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FAITHFUL LINEAR REPRESENTATIONS OF BANDS

FERRAN CEDO AND JAN OKNINSKI

Abstract

A band is a semigroup consisting of idempotents. It is proved that
for any field K and any band S with finitely many components,
the semigroup algebra K[S] can be embedded in upper triangular
matrices over a commutative K-algebra. The proof of a theorem of
Malcev [4, Theorem 10] on embeddability of algebras into matrix
algebras over a field is corrected and it is proved that if S =
F U FE is a band with two components E, F' such that F is an
ideal of S and FE is finite, then S is a linear semigroup. Certain
sufficient conditions for linearity of a band S, expressed in terms
of annihilators associated to S, are also obtained.

1. Introduction

Recall that a band is a semigroup consisting of idempotents. This pa-
per is motivated by the problem of embeddability of a band S into the
multiplicative semigroup M, (K) of matrices over a field K, which was
first raised in [3]. It is known that every band S is a semilattice of rectan-
gular bands. In other words, there exists a semilattice (a commutative
band) T' such that S = Uaer Sa; a disjoint union, and S,Ss C Sag.
Here S,, are called the components of .S and they are rectangular bands.
This means that every E = S, satisfies the identity zyz = z. Equiv-
alently, £ = M({1}, X,Y; P), a completely simple semigroup over the
trivial group and with a sandwich matrix P = (py,) where p,, = 1 for
allz € X,y €Y. Moreover E = (Eeqg)(egE) for every eg € E and Feg is
a left zero semigroup, that is it satisfies the identity zy = x, and egF is

2000 Mathematics Subject Classification. Primary: 20M25, 16R20, 16S36; Sec-
ondary: 20M12, 20M17, 20M30.

Key words. Linear band, semigroup algebra, triangular matrices, annihilator, PI
rings, normal band.

Work supported in part by the DGI MEC-Spain and FEDER through grant
MTM2005-00934, by Generalitat de Catalunya (Grup de Recerca consolidat
2005SGR00206) and the MNiSW research grant N201 004 32/0088 (Poland).



120 F. CEDO, J. OKNINSKI

a right zero semigroup, defined by the identity zy = y. For more details
we refer to [7].

It is well known that every linear semigroup S C M, (K) has only
finitely many principal factors that contain idempotents (and every such
factor is a completely O-simple or a completely simple semigroup). This
follows from a general structure theorem for arbitrary linear semigroups,
[6, Theorem 3.5]. So, when studying embeddability of bands into matri-
ces, we have to deal with the case where I is finite. It is also well known
that every band S C M, (K) is triangularizable, see [6, §4.4], or [8].

If T'| =1, so S = F is a rectangular band, then F has an embedding
into M3(L) for sufficiently big fields L. A matrix embedding of F, given
in [3], is of the form

0 p(zf) plxfn(fr)
z— (0 1 n(fx) € M3(L)
0 0 0

where f € F is a fixed element and p: Ff — L, n: fFF — L are
injective maps. Actually, it is easy to see that, for any field K, choosing
the field L big enough and choosing appropriate maps p, 1, we also get
an embedding of algebras K[F]| — Ms(L).

The next step is to consider bands with two components. An exam-
ple constructed in [3] shows that there exists a band with two compo-
nents S = E U F such that S is not linear. In this example, both F
and F' are right zero semigroups. We show that one can construct an
even simpler example with E a left zero and F' a right zero semigroup.

Example 1.1. Let S = FU F, a disjoint union, where F = {e; | i > 1}
and F = XUX' with X = {f; |i>1}, X' = {f/ |i>1}. On E
and F we define the operation by the rules: ee/ = e and ff' = f’
for all e,e’ € E, f,f' € F. Then we define also z’e = 2’ for 2’ €
X', ee Eand ef = f fore € E, f € F. Moreover, fje; = f} for
j=1,...,i—1and fje; = f/ for j > i. It is easy to see that S is a
band with components E, F and F is an ideal of S. Notice that the
right annihilator ann,.(f; — f}) = {z € S| fyz = fjz} of f; — fiin S
contains e; with ¢ > j and does not contain ey,...,e;—1. It follows that
there is an infinite descending chain of such annihilators. Therefore S is
not a linear semigroup.

In view of these examples, one can ask for general conditions under
which a band S is linear. This problem is the main motivation for the
results of this paper.
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We note that the problem of embeddability of rings into matrices over
a commutative ring has attracted a lot of attention because of its role
in the theory of Pl-algebras, see [9]. Several papers were also devoted
to the embeddability into triangular matrices, in particular see [1], [5].
In the context of our general aim, it is then natural to look at these
problems for the class of bands and also of their semigroup algebras.

In the first part of this paper, we prove that for any field K and
any band S with finitely many components, the algebra K[S] can be
embedded in upper triangular matrices over a commutative K-algebra.
We also give an explicit embedding in the case where S has 2 components.

In the second part, we prove a technical lemma on algebras which
allows us to correct the original proof of a theorem of Malcev [4, The-
orem 10] and to prove that if S = F U E is a band with two com-
ponents E, F such that F' is an ideal of S and E is finite, then S is
a linear semigroup. We give also some explicit embeddings of special
classes of bands satisfying finiteness conditions on annihilators, and of
their algebras, into triangular matrices over fields.

2. Triangular embeddings over commutative rings

Let K be a field. For a K-algebra A, denote by T,,(A) the algebra of
upper triangular matrices m = (m;;) over A with m;; € K for every i =
1,...,n. First, we prove an auxiliary result.

Lemma 2.1. Assume that a K-algebra R is of the form R = Ry + Ke
for an ideal Ry of R and for an idempotent e € R. Let A be a commu-
tative K -algebra. If Ry is embeddable into the matriz ring M, (A) for
some n > 1 then R embeds in M2, (A). If Ry is embeddable into T, (A)
for some n > 1 then R embeds in Tay,(A).

Proof: Suppose that ¢: Ry — M,,(A) is an embedding. We have a
decomposition R = eRe+eR(1—e)+(1—e)Re+(1—e)R(1—e) (existence
of a unity in R is not assumed). By the hypothesis, eRe = eRpe + Ke
and the remaining three components are contained in Ry. Define the
map ¢: R — Ma,(A) by the rules:

d(Xe) = <)E)I 8) , for A € K,

o(z) = <¢(O$) 8) , for x € eRye,
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) , for z € eRp(1—e),

() = (¢(()$) 8) . forz € (1—e)Roe,

- 0 O
o(x) = (0 ¢($)> , forze(l—e)Ro(l—e),

using the block matrix notation with all blocks of size n x n. It is clear
that ¢ is an injective homomorphism.

Next, assume that ¢: Rg — T,,(A4). In this case, a slightly more
complicated approach is needed to prove the second assertion. Write
o(x) = (¢ij(z)). Put ¢(e) = I, the identity matrix. Then define:
¢: R — Tu,(A) as follows: ¢(z) = (¢4 (7)), where

$2i—1,2j—1(7) = ¢ij () for = € eRe,
h2i—1.2j(7) = ¢i;(x) for x € eR(1 — e),
$2i2j-1(7) = ¢i;(x) for x € (1 — e)Re
$2i2;(2) = ¢ij(x) for x € (1 — e)R(1 —e)
where i, j run over the set {1, ...,n} with the convention that ¢y, ;(x) = 0
for all unspecified pairs k,1 € {1,...,n} in each of the four cases listed

above. It is clear that ¢(z ) is an embedding. A direct verification shows
that ¢(zy) = ¢(x)d(y) for every z,y € R. To illustrate this, we verify
the case where € eR(1 — e) and y € (1 — e)Re. Then the nonzero
entries of the matrix

o(x)p(y) = (¢i5(2)) (b1 (y (Z@q ) Pa (y ) (Z(ﬁzzq ) h2q,1( ))

are in positions (,1) with odd ¢ and ! and they are equal to
Z Di41) /2,0 () Bq 141y /2 (1) = Bli1)/2,041)2(2y) = da(wy).

So the claim follows.

In order to verify that ¢(z) € Ta,(A) for every z € R we first note
that ¢;;(z) is nonzero only if z € eRe or (1 — e)R(1 — €) and then
¢i.:(x) is equal to ¢y, 1 (z) for some k, which lies in K by the assumption
that ¢(Ro) C Tn(A). On the other hand, suppose that ¢;;1:(x) is
nonzero. Then z € (1 — e)Re and in this case 22 = 0. So, again by the
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assumption on the image of ¢, we must get ¢;11(z) = ¢x.x(x) = 0, for
some k, a contradiction. Since other entries below the diagonal in every
matrix ¢(x) are zero, the result follows. O

Theorem 2.2. Let S be a band with finitely many components. Then
the Jacobson radical J(K[S]) of K[S] is nilpotent and K[S] embeds
into T, (A) for a commutative K-algebra A. Moreover, the K-algebra
K|[S]/J(K[S]) has finite dimension.

Proof: Let S = Uvel“ Sy, a semilattice I' of completely simple compo-
nents Sy, v € I We claim that J(K[S]) = > cpw(K[S,]), where
w(K[S,]) denotes the augmentation ideal of K[S,], and the radical is
nilpotent. In particular, this implies that the radical has finite codimen-
sion. We proceed by induction on |T'|. If |T'| = 1, then it is well known
and easy to check that K[S] is a local algebra with radical w(K[S]) and
w(K[S])? = 0.

So, assume that [I'| > 1. Let 8 be a maximal element of I". Let IV =
I\ {B} and S = J,cp/ S5. By the induction hypothesis, J(K[S]) =
> e w(K[S,]) and it is mlpotent Note that > -pw(K[S,]) is an

ideal of K[S]. Since (w( = 0, we have that
3
c J(K[S).
Hence 3 cpw( Sv] is nilpotent and > . w(K[S,]) € J(K[S]). We

define the map f: K[S] — K|[Sg] by

; (za@s) Y a(os,

seS s€ESp

for all }° ga(s)s € K[S]. Since (3 is a maximal element of T, f is a
ring homomorphism which is surjective. It follows that f(J(K[S])) C
J(K[S5]) = w(K[Sg]). Hence f(J(K[S])) C J(K[S]). Since K[S'] is an
ideal of K[S], we have that J(K[S]) N K[S'] C J(K[S']). Therefore

J(K[S]) = f(J(KIS]) + (J(K[S]NK[S) € D w(K[S,)-
yel
It follows that J(K[S]) = >_ pw(K[S,]) and it is nilpotent.

From [1] we know that there exists an embedding ¢: J(K[S]) —
T,.(A) (actually into strictly upper triangular matrices) for some n > 1
and a commutative algebra A. Let J be an ideal of " that is not a
singleton. Then J = L U {¢}, a disjoint union, for an ideal L of T’
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and a maximal element § € J. Define R, = J(K[S]) + > o ; K[S,].
From the first part of the proof it follows that R; is an ideal of K[S)]
such that Ry = Ry + Kes for an element e5 € S5, and Ry, is an ideal

of Ry. Therefore the assertion follows by an easy induction based on
Lemma 2.1. O

As an immediate consequence of Theorem 2.2 we get the following
result.

Corollary 2.3. The semigroup algebra K[S] of a band S with finitely
many components satisfies a standard polynomial identity.

Our second aim is to construct a concrete embedding of a band S
with two components into an algebra over a commutative ring. This is
based on a commutative algebra R naturally associated to S. Therefore,
it also leads to the question whether linearity of S (over a field) can be
characterized in terms of this algebra.

Suppose that S is a band with two components F' and E such that
F is an ideal of S. We may assume that F = {f;; | i € I and j € J},
E={eqp|ac Aandbe B}, and

fijfeg = fig and  eqpeca = €q,d,

foralli,kel, j,l e J, a,ce Aand b,d e B. Let a: Ax Bx I — I be
the map defined by the rule

€abfij = fa(ap.i)j-

Let 8: J x A x B — J be the map defined by the rule
fi,jea,b = fi,ﬁ(j,a,b)'

Since

fa(a,d,i),j = ea,dfi,j = ea,bec,dfi,j = ea,bfa(c,d,i),j = fa(a,b,oc(c,d,i)),ja

we have that

(1) ala,b,a(c,d, 1)) = ala,d, ),
for all a,c € A, b,d € B and i € I. Similarly one can see that
(2) ﬁ(ﬁ(j,a,b),c,d) :ﬁ(jvmd)v

for all a,c € A, b,d € B and j € J.

For any field K, we will construct a commutative K-algebra R such
that the semigroup algebra K[S] embeds into the ring T7(R) of 7 x
7 upper triangular matrices over R with diagonal in K. Actually, R is a

semigroup algebra K[C] of a commutative semigroup C'.
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Let X ={x; |t€l},Y={y;|jeJ}, Z={2]a€ A}, Z/ ={z |
ac€ A}, T ={ty | be B} and T' = {t; | b € B} be pairwise disjoint sets
of commuting indeterminates over K. Let R = K[XUYUZUZ'UTUT’]
be the polynomial ring on these indeterminates with coefficients in K.
Let M be the ideal of R generated by

(i) tpx; — taxg, for all i,k € I and all b,d € B such that there exists

a € A satisfying a(a,b,1) = a(a, d, k),
(ii) zatpx; — zctaxy, for all i,k € I, a,c € A and b,d € B such that
ala,b,i) = alc,d, k),
(ili) yjz, —yizl, for all j,l € J and all a,c € A such that there exists
b € B satisfying 5(j,a,b) = 8(l, ¢, b),
(iv) yjzot, — wzit), for all j,l € J, a,c € A and b,d € B such that
6(j7a7b) = 6(1707 d)
Let R = R/M. Let p: S — T7(R) be the map defined by

0 Zg zatp 0 O O 0
0 1 t, 0 0 O 0
0 0 0 00 O 0
pleap) =10 0 0 1.0 0 0 |,
00 0 00 2z 2t
00 0 00 1 ¢
0 0 0 00 O 0
foralla € A and b € B,
0 0 0 zilpzi 0 zotpxryizl zatsxryizit)
0 0 0 fHxr O kY12, tb:vkylz{:t&
0 0 O 0 0 0 0
p(fij) =10 0 0 1 0  yzl vzt :
0 0 0 0 0 0 0
0 0 O 0 0 0 0
0 0 O 0 0 0 0
for all f; ; € EFE such that a(a,b, k) = ¢ and 8(l,¢,d) = j,
0O 00 0 O 0 0
000 0 O 0 0
0 0 0 @ 0 zyz. zyzlt)
p(fij) =10 0 0 1 0 w2l wty |,
000 0 O 0 0
000 0 O 0 0
0 00 0 O 0 0
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for all f; ; € FE\ EFE such that 5(I,¢,d) = j,

0 0 0 zotpzr zalpxry; 0 O
0 0 0 Ty torry; 0 0
0 0 O 0 0 0 0
p(fij)={0 0 0 1 7o 0 0f,
0 0 O 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
for all f; ; € EF \ EFE such that a(a,b, k) =i, and
0 0 0 O 0 0 0
0 0 0 O 0 0 0
p(fij)={0 0 0 1 g5 0 0],
0 0 0 O 0 00
0 0 0 O 0 00
0 0 0 O 0 0 0

for all f;; € F\ (EFUFE).

To prove that p is well-defined we need to check that z,t,xr =24/ Ty Tk,
Lre = tyaw, yzlty = y2th, yzl = yp2l, for all a,d,c,cd € A,
bt/,d,d € B, k,k' € I and [,I' € J such that a(a,b,k) = a(d’, ¥/, k)
and B(l,¢,d) = (', ,d"). Suppose that a(a,b, k) = a(a’,b', k") and
B(l,e,d) = p(l',c/,d"). By the definition of M, we have that z,tpzr =
Zwlomn and izt = gzt By (1),

a(a7 b’ k) = a(a7 b’ a(a’ b7 k)) = a(a’ b7 a(a/7 b/7 k/)) = a(a7 b/’ k/)'

Hence m = tb/:Z?k/. By (2),
6(1707 d) = 6(6(1707 d),C, d) = ﬁ(ﬁ(llucludl)uca d) = Balaclad)'

Hence ;2. = yl/—zé/ Therefore p is well-defined.

We shall see that p is injective. Since M is generated by homogeneous
polynomials of degree 2 and 3, it is clear that the restrictions of p to F
and to F'\ (EF U FE) are injective. It is also clear that we only need
to check that each of the restrictions of p to the disjoint sets EFFE,
FE\ EFFE and EF \ EFE is injective. It is sufficient to prove that for
a,ce A, b,de B,i,keland j,l € J,

(3) ZalbTi = zcltaxy, = a(a, b, i) = ale, d, k)
and

(4) y;zbty, = yizlt, = B(j,a,b) = B, c,d).
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Suppose that z,tpz; = z.tqxr and that a(a,b,i) # a(e, d, k). Since M is
homogeneous with respect to the degrees in X, Y, Z, Z', T and in T”,

m
ZatoTi — Zetatk = 3 An(Zant, Ti, — Ze,td, Tk, ),

n=1

for some A\, € K and some ay,c, € A, b,,d, € B and i,,k, € I such
that a(an,bn,in) = alcn,dn, ky), for all n = 1,...,m. Let Ny = {n |
1<n<mand alan,bn,i,) = a(a,b,i)} and No = {n |1 <n < m and
a(ap,bn,in) = a(e,d, k)}. Then, clearly,

Zatoi = Y An(Zay o, Ti, — Zentd, Tk,
neNy

and

_thd‘rk = Z )\n (Zantbnxin - chtdnxkn)'
neN2
But this is impossible. Hence a(a,b,i) = a(c, d, k) and (3) follows. Simi-
larly we prove (4). Hence p is injective. It is easy to see that p(eq pec.a) =

pleap)plec,d) and p(fijfer) = p(fij)p(fer). Let fij = ewpfi; € EF
and e.q € E. Then

00 0 LhE nhwr
0 0 0 Tpx; toxiT
0 0 0 0 0

pfi)=]0 0 0 1 .
0 0 0 0 0
0O 0 O 0 0
0O 0 O 0 0

for some r € Myx3(R), and

0 0 0 ztpyw; 2ctpa;r

0 0 0 tpx; tyx; T

0 0 O 0 0
pleca)p(fij)=10 0 0 1 r

0 0O 0 0

0 0O 0 0

0 0O 0 0

= p(fa(epi),j) = Plecpfig) = plecaeapfiy) = plecdafij)-
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Let f;; € F\ EF and e; 4 € E. Then

0O 0 0 O 0
0O 0 0 O 0
0 0 0 = =xr
p(fi,j) =10 0 O 1 r
0 00 0 O
0 00 0 O
0O 0 0 O 0
for some r € M;y3(R), and
0 0 0 ztgr; zctawir
0 0 0 tygx tqx; T
0 0O 0 0
pleca)p(fij)=10 0 0 1 r
0 0 O 0 0
0 0 O 0 0
0 0 O 0 0

= p(faledi),i) = plecafij)-

Similarly, it is easy to see that we always have p(f; jeas) = p(fi;)p(€ap)-
Since p(S) is K-linearly independent, p extends to a monomorphism of
K-algebras K|[S] — T7(R). It is clear that R = K[C], where C is the
monoid defined by the same presentation as R.

3. Embeddings over a field

This section is devoted to the embeddability of bands, and of their
semigroup algebras, into the matrix algebras over a field. We start with
a discussion of a theorem formulated in [4, Theorem 10]. The proof given
there is incorrect. Our first aim is to give a correct proof. For this, recall
the following simple observation. Let L be a left ideal of an algebra R
over a field K. Assume that the left R-module R/L is finite dimensional
over K. Let R! be the standard extension of R to the algebra with unity.
If I is the annihilator of the left R'-module R'/L, then the algebra R'/I
embeds into Endg(R'/L) and hence it has finite dimension. Hence,
L contains an ideal I of R' that has finite codimension.

In the proof we will also use the following lemma.

Lemma 3.1. Let R be an algebra over a field K. Let I be a left ideal of R
of finite codimension. Let M be an ideal of I of finite codimension. Then
there exists an ideal W of R of finite codimension such that W C M.
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Proof: We can write R = I—l—Z;il a; K for some m > 1 and some a; € R.
Define

Vi={zeM|azeM}, i=1,...,m.
Then a;lx C Ix C M for x € M, so IV; C V;. It follows that V' =
N2, V; is a left ideal of I. Define

V = V/ + Z aiV’.

i=1
Then V is a left ideal of the algebra R and V C M. We claim that
dimg (R/V) < oco. In order to check this, it is enough to show that
V has finite codimension in M (since M has finite codimension in I and
the latter has finite codimension in R). Therefore, it is sufficient to show
that every V; has finite codimension in M. Now, V; = ¢~ 1(M), where
¢: M — R is the linear map defined by ¢(z) = a;x. Since M has finite
codimension in R, also ¢~ (M) has finite codimension in M. The claim
follows.

Hence, by the comment before Lemma 3.1, there exists also a two-
sided ideal W of R of finite codimension such that W CV C M. O

Now we can prove the following theorem, stated by Malcev in [4].

Theorem 3.2. Let I be a left ideal of an algebra R over a field K.
Assume that dimg (R/I) < oo and that there exists a positive integer n
such that I embeds into the matriz ring M, (L) over a field extension L
of K. Then R embeds into My(L) for some k.

Proof: First notice that the second part of the assumptions can be refor-
mulated as follows: there exists an ideal M of the algebra I ® i L such
that INM = 0 and dim, (I ®x L)/M) < co. Indeed, the latter is satis-
fied if the ideal M is defined as the kernel of the natural homomorphism
I®g L — M, (L)

Since I ® g L is a left ideal of R ® ¢ L and

dimy,((R®kx L)/(I ®k L)) = dimg (R/I) < oo,

by Lemma 3.1, there exists an ideal W of R® k L such that dimy, ((R®x
L)/W) <ooand W C M.

Since INM =0and M CI®x L, weget WNRC MNR=0. Thus

R embeds into the finite dimensional L-algebra (R ®x L)/W. It follows
that R embeds into M} (L) for some k. (]

In view of Theorem 2.2, it follows that the Jacobson radical of K[S)]
is not embeddable into matrices over a field whenever S is a band with
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finitely many components such that K[S] is not embeddable into matri-
ces over a field.

The following general result on finite ideal extensions of semigroups
is an analogue of Theorem 3.2.

Theorem 3.3. Let S be a semigroup with an ideal I such that S/I is
finite. Assume that I is a linear semigroup. Then S is a linear semi-

group.

Proof: By the hypothesis, there exist a field K and an ideal J of K|[I]
such that I embeds into K[I]/J and the latter is finite dimensional
over K. Since K|[I] is an ideal of K[S], by Lemma 3.1, there exists an
ideal W of KS] of finite codimension and such that W C J.

Let R = K[S]/W. Suppose that s —t € W for some s,¢ € S. Since
W C K[I], it follows that either s =t or s,t € I. But by the choice of J,
I embeds into R under the natural map K[S] — R. Hence S embeds
into the algebra R.

Then S has a faithful representation in the finite dimensional alge-
bra R, whence applying the regular representation of the algebra R!
obtained by adjoining an identity to R we get a faithful representation
of S in some M, (K), as desired. O

We get the following immediate consequence of Theorem 3.2.

Corollary 3.4. Let S = F U E be a band with two components E, F
and such that F is an ideal of S and E is finite. Then for every field K
the algebra K[S] embeds into My (L) for a field extension L of K.

The proof of Theorem 3.3 is not constructive. Moreover, when applied
to a band S = F'U E with two components, with F' an ideal of S and
F finite, it does not give a chance for an extension to some cases where
F is infinite. These are the main motivations for the construction given
in Example 3.5. First, we give a simple observation.

Suppose that S C M, (K) is any band. Assume that S # {0}. Let
I be the ideal of S consisting of all elements of the least nonzero rank and
the zero matrix, if it is in S. Then S has a nonzero ideal F' C I which
is a rectangular band or such that F \ {0} is a rectangular band. Let
j be the common rank of all matrices in F'. Consider the exterior power
map ¢ = AV: M,(K) — M(y)(K) Then rank(¢(a)) = (ra“?(“)) for
every a € S\ {0} and in particular rank(¢(f)) = 1 for every f € F'\ {0}
(see [6, Lemma 1.6]). Suppose that a,b € S are such that ¢(a) = ¢(b).
Then rank(a) = rank(b). If a # b then there exists @ € M,,(K) such that
rank(ax) = rank(a) but rank(bz) < rank(a), or there exists y € M, (K)
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such that rank(ya) = rank(a) but rank(yb) < rank(a). (It is easy to see
that otherwise a, b have equal kernels as elements of M, (K) = End(K™)
acting on the left on K™ and also as maps acting on the row vector
space on the right. Then these are two H-related idempotents of the
multiplicative monoid M, (K), whence they must be equal.) It follows
that ¢(a) # ¢(b), a contradiction. Thus, ¢jg: S — M(n) (K) is an
embedding. Therefore, if a band S is linear, then we may assume that a
minimal nonzero ideal of S consists of matrices of rank at most 1. Our
construction will be of this type and it generalizes the matrix embedding
of any rectangular band F' given in [3], mentioned earlier.

Example 3.5. Let S = FFU E be a two component band with F an
ideal of S and E = {e;; | i € {1,...,m},j € {1,...,n}} such that
€€kl = €. We give an explicit construction of an embedding of
S (and of the algebra Kj[S] for any given field Kj) into the matrix
algebra M,.(L) for some r > 1 and a field L.

Proof: Note that Fe; ; D Fey e, ; = Fepjande; ;F D e; jep  F = e F.
Hence
Fem = Fel,j and emF = 61‘71F
for all 4, j.
Fix some fy € F. Consider the maps

2 FfO — an(FfO) and ¢1 fOF — men(fOF)
ffo — (eijffo) fof — (fofeiy).
Let K be an infinite field such that |K| > |S].

We will define a monomorphism p: S — M, (L) for some r > 3 and
some field extension L of K such that for all f € F,

OT17T1 M(ffo)t M(ffo)tn(fOf)
p(f)=1{ O 1 n(fof) ,

OTzﬂ“l 07“2,1 07“2,7“2

where 0, , denotes the zero matrix in M,x,(L) and D' denotes the
transpose of the matrix D, and ry, ro are positive integers such that
r1 + 72+ 1 = r. The row vector u(f fo) will contain encoded informa-
tion about ffo and ¢(f fo), and the row vector n(fof) will contain the
information about fof and ¥(fof).

Let Fl = U;il 61‘71F, F2 = U?:l Fel,j, Fl = F\F1 and E = F\F2

Let f € F. We define i(ex;f) to be the least positive integer such
that ex i f fo € €i(e,, p),1 F'- Note that if ffo € Fy then

ffo=eipe11ffo and ek f fo = €y, ).1€1,1f fo-
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Thus (e1,1f fo,i(f),i(er,1f),i(e21f),...,i(em,1f)) contains all the infor-
mation about ffy and ¢(ffo) if ffo € F1. If ffs € Fy then

ek ffo = €iter,p),11,0f fo-

Thus (e11ffo,---,e1nffo) and (i(erif)) € Mumxn(N) contain all the
information about ¢(ffo) if ffo € Fi. In order to encode the ele-
ments i(eg,;f) we use commuting indeterminates Ti(e,, f) Over K, thus
we need the indeterminates x1,...,%,. To encode the elements ey ;f fo
we choose any injective map fi: e; 1 F — K \ {0}. To encode the ele-
ments ffo € [} we choose any injective map jo: Fy — K \ {0}.

Let Ly = K(x1,...,2,) be the field of fractions of the polynomial
ring K[z1,...,Zm].

Let u: Ffg — L;n("H)H be the map defined by

w(f fo) = (0, zipyi(er,1 f fo), Ticer o pyii(ern f fo), -
s Ti(en, pyRe1,1f £0),0,...,0)
for all ffy € Fy, and

u(f fo) = (ro(f£0), 05,0, p1,1(f fo), - - 1 (f fo),
M?,l(ffo)u e 7/142,n(ff0)7 co. 7/1'm,1(ff0)7 v 7Mm,n(ff0))

for all ffo € F1, where uy (ffo) = Ti(e,., fyl(e1,1f fo). Looking at the
two first components of u(ffp) it is easy to see that u is an injective
map.

Let f € F. We define j(fer,;) to be the least positive integer such
that fofex: € Fey j(ye,,)- Note that if fof € Fy then

Jof = foferer ) and foferr = foferner jire, -

Thus (fofer,1,j(f),j(fern),i(ferz2),...,j(fern)) contains all the in-
formation about fof and ¢ (fof) if fof € Fa. If fof € F5 then

Joferr = fofexe1 (e

Thus (fofer1,---, fofem1) and (j(feri)) € Muyxn(N) contain all the
information about ¥ (fof) if fof € Fz. To encode the j(fer;) we use
commuting indeterminates y;, ,) over K, thus we need the indetermi-
nates y1,...,¥yn. To encode the elements fjfer 1 we choose any injective
map 7: Fey 1 — K\ {0}. To encode the elements fof € Fh we choose
any injective map n: Fo — K \ {0}.

Let L = L1(y1,- .., yn) be the field of fractions of the polynomial ring
Ll[yla N ,yn].
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Let n: foF — L™™+D+2 be the map defined by

n(fof) =(0,...,0,yjse, 1 fofer1), ...
s Yjtferfofern), yicnn(fofer),0)
for all fof € F», and

n(ffo) = ma(fof), - nma(fof)sma(fof), - mm2(fof),--.
<. 7771,n(f0f)7 cee 7nm,n(f0f)707 s 707770(f0f))

for all fof € Fy, where ny1(fof) = Yj(fen)M(fofer,1). Looking at the
two last components of 1(fo f) it is easy to see that n is an injective map.

Let I,, denote the identity matrix in M, (L), a; denote the element
of Myxm(L) with 1 in position ¢ and zeros elsewhere, b; denote the
element of M,,«1(L) with 1 in position j and zeros elsewhere, and E; ; €
M, 5n(L) denote the matrix whose (4, j)-entry is 1, while all the other
entries are 0.

Let C; = (Elj, Eyj,. .., Emj) S me(mn)(L)- Let

Eiq
E; o
D; = : € M(mn)xn(L)'

Ei,n
We define a function p: S — Momntmtnts5(L) by

0 0 Ol,m Ol,mn 0 Ol,mn Ol,n 0 0

0 0 a; aiCj 0 Ol,mn Ol,n 0 0
Om,l Om,l Im Cj Om,l Om,mn Om,n Om,l Om,l
Omn,l Omn,l Omn,m Omn,mn Omn,l Omn,mn Omn,n Omn,l Omn,l
pleij)=] O 0 Oim Otmn It Ormn Oin 0 0
Omn,l Omn,l Omn,m Omn,mn Omn,l Omn,mn Dz Dzb_] Omn,l
On,l On,l On,m On,mn On,l On,mn In bj On,l

0 0 Ol,m 0l,mn 0 0l,mn Ol,n 0 0

0 0 Ol,m 0l,mn 0 0l,mn Ol,n 0 0

foralli=1,...,mandall j=1,...,n, and
Omntmtzmntmt2  1(ffo) u(f fo)n(fof)
o(f) = 01,mn+m+2 L 77(f0f)
0mn+n+2,mn+m+2 Omn+n+2,1 Omn+n+2,mn+n+2
for all f e F.

Since p and 7 are injective, it follows that p is injective. It is easy to see
that p(fg) = p(f)p(g) for all f, g € F and that p(e; jex,1) = p(ei,j)p(ex,).
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Let f € F. Since fof = foeiyjf, we have n(fof) = T](foeiyjf). Thus,
in order to show that p(e; ; f) = p(ei;)p(f), it is sufficient to see that

01,1 01,1 01,m 01,mn
01,1 01,1 a; a;C;

I c, u(f fo)t = nleisffo)t.

Omn,l Omn,l Omn,m Omn,mn

Om,l Om,l

Suppose that ffy € Fy. Then

Li(ei; M (el,jffO)
Tie, ;)€1 i f fo)

01,1 01,1 01,m 01,mn Ti(ea ,; fIM (el,jffo)
0 0 a; a;C
n Ou S it =
Om,l Om,l Im OJ
0 1 0 1 0 0 xi(em,jf)ﬂ(el,jffo)
mn, mn, mn,m mn,mn 0
0
Since ey, 1€, = ex,;, we have
01,1 01,1 01,m 01,mn
01,1 01,1 a; a;C; ¢ - t
Ot Om.1 1, Cj M(ffo) = M(eldffo) )

Omn,l Omn,l Omn,m Omn,mn

in this case.
Suppose that ffo € F;. Then

Tie, 1 f)Ib (61,1ffo)
Tie, i€, f fo)

01,1 01,1 01,m 01,mn Tiea 1 f)I (61,1ff0)
01,1 01,1 a; a;C; t_
Om,l Om,l Im Cj /L(ff()) -

Omn,l Omn,l Omn,m Omn,mn

wi(em,lf)ﬂ(el,lffo)
0
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Since ey 1€i,1 = ex,1, we have

01,1 01,1 01,m 01,mn
011 011 a; a;C; ¢ ¢
Om,l Om,l Im Cj /L(ffo) - /L(elyjffo) )

Omn,l Omn,l Omn,m Omn,mn

in this case.

Hence p(e; ;f) = p(ei ;)p(f) for all f € F. Similarly one can verify
that p(fe; ;) = p(f)p(e;;) for all f € F. Therefore p is an injective
homomorphism of semigroups.

Let Ky be any field. Choosing p and 7 in this construction in an
appropriate way, we also get an embedding of the algebra Ky[S] —
M, (L) for a field extension L of Ky. Indeed, let X, Y, X’ and Y’ be
pairwise disjoint sets of commuting indeterminates over Ky such that
| X, Y], 1X'],]Y’| > |S]. Choose any injective maps pi: e11 F — X,
n: Fein — Y, po: Fy — X' andng: Fo — Y’ Let K = Ko(XUY U
X'UY”) be the field of fractions of the polynomial ring Ko[XUYUX'UY”].
Then, applying the above construction, it is easy to see that p(S) is
Ky-linearly independent. Hence we get an algebra embedding Ky[S] —
M, (L). O

Our second aim in this section is to discuss certain natural embed-
dability criterions for a band S, formulated in terms of annihilators
associated to S. This approach seems justified because linearity of S
implies certain finiteness conditions on annihilators. Let T be a semi-
group. Let s,t € T and let I be an ideal of T. Then we may form
the right annihilator ry(s —t) = {z € I | sz = tx}, which is a right
ideal of T, and similarly 1;(s — t), the left annihilator in I. Also, we
define r7(s) = {(z,y) € I x I | sx = sy}. This is a restriction to
I of a right congruence on T, whence a right congruence on I. A
symmetric definition yields a left congruence 1;(s) on I. Recall that
if T C M, (L) is a linear semigroup then every chain of annihilator (one-
sided) ideals of the algebra R = ling(T) C M, (L) has length bounded
by n. This justifies the following conjecture. Let S be a band with
finitely many components. Assume that every chain of one-sided ideals
of the form rg(s — t),1s(s — t),s,t € S, is of bounded length and ev-
ery chain of one-sided congruences of the form rg(s),1s(s),s € S, has
bounded length. Then S (or maybe also K[S] for any field K) embeds
into matrices over a field L.

The information about the structure of a 2-component band S = FUF
is contained in properties of the action of E on F fy by left multiplication
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and the action of F on foF by right multiplication. This is clear because
ei; f = (ei; f fo)(fof) and hence e;; f is determined by fof and by e;; f fo;
so by f and by the left action of e;; on Ffy. Similarly for fe;;. So,
necessary and sufficient conditions for embeddability of S must be in
terms of conditions on these two actions: ¢: E — T, where T is the
semigroup of all maps F'fy — Ffy and ¢(e) is the left multiplication
by e, and ¢p: E — T’, where T’ is the semigroup of all maps foF —
foF and v(e) is the right multiplication by E. This approach is used
below.

Lemma 3.6. Let S be a semigroup with an ideal I and a subsemigroup E
such that S = IUE is a disjoint union and E is a rectangular band. If I is
linear and there are only finitely many one-sided congruences ri(z), 1;(x)
and one-sided ideals r1(1 — x), 1;(1 — ), where x € E, then S is linear.

Proof: Let e € E. Assume that {r;(1 —e) | e € E} is a finite set
consisting of m elements. Let eq,...,e, € E be elements such that
{rr(l1—e)|ee€ E} ={ri(1 —e1),...,r7(1 —ey)}. Consider the map
E — {1,...,m} defined by e — i., where r;(1 —e) = r;(1 —e;, ). Now,
for all f € I, we have that ef € ry(1 —e) =r17(1—e;,), thusef =e¢; ef.

Assume that {rj(e) | e € E} is a finite set consisting of n ele-
ments. Let €f,...,e,, € E be elements such that {ri(e) | e € E} =
{rr(e}),...,rr(el)}. Consider the map F — {1,...,n} defined by e —
Je, where rr(e) = rr(e} ). Now, for all f € I, we have that (f,ef) €
r7(e) = rr(ej, ), and thus €} f = e ef. Therefore, multiplying by e on
the left, we get ee’ f = ee} ef = ef (the latter equality holds because
xyz = xz for all z,y,z € F).

Note that for all e € E and all f € I we have

ef =eief =e e f=ee] f.

Let ¢: E — T, where T is the semigroup of all maps I — I and
#(e) is the left multiplication by e. Then ¢(FE) C {d(e;)p(e) |1 <i <
m and 1 < j <n}. Thus ¢(F) is finite in this case.

Let ¢v: E — T, where T is the semigroup of all maps I — I and
¥(e) is the right multiplication by e. As above, one shows that (FE) is
also finite.

Let Ey = {(¢(e),v(e)) | e € E} C ¢(F) x (F). Then Ejy is a finite
rectangular band, as a homomorphic image of E (the operation in Ey
is defined by the rule (¢(e), v (e))(d(e'),¥(e)) = (p(ee’), ¥ (ee))). Tt is
easy to see that Sy = EyUI is a semigroup with respect to the operation

extending the given operations on Ey and I and on the remaining pairs
of elements defined by the rules: (¢(e),¥(e))f = ef and f(p(e), v(e)) =
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fefore e E, f € I. By Theorem 3.3, there exists a monomorphism
p: Sy — My (L) for some field L and some positive integer k . Next,
let p': E — Ms(L) be an embedding (we know that it exists if L is
big enough). Then define §: S — My (L) x M3(L) by 6(f) = (p(f),0)
for f € I and d(e) = (p((d(e),¥(e))),p'(e)) for e € E. Then ¢ is a
homomorphism and it is injective. O

Let S be a band. Let E, E’ be components of S. It is known that EE’
and E’'FE are subsets of the same component. We write £/ < F in case
EE’ C E'. Thus < is a partial order on the set of all components of S.

For any component E of S, we denote by Cg the set of all components E’
of S such that £ A E’ and by I the subband of S defined by

Ig = U E'.

E'eCg

Note that Ig is an ideal of S, whence also of the band Ig U FE.

Theorem 3.7. Let S be a band with finitely many components. If for
any component E of S there are finitely many rr,(x), 11, (z) (one-sided
congruences in Ig ) andrr, (1—x), 11, (1—2) (one-sided ideals in IgUE ),
where x € E, then S is linear.

Proof: Let Ey,...,E, be the components of S. We may assume that
Ig, = E1U---UE,._;. Then S = Ig, U E, and the result follows by
induction on r using Lemma 3.6. O

It was observed in [3] that, if a band S is linear, then for every sub-
set T C S there exists a finite subset X C T such that 1(X) = (T
and r(X) = r(T). Here 1(X) denotes the left congruence on S defined
by (a,b) € I(X) if (a —b)X = 0 in K[S]. And r(X) is defined dually.
One can ask whether the converse is true. In this direction we have the
following result.

Proposition 3.8. Let S be a band with finitely many components. As-
sume that rs(f) = rs(F), ls(f) = lg(F) for every component F' of S
and for every f € F. Then, for any field K, the semigroup algebra K[S]
embeds in My (L) for some field extension L of K and some positive
mnteger n.

Before proving the assertion, recall that a band S is normal if zzyz =
zyxz for all z,y, z € S, see [7]. We claim that the annihilator conditions
in the above proposition are equivalent to saying that S is a normal
band.
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Indeed, let S be a normal band with a component S,. Assume that
[, f' €8Sy, eeS. Using normality of S twice, we get

(5) ef'f=ef'fef'f=cfflef'f=cff'fef =ef

(the last equality follows because (ef)f'f'(ef), ef are in the same com-
ponent). By symmetry, we also get

(6) ffle=fe.

Furthermore, if (e, g) € 15(f) for some g € S then by (5) we get
ef =eff'=gff =gf"

Hence 15(f) =1s(Sy). Similarly, one shows that rg(f) = rg(S;).

On the other hand, if S satisfies the hypothesis of Proposition 3.8,
then (ef’ —e)f’ = 0 implies that (ef’ —e)f = 0, for alle, f,f' € S
with f, f' in the same component of S. Hence (5) follows and similarly
(6) follows. Let z,y,z € S. Then, applying (5) and (6) we get

zyzz = x(zzy)(zyz)x = 2y,
since zzy and xyz are in the same component of S. Therefore S is a

normal band, which proves our claim.
Now we are ready for the proof of Proposition 3.8.

Proof: Assume that S satisfies the hypothesis. Let {S, | v € T'} be
the set of all components of S. For every v € I' choose some e, € S,.
Let Sg be the semigroup obtained by adjoining a zero element to S,.
For a € S define ¢(a) = ae,a if aeya € S, and ¢(a) = 0 otherwise.
We claim that ¢, : S — S is a homomorphism. Let a,b € S. Then
the elements ae,abe,b and abe,ab are in the same component of S. So
¢-(ab) = 0 if and only if ¢ (a)¢(b) = 0. Therefore we may assume that
aeya, be,b, abe,ab € S.,. Moreover, in this case,

abe,ab = (abe.)(e,ab)b = abe,b
by (6), because abe,, eab € S,, and
abe,b = a(be)(e4b) = ae b
by (5) because be,, e,b € S,. We also get
aeyabe,b = (aey)(abe)b = ae b

because ae~, abe, € S,. Therefore ¢~ (ab) = ¢ (a)p (D).

This leads to the homomorphism ¢: S — H%F 5’2 defined by ¢(s) =
(¢+(s))yer. Since we know that for every v there is an embedding
X~: K[Sy] — Ms(L~) for a field extension L., of K, it follows that ¢ de-
fines an algebra homomorphism ¢ = (¢5)yer: K[S] — [[,er M3(L5),
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defined by 1 (s) = xy¢,(s) for s € S. As T is finite, the latter algebra
embeds into M,, (L) for some positive integer n and any field L containing
all L, v € T'. Suppose ¥(z) = 0 for some nonzero z = ) ¢ zss € K[S].
Let v € T be a maximal element such that supp(z) NS, # 0. Let
Zy = ses, #ss- By the construction of ¢ we get 1y (2) = ¢(2). Note
that, if s € S, then ¢,(s) = seys = s. Since x4 is an embedding,
1y (2y) = 0 leads to a contradiction. This shows that ¢ is an embed-
ding. O

We note that the linearity of a normal band with finitely many compo-
nents follows from the results in [2]. However, the embeddability of K[S)]
into M, (L) for a field L containing K cannot be proved in this way.
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