.2, it follows that if ǫ is too small, it leads a
contradiction and this completes the proof.

Remark 3.3. In Theorem 3.1 we assume that f is a nonconstant polyno-
mial. If f is a constant, then we mention the recent preprint [7], where
explicit bounds have been obtained for this case.

4. Stronger sum product estimates

Theorem 4.1. Let A ⊂ Fp with |A| < p
1

2 . Then

max(|A + A|, |F (A, A)|) ' |A|
13

12 ,

where F (x, y) = x(f(x) + by), f is any function from Fp to Fp, and
b ∈ F

∗
p.
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Proof: We start with |A + A| ≤ K|A| and |F (A, A)| ≤ K|A|. By using
Plünnecke’s inequality, we can find A′ ⊂ A with |A′| & |A| so that

|A′ + A′ + A′| . K2|A|

and

|A′ + A′ + A′ + A′| . K3|A|.

First, by the Cauchy-Schwartz inequality, we have that

∑

a∈A′

∑

a′∈A′

|a(f(a) + bA′) ∩ a′(f(a′) + bA′)| &
|A′|3

K
.

Therefore, following Garaev’s arguments [5], we can find A′′ ⊂ A′ and
a0 ∈ A′ so that

|A′′| ' K−β|A′|

for some β ≥ 0 and for every a ∈ A′′ we have

|a(f(a) + bA′) ∩ a0(f(a0) + bA′)| & Kβ−1|A|.

As in the argument of Garaev, the worst case is β = 0, so let’s assume
that for simplicity. There are two cases. In the first case, we have

A′′ − A′′

A′′ − A′′
= Fp.

If so, applying Lemma 2.1, we can find a1, a2, b1, b2 ∈ A′′ so that

|A′′|2 . |(a1 − a2)A
′′ + (b1 − b2)A

′′| ≤ |a1A
′′ − a2A

′′ + b1A
′′ − b2A

′′|

= |a1f(a1)+a1bA
′′−a2f(a2)−a2bA

′′+b1f(b1)+b1bA
′′−b2f(b2)−b2bA

′′|

= |a1(f(a1)+bA′′)−a2(f(a2)+bA′′)+b1(f(b1)+bA′′)−b2(f(b2)+bA′′)|.

Now we apply Lemma 2.3 to find a A′′′ whose size is at least 6/10
of A′′ so that each of a1(f(a1) + bA′′′), −a2(f(a2) + bA′′′), b1(f(b1) +
bA′′′), and −b2(f(b2) + bA′′′) can be covered by ∼ K2 translates of
a0(f(a0) + bA′). However, then a1(f(a1) + bA′′′) − a2(f(a2) + bA′′′) +
b1(f(b1)+ bA′′′)− b2(f(b2)+ bA′′′) can be covered by ∼ K8 translates of
a0(f(a0)+bA′)+a0(f(a0)+bA′)+a0(f(a0)+bA′)+a0(f(a0)+bA′). Since
|a0(f(a0)+ bA′)+a0(f(a0)+ bA′)+a0(f(a0)+ bA′)+a0(f(a0)+ bA′)| =
|A′ + A′ + A′ + A′| . K3|A|, by the definition of A′. Thus we get

|a1A
′′′ − a2A

′′′ + b1A
′′′ − b2A

′′′| . K11|A|.

Therefore,

|A′|2 . K11|A|,
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which implies that K ' |A|1/11 ' |A|1/12, so that we have more than we
need in this case. Thus we are left with the case that

A′′ − A′′

A′′ − A′′
6= Fp.

Applying Lemma 2.1, we can find a1, a2, b1, b2 ∈ A′′ such that

b1 − b2

a1 − a2

+ 1 /∈
A′′ − A′′

A′′ − A′′
.

Then we have

|A′′|2 . |(a1 − a2)A
′′ + (a1 − a2)A

′′ + (b1 − b2)A
′′|.

Now by applying Lemma 2.2, we get

|A′′|2 .
|A + A|

|A|
|(a1 − a2)A

′′ + (b1 − b2)A
′′|.

Applying the same argument as above, we get

|A′|2 . K12|A|,

which implies that K ' |A|1/12.

Theorem 4.2. Let A, B ⊂ Fp with |B| ∼ |A| < p
1

2 then

max(|A + B|, |F (A, B)|) ' |A|
15

14 ,

where F (x, y) → x(f(x)+by), f is any function from Fp to Fp and b ∈ F
∗
p.

Remark 4.3. Taking f = 0, b = 1 and A = B, it corresponds to the
result by Garaev [5] who showed that

max(|A + A|, |AA|) ' |A|
15

14 .

Proof: The proof is completely the same as the proof in Theorem 4.1. We
start with |A + B| ≤ K|A| and |F (A, B)| ≤ K|A|. By using Plünnecke’s
inequality, we have |A + A| ≤ K2|A| and |B + B + B + B| ≤ K4|A|.
Therefore, following the same arguments in the proof of Theorem 4.1,
we can find A′ ⊂ A with |A′| ' |A| such that either we have

|A′|2 . |(a1 − a2)A
′ + (b1 − b2)A

′|

or
|A′|2 . |(a1 − a2)A

′ + (a1 − a2)A
′ + (b1 − b2)A

′|

for some elements a1, a2, b1, b2 ∈ A′. The worst case is the second one,
let us just deal with this case for simplicity. Therefore, by the same
argument in the proof of Theorem 4.1, we get

|A′|2 . K14|A|

which implies that K ' |A|1/14.
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