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S54,-SYMMETRY ON THE TITS CONSTRUCTION OF
EXCEPTIONAL LIE ALGEBRAS AND
SUPERALGEBRAS

ALBERTO ELDUQUE* AND SUusUMU OKUBO*

Abstract

The classical Tits construction provides models of the exceptional
simple Lie algebras in terms of a unital composition algebra and
a degree three simple Jordan algebra. A couple of actions of the
symmetric group Sy on this construction are given. By means
of these actions, the models provided by the Tits construction
are related to models of the exceptional Lie algebras obtained
from two different types of structurable algebras. Some models of
exceptional Lie superalgebras are discussed too.

Introduction

In a previous paper [EOOQ7], the authors have studied those Lie alge-
bras with an action of the symmetric group of degree 4, denoted by Sy,
by automorphisms. Under some conditions, these Lie algebras are coor-
dinatized by the structurable algebras introduced by Allison [A1178].

The purpose of this paper is to show how a structurable algebra of an
admissible triple appears naturally when considering an action by auto-
morphisms of the symmetric group S4 on the classical Tits construction
of the exceptional Lie algebras [Tit66]. This can be extended to the su-
peralgebra setting. A different S, action will be considered too, related
to the structurable algebras consisting of a tensor product of two com-
position algebras. This provides connections of the Tits construction to
other models of the exceptional Lie algebras.
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The paper is structured as follows. The first section will be devoted
to show how the symmetric group Sy acts by automorphisms of the split
Cayley algebra. Sections 2 and 3 will review, respectively, the classi-
cal Tits construction [Tit66] of the exceptional Lie algebras, and the
structurable algebras of admissible triples attached to separable Jordan
algebras of degree 3. Then Section 4 will show how to extend the ac-
tion of Sy on the Cayley algebra to an action by automorphisms on the
Tits Construction. The associated coordinate algebra will be shown to
be isomorphic to the structurable algebra attached to the Jordan alge-
bra used in the construction. The proof involves many computations,
but the isomorphism given is quite natural. Section 5 will extend the
results of the previous section to the superalgebra setting. Here some
structurable superalgebras appear as coordinate superalgebras of the ex-
ceptional Lie superalgebras G(3) and F(4). Section 6 will deal with a
different action of S on the Tits construction. This time an action of Sy
by automorphisms is given on a central simple degree 3 Jordan algebra,
and this action is extended to an action on the Lie algebras. The asso-
ciated structurable coordinate algebra is shown to be isomorphic to the
tensor product of two unital composition algebras: the one used ‘on the
left” in the Tits construction, and the one that coordinatizes the Jordan
algebra involved.

All these previous results suggest a characterization of those Lie alge-
bras endowed with an action of S4 by automorphisms in such a way that
the coordinate algebra is unital, in terms of the existence of a subalgebra
isomorphic to the three dimensional orthogonal Lie algebra so3, with the
property that, as a module for this subalgebra, the Lie algebra is a sum
of copies of the adjoint module, of its natural 5 dimensional irreducible
module, and of the trivial module. This characterization is proved in
Section 7.

In what follows, all the algebras and superalgebras considered will be
defined over a ground field k of characteristic # 2, 3.

1. Composition algebras

Let C' be a unital composition algebra over k. Thus C is a finite
dimensional k-algebra with a nondegenerate quadratic form n: C — k
such that n(ab) = n(a)n(b) for any a,b € C. Then each element a € ¢
satisfies the degree 2 equation (see [ZSSS82, Chapter 2, Lemma 2]):

a® —t(a)a+n(a)l =0
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where t(a) = n(a,1) (= n(a+ 1) — n(a) — 1) is called the trace. The
subspace of trace zero elements will be denoted by CP.
Moreover, for any a,b € C, the linear map Dq: C — C given by

(1.1) Dg(c) = [[a,b], ] + 3(a, c,b)

where [a, b] = ab— ba is the commutator, and (a, ¢,b) = (ac)b—a(cb) the
associator, is the inner derivation determined by the elements a, b (see
[Sch95, Chapter III, §8]). These derivations span the whole Lie algebra
of derivations 0etC of C'. Besides, they satisfy

(12) Da,b = _Db,aa Dab,c + Dbc,a + Dca,b = 07

for any a,b,c € C.

The dimension of C' is restricted to 1, 2, 4 (quaternion algebras)
or 8 (Cayley algebras), and for dimensions 2, 4 or 8 there is a unique
unital composition algebra with zero divisors. These are called split.
The unique split Cayley algebra has a basis (see [ZSSS82, Chapter 2])
{e1, €2, ug, u1,ug, v, v1,v2} with multiplication given by:

(1.3)
elz =e, [ =1,2, e1eg =0 = eqeq,
e1l; = U; = Uie2, exv; = v; = vier, ¢ =0,1,2,

€eU; = 0= U;€1, €10; = 0= Vi€2, = O, 1, 2,

Uilj4] = Vig4a = —Ui+1U4, ViVi+] = Ujya = —Vi+1V;, indices modulo 3,
u?=0=uv?i=0,1,2,
UiV; = —61']‘61, viu; = —(Sijez, i,j = 0, 1,2.

It follows that n(e;) = n(u;) = n(v;) =0, 1 = 1,2, 9 = 0,1,2, while
n(er,e2) =1, n(u;,v;) = d;5, 4,5 = 0,1,2, and the unity element is 1 =
e+ es.

The unique split quaternion algebra is, up to isomorphism, the sub-
algebra spanned by {ei, e, u1,v1}, which in turn is isomorphic to the
associative algebra of order 2 matrices over k: Matz (k). The unique split
composition algebra of dimension 2 is the subalgebra ke; + kes, which
is isomorphic to k x k.

The symmetric group of degree 4, denoted by Sy, is generated by the
permutations

(1.4) = (12)(34), = (23)(14), o= (123), 7=(12),
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which satisfy the relations:
T2 = T2T1, $T1 = T2, PT2 = T1T29,
TT =TT1, ToT =TTeTi, T = @°T.

The subgroup generated by 7 and 7o is Klein’s 4-group V, the one
generated by 71, 2 and ¢ is the alternating group Aj.

Let C be the split Cayley algebra and take a basis as in (1.3). The
symmetric group S4 embeds in the automorphism group of C' as follows
(the automorphisms of C will be denoted by the same Greek letters):

e1 and es are fixed by any element of Sy,
71 (uo) = uo, T2(uo) = —uo, T1(v0) = vo, T2(v0) = —vo,
Tl(ul) = —ui, 7'2( ) = uq, 7'1(111) = —U1, 7'2(01) = U1,
(1.5) T1(u2) = —ug, To(uz) = —uz, T1(v2) = —va, T2(v2) = —v2,
o(u;) = i1, ©(v;) = vi41, indices modulo 3,
T(ug) = —ug, 7(u1) = —ug, 7(u2) = —u1,
T(vo) = —vg, T(v1) = —v2, T(v2) = —v1.

The action of Klein’s 4 group V gives a grading of C' over Zy x Zja:
(1.6) C =Cu,0 @Can ©Cu,) ®Cai,
where
L7 C0,0) = ke1 + kez,  C15) = kuo + kvo,
( ' ) O(()j) = kuy + kvq, C(LT) = kug + kvs.

Any automorphism 1) of C' induces an automorphism of detC: d —
Ydiyp~1. Note that one has Dy , = 0 for any a € C, so that
detC' = Do,c = Dgo,co = Duv + Duu + Dvy + Dey—ey, U + Dey—ey,v

where U (respectively V') denotes here the span of the wu;’s (resp. v;’s).
But, because of (1.2)

Dyv = Dy2y € Dyvuvevu € Dieytkes,v = Deg—ey,v,

and, similarly, Dyy C De,_e, v. Since the decomposition C' = (key +
kea) U @V is a grading of C over Zs, which induces a grading of detC,
it follows that

oetC = DU,V EB Del—eg,U @ Dez—el,v

is the associated grading of derC' over Zs.
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The action of Klein’s 4 group on detC produces an associated grading
on derC:
(1.8) derC = (06?0)(61()) ) (06‘(0)(11()) ) (06‘(0)(@71) ) (06‘(0)(171).

Let us compute (0evrC)(1,0) =Dc g 4),C1.0) T Do 1y,C 1 1) - Because of (1.2)

Du17u2 = DU2U07U«2 = _Dvouz,vz - Duzvzﬂlo
(1.9) )
:Del,vo = leel Vo :_§D€2—61,U07
: _ 1
and, with the same argument, Dy, v, = —5De, —e,,u,- Therefore,

(110) (DetC)@@) = Spall {Del—ez,uov D€2—€1,U07 Du17v2 ) DUl;UQ} .
Using the multiplication table in (1.3), the next equations follow:
Dy, v, (e1) = [[wi, vj], e1] + 3(us, e1,v;) = 0,

De,—es,u,(e1 [[e1 — e2,uil, e1] + 3(e1 — ea, e1,u;) = 2[u;, e1] = —2u,,

) =
D, v1+1(u1) 3(wi, us, vip1) =0,
Do oigr (vi) = 3(us, i, vig1) = 3visa,
for any 4,7 = 0,1,2 (indices modulo 3), and by symmetry e; < ea,
u; < v;, one has also

DUi7ui+1 (Ui) =0, Dvi,ui+1 (ul) = 3ui+1'

From here it follows that the elements in (1.10) are linearly independent,
so that dim(derC) 1,5y = 4.

2. Tits construction

Some results in [BZ96, Sections 3 and 4] (see also [Tit66] and
[BEO03]) will be reviewed in this section.

Let C' be a unital composition algebra over the ground field k& with
norm n and trace t. Let J be a unital Jordan algebra with a normalized
trace ty: J — k. That is, t; is a linear map such that ¢;(1) = 1 and
ty((zy)z) = ts(x(yz)) for any x,y,2 € J. Then J = k1 & JO, where
JO={z € J:t;(x) =0}. For z,y € J°,

(2.1) xy =ty(xy)l +x xy,

where z * y = xy — t;(xy)1 gives a commutative multiplication on J°.
For z,y € J, the linear map d, : J — J defined by
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is the inner derivation of J determined by the elements x and y. Since
dy,. = 0 for any z, it is enough to deal with the inner derivations d ,,
with z,y € JO.

Given C' and J as before, consider the space

(2.3) T(C,J)=vexC & (C°@J°) @ dyy

(unadorned tensor products are always considered over k), with the an-
ticommutative multiplication [.,.] specified by:

oetC and d; ; are Lie subalgebras,

[perC,dy ;] =0,

[D,a®z]=D(a) @z, [da®zx]=a®dx),

o [a®a,b@y|=ts(zry)Dayp + ([a,0] @ z % y) + 2t(ab)dy,y,

for all D € vexC,d € dj j, a,b € C°, and x,y € J°. Here the bracket ., .]
follows the conventions in [BE03, (1.4)].
The conditions for 7(C,J) to be a Lie algebra are the following:

(1) Z t([alv CLQ]CLg) d(ml*mg),wg = 07

)

(ii) th((xl * $2)$3) D[a17a2]1a3 =0,
(2.5) o

(2.4)

(111) Z(Dahaz (a?;) Rty ($1x2)$3+[[a1, GQ], a’3] ® (:EI * LL'Q)*CEg
O
+2t(araz)as ® dy, o, (553)) =0

for any aj,az,a3 € C° and any x1,72,23 € J°. The notation “Y.”
O
indicates summation over the cyclic permutation of the variables.

These conditions appear in [BE03, Proposition 1.5], but there they
are stated in the more general setting of superalgebras, a setting we will
deal with later on. In particular, these conditions are fulfilled if J is
a separable Jordan algebra of degree three over k and t; = %T, where
T denotes the generic trace of J (see for instance [Jac68]).

3. The algebra (A(J), —)

Let J be a unital Jordan algebra over k with a normalized trace ¢; as
in the previous section. For any x,y € J, consider the new commutative
product on J defined by

(3.1) xxy=2zy—3ts(x)y—3ts(y)z+ (9t;(2)ts(y) — 3ts(zy))1,
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for any x,y € J. Note that for any x,y € J° the following holds:

(3.2a) 1x1=2,
(3.2b) 1xz=—z,
(3.2¢) xxy=2xy—3t;(zy)l =2z*xy—t;(ay)l.

In case J is a separable Jordan algebra of degree 3 with generic trace T’
and generic norm N, and with ¢t; = %T, this is the cross product consid-
ered in [All78, p. 148], corresponding to the admissible triple (7, N, N)
on the pair (J,J). Now, as in [A1178], consider the space

A(J)—{(Z ;) ca, B €k, x,yeJ},

with multiplication given by

a z\ (o 2\ _ [ ad +3t;(zy) ax+Bzx+yxy
y B)\y B) \oy+pBy+axxa’  BE +3t;(ys’)

for any o, 8,0/, 3 € k, and z,y,2’,y’ € J. It follows that the map:

a z\ - (B =x
(y 5) B <y a>
is an involution (involutive antiautomorphism) of A(.J). Besides, A(J) is

unital with 1 = (§9), and it is shown to be a structurable algebra
in [AIL78, p. 148]. An easy proof is given here in Corollary 4.5.

Recall [A1178] that a unital algebra with involution (B, —) is said to
be structurable if [T,V | = Vigy — Vo, 1oy for any z,y, 2z € B, where
Veyz = (27)2+(2y)x— (2Z)y and T, = V1. These algebras coordinatize
some 5-graded Lie algebras.

Remark 3.3. Let A be a commutative algebra endowed with a cubic
form N: A — k such that (22)? = N(x)z for any # € A. These algebras
have been called admissible cubic algebras in [EOQO0], where the relation-
ships of these algebras to Jordan algebras have been studied. Then there
is a symmetric associative bilinear form (.|.) on A, called the trace form,
such that N(z) = (z|2?) for any x € A. If N # 0, then (.|.) is uniquely
determined. Then the trilinear form given by N (z,y, z) = 6(x|yz) satis-
fies N(z,x,2) = 6N (x) for any x, and hence (3(.|.), N, N) is an admissi-
ble triple on (A, A) in the sense of [A1178, p. 148], with associated cross
product z x y = 2zxy for any z,y € A, so zf = %x x & = x2. Then, as
before, the linear space

A(A):{<Z Z) ca, B ek, :myEA},
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with multiplication given by

(3.4) (a :C> <o/ x’) _ < ad +3(zly’y  ax' + [+ 2yy’>

y B)\y a'y+ By + 2z’ BE+ 3(yla’)
for any o, 3,0/, € k, and z,y,2’',3y’ € A, is a structurable algebra,
whose involution is given by

a z\ - (B =z
(y ﬁ) - <y a>'
4. An S4-action on the Tits construction

Let C be the split Cayley algebra over k and let J be any unital
Jordan algebra with a normalized trace t; such that 7 = 7 (C, J) is a Lie
algebra. Then the action of the symmetric group S; as automorphisms
of C in (1.5) extends to an action by automorphisms on 7 = derC @
(C°® J°) @ dy,s given by:

(4.1) Y(D+ (a®x)+d) =Dy + (Y(a) ® z) +d,

for any 1 € Sy, D € 0etC, d € dy 5, a € C° and z € J°.
As in (1.6), the action of Klein’s 4-group induces a grading over Zs x
Z22

(4.2) T =T(C,J) =T, ® T1,0) ® To,1) © T1,1)-
Under these circumstances (see [EOQ07, Section 2]), the subspace 71 5, =

{XeT :n(X)=X, n(X)=—X} becomes an algebra with involution
by means of:

XY = —7(lp(X), e*(V)]),
X = _T(X)v
for any X,Y € 71 5y. Here p = (123) and 7 = (12) as in (1.4).

(4.3)

The purpose of this section is to prove the following result:

Theorem 4.4. Let C be the split Cayley algebra over k and let J be a
unital Jordan algebra with a normalized trace ty over k such that the Tits
algebra T = T(C,J) is a Lie algebra. Then the algebra with involution
(T(i_’()), -,—) is isomorphic to the algebra (A(J),—) defined in Section 3.

Before going into the proof of this result, let us note the next well-
known consequence (see [All78, p. 148]), which follows immediately from
[EO07, Theorem 2.9] and the fact that the algebra A(J) is unital:

Corollary 4.5. Under the conditions of Theorem 4.4, the algebra with
involution (A(J),—) is a structurable algebra.
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To prove Theorem 4.4, first note that, because of (4.1), (1.7), and
(1.10), one has

T@())Z{X e7T :n(X)=X, TQ(X):_X}
= (OetC)@@) @ (C(if)) & JO)
=spal {Dul,vzaDvlyuwDelfez,uoaD82*81,'UO}EB(uo@JO)EB(vO@JO)'

Consider the bijective linear map

P: T(L(j) — A

=

D'Ulqu2
D’U.l,'l)z
Del—€2;u0

De2_€1 »Vo

g
®
8
I

OO NO OO OO O Ww
o8 OO O WO OO

N N~ N N

o

Vo KT ——

QAA/\AA

o

where 2 € J° To prove Theorem 4.4 it is enough to prove that ® is
a homomorphism of algebras with involution. Note that there is the
order 2 automorphism of C' given by e < es, u; < v;, which extends to
an order 2 automorphism € of 7(C, J). On the other hand, there is the

natural order 2 automorphism of A(J) given by (% 3) & (8 %) which
satisfies e = 0P. This simplifies the number of computations to be
done. Thus, it is enough to check that ®(X -Y) = ®(X)®(Y) for the
following pairs X, Y in 77 py:

(i) X =Y = Dy, u,: Here
‘DUI;UQ 'Dvl,uz = _T([@(Dvl,uz)v 302(DU17U2)])
(Do s Do)

=-7

= —T DDUQYH0 (U0)7u1 + D’U07Du2,u0 (ul)) :
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But D, uo(vo) =3(va, vo, ug) = —3vz and Dy, 4(u1) =3(va, u1, up) =
0, so that

Dy, s - Doy uy = =7(=3Duyuy) = =7(3Du; )
= _3D‘r(u1),‘r(v2) = _3Du2,v1 = 3Dv1,u2-

Therefore,

(I)(DUI;UQ : DU17U2) = 3¢(Dvlyu2) = (8 8) )
while

(I)(Dvlﬂu)q)(DvlﬂQ) = (8 8) (8 8) = (8 8) .

(ii) X = Dyy uy, Y = Dy, v, This is easier since
[‘P(Dvl,uz)a @Q(Dul,vz)] = [DU27uO,Du01U1] =0,

as Dy, o (10) = 0 = Dy, 4o (v1). Hence both X - Y and ®(X)®(Y)
are 0.

(iii) X = Doy us Y = 3De;—eyup = Doy uo: Here
[@(Dvlﬂn)a @Q(Del,uo)] = [DU27uO,D811u2] = 3D81,u0a

because Dy, uo(€1) = 0 and D, 4, (u2) = 3(ve, ug, up) = —3vovy =
3ug. Thus,

XY =—=7(3De; uy) = =3Dr(ey),7(uo) = 3Dey uo = 3Y,
while

(iv) X = Dy, us, ¥ = 3Dey—e,00 = Deyvoi In this case ®(X)P(Y) =
0

[(Doy us ), 502(Dez,vo)] = [Dus,ugs Desva] = 0,
as Dy, ug(€2) =0 = Dy, 4, (v2), s0 X - Y =0 too.
(v) X =Dy, up, Y = ug ®x, with x € J°: Here
[(p(Dm,uz)v 502(’“0 ® LL‘)] = [sz,uov U2 ® ‘T] = DUQ,UO(U‘?) T
= 3(va, u2, up) @ x = 3up @ .
Hence, X - Y = —7(3ug ® ) = 3up ® = 3Y, while
PX)2(Y) = (38)(85) = (8%) =32(Y).
(vi) X = Dy up, Y = vo @ x, with z € J%: Then
[SD(D’UIKUQ)) 902(’00 ® ‘T)] = [sz,uoaUQ ® ‘T] = Dv27uo(v2) ®z =0,
and both X - Y and ®(X)®(Y) = 0.
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(vii) X = De; ugs Y = Doy uy: [p(X), ¢ ( |=1D e1, ulaDvo,ul] =0, as
De, uy(v0) =0 = D¢, 4, (u1), so X -Y =0, but also

2(X)2(Y) = (84)(35)=0.
(viil) X = Deyug, Y = Duyy vy One has
[@(X)a 902(Y)] = [‘Dehul’DuO;Ul]

= _DDuO,vl(el)qul - DelaDuO,ul (u1)

e

=

_Del,B(ug,ul,vl) = 3D€1,u07
so that X - Y = —7(3De, uy) = 3De, ug = 3X, while
(X)) = (56)(08) = (§5) =32(X).
(ix) X = D¢y ugs Y = De, uy: Here

[@(X),cpz(Y)] = [De,urs Dey us)
= DDel,ul (61)>u2 + D€17Del,u1 (UZ)
= D*ul,uz + Del,*vo = _2D€1,vo = 2D€2,vo

(see (1.9)). Hence X -Y = —7(2De,,4,) = 2Dey 0, and (X -Y) =
(99), while

X)R(Y) = (§6)(85) = (1%16) = (88),
because of (3.2a).
(x) X =Deyug, Y = Dey oyt Then

[@(X)a (pz(y)] = [‘Delyul ) Dezﬂiz]
= DDel,ul (62)>U2 + D€27Del,u1 ('UZ)
=Dy, vy +0 =Dy, v,.

ThUS, X Y = T(Du17’U2) DT(ul),T(vg) = _Du27’U1 = DU17’U«27
5o ®(X -Y)=(39), while

e(X)(Y) = (56)(Y6) = (50)-
(xi) X = D¢y g, Y =uo ®z, x € J% In this case
[p(X),¢* (V)] = [Deyuys u2 ® @] = Dey uy (u2) ® 2 = —vp @ ,
0 X Y =-7(-vp®z)=-v@zand ®(X-Y)= (5 0), while
(X)2(Y) = (§5)(88) = (1220) = (%0),
because of (3.2b).
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(xii) X = De¢, uy, Y =v9®z, z € J: For these X and YV
[p(X), 902(Y)] = [DehulvU? ® | = De,uy (v2) @ 2 =0,

so X -Y = 0. Here ®(z)®(Y) = 0 too, since t;(z) = 0.

(xiii) X =up®@x, Y = Dy, 4, x € J': Here
[QD(X),QO2(Y)] = [ul ® x7DU07u1] = _Dvoyul (ul) ®x =0,
so X -Y =0 and also
(X)(Y) = (§5)(38) =0
xiv) X =up®z, Y = Dy, 4,, v € J°: Now
[@(X)v 902(1/)] = [ul ® ‘T7DUO7U1] = _Du07'U1 (ul) @@
= —3(ug,u1,v1) @ = 3uy ® x,
0 XY = —7(3up ® x) = 3up ® x = 3X, while
S(X)2(Y) = (§5)(65) = (57 =32(X).
(xv) X =ug®@x, Y = D¢, uy, © € J: Here
[‘P(X)a @Q(Y)] = [ul ® I)D81>u2] = _Del,u2(u1) T = -1,
0 X Y =-7(-v®z)=—-vo®zand ®(X-Y) = (Y 0), while
(X)2(Y) = (§8)(86) = (2x108) = (5% 06),

because of (3.2b).

(xvi) X =up®@x, Y = De, 1y, ® € JO: In this case
[@(X)7<P2(Y)] = [ul & vaez,vz] = _D82,U2(u1) Qx =0,

50 ®(X -Y) =0, while ®(X)®(Y) = (32)(93) =0, as t;(xz) =0.
(xvil) X =ug®x, Y =up®y, z,y € J': Here

[p(X), @* (V)] = [1 @ 2, u2 ® y]

=1ty(2y)Duy uy + [U1, u2] @ x * y + 2t(uruz)dy y
= —t7(2Y)Dey vy + 200 @ T * Yy

(see (1.9)). Hence

XY = —7(=ts(xy)Deyvy + 200 @ % y) = —t1(2y)Dey,vo + 200 @ T %y,

and
(I)(X ! Y) = (—tJ(my0)+2;E*y O) = (zgy 8) )
using (3.2c), while
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(xvili) X =uy®z, Y =vg®vy, x,y € J° In this final case

[p(X), @* (V)] = [u1 ® x, 02 ® y]
=t (2Y) Duy v + [u1,02] @ T % y

= tr]('ry)Dulva
SO
XY= _T(tJ(xy)Dul,vg) = _tJ(xy)DT(ul),T(vg)
= _tJ(‘Ty)DUQ,Ul = tJ(xy)DU1,u27
and ®(X -Y) = (3" 0) while
(X)(Y) = (§5) (y8) = (6 0)-
Therefore, ® is an algebra isomorphism. Besides, it is clear that

B(X) (: (I)(—T(X))) — 3(X) for any X € Tz, so that @ is an
isomorphism of algebras with involution. This finishes the proof of the
theorem.

Remark 4.6. Given the split Cayley algebra C' and the unital Jordan al-
gebra J as above, the subspace Q = span {1 = ey + ea, ug + vo,u1 + v1,
us + v2} is a quaternion subalgebra of C, which is invariant under the
action of the symmetric group Sy. Then so is 7(Q,J) = Dg,o ® (QO ®
JO) ® dyj,j, which is a subalgebra of T(C, J). Besides,

T(Qv J)(Tf)) = kDu1+U17u2+U2 D ((U‘O + UO) ® JO)

Note that Dy, uy = —5Dey—ey v a0d Dy vy = —3Dey —ey uo by (1.9), s0
that
1 1
Du1+1}1,u2+'02 = Dvl7u2 + Dul,vz - §D€1*827u0 - §D82*€1,'U0'
Therefore, under the isomorphism ®, 7(Q, J)(1,5) maps onto the follow-

ing commutative subalgebra of A(J):

. 3a —a+zx) 0
S_{<—a+:v 30 ).aEk,xEJ}.

Moreover, the linear isomorphism
J— S
3 _1 1
i (e, hrd)
for a € k and x € JO, is easily checked, using (3.2), to be an algebra
isomorphism. Hence, the structurable algebra attached to 7(Q,J) is
just, up to isomorphism, the Jordan algebra J itself.
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Consider the linear isomorphism

T(Q,J)— (Q°®J)®dys
Dyyp— [a,b] ®1
aR®Rr—a@x

d—d

for any a,b € Q°, x € J° and d € d; ;. Since @ is associative, D, (c) =
[[a,b], c] for any a,b,c € @ by (1.1), and hence the map D, — [a, b] is
well defined. Note that for any a,b € Q" and z,y € J°, one has

[a/ & x, b & y] = tJ((E, y)Da,b + [(L, b] @ x * Yy + 2t(a’b)dw,yu
which maps into
[a,b] ® (tj(zy) + x * y) + 2t(ab)ds,y = ([a,b] ® zy) + 2t(ab)dy y-

Hence this linear isomorphism is an isomorphism of Lie algebras, where
the Lie bracket on (Q°®J)®d,, s is determined by [a®@z,b®y] = ([a, b ®
zy)+2t(ab)d, , for any a,b € Q° and x,y € J. This bracket makes sense
for any quaternion algebra and any Jordan algebra (not necessarily unital
nor endowed with a normalized trace), as shown in [Tit62]. (See also
Remark 7.13.)

5. Superalgebras

As considered in [BZ96], [BE03], the Jordan algebra .J in Tits con-
struction can be replaced by a Jordan superalgebra, as long as the super-
algebra version of (2.5) is fulfilled (see [BE03, Proposition 1.5]). In this
case T(C,J) becomes a Lie superalgebra. In particular [BE03, Theo-
rem 2.5], this is always the case for the Jordan superalgebra Dy and the
Jordan superalgebra J = J(V,9) of a nondegenerate supersymmetric
superform ¥ on the superspace V' = V5 @ Vj with V5 = 0 and dim V7 = 2.
Both Jordan superalgebras are endowed with a normalized trace.

With C the split Cayley algebra over k, 7 (C, J(V, 1)) is the simple Lie
superalgebra G(3), while 7 (C, D3) is the simple Lie superalgebra F'(4).
Hence the symmetric group Sy acts on the Lie superalgebras G(3) and
F(4) by automorphisms. In both cases, the superalgebra with superin-
volution (A(J),—) can be defined as in Section 3.

The arguments in the previous section are valid in the superalgebra
setting, as long as the appropriate parity signs are inserted. Therefore,
as a consequence of Theorem 4.4 and Corollary 4.5, we get:
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Theorem 5.1. Let C be the split Cayley algebra over k and let J be one
of the Jordan superalgebras J = Dy or J = J(V,9). Let T =T(C,J) be
the Lie superalgebra constructed by the Tits construction. Then the alge-
bra with involution (T@()), ° —) s isomorphic to the algebra (.A(J), —).

Corollary 5.2. The superalgebras with superinvolution (A(J), —), for
J =Dy and J = J(V,9), are structurable superalgebras.

Remark 5.3. The simple Lie superalgebras D(2,1;a) (o # 0,—1), can
be constructed directly from the Jordan superalgebras of type D, as
7(Q,D,) as in Remark 4.6, even though D, has a normalized trace
only for « =2 or 3 (see [BE03]). O

Remark 5.4. Consider the ‘tiny’ Kaplansky superalgebra K, with even
part Kg = ke, odd part K7 = kx + ky, and supercommutative multipli-
cation given by €% = e, ex = %x, ey = %y, and xy = e. K is a simple
nonunital Jordan superalgebra. Then K is an admissible cubic super-
algebra with N(z) = (z|22), where (.|.) is the supersymmetric bilinear
form such that (e|le) =1 and (z|y) = 2. Thus we obtain a structurable
superalgebra A(K) as in Remark 3.3, with the product given by (3.4).

On the other hand, for the Jordan superalgebra J = J(V,¥), one has
Jg = k1, J; = ku+kv, with uv = 1. Then a straightforward computation
shows that the linear map:

A(K) — A(J)
a1 Te+px+riy . a1 Y11—pru+2v1v
Yoe+ phox+ oy a9 Yol pou—2v9v a9
where o, v, i, vi € k (i = 1,2), is an isomorphism of structurable

algebras.

6. Another action of S4 on the Tits construction

In this section, an action of the symmetric group Ss4 by automor-
phisms on the Jordan algebra of hermitian 3 x 3 matrices over a unital
composition algebra will be considered. This is extended naturally to
an action of S4 by automorphisms on the Tits construction, which gives
rise to a structurable algebra. This latter algebra is isomorphic to the
tensor product of the two composition algebras involved in the Tits con-
struction. Therefore, this Sy-action clarifies the relationship between
the Tits construction and the construction of the Lie algebras in the
Magic Square by means of a couple of composition algebras (see [BS03],
[LMO02], or [E1d04]).
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Let C' be a unital composition algebra over our ground field k, and
consider the Jordan algebra of 3 x 3 hermitian matrices over C:

. a1 i) .fg
J = Hg(C) = 1_70 Qo T1

i) 1_71 (7))

)

with o; € k and z; € C', 1 =0, 1, 2. The following notations will be used:

0 0O 1 00 0 00
eo=10 0 0], er=10 0 0], eo=10 1 0],
0 0 1 0 0 O 0 0 O
0 =z O 0 0 0 0 0 =z
)=z 0 0|, ul@=(0 0 z|, wx=[0 0 0
0 0 O 0z O z 0 O
J is a Jordan algebra with the product given by X oY = %(XY +YX),

which satisfies:
e; 0 ej = bjje;,

1
eitr10Li(x) = ejpo0u(x) = 5%(:10), e;ot(x) =0,

1
ti(x) otip1(y) = §Li+2($_y)a

1) 1ly) = SHag)eiss +eir),

where x,y € C', t denotes the trace in C’, x — T the canonical involution,
and the indices are taken modulo 3.

The symmetric group S4 embeds in the automorphism group of J as
follows:

T i e eqy to(T) = 1o(x), t1(z) = —u1 (), ta(x) = —a(x),

To: € — €4, Lo(x) — —io(x), t1(x) — t1(x), to(x) — —1a(x),

@1 e; > i1, Li(T) > Liv1(T),

T:eg — eg, €162, earer, to(z)—1o(T), 11(z)—12(Z), ta() — 11(Z),

for any i = 0,1,2 (indices modulo 3) and z € C.
The arguments in [Sch95, Chapter IV, §9] show that there is the
following grading over Zgy x Zsg of the Lie algebra of derivations of J:

dev] =dy = {de€verd :d(e;) =0(i =0,1,2)}(D7_od

€it+1 _€i+27bi(é)) ’
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where d , is defined as in (2.2): dy 4(2) =z o (yoz) —yo (xoz). This
is precisely the grading induced by the action of Klein’s 4-group.

The action of S4 on J extends to an action of S4 by automorphisms of
the Lie algebra 7 (C, J), where C' is another unital composition algebra
over k:

(6.1) YD+ (a®x)+d) =D+ (a®p(x)) + pdip~ ",

for any ¢ € Sy, D € 0erC, d €dy j, a € C° and z € J°.
As in (1.6) and (4.2), the action of Klein’s 4-group induces a grading
over Zo ® Zia:

(6.2) T=T(C.J)=T5,0)® T1,0)® L0,1) © T(1,7)
Again (see [EOOQ7, Section 2]), the subspace 779y = {X € 7 : 11 (X) =
X, 12(X) = —X} becomes an algebra with involution by means of:

XY = —7([p(X),¢*(Y)]),
X = _T(X)v
for any X,Y € 775, as in (4.3).

(6.3)

Theorem 6.4. Let C and C be two unital composition algebras over k,
whose traces will be both denoted by t, and let J be the Jordan algebra of
3 x 3 hermitian matrices over C. Let T =T (C,.J) be the associated Tits
algebra, with the action of the symmetric group Sy given by (6.1). Then
the algebra with involution (’T@@), : —) is isomorphic to the structurable

algebra C®C, with multiplication (a®x)(bQy) = ab®xy and involution
a®@r=a®z, for any a,b € C and z,y € C.

Proof: To begin with, the subspace 7(1 p) is
T(if)) = (CO ® LO(C)) D d€1—€2,bo(é)'
For ease of notation, write d;(x) = d
(modulo 3) and z € C, so
/T(j)(j) = (OO ® Lo(é)) &b do(é)
Consider the bijective linear map
P /T(i,f)) —Cel

Li(z) for any i = 0,1,2

€i+1—€i+2,

a®(x) — —a®u,
1
do(x) — —51®z,

fora e C° and z € C.
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It is clear the ®(X) = ®(X) for any X € T(1 5, since

—7(a®w(x)) = —a®1p(T) = a® (Z), and

= 7(do(2)) = =llr(es—e2)s lro(a] = ~llea—ers lug(@)] = do(T),
for any a € C 0 and 2 € C. Note that the standard involutions of both C
and C are denoted by the same symbol.

To prove that ® is an algebra homomorphism, the following instances
of (X -Y) = ®(X)P(Y) have to be checked:

(i) X =do(z), Y =do(y), with x,y € C: Note that one has

@(do(x)) = ‘P([lel—ezvlbo(z)])
= [lp(er—ea) lp(uo(@))]
= [182*80’&1(:5)] = di(z),

while p?(do(y)) = da(y). Also, the equality 7(do(x)) = —do(Z) was
checked above. Hence,

XY = —7([p(do(2)), 9*(do())]) = —7([d1 (), d2(v)])-

But [di(x),d2(y)] belongs to the subspace do(C) (because of the
grading of derJ over Zg X Zs), so there is an element z € C such
that [d(x), da(y)] = do(z). Now, for any z € C and any i = 0, 1,2,
one has:

di('z)(ei-‘rl) = [lei+1_€i+27 lLi(Z)](eH-l)

= (€i+1 — €it2) o (1i(2) 0 €ir1) —ti(2) o ((€i1 — €iy2) 0 €iy1)

1
= glei1 —eir) 0i(2) —i(z) o eina

1

= —§Li(z).

In the same vein, one obtains:

(6.5) di(2)(eit1) = —di(2)(eit2) = —%Li(z)a di(z)(e;) =0,
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for any z € C andi= 0,1,2. Also,
di(2)(ti+1(t)) = (€i+1 — €it2) o (1i(2) o Li1(t))

—ti(2) o ((ei+1 — €it2) 0 Lis1(t))

1 — 1

= Sleir1 — eiva) 0 Lira(2t) + Sui(2) 0 tita (t)
1 — 1 _ 1 _

= ZLZ'J,_Q(Zt) + Zbi+2(zt) = §Li+2(zt),

and, in the same vein,
1 _
di(2)(ti11(t)) = Stira(21),

(6. 4 2(0) = 50 (),

4i(2) (1a(t)) = (D) (e — cir2)

for any z,t € C and i = 0,1,2.
Thus,

[d1(z),da(y)](e1) = di(z)(d2(y)(e1)) — da(y)(di(z)(e1))
= dl(fﬂ)(%bz(y)) = 340(46_3/),

and therefore,
1.
[d1(2),d2(y)] = —Edo(fﬂy)

because of (6.5). Hence

XY = —7([di(2),d2(y)]) = T(%dO(I_y)) - —%do(xy),

and hence
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(i) X =do(z), Y =a®w(y), z,y € C,ac C’ Here
XY = —7([p(X),¢*(V)]) = =7 ([d1(2), a ® 12(y)])

= r(0® h@)(0) = (0 50@m)  (by 66)

1
= _ga ® LO(Iy)a

0
1 1

(X Y)= Fa®zy = (—51 @) (—a®y) =2(X)e(Y).

(i) X =a®w(x), Y =do(y), a € C° x,y € C. In this case,

XY = —1([p(X), 2 (V)]) = —7([a @ 1 (2), da(y)])

= (0@ d)(n (@) = (300 w@) (b (66)

1
=-50® to(zy),

SO

(X Y)= %a@xy = (—a®x) (—%1 ®y) = 2(X)2(Y).

(iv) X =a®uw(z), Y =b®w(y), for a,b e C° and z,y € C. Here
XY = —7(lp(X),¢*(V)]) = —7([a ® 1 (2), b ® 12(y)])
= (0] ® S10() + 2HaD)ls s L)

But [1,, (2), L, (y)] = do(2) for some z € C, and do(z)(e1) = —300(2)
by (6.5), while

Loy ()5 La (] (€1) = t1 () 0 (e2(y) o €1) — t2(y) o (11 (x) o e1)

1 1
= §L1($) oa(y) = ZLO(@)-
Hence [, (2), L, (y)] = —3do(ZY), and

XY = ~7((fa,] © 50(7F) — t(ab)do (7))

= —%([a, b ® to(xy)) — t(ab)do(zy).
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Therefore,

O(X-Y)= %([a,b] ® xy) + %t(ab)(l ® xy)

= %([a, b] + t(ab)1) ® zy.

But ab+ba = t(ab)1 for any a,b € C°, while ab—ba = [a, b]. Hence
ab = %([a,b] + t(ab)1), and

X YV)=ab®ry=(—a®z)(-b®y) =2(X)P(Y)

also in this case.

7. Ss-actions and structurable algebras

Among the irreducible representations of the symmetric group Sy,
let us consider the one obtained on the tensor product of the standard
representation and the alternating one [FH91, §2.3]. This is obtained
on a three dimensional vector space W = kwg + kwi + kws with the
action of Sy given by

T1: Wo — Wo, W1 — —W1, W2 — —Wa,
(71 T2: Wo — —Wp, W1 — W1, W2 — —Wa,

1 P Wo — w1 — w2 — W,
T: Wy — —Wp, W1 /— —W2, W2 — —Wjq.

(This is the representation that appears on the subspaces spanned by
the u;’s and the v;’s in (1.5).)

Then the general Lie algebra gl(W) becomes a module for Sy: - f =
ofo~t. Thus, Sy acts by automorphisms on gl(W). Identifying gl(W)
with Matg(k) by means of our basis {w1,ws,wp}, consider the following
basis of gl(W):

00 0 100 00 0
Ho=|0 0 0 Hi=[0 0 0 Hy=[0 1 0
00 1 00 0 00 0

10 00 0 00 1

(72) Go=|[1 0 0© Gi=[0 0 1 Gy=[0 0 0
00 010 100

0 -1 0 00 0 0 0 1

Do=|1 0 0| Di=|0 0 —1| Do=[0 0 0

0 0 0 01 0 -1 0 0
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The space W is endowed with a natural nondegenerate symmetric
bilinear form (.|.): W xW — k given by (w;|w;) = d;;, which is invariant
under the action of Sy. Actually, Sy embeds in the associated special
orthogonal group SO(W). The corresponding orthogonal Lie algebra
sog = {F € gl(W): (F(v)|lw) + (v|F(w)) =0V v,w € W} is the span of
the D;’s in (7.2). Note that

[Di, Di+1] = Di+2 (indices modulo 3)

As a module for so03, gl(W) decomposes into the following direct sum
of irreducible modules (remember that the characteristic of the ground
field k is assumed to be # 2,3):

(7.3) gl(W) =so3 & h @3,
where 3 = kI3 (I3 denotes the identity matrix), and h = {F € gl(W) :
(F(v)|w) = (v|F(w))V v,w € W and trace(F) = 0}.

These three irreducible modules: so3, h, and 3, are invariant under the
action by conjugation by the orthogonal group, and hence, in particular,
under the action of Sy, but while so3 and 3 are irreducible modules
under the action of Sy, h decomposes as the direct sum of two irreducible
modules for Sy:

h = span{Gy, G1,G2} @ span {Hy — Hy, H; — Ha} .

A simple computation shows that span{Hy, Hy, Ho} is left element-
wise fixed by Klein’s 4-group V, and becomes the natural module for
S3 = 84/V. On the other hand, span {Gg, G1, G2} is the standard mod-
ule for Sy. Thus, among the five irreducible modules for Sy (up to
isomorphism), only the alternating one is missing in gl(W).
Lemma 7.4. Up to scalars, the following maps are the unique so03-in-
variant linear maps between the sos-modules considered:

e 503 ®503 — 503: A® B — [A, B,
503 @503 — h: A® B— AB+ BA — 2 trace(AB)Is,
® 503®503 — 3: A® B+ trace(AB)Is,
e 5030h —s03: AR X — AX + XA,
e s03h—h: A® X — [A, X],
e 5030h—3: ARX — 0,
e heh—so3: XY — [X,Y],
e h®h—bh: XY = XY +YX — Ztrace(XY)Is,
e hRh—3: X QY — trace(XY)I5.
Moreover, all these maps are invariant under the action of Sy.
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Proof: It is clear that all these maps are invariant under the action
of both so3 and Sy, because so is the trace form and the associative
multiplication in Endy(W).

Now, to prove the uniqueness it is enough to assume the ground field &
to be algebraically closed. In this case, so3 is isomorphic to sl and, as
a module for sly, sosz is isomorphic to V(2), b to V(4) and 3 to V(0)
(notation as in [Hum78, §7]). Note that this makes sense because the
characteristic is either 0 or > 5. But for n,m = 0,2 or 4, V(m) ® V(n)
is generated, as a module for sly, by R® S, for a highest weight vector R
of V(m) and a lowest weight vector S of V(n). Hence any invariant linear
map V(m) ® V(n) — V(p) (p = 0,2, or 4) is determined by the image
of R® S, which belongs to the weight space of V(p) of weight 2(m —n).
This is at most one-dimensional, and the result follows. o

Let g be an arbitrary Lie algebra over k endowed with an action of the
symmetric group S4 by automorphisms, that is, endowed with a group
homomorphism

54 — Aut(g).

As before, the action of Klein’s 4-group induces a grading of g over
Zy x Zy and the subspace A = g1 = {z € g: T1(z) =z, 72(x) = —x}
becomes an algebra with involution by means of:

{:v -y = —7([p(x), *(v)]),

T = —7(x).

The algebra (A, -, —) will be called the coordinate algebra of g. If this
algebra is unital, then it is structurable ([Oku05, Theorem 2.6] and
[EO07, Theorem 2.9]). This is the situation that has already appeared
in Theorems 4.4 and 6.4.

Theorem 7.5. Let g be a Lie algebra over k. Then g is endowed with
an action of Sq by automorphisms such that the coordinate algebra is
unital (or, equivalently, structurable) if and only if there is a subalgebra
of g isomorphic to sos, such that, as a module for this subalgebra, g is
the direct sum of irreducible modules isomorphic either to the adjoint
module so3, the five dimensional module by or the trivial one dimensional
module 3.

Proof: Assume first that g contains so3 as a subalgebra with the prop-
erties stated in the theorem. Then, collecting isomorphic irreducible
modules, we may write:

(7.6) g=(sos0H) @ (hoS) B,



338 A. ELDUQUE, S. OKUBO

for vector subspaces H, S and 0. The subalgebra so3 is then identified
to sog ® 1 for a distinguished element 1 € H. Here 9 = {z € g: [d,z] =
0V d € so3} is the sum of the trivial irreducible modules, so ? is the
centralizer of the subalgebra sos and, in particular, it is a subalgebra
of g.

Because of Lemma 7.4, the Lie bracket in g, which is invariant under
the action of the subalgebra sos, is given by:

0 is a subalgebra of g,
[A®a,B@b] = [A,B]®aob— (AB+ BA — 2trace(AB)I5) ®
1a,b] + trace(AB)dq,,
[A®a, X @z]=—(AX + XA)® 1[a, 2] + [4, X]®aox,
X@z,Y @y =[X,Y]®zoy— (XY + VX — 2 trace(XY)I3) ®
2z, y] + trace(XY)d,,y,

o [d,A®al=A®d(a),

o [d, X®z]=X®d(x),
for any A, B € so3, X, Y € h,a,b€H, x,y €S, and d € 0, where

e HxH — H: (a,b) — aobis a symmetric bilinear map with
loa=a for any a € H,

HxH—S: (a,b) — [a,b] is a skew symmetric bilinear map with
[1,a] =0 for any a € H,

H xS — H: (a,z) — [a,z] is a bilinear map with [1,z] = 0 for
any x € S,

e HxS — S: (a,2) — aox is a bilinear map with 1oz = z for any
z €S,

S xS — H: (x,y) — x oy is a symmetric bilinear map,

Sx8—S8: (x,y) — [z,y] is a skew symmetric bilinear map,

H xH —0: (a,b) — dgp is a skew symmetric bilinear map,

Sx 8 —0: (x,y) — dy,y is a skew symmetric bilinear map,

the bilinear maps o x H — H: (d,a) — d(a) and 9 x § — S:
(d,x) — d(x), give two representations of the Lie algebra .

Now, define an action of Sy on g by means of the actions by conjuga-
tion of Sy on both so3 and b:

(7.7) V(A®a+X®z+ D)= -A)®a+ ¥ -X)®x+D

for any ¢ € Sy, A€ so3, X €h,ae H,x €S and D € 0.
The invariance of the maps in Lemma 7.4 under the action of Sy
immediately implies that any 1 € Sy acts as an automorphism of g.
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Besides, the subspace g1 = {9 € ¢ : 71(9) = g = —72(g)} is
precisely the subspace

Dy HBEGy®S.

The involution in the coordinate algebra is given by

Dy®a+Gy@x=—-7(Dg)®a—7(Go)®x =Dy ®a—Gp x,

for any ¢« € H and = € S, and the multiplication in the coordinate
algebra is given by:

(D0®G+G0®{E)-(D0®b+GO®y)
= —7([¢(Do ® a+ Go @ x),9*(Do ® b+ Gy ® y)])

= —T([Dl ®a+ Gy ®x,D2®b+G2®y]).
But,
[D1, D3] = Do, [D1,G2] = —Go, [D2,G1] = Go, [G1,G2] = Do,

2
DDy + DyD; — 3 trace(Dng)Ig, = Gy, D1G2 + GoDy = — Dy,

2
DyG1 + G1 Dy = — Dy, GGy + GoG1 — g trace(Gng)Ig = Gy,

trace(D1Dg) = 0 = trace(G1G2),
S0

(Do®@a+Go@x)- (Do@b+Go@vy)

=-—7([D1®a+Gi1®z,D®b+ G2 ®Yy))
1 1
= —7(Do®aocb—Go® a8+ Do 5la,y] = Gowaoy

1 1
—D0®box+Go®§[b,x]+D0®xoy—Go®§[:€,y])

1 1 1

= (Do®aob+Go®§[a,b])+(D0®§[a,y]+Go®§aoy)
1 1

_ (D0®box—G0®i[b,x])—l—(DO@xoy—kGO@E[x,y]).

Define x ob =box and [z,b] = —[b,z] for any b € H and x € S. Now
consider the vector space A = H @ S and define a multiplication on it
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by means of

u~v:uov+§[u,v]
for any u,v € HUS, souov = 3(u-v+v-u)and [u,v] =u-v—v-u.
Define too a linear map —: A — A such that a +2 = a — « for any
a € Hand x € §. Then the linear map Dy ® a+ Gy R x — a+ x gives an

isomorphism between the coordinate algebra g1 gy and the algebra with
involution (A, -, —). Besides, 1 € H is the unity element of A.

Conversely, let g be a Lie algebra with an action of S4 by automor-
phisms such that the coordinate algebra is unital. As in [EO07], let
A = g1,0) be the coordinate algebra, and for any x € A consider the
elements:

wx) =z €gap, nul@)=eE) cgon @)= (@) cgi.

(Recall that ¢ is the cycle (123) in Sy4.)
Then [EOO07, §2], for any x,y € A and ¢ = 0, 1,2 (indices modulo 3):

[Li(®), tit1(Y)] = Lit2(T7Y).

Therefore, s = span {¢0(1), ¢1(1),t2(1)} is a subalgebra of g isomorphic
to sog (by means of ¢;(1) — D, for any ¢ = 0,1, 2). This is the subalgebra
we are looking for.

For any 0 # = € A with Z = «, span {to(z), t1(z), 12()} is a copy of
the adjoint module for s, because

[Li(1); ti1 ()] = tiv2(2) = [6i(2), Li1 (1)),

[£i(1), 3 (2)] = [[tig1 (1), ti2(1)], i(2)]
(7.8) = [[ti+1 (1), 6 (@), ti2 (D] +[ti1 (1), [ti2(1), 5(2)]]
—[tir2(2), ti2 (D] + [ti1(1), Liv1(2)]
= [ti1(1)s i1 ()] + [tig2(1), Liga(2)],

for any i = 0,1, 2. Addlng the resulting equations for i = 0, 1,2 gives
S22 (1), ()] = 2(5 2 les(1), s(@)]), 50 22 o[, es(@)] = 0 and
then (7.8) implies that [¢;(1), ¢;(x)] = 0 for any i.

Now take an element 0 # x € A with Z = —z. Let us first check that
the s-submodule generated by to(z) is b = span{¢;(x), [t:(1), ¢;(z)]:
i=0,1,2}. To do so, by symmetry, it is enough to check that this
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subspace is closed under the action of to(1), but:
[to(1), 1 (2)] = 2(Z) = —12(2),
[t0(1), t2(2)] = =11 (Z) = 11 (),
(7.9) [eo(1), [ex (1), 1 (@)]] = [[eo(1), (D], ea(@)] + [ea (1), [eo (1), ea ()]
= [t2(1), ta ()] = [t (1), e2(@)] = 200(2),
[t0(1), [e2(1), t2(@)]] = 2to(x) (same arguments),

and finally, as in [EO07, Theorem 2.4],

[t0(1),[e0(1), to(x)]]=—t0(d0(1, 2)(1)), with §o(1, ) =—01(Z,1)—d2(1, z)=
2(L,+R,), where L, and R, denote, respectively, the left and right mul-
tiplication by z in A. Hence,

(7.10) [to(1), [to(1), to(2)]] = —4eo(2),

and, therefore, v is a submodule. This shows too that [¢9(1),0(z)] # 0
for any 0 # « € A with £ = —z. Moreover,

[12(1), e2(2)] = [[t0(1), 11 (1)), L2()]

= [leo(1), 2(@)], 1 ()] + [e0 (1), [ea (1), 22()]]
= —[n(@), .2 (V)] + [e0(1), vo(
= —[eo (1), 00(@)] = [ta(1), 12 ()]
Therefore, Z?:o [ti(1),¢i(z)] = 0, and the dimension of v is at most 5.
But (7.9), (7.10) and their analogues for i = 0, 1, 2 show that [¢o(1), ¢ ()]
and [t1(1),¢1(x)] are linearly independent elements of g ). The out-
come is that the dimension of v is 5. Besides, the assignment ¢;(z) — G;,
[ti(1),¢i(z)] — —2(H;31 — Hit2) (Gy’s and H;’s as in (7.2)) shows that
v is isomorphic to the irreducible module h. Therefore, &2 _,u;(A) is
contained in a sum of irreducible modules for s isomorphic either to the
adjoint module or to b.

Now take any element 0 # d € g(5,5) and let U = U(s) be the uni-
versal enveloping algebra of s. (Recall that s is isomorphic to sos.) The
s-module generated by d is Ud = kd + Zfzol/l[d, ti(1)]. Let z; € A
be the element such that [d,;(1)] = ¢i(z;) (i = 0,1,2). Then Ud =
kd + Z?:o Uti(z;). But the sum E?:o Uii(z;) is a finite sum of irre-
ducible modules, each of them isomorphic either to the adjoint module
or to b, and hence, by complete reducibility, to a finite direct sum of
irreducible modules of these types. Therefore, to prove that Ud is a sum
of irreducible s-modules which are either trivial, adjoint or isomorphic

(
(
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to b, it is enough to prove that if M is a module for s and N a submod-
ule of M with N either adjoint or isomorphic to b, and the dimension
of M/N is 1, then M contains a one dimensional submodule (which nec-
essarily complements N). But the Casimir element DZ + D? + D3 € U
acts as —2Id on the adjoint module, —6/d on h and trivially on the
trivial module. Hence the one dimensional submodule of M sought for
is the kernel of the action of the Casimir element. O

By means of (4.1), actions of the group Ss; on the exceptional Lie
algebras were considered. (Note that the simple Lie algebra of type G
appears simply as 9etC.) The previous theorem makes easy to embed Sy
in the group of automorphisms of classical Lie algebras.

Examples 7.11. Consider the module W for Sy in (7.1).

(i) Orthogonal Lie algebras: The module W is endowed with a non-
degenerate symmetric bilinear form b invariant under the action
of Sy: b(wi,w;) = &;; for any i, = 0,1,2. Let (U,V') be any
vector space endowed with a nondegenerate symmetric bilinear
form. Then the orthogonal Lie algebra of the orthogonal sum
(W@ U,b Lb) decomposes as:

so(WaU,b LV)=so(W,b)® (W oU)®so(U,b),

where so(W,b) = so3 (respectively so(U, b)) is identified to the
subalgebra of so(W @ U,b L b') which preserves W (resp. U) and
annihilates U (resp. W), and for any w € W and v € U, w ® u is
identified to the linear map determined by w’ — b(w,w)u, v’ —
=b' (u, v )w, for any w' € W and v’ € U.

As a module for so3, W is isomorphic to the adjoint module,
so W ® U is a direct sum of copies of the adjoint module, while
s0(U,V') is a trivial module. Hence, according to Theorem 7.5,
so(W @ U,b L V') is endowed with an action of S; by automor-
phisms.

(ii) Special Lie algebras: Let U be now any vector space. Then the
special linear Lie algebra sl(W @ U) decomposes as

siWeU)=si(W)e(WeU") e (W aU)®gl(U)

with natural identifications. But as in (7.3), sl[(IW) decomposes as
s[(W) = so3 @ b and, as a module for so3, W and W* are both
isomorphic to the adjoint module. Then s{(W & U) decomposes, as
a module for so3, as a direct sum of copies of the adjoint module,
of b (just one copy) and of the trivial module, so sl(W & U) (or sl,,
for n > 3) is endowed with an action of S4 by automorphisms.
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(iii) Symplectic Lie algebras: Let now (U, B’) be a vector space en-
dowed with a nondegenerate skew symmetric bilinear form. Also
W & W* is endowed with the natural skew symmetric bilinear
form B, where W and W* are isotropic subspaces and B(f,w) =
f(w) for any f € W* and w € W. The symplectic Lie algebra of
the orthogonal sum ((W & W*) @& U, B L B’) decomposes as

sp(WeW*)eU,B L B)
=sp(WaeW* B)e (WaeW")aU)@spU,B).

But gl(WV) is naturally embedded in sp(W @ W*, B) as the subal-
gebra that leaves both W and W* invariant. Hence so3, which is
contained in gl(W), embeds in sp(W & W*, B) which, as a module
for so3 is the direct sum of s03, three copies of h and three copies
of 3. Again this shows that sp(W @ W*) & U, B L B') is endowed
with an action of S; by automorphisms.

Remark 7.12. The Lie algebras over a field of characteristic 0 containing
a three dimensional simple Lie algebra s such that, as modules for s,
are a direct sum of copies of the adjoint, the unique five dimensional
irreducible module and the trivial module have been thoroughly studied
in [Sel88, Chapter 7]. O

Remark 7.13. The Lie algebras g whose Lie algebras of derivations con-
tain a subalgebra isomorphic to sos and such that, as modules for this
subalgebra, they are a direct sum of irreducible modules isomorphic ei-
ther to the adjoint module sos, the five dimensional module § or the
trivial one dimensional module 3, can be shown to admit a group of au-
tomorphisms isomorphic to S; exactly as in the proof of Theorem 7.5.
In particular, if J is any Jordan algebra (not necessarily unital) and 0 is
a Lie subalgebra of det(.J) containing the inner derivations, then the Lie
algebra g = (503®J ) @0, where 0 is a subalgebra and the bracket is deter-
mined by (see [Tit62]) [A®z, B®y] = [A, B|®zy+ & trace(AB)[Ly, Ly
and [d, (AQz)] = A®d(x) for any A, B € so3, z,y € J,and d € 9, is a Lie
algebra satisfying the conditions above. Note that in case —1 € k2, then
503 is isomorphic to sly, and the construction above becomes the well-
known Tits-Kantor-Koecher construction TK K (J) (see [EO07, Exam-
ple 3.2]). In particular, if J is the Jordan superalgebra of type D; or F,
then this construction will give the Lie superalgebra of type D(2,1;t)
or F(4) respectively. O
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Two more comments are in order here. In a previous paper [EOO07],
the authors have shown how to define an action of S; on the Lie al-
gebra K(A, —) attached to a structurable algebra (A, —) by means of
Kantor’s construction [Al179] in case —1 is a square on the ground field.
The previous theorem provides a natural interpretation: The Lie alge-
bra K(A, —) contains a subalgebra isomorphic to sls such that, as a mod-
ule for sly, K(A, —) is a direct sum of copies of sls, of its five dimensional
irreducible module in gl(slz) and the trivial module. However, if —1 is a
square, then sl is isomorphic to sos and, after identifying sl ~ so3, the
five dimensional irreducible module is the module b considered so far.

Also, the Lie algebras which contain a subalgebra isomorphic to sls
and which, as a module for sly, are direct sums of copies of irreducible
modules of three types: the adjoint module sls, the five dimensional
irreducible module in gl(slz) and the trivial module, are essentially the
B(C4-graded Lie algebras of type B; (see [BSmO03]) and the references
therein). These Lie algebras present a decomposition as in (7.6):

g=(sboaH)a (hos) ®d.

Take the standard basis {e, f, h} of slo with [e, f] = h, [h, €] = 2e, [h, f] =
—2f. The action of ad h gives a 5-grading: g=g_2Pg_1D go D g1 D go,
where g; = {z € g : [h,z] = iz} (i = —2,-1,0,1,2). There is just
one extra condition in the definition of the BC4-graded Lie algebras of
type B1: go = [g—2, 92] + [g—1, 91]. With the notations as in the proof of
Theorem 7.5, this is equivalent to the condition ? = dy n + ds,s.
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