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CLOSED IDEALS WITH COUNTABLE HULL IN
ALGEBRAS OF ANALYTIC FUNCTIONS SMOOTH UP

Abstract

TO THE BOUNDARY

CYRIL AGRAFEUIL AND MOHAMED ZARRABI

We denote by T the unit circle and by D the unit disc. Let B be a
semi-simple unital commutative Banach algebra of functions holo-
morphic in D and continuous on D, endowed with the pointwise
product. We assume that B is continously imbedded in the disc
algebra and satisfies the following conditions:

(H1) The space of polynomials is a dense subset of B.

(H2) Limyp oo |27 " = 1.

(H3) There exist k > 0 and C > 0 such that

1= flls < Cllz = Nfllg. (f €B A <2).

When B satisfies in addition the analytic Ditkin condition, we give
a complete characterisation of closed ideals I of B with countable
hull A(I), where

hI)={z€D: f(z) =0, (feD}.
Then, we apply this result to many algebras for which the struc-

ture of all closed ideals is unknown. We consider, in particular,
the weighted algebras £!(w) and L'(RT,w).

1. Introduction

We denote by T the unit circle and by D the unit disc. Let n be
a nonnegative integer. We denote by G™(D) the space of n times con-

tinuously differentiable functions on D and holomorphic in D. We set
a>=(D) = () a*(D). Notice that a(D) = a’(D) is the classical disc

algebra.

Let B be a semi-simple unital commutative Banach algebra of func-
tions holomorphic in D and continuous on D, endowed with the point-
wise product. We assume that B is continuously imbedded in a(D).
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We denote by a: z — z the identity map and we define the following
conditions:

(H1) The space of polynomials is a dense subset of B.
(H2) limy, o0 o™ = 1.

(H3) There exist k > 0 and C > 0 such that
(

1) L= A1)l < Cllte = 2]

Denote by Np the supremum of integers n such that B C a"(D).
As we will see in the next section, condition (H3) implies that Ng is
bounded.

We say that B satisfies the analytic Ditkin condition if for each zg € T
and each function f € B such that f*)(z9) = 0,0 < k < Np, there exists
a sequence (Tn) in B, satisfying the following properties:

5 (FEB N <2).

n>0

(A1) For all n >0, 7,(20) = 0.

(A2) Tim [|(1=7)f]5=0.

And we say that B satisfies the strong analytic Ditkin condition if, for

each zyp € T, the sequence (Tn)n>0 can be chosen independently of f.
Denote by H> the space of all holomorphic and bounded functions

inD. For f,g € H>™ we say that f divides g (we write f | g) if g/f € H*>.

Let I be a closed ideal of B. We denote by U the inner factor of I, that

is the greatest inner common divisor of all nonzero functions in I (see
[14, p. 85]), and we set

) ={:eD:f(z) = = M) =0, (FeD} (0<k<Ng).
The ideal [ is said to be standard if
2) I:{feB:UI|fandf<’f>:00nh’f(1)mr, (ogngB)}.

In several Banach algebras B satisfying conditions (H1)-(H3), all
closed ideals are standard. This is the case if B is for example one
of the following algebras: (D), a™(D) (n > 1), As (0 < s < 1) and H?
(n>1,1<p< ), where

A={ream): 1) - 1)) =o((1z = #1), |2 = 2| — 0},

and
HE = {f holomorphic in D and f(") S Hp},

HP being the classical Hardy space on D (see respectively [24], [18], [19],
[27]). For further examples see also [28] and [30].
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But, even in the case where Ny = 0, we don’t know in general the
characterisation of all closed ideals of B. For example, in AT(T), the
algebra of all functions in (D) with absolutely convergent Taylor series,
it is known only when h°(1) is finite (see [15]), h°(I) is countable (see [3])
or when h°(I) is the Cantor triadic set (see [7]). And in these cases, ideals
are standard.

The aim of this paper is to study the structure of closed ideals with
countable hull in Banach algebras satisfying conditions (H1)—(H3). The
first motivation is Theorem B of [3], which is announced without proof
and which concerns ideals with finite hull (see Remark 2.13). The second
one is the structure of closed ideals in algebras

+oo
A (T) = {f cam): ], = 3 IFml(1 + ny < +oo},
n=0

where s is a nonnegative real number. The characterisation of closed
ideals with countable hull in A (T) is known only in the case s < 1
(see [23]), which correspond to the fact that the derivation operator
doesn’t act on AT (T).

The main result of this paper (Theorem 2.11) shows that if B satisfies
conditions (H1)-(H3) and the analytic Ditkin condition then every closed
ideal I of B such that h%(I) is at most countable is standard. Notice
that a result in the same direction was announced by Faivysevskii in [9].

There is no hope to extend this result to all closed ideals of B. Indeed,
when B = AT(T), J. Esterle constructed in [6] a closed ideal I such that
hO(I) is a “thin” set, Uy =1 and I # {f € AT(T) : f =0 on h(I)}.

Then we apply this result (Theorem 2.11) to several concrete Banach
algebras. In Section 3, we show that for every s > 0, all closed ideals
in AT(T), with countable hull, are standard. Then, using a result of
H. Hedenmalm (see [13]), we deduce a similar characterisation for a
family of closed modular ideals of L!(RT), where

+oo
LY (RT)= {f measurable on R : ||fH1 S:/ lf@®)](1+1t)° dt<+oo} .
’ 0

In Section 4, we give further examples of Banach algebras where Theo-
rem 2.11 applies.

Acknowledgement. We wish to thank the referee for her/his valuable
comments and to have drawn our attention to the work of Faivysevskii,
where results in the same direction are announced.
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2. Closed ideals of B

Throughout this section, B will denote a semi-simple unital commu-
tative Banach algebra of functions holomorphic in D and continuous
on D, endowed with the pointwise product and continuously imbedded
in @(D). Without loss of generality we assume that ||1||z = 1. We recall
that Ng is the supremum of integers n such that B C a"(D). We will
need, in the sequel, some properties of B.

Suppose that B satisfies conditions (H1) and (H2). We can identify
the maximal ideal space of B with D. The identification is given by the
map

D>z — 46,
where ¢, is the point evaluation at z: ,(f) = f(2), f € B.
Then, for all z € D, we have

9| < llgllg> (9 € B).
It follows from the closed graph theorem that the embedding from B
into @™#(D) is continuous. In particular, for all z € D and for all k,
0 < k < Np, functionals

(k)

X" g g™(2)

are continuous on 5.
For A € D and f € a(D), we define the function Rx(f) by

ORI -
Ba(f)(5) =4 =—x TEEDUA
7O it 2= A

Clearly R) is a linear map. Notice also that if B satisfies conditions (H1)
and (H2) and if for every f € B, Ra(f) € B, then the closed graph
theorem asserts that R) is a bounded operator on B.

The following lemma shows that condition (H3) can be equivalently
reformulated. We recall that a: z — z is the identity map.

Lemma 2.1. Suppose that B satisfies conditions (H1) and (H2). Then,
the following conditions are equivalent.

(i) B satisfies condition (HS).
(ii) There exists k > 0 such that:
(a) Ha”HB =0(n*), n— 4.
(b) For all X € D, Ry defines a bounded linear operator on B and
there exists C' > 0 such that

[Ra| < C=[AD* (A < 1).
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(iii) There exists k > 0 such that:
(c) ||a”HB =0(n*), n— 4.

(d) Ro defines a bounded linear operator on B and
-~

Proof: (i) = (ii): Suppose that B satisfies condition (H3). We begin
by showing (b). Let A € D and P be a polynomial function. We can
write P — P(\) = (o — \)@, where @ is a polynomial function. So
Rx(P) = @ belongs to B. We deduce from (H3) that

(1= ) *[|RA(P)]| 5 < [P = POV 5
<2C||P|,.

where k£ and C' are nonnegative constants independent of P. Let P be
the space of all polynomials provided with the norm of B. One has
just seen that the restriction of Ry to P is a bounded linear operator

with norm not exceeding 2C(1 — |/\|)_k. Now, since B satisfies (H1),

Ry |p can be extended to a bounded linear operator on B with norm less

than 2C(1 — |)\|)_k.

Then, using the fact that functionals g — g(2),
for z € D, are continuous on B, it is easily seen that this extension
coincides with Ry on B, which finishes the proof of part (b).

Now, let us show that (a) holds. As we have observed before, the set
of maximal ideal space can be identified with D). Therefore the spectrum
of a is equal to D. So for all A such that [A\| > 1, the function a — \ is
invertible in B and using (1), we get

(3) [(a=2)Yz<oN-1)7" @<]<2).

Let r > 1, we have o™ = ﬁ/ A" (a — )\)_1 d)\, where ~, denotes the
r

circle centered in 0 with radius r. We deduce from this equality and (3)
that

Ha”HB <Crtir-1)7F (1<r<2).
Now, it suffices to take r = 14 1/n to prove (a).
(if) = (iii): It suffices to show that (d) holds. Let f € B. For A € D
we get from part (b) of (ii),

115 = 1B (= N 5 < (1= W)l = 275
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It follows from this that for every A and X in D,

1BA(F) = B (£)]|
< (=AY (1= V)@= N = XY (Ba() = Bae ()
< (1= ) A=) @ XY (F =) = (a= N (F=F X)) [ 5
(

<c(i-p) -t

x (17O = FOllalls + A = N1lIflls + [N F) = AF(X)]).

Thus the map A — Ry (f) is continuous from D into B. So, for every
n>1andr € (0,1), the integral - f% AT RA(f) dA is well defined and

belongs to B. We shall now prove that

! /)\‘"RA(f)dA, n>1,0<r<1).

2m ~y

(4) Rg(f)
For \ and z in D we have

Ra(f)(z) =Y flm)———

So the map A — R)(f)(z) is expanded in an entire series in D and its
Taylor coefficients are (R3+1(f)(z))n>0. Hence

REF)(2) i/ ARA(F)() AN, (2] <1, 0<r<1,n> 1)

" 2ir
Since the linear map d,: f — f(z) is continuous on B, we get

RG(f)(2) = (i/ AT"RA(f) d)\> (2), (z]<1,0<r<1,n>1),

2m
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which proves (4). Therefore
1 2
| Ry < ﬂ/o P Ry (f)]| g6 < Crm T (1 — )R
For r =1 — 1, we see that (d) holds.

(iif) = (i): For [A] <1, the series > N'RITL(f) is absolutely con-
vergent in B. Then, by (5), we deduce that Rx(f) = >_,5 N RETE(f)
and Rx(f) € B. Therefore there exist constants C' and C” such that

IRA(H)]| 5 < DN IRETH ()18

n>0

<O @+t ) Ifls < '@ =AD" fls.

n>0

Using this for (o — A) f, we obtain
1l = (e = 00l = € (1= 1) @ = 01

Now, let |A] > 1. The function o — A is invertible in B and we have

(6) 11l < @ =N gl =N fllgs  (f €B).

Then, it suffices to expand (o — \)~!

there exists a constant C' such that
_ n e —k—1
(1) la=2) "< D ™" <O(A=1) 7, (1< Al <2).
n>0
It follows from (6) and (7) that
—k—1
[Alls<CUN=1) " lla=Nflg Q@<N<2).
Thus condition (H3) is satisfied. O
Remark 2.2. Suppose that B satisfies conditions (H1) and (H2). Con-
dition (a) in (ii) of Lemma 2.1 can be equivalently reformulated. As-
sume that @*°(D) C B. By the closed graph theorem the imbedding

a> (D) — B is continuous. So there exist k& > 0 and a constant C' > 0
such that ||f]|z < C’HfHak(D), whenever f € a*° (D). In particular we

have |[a”|z = O(n*), n — oco. This implies that @**2(D) C B. Now it
is easily seen that the following conditions are equivalent:

(a) There exists k > 0 such that Ha”HB =0(n*), n — +oc.

(a’) a> (D) C B.

(a”) There exists k > 0 such that a*(D) c B.

in series and use (c) to see that
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To show the main result of this paper we begin with the characterisa-
tion of closed ideals I such that Uy = 1 and h°(I) is reduced to a single
point. For this we need some lemmas. We denote by C*(T) the space of
k times continuously differentiable functions on T.

Let f € B. If z € D, we set

sup{k >0:feCHT)and f*)(z) = 0} ifzeT

ki(z) =
) sup{kz():f(k)(z):O} ifzeD

and
mf(z):sup{m21:f=f1...fm
with f; € Band fi(2) =0 (1<:i< m)}

with the understanding that supf) = —oco. We remark that k;(z) >
min(mys(z) — 1, Ng). Also if z € D and B satisfies conditions (H1)-(H3),
then ks(z) =mys(z) — 1.

Lemma 2.3. Suppose that B satisfies conditions (H1) and (H2). Let
feB, z €T and k an integer with 0 < k < Np. If kt(z0) > k, then
there exists a sequence (Pm)m>0 of polynomial functions such that

- k+1 —
mEIEw"f—(a—zo) PmHB—O.

Proof: Since polynomial functions are dense in B, there exists a se-
quence (Qm)m>0 of polynomial functions such that

i/~ Q= 0.

m——+o0o

For all m > 0, set

k
Rm:Qm_Qm(ZO)—Q;n(ZO)(OZ—ZO)_..._ m

For every integer 7, 0 < j < Np, the functional g — g (2) is continuous
on B, so liI}rl Q%)(zo) = fU)(2) = 0. Hence, we have
o IS = Bl =0

Now, since for all m > 0, the polynomial function R, vanishes, with
all its derivatives of order less or equal than k, at zy, there exists a
polynomial function P, such that

R, = (a— zo)kJrle,

which concludes the proof. O
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Lemma 2.4. Suppose that B satisfies conditions (H1) and (H2). Let
feB, zoeT andk be a nonnegative integer. If my(z0) > k, then there
exists a sequence (Pm)m>0 of polynomial functions such that
i [~ (@ 20 Pallg =0

Proof: Assume that my(z9) > k. There exist functions f1,..., fi in B
vanishing at zg such that f = f;... fix. It follows from Lemma 2.3 that
for each i € {1,...,k} there exists a sequence of polynomials (P )m
such that lim,,— 4o HfZ —(a— ZO)PivaB = 0. If for each m, we set P, =
P ... Py, then we have clearly limm_,+oon—(a—zo)kPmHB =0. O

Lemma 2.5. Suppose that B satisfies conditions (H1) and (H2) and the
analytic Ditkin condition. Let zg € T and f € B such that k¢(z0) > Npg.
Then, for all m > 1, there exists a sequence (O’n)n>0 included in B such
that for each n, m,, (z9) > m, and -

i ot~ fll, =0

Proof: Since B satisfies the analytic Ditkin condition, there exists a se-
quence (Tn)n>0 included in B satisfying conditions (A1) and (A2) as-
sociated with the function f. This gives the conclusion in the case
where m = 1. Now, suppose that m > 2. We construct by induc-

tion on k a sequence (Tnl "k)(n ne) €U NF such that for every
e 1y--sNk 1<k<m

ke{l,...,m—1} and (ny,...,nx) € N* the sequence (Tn17,,,)nk7n)n>0
satisfies conditions (A1) and (A2) related to the function 7,,, ., f, that
is

Tna,...mpn(20) =0, for every n >0,
and

lim ||7'n1
n—-+4oo

To simplify, we assume that m = 2 (the general case can be proved

exactly in the same way). It is easily seen that there exist (gol(n))n>0

and (2 (n))n>0 two increasing sequences of positive integers such that,
for allm >0,

HTwl(n)f_fHB < n+1

1
and 7o, .00 Tertm S = Tortm flls < 727
Now, set

Tn = To1(n),p2()Tor(n) (0= 0).
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Then, as

lonf = Flls < ITortmyoomTormy f = Torm) flls + | 7orm £ = 1]

we have

B?

im0t~ f]| =0.

And since for all n > 0, 7, (n),0s(n) (20) = 0 and 7, () (20) = 0, we have
Mo, (20) > 2. O

Let f € (D). We denote by Uy its inner factor. We have Uy = ByS¥,
where By is the Blaschke product constructed with zeros of f in D, and
S¢ its singular inner factor, associated with a singular measure p5.

Let I be a nonzero closed ideal of B and z € D. We set

ki(z) = inf{ks(2): f € I},
and (what have already been defined in the Introduction)
Wi(I)={z€eD:ki(z) >k}, (0<k< Np).

We recall that U; stands for the inner factor of I, that is the greatest
common divisor of all nonzero functions in I (see [14, p. 85]). Let By be
the Blaschke product constructed with elements of h%(I) N D (taking
multiplicity into account). Then U; = BySy, where Sy is the singular
inner function associated with U;. We denote by u; the singular positive
measure which defines Sjy.

The following lemma appears in [7] in the particular case where B =
AT(T) . Since B C (D), the proof uses exactly same arguments, so we
state it without proof.

Lemma 2.6. Assume that B satisfies conditions (H1) and (H2) and let
I be a nonzero closed ideal of B. Then, there exists a sequence (fn), -,

of nonzero functions in I such that

lim H/’Lfn _/”H =0.

n—-+o0o

Suppose that B satisfies conditions (H1)—(H3). Let I be a closed ideal
of B such that h%(I) C T. Denote by 77 the canonical surjection from B
onto B/I. Let T be the operator on B/I defined by

Tr: 71 (f) — mr(@)mr(f),
where a: z — z is the identity map; 77 is a bounded linear operator
on B/I such that Sp(T7) = h°(I).

Let f € Band A € D. We have (o — A)Rx(f) = f — f()\), which
implies that

T (RA(f)) = (mr(a) = N7 (m(f) = (V).
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Suppose that f € I. We have w7 (Rx(f)) = —f(A)(7r(a) — A\)~L. There-
fore we get

[ =mr(@) 7 = |7 (BA()) |

(8)

< B -
By Lemma 2.1, there exist nonnegative contants C' and k such that
(9) lF N =T < c@ = A H(I]] -

Denote by vy (resp. vy) the discrete part of the singular measure py
(resp. my). Then, we deduce from (9) and from Lemma 5¢ of [2] that,
for all € > 0,

2lvgli+e

[ =T = 0= A Fe ), A= 1
This shows that

limsup(1 — [\ log™ O\~ 71)™ < 2] |
Al—1—
Notice that vy — vy is the discrete part of puy — py. It follows from

Lemma 2.6 that there exists (f5)n in I such that lim,, . ||vy, —vi|| = 0.
So

(10) imsup(1 — [\ log (= 71) 1| < 2l
Al—1—

Now, the following lemma gives the characterisation of closed ideals I
of B such that Uy =1 and h%(I) = {20}, 20 € T.

Lemma 2.7. Suppose that B satisfies conditions (H1)-(HS3) and the
analytic Ditkin condition. Let zo € T and I be a closed ideal of B such
that Uy = 1 and h°(I) = {z0}. Then

I= {f €B:fM(z)=0, (0<k< kl(zo))}-

Proof: To simplify notations, we put k; = kr(z9). It follows from
Lemma 2.3 that

IC (a— z0)krt1B,
where the closure is taken for the norm in B. Now, we are interested in
showing the other inclusion. By Lemma 2.1, there exists a nonnegative

integer k such that ||[a™|| = O(n*), n — oco. The operator T defined
on B/I by

T:7(f) — mr(a)mr(f),
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satisfies SpT = {z} and ‘T"H = O(nk), n — 4o00. On the other hand,
we deduce from (10) that, for all € > 0,

|z=T)7" = O(e%\z\), |[z] = 17.
We obtain by Lemma 2 of [2] that, for all € > 0,
777 = 0(e), 1+

Then, it follows from Corollary 1 of [2] that (T — z9)*¥** = 0, which
means that

(11) (a—20)" e 1.

Denote by ko the smallest of nonnegative integers p such that (o —
20)PTt € 1. We are going to prove that kg < k;. Since B satisfies the
analytic Ditkin condition, we deduce from Lemma 2.5 that there exists

a sequence (0”)n>o included in B such that m,, (z0) > k+ 1 and

(12) nEI}rlOOHUn(O‘ - ZO)NBJrl - (a - ZO)NBJrlHB =0.
Since my,, (20) > k + 1, we deduce from Lemma 2.4 that there exists a

sequence (Pn,k)k>0 of functions included in B such that, for all n > 0,

. k+1 _
kEIJlrlooHan— (v — 20) Pn,kHB =0.
Since (o — z9)**! € I, it follows from this equality that, for all n > 0,
on € I. Then, we deduce from (12) that (a — 29)V5*! € I, and so
ko < Np.
Let f € I and set

(13) 9= f— ()~ 00

We have k,(20) > ko. Since (a — 29)¥*1 € I and ky < Np, Lemma 2.3
implies that g € I. Applying 77 in (13), we get

!/ f(k[))(zo) ko
(14)  f(z0) + f'(20) (w1 () — 20) + -+ + TO),(WI(Q) —20)" = 0.
Now, using the definition of kg, one can easily prove that the family
((mr(a) — zo)k)0<k<k0 is linearly independent. So we deduce from (14)
that for all k& € {0,...,ko}, £ (20) = 0. Hence, for all f € I, ks(z) >
ko, and so k;r > ko. Consequently, (o — 20)’”"’1 € I, which proves that

(a—zp)M1H1B C I.

(a—2z9)—  — ——(a— 29
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Finally, we have proved that

I=(a—2)kt1B

~{reB:ifMi) =0 0<k<h)}
(the second equality follows from Lemma 2.3). O

Lemma 2.8. Let p1 be a singular positive measure on T, and S, the
singular inner function associated with . Let p be a nonnegative integer
and f € aP(D) such that S, | f. Then, we have

f® =0 on Suppu, (0<k<p),
where Supp p denotes the support of the measure .

Proof: By hypothesis, there exists g € H>°(ID) such that S,g = f. Now,
if A € T, we deduce from [21, p. 63] that

A € Supp i <= BgéglAfSM({) =0.

Since g is bounded, if A € Supp pu, we have
F(A) = liminf £(§) = liminf $,(£)9(¢) =0,

which proves that f = 0 on Supp . Then, if A is an accumulation point
of Supp u1, we have f*)(\) = 0 for all k € {0,...,p}. Now, suppose that
A is an isolated point of Supp p. Set a = p({A\}) and v = g — adx, where
0 denotes the Dirac measure at \. We have a > 0 and we can write
f= B h, where h = S,g € H**(D). We have already proved that
f(A\) = 0. Suppose that f(\) = f/(\) = --- = fE=D(X) = 0 for some
ke{l,...,p}. Then, we have

f(k)()\) — k! lim M

r—1- (TA — A)k
rAFA
= k! lim &h(ﬁ\)
TSI (PA = \)E

=0.

Hence, an induction on & proves that f*)(\) = 0 for all k € {0,...,p}.
This concludes the proof. O
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Lemma 2.9. Assume that B satisfies conditions (H1)-(H3). Let f € B
and let 1 be an infinitely differentiable function on T. Then the Cauchy
transform of v fir defined by

CwnE) =5 [ P ac, e,

belongs to B.

Proof: Let z € D. Cauchy formulae shows that for n > 0,

¢ f(©Q)
2Z7TT<—Z d¢ =2 f(z)v
and that for n <0,
(¢ C” f f(1)<_..._f(_n_1)<—n—l)
2“71IC—Z 2z7r/ (—2 d¢
_ 1 [ R
<_§E;j£_i%i?;__d<
=Ry"(f)(2).
So
f(©)
s " 2in Z ¥(n T g_ P d¢
(15)

= Z @(n)z"f(z) + Z @(n)Ra"(f)(z)

n>0 n<0

Since 9 is infinitely differentiable, it follows from Lemma 2.1, that the

series R )

Sl flls+ D RS ()]s

n>0 n<0
converges. So Zn>01ﬁ(n)z"f + Zn<01ﬁ(n)Ra”(f) belongs to B and
by (15), it is equal to C(+f). This finishes the proof. O

Let I be a closed ideal of B and g € B. We denote by I(g) the division
ideal of I by g, that is

I(g):{fGB:fgel}.

Clearly I(g) is a closed ideal of B that contains I.
The following lemma is known in the case B = A™(T) (see Lemma 1.2
and Lemma 1.5 of [7]). The proof is based on a similar argument used
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in [7] and on Lemma 2.9 established below. We include the proof to see
how Lemma 2.9 operates here.

Lemma 2.10. Suppose that B satisfies conditions (H1)-(H3). Let I be
a closed ideal of B such that h°(I) is at most countable and let g be an
element of UrtH>* N B. Then Upy) = 1.

Proof: Notice that I C I(g), which implies that h®(I(g)) C h°(I). Let
A€ h°(I)ND. Let f € I such that k¢(\) = kr()\). Define

f(2)

f(z) = FrRIFD(N)
[COR .

We have f = R\ +1(f). By Lemma 2.1, f € B. Since k,(\) > kr()),
we have fg = fh, with h = R\*M*1(g) € B. Hence fg € I, which
means that f € I(g). Now, by construction, f(\) # 0, which proves that
A ¢ h9(I(g)). This shows that

h*(I(g)) C K*() N,

and consequently, By, = 1. Since hO(I) is at most countable, it suffices
to show that py(4)({z}) = 0 for all z € h°(I)NT, to prove that Sy, = 1.
Let zo € h°(I) N'T and let ¢ be a nonzero outer function in @3> (D) C B
such that p®*)(z9) = 0, k > 0. Let ¥(2) = ¢(2)S(z), z € T, where
S(z) = exp(pr({z0}) jf;g) It is easily seen, by Taylor formulae, that
1) is infinitely differentiable on T.

Let f € I. Since u(f) > pr > pr({z0})ds, 9z, being the Dirac
measure at zp, function ¢f/S € a(D) and coincides in D with C(yf).
Similarly we have pg/S € a(D) and pg/S = C(¢g) in D. By Lemma 2.9,
C(¢f) and C(1pg) belong to B. Hence C(¢g)f € I. Thus C(¢f)g =
C(vg)f € I, which means that C(¢0f) € I(g).

Now since C(¢¥f) = ¢f /S, we see that

1) ({20}) < ey {20}) = mr({z0}) — mr{zo0}) < ||y — pr |-

By Lemma 2.6 we obtain that p4)({z0}) = 0, which finishes the proof.
O

Let U be an inner function and Ey,..., En, be closed subsets of T
such that En, C -+ C Ep. We set

1(U; EO,...,ENB):{feB U |U(f) and f®=0 on Ey, (ogngB)}.
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Clearly I(U; Ey, ..., EnN,) is a closed ideal of B. The following theorem
is the main result of this paper. We recall that B is a semi-simple unital
commutative Banach algebra of functions holomorphics in I and contin-
uous on I, endowed with pointwise product and continuously imbedded
in a(D).

Theorem 2.11. Assume that B satisfies conditions (H1)—-(HS3) and the
analytic Ditkin condition. Let I be a closed ideal of B such that h°(I) is
at most countable. Then I is standard.

Proof: We have obviously I C Iy, where Iy = I(Ur; R°%(I) N T, ...,
hNE(I)N'T). Let g € Iy. To prove that g € I, we are going to prove
that I(g) = B. Notice that since I C I(g), we have h°(I(g)) C h°(I).
By Lemma 2.10, we have Uy = 1 and so

h°(I(g)) € K°(I)N'T.

Let zo € (h°(I) \ R"5(I)) N'T. Then, z is an isolated point of h%(I).
So, by the idempotent Shilov theorem (see [10]), there exists ¢ € B such
that

¥(20) =1

Pp=0 on h9(I)\{z0}
As I C I(3), we have, for all k € {0,..., Ng}, h*(I(v)) C h¥(I). More-
over, since 1 — 1 € I(¢)) and 1 ¢ I(¢), we have h®(I(¥)) = {z0}. And,
as 29 ¢ hN5(I), hN5(I(¢0)) = 0. So we deduce from Lemma 2.8 that
Uryp) = 1. Consequently, we deduce from Lemma 2.7 that

1) = {f € B: P (20) =0 (0= k< iy (0)) }-

Since ky(20) > k1(20) > ki(yp)(20), we get in particular that g € I(v).
This proves that 1 € I(g), so that 2o ¢ h°(I(g)). Therefore, we have
proved that

and (1 —1) € L.

h(I(g)) € h™s(1).
Now, suppose that hY(I(g)) # 0. Since hY(I(g)) is at most countable,

there exists zo an isolated point of h°(I(g)). Using once more the idem-
potent Shilov Theorem, there exists ¢ € B such that

p(z0) =1
=0 on h%(I(g))\{z0}
Let J := (I(g))(p) be the division ideal of I(g) by ¢. As zy € RV5(I),

g vanishes with all its derivatives (of order less or equal than Ng) at zo.
And since B satisfies the analytic Ditkin condition, we deduce from

and  ¢(1—¢) € I(g).
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Lemma 2.5 that there exists a sequence (U")n>0 included in B such
that my, (20) > N+ 1 and -

(16) Jim loweg — g5 = 0.

Now, since I(g) C J, we deduce from Lemma 2.10 that Uy = 1. More-
over, since 1 — ¢ € J, we have h(J) C {z0}. Then, Lemma 2.7 gives
the characterisation of J. In particular, by Lemma 2.4, ¢, € J, n > 0.
This means that, for all n > 0, 0,09 € I. Hence, since I is closed, we
deduce from (16) that ¢g € I. In other words, ¢ € I(g), which is in
contradiction with the fact that 2o € h°(I(g)). Finally, we have proved
that h°(I(g)) = 0, that is I(g) = B. O

Let ‘H be a Banach algebra of continuous functions on T. We say
that H is an homogeneous Banach algebra if it satisfies the following
conditions:

(1) H is a semi-simple and commutative Banach algebra with maximal
ideal space T.
(2) The set of trigonometric polynomials is a dense subset of H.
(3) For all f € H and 7 € R, we have £ |l5, = I£]l5,» where fr(e) =
f(ez(t—r))'
Let H be an homogeneous algebra on T. We denote by H™ the closed
subalgebra of H generated by {e™ : n > 0}.
Notice that conditions (2) and (3) implies that for every 7o € R,
| fr = fro HH — 0, as 7 — 7. It follows then from Theorem 2.12 of [16]
that H™T consists of functions in H having analytic extension into D.
Then, the maximal ideal space of H™ is D.

Recall that we denote by C™(T) the space of n times continuously

differentiable functions on T and we set C*°(T) = (| C"™(T).
n>0

Suppose that H contains C*°(T), which implies in particular that H is
aregular algebra. Also this implies that C*(T) C H for some nonnegative
integer k. It follows that Ny, the greatest of the integers n for which
H C C™(T), is bounded. We say that H satisfies the Ditkin condition if
for each function f € H such that f*)(1) = 0, 0 < k < Ny, there exists
a sequence (vn)n>0 in H satisfying the following properties:

(1) For all n > 0, v, = 0 on a neighbourhood of 1.
(2) lim_||(1—wn)f],, =0

n—-+oo
We say that H satisfies the analytic Ditkin condition if H* satisfies
the analytic Ditkin condition.
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Corollary 2.12. Let ‘H be an homogeneous Banach algebra on T that
contains C(T) and satisfies the analytic Ditkin condition. Let I be
a closed ideal of H* such that h°(I) is at most countable. Then I is
standard.

Proof: By Theorem 2.11 it suffices to check that H™* satisfies condi-
tions (H1)—(H3). This is clearly the case for (H1) and (H2). It remains
to check condition (H3). As we have observed before there exists a non-
negative integer k such that C*(T) C H. By the closed Graph theorem
this imbedding is continuous. So there exists a constant C' such that

1£lls < Cllf Moy, £ €CHD.

In particular we have |a”|| = O(|n|¥), |n| — oco. So there exists a
constant C' such that for every A € D,
@ =) e < 3 ™™l < O = [A) T
n>0
So, for every A € D and f € HT, Ry(f) € H' and

IRA e < Ml =27l £ = F W)l < 2011 = AT 1 f e
It follows now from Lemma 2.1 that H™' satisfy condition (H3). O

Remark 2.13. 1) Let H be an homogeneous Banach algebra on T that
contains C*°(T) and such that H ™ satisfies the analytic Ditkin condition.
It is announced in [3] that if I is a closed ideal of HT such that hO(I) is
a finite set then
I=1"NUH>®D),
where I is the closed ideal of H generated by I.
2) Let H be an homogeneous Banach algebra on T such that
™|l = O(n*) (n — 400), for some &k > 0,

and
L logfla~
n—-4oo \/ﬁ
We can show that if I is a closed ideal of H such that 2°(I) is countable
then

=0.

I={feH:f® =0onhkI), (0<k<Ny)},
where h¥(I) ={z € T: f(z) =--- = f®(2) =0, (f € I)}. The proof of
this result uses similar arguments as in the case of Theorem 2.11 with
some simplications, since there is no problem in this case with the inner
factor.
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3. Closed ideals in £!(w) and L'(RT,w)

Let s be a nonnegative real number. We set wy(t) = (1 +¢)%, t > 0.
Denote by ¢! (w;) the set of all complex sequences x = (z,,)n>0 such that

[2nlls == |znlws(n) < +o0.

n>0

Clearly ¢!(ws), equipped with convolution product and norm || ||, is a
semi-simple unitary commutative Banach algebra. The set of maximal
ideals of ¢! (w;) can be identified with D. Considering the Gelfand trans-
fom x — &, where #(z) = > o, %n2", 2z € D, we see that ¢*(ws) is
isometrically isomorphic to the Beurling weighted Banach algebra

AN = feam): |fls:= Y [f(n)|ws(n) < +oo

n>0

So we will just be interested by closed ideals of AT (T). The structure of
closed ideals I of AF(T) such that h%(I) is countable, is known only in
the cases when s < 1 (see [23], [3] and [7]) and when s > 1 and Uy =1
(see [1]). Here we give a complete characterisation of such ideals.

With notation of the above section, we have Af (T) = (A4,(T)) " where

A(T) = {f €C(T): |Iflls == D Ifm)I(L +[nl)* < +00}.

nez
Clearly A(T) is an homogeneous Banach algebra on T that contain
C°°(T). Moreover by Proposition 2.4 of [1], AT (T) satisfies the analytic
Ditkin condition. Then we deduce immediately from Corollary 2.12 the
following result.

Theorem 3.1. Let s be a nonnegative real number, and I be a closed
ideal of A¥(T) such that h°(I) is at most countable. Then I is standard.

Now we turn to the Banach algebra

—+o0

LYRT we)= {f measurable on R*: Hle_S:/ |f(#)|ws(t) dt<+oo}.
*Jo

(Ll(]R*, ws), | HLS), equipped with the convolution product, is a Banach

algebra. We denote by P the open half plane {z € C: Re(z) > 0}. For
f € LY(RT), we define the Laplace transform L£(f) by

“+oo
L(f)(z) = /O Fhet=dt, (z€P).
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Let J be a closed ideal of L'(R",ws). We set

W) ={zePi L)) = =L(NP()=0, (Fen} (0<k<s)),

where [s] is the integer such that [s] < s < [s] + 1. And we denote
by T'; its inner factor, that is the greatest common divisor of all Laplace
transform of nonzero functions in J. Also we set 8y = infsc s B¢, where

Bf =sup{a: f =0 on [0,a] (almost everywhere)}.

Notice that J = L*(R*,w;) if and only if h°(I) = () and 8; = 0 ([22],
[11]). We say that J is modular if L' (RT,w,)/J admits a unit.

It is well-known that J is a closed modular ideal of L*(R*,w;) if and
only if h°(J) is compact and By = 0 (in case s = 0, see for example [4,
Proposition 2.1]). When s = 0, V. P. Gurarii showed in [11] that if
J is a closed ideal of L'(R") = L'(R*,wy) such that h°(J) is at most
countable, then

(17) J=LTHL(I)™),

where £(J)> is the closure of £(J) in Ag(P), the algebra of all func-
tions f which are continuous on P, holomorphic in P, and such that
f(2) — 0 as |z| — +oo. The closed ideals of Ag(P) are given by the
Beurling-Rudin theorem, thanks to a conformal transform between P
and D. So, if h°(J) is at most countable, we have

J= {f € LY(R™): Ty | £(f) and L(f) = 0 on h°(J) ﬂz‘R}.

Using a result of H. Hedenmalm, we will deduce from Theorem 3.1 a
similar result concerning closed ideals of L' (R, w;), for any nonnegative
real number s.

If T is a closed ideal of AF(T), we denote by m = 7y the canonical
surjection from A (T) onto AF(T)/I. If h°(I) € D\[~1,0], we can define
the function z — 7(«a)?, which is an entire function of finite exponential
type. Furthermore, we have

(@), < sup [[m(e)"|| (1 +[t)°
0<u<1
< sup w1 +0" (0.
0<u<1

Then, we define ®;: L'(R*,s) — AF(T)/I by

+oo
B(f) = / f(t)m(e) dt.
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®; is a continuous homomorphism. We set
I= {I closed ideals of AF(T) : h%(I) ¢ D\[-1, 0]}
and
J= {J closed modular ideals of L'(RT, s) : h°(J) C[0, +00) x (-, w)}

The following result, due to H. Hedenmalm ([13, Theorem 4.3 and Re-
mark 4.5]), is essential for our purpose, since it gives a one-to-one corre-
spondence between Z and J (see also [4, Theorem 2.2]).

Theorem 3.2 ([13]). The mapping ©: I — ker ®; defines a bijection
between T and J. Futhermore, if J € J, we have

+oo
0~1(J) = {f € AJ(T) : <Z f(n)%) xg € J, (g € Ll(Rﬂws))} :
n=0

where 0,, 1s the Dirac measure at n.

Until the end of this paper, X* will denote the dual of a normed
space X, and the duality will be denoted by

(frg) (feX, geX").

Let I be a closed ideal of A} (T) and 7 = 77 the canonical surjection
from AF(T) onto AF(T)/I. Let 0 < k < [s] and w € h¥(I). The

functional ng): g — g® (w) is continuous on AF(T) and we have I C

ker ng). So there exists )ng) € (Af (T)/I)* such that

(m(9), X)) = {9:x5) (9 € AT(T)).

Let ¥ be an analytic function on a neighbourhood of h°(I). We use the
Dunford-Schwarz functional calculus to define ¥ (7 («)) by

1 -1

W(ra) = 5= [ W€~ la) " de,

1T Jo0
where 9 is the boundary of a suitable open neighborhood €2 of h°([)
in which ¥ is holomorphic. Then, we have the following lemma.

Lemma 3.3. Let I be a closed ideal of AT(T). Let ¥ be an analytic
function on a neighbourhood of h°(I). Then

(T(m(@), ¥ = W (w) (0 <k <[s], we h*(I)).
Proof: We have
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(k)

Since xq’ is a continuous functional, we have

- 1 -1 .
(1) (rla) i) = o [ WO - me) " A) de.
T Jon
Hence, the result will follow from the Cauchy integral formulae, if we
prove that

-1 . ke
(6= m(a)) ", X7)=kUE —w) ™",
Let £ € 99 and g € Af(T) such that 7(g)(¢ — m(a)) = 1. Since,
w € h¥(I), we have the following relations:
g(w)(§ —w) =1
and gV (w)(§ —w) = jgV P (w) =0, (1<j<k).
So, we deduce easily from these equalities that
9" (w) = KI(E —w)™F .

Then, we have

(€ = m(@) "L 7P = (n(g), ¥

= g"(w)

= k(€ —w)7F L,
Then the result follows from the above equality, (18) and the Cauchy
integral formulae. O

We also need the two following lemmas.
Lemma 3.4. Let I € Z and J = ©(I). Then, we have
RE(D) = e (0 <k < [s]).
Proof: Let 0 < k < [s], w € h*(I) and f € J. We have ®;(f) = 0 and

in particular,

(19) ([ romterans) =0 0<i<n.

Now, applying Lemma 3.3 with W(z) = 2* (¢ > 0), we get, for all 0 <
J <k,

“+oo ) +oo )
< F(t)n()" dt, >z$3>> = [y, 1) ar
0 0

(20) +oo

= fOtt—1)... (t—j+ Dw' 7 de,
0
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with the understanding that ¢(t —1)...(t —j —1) = 1if j = 0. So, we
easily deduce from (19) and (20) that, for all 0 < j < k,
+oo

L(f)(j)(—logw):(—l)j/ fO)twt dt = 0.

0
This proves that —logw € h¥(J), and so

R*(I) e h D),
Now, let w € h¥(J) and f € I. For g € L*(R*, w,) we set F, =
(%o f(n)6n> * g. We have
n=0
+o00 N +00
L(Fy)(z)= fln Sp % g)(t)e dt

oy =L o [ a0

=f(e™*)L(g9)(2), (z€P, gELl(R+,wS)).

According to Theorem 3.2, we have F, € J, for all g € L*(RT,wy). It
follows that

(22) LF)D(w) =0, (0<j<k geL'(R",w,)).
Now, we easily deduce from (21) and (22) that
fPe™) =0, (0<j<k).

This proves that

e M) Rk (D),
and concludes the proof of this lemma. o
Lemma 3.5. Let J,J' € J. Then, we have

Ty =Ty <= Ug-1(5) =Us-1(y1)-

Proof: Let J € J and set I = ©71(.J). We begin to prove that
(23) Jo = O¢(Ip),

where Jy (resp. Ip) is the closure of J in L*(R") (resp. AT (T)) and where
O is the map © corresponding to the case s = 0. Clearly Jy and I are
closed ideals. Moreover we have T;, =Ty and Uj, = Uy.

By Theorem 3.2 we have

I= {f e AF(T): (io f(n)5n> xgeld, (ge Ll(R+,ws))} :
n=0
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oo
Since, for every g € L'(R*,wy), the map f — (Z f(n)dn) % g is con-
n=0

tinuous from A+ (T) in L*(RY), we get
+oo
Iy C {f € AT(T) : (Z f(n)5n> xgedJdo, (g€ Ll(R+,wS))} .
n=0

+oo
Also since, for every f € AT(T), the map g — (E f(n)dn) % g is con-
n=0

tinuous from L!(R™) in itself and since L!(R™",ws) is dense in L}(RT),
we obtain

+oo
Ic {f € AM(T): (Z f(n)zsn) vgedo, (g€ Ll(R*))}.
n=0

This means that Iy C 651(,]0). Since Oy is increasing with respect
to inclusion order we have

CH} (IQ) C Jo.
It remains to prove the other inclusion. Denote by ¢ the homomorphism

from A (T)/I into AT(T)/Io defined by ¢ (m;(f)) = 71, (f). Since 1 is
an homomorphism, it is easily seen that
0 _
(I)IOIAj’(T) - Q/J o (I)Iu
where @?0 is the map ®; corresponding to s = 0 and I = I;. Hence,
we have ker ®; C ker ®) N AF(T) C ker ®) . In other words, we have
J C ©y(Ip). Since Og(Ip) is closed in L}(RT), we get

Jo C @O(IQ)

Finally, we have proved (23).

Let J' € J, I' = ©71(J') and Jj (resp. 1)) be the closure of J’
(resp. I') in L*(R™) (resp. A*(T)). We have J} = ©¢(Ip).

Denote by H>°(D) (resp. H>(P)) the space of bounded holomorphic
function on D (resp. P). Denote also by Ag(P) the space of holomorphic
functions on P, continuous on P, and vanishing at infity.

It follows from Lemma 3.7 of [4] and from (23) that

Qo (U, H*(D) N AT(T)) = £~ (Ty, H™(P) N A (P))
and

B0 (U H®(D) N AT(T)) = L7 (T, H>(P) N Ag(P)).
Thus we see that Uy, = Uy, if and only if T, = T)j;. This finishes the
pI‘OOf since Ulo = U], U][/) = U[/, TJO = TJ and T][/) = TJ/. O
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Theorem 3.6. Let s be a nonnegative real number, and J be a closed
ideal of L*(R™,wy) such that hY (J) is compact and at most countable.
Then

J= {f € L'(RT,w,) : Ty | L(f) and L(f)® =0
on K*(J)NiR, (0<k< [s])}.

Proof: We first suppose that J is modular. For a real number a # 0 and
fe LY R, ws) weset T,(f)(z) = af(az), x € R; T, is an isomorphism
of L}Y(RT,w;). So using this transformation we may assume without loss
of generality that h{ (J) is contained in [0, +00) x (—m, 7). Set

Jo = {f € LY(RT,w,) : Ty | £(f) and L(f)® =0
on h*(J), (0<k< [s])}.

We also set I = ©~1(J) and Iy = ©~1(Jy). By definition of Jy, we have
T; =Ty,. So, we deduce from Lemma 3.5 that

(24) Sr = Si,.

Furthermore, for all 0 < k < [s], we have h*(J) = h¥(Jp). So we deduce
from Lemma 3.4 that

(25) W) = p* (L), (0 <k <[s)).

It follows then from (24), (25) and Theorem 3.1 that I = Ij. Since O is
a bijection, we have J = Jj.

Suppose now that J is not modular. We set J; = d_g, * J; J;1 is a
closed ideal and we have 3;, = 0, Ty(z) = e P1*Ty (2), ( € P) and
RE(Jy) = h¥(J), (0 < k < [s]). So Ji is modular and applying the
previous result to Ji, we obtain the desired equality for J. o

4. Further examples

In this section, we give three further examples of algebras where, to
our knowledge, the structure of closed ideals with countable hull has
not been already given. For these algebras, the most difficult part is to
prove that they satisfy the analytic Ditkin condition. Indeed, the fact
that they satisfy conditions (H1)—(H3) is quite easy to verify and so, left
to the reader.
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Recall that we denote a: 2z — 2z the identity map. We will need the
following sequence (en)n>1 defined by

a—1
_ >1).
a—1-1/n (n=1)
Notice that |en]lcc < 2 and limy, o0 [|enf — flloc = 0 for every func-

tion f € A(D) such that f(1) = 0. Here |.||c denotes the supremum
norm on D.

€en =

4.1. The algebra Hrln Let 1 < p < 400 and m > 1 an integer. We
define H? to be the algebra of all functions f which are analytic in D
and such that f("™) € H?, equipped with the norm

11l = 1LFO 4=+ £ D)+ [ £,

where |||, is the norm of HP, the usual Hardy space in the unit disc.
B. I. Korenblum showed in [17] that for p = 2, all closed ideals of HZ,
are standard. F. A. Shamoyan extended this result in [27] to all p
with 1 < p < 400. For p =1, N. A. Shirokov announced in [29] that a
closed ideal I of H}, is standard if the following conditions are satisfied

p(z) < C(1—12])7, z€ h°(I)ND,
p(z) < Cdist(z, h°(I)\ {2})", =z € h(I)\ K" (1),
|L| < Cr?gch(z), for any arc L C T,
where p(z) = dist(z,h™ (1)), C > 0 and v > 0 are certain constants

and |L]| is the length of L. Clearly these conditions are not satisfied by
all closed ideals with countable hull.

Lemma 4.1. Let m > 1 be an integer. Then H}, satisfies the strong
analytic Ditkin condition.

Proof: 1t is easily seen that Ng1 = m — 1. We will suppose, without
loss of generality, that zop = 1. We begin to show the result for m = 1.
So, let f € H{ such that f(1) = 0, we are going to prove that

(20 i |(en— 1)1, =0
‘We have
[(en = 1)f]" = (en = 1) f" + ¢ f.
= 0, we have

Since f’ € HY(D) and f(1)
o

/Z”f —T<0<T.
0
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, 1/ . 1\ 2
Furthermore, we have e/, (¢??) = —— (ew —-1- —) . So, we have
n n

n

0
T i i (i 1 i 1 - - it el it
(enm 1)) @)= (ene) 1)1 ()= (-1 = 1) fiet ety
0
Consequently,

=111l = [ leate®) = )] at
1 T - f 1( it
+E/_Tr (/0 | f' (e )|dt>d9
S/W |(en(e™) — 1) f'(")| A0
- d9> dt.

[ 1) (%/l

Now, an easy calculation and Cauchy formulae show that

-2
1 /" 1 ("
—/ dﬁg—/e
n|t\ n Jo

. 1
610_1__
n

. 1
610_1__
n

. 1
610_1__
n

So, using the dominated convergence theorem of Lebesgue, we deduce
from the above inequality, the fact that f’ € H'(D) and (27) that

29 im_||[(en — 1)), =0

n—-+o0o

Moreover it is easily seen that

(29) lim |[(e, —1)f](0)| = 0.

n—-+4oo

So we deduce from (28) and (29) that (26) is satisfied. Now, suppose
that m > 2. For alln > 1, set 7, = e] and let f € H}n such that
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f(1)=--- = fm=D(1) = 0. We have

1= Dy = [0 = DA O]+ -+ [0 = 1) ]2 )]
+ H [(Tn - 1)ﬂ (m_l)HLl'

Since for all 0 < j < m — 2, we have clearly

lim |[(7. — 1) /] (0)] =0,

n—-+4oo

it remains to prove that

tim (7~ 1)/, = 0.

n—-—+o0o
One can show by induction on k£ > 1 that
(30) (rn = 1)™ = (en = D(a = 1)FPyilen) (k> 0),

where Py, k > 0, are polynomials independent of n > 1. We have
31 [ =11 = (- )oY
m—1
m—1 ) p(m—1—k)
+ k; < B >(7’n H™My .

We deduce from (26) that for all f € {g € H{ : g(1) = 0}, there exists
C > 0 such that Heanl . < CHle 1+ So we deduce from the Banach-
Steinhaus Theorem that there exists C’ > 0 such that

3 feusll, <€, (=15 € fgem 1) =0}).

Forall0 < j <m—1, fU € {g € Hf : g(1) = 0}. And since P,
k > 0, are polynomials independent of n > 1, we deduce from (30), (31)
and (32) that there exists K > 0 such that

1 =A™Vl < Kllen =15

m—1

+ K [ (en = 1) s P

k=1

So we deduce from (26) that lim_[|[(r, — 1)/]™ ||, , = 0. which
concludes the proof. O
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4.2. The algebra F¢P(N,s). Let 1 < p < 400 and s > 0 be real
numbers. We denote by F¢P(N, s) the space of all continuous functions
on T such that

P

—+o0
.= (z Fra >) i
n=0

Note that F¢'(N,s) = AF(T) (see previous section). Let 1 < p’ < 400
1 1

such that —+— = 1. It is well known that (F¢P(N, s), || ||.s) is a Banach
p p

1
algebra if and only if s — — > 0 (see [5]). A standard computation shows
p

that
N 7 [s—%] ifs—igéN
FeoNs) = s—L -1 ifs—LeN
p p

ISk

1

Lemma 4.2. Assume that 0 < s — — < 1. Then F(P(N,s) satisfies the
p

strong analytic Ditkin condition.

Proof: Let f € F¢P(N,s) such that f(1) = 0. For n > 1, we have

1 n k
n:1_ ku
€ n—l—l;(n—l—l) @

0

and
+oo
(en —1)f = Zakak,
k=0

with

1 b n k=g
= - 1 k> .
h n+1z<n+1) fG), k=0

=0
Since f(1) = ;;08 F(j) = 0, we get for all k > 0,
P

lax|? = ﬁ zk: (#)k_j £G)

j=0
-t () B[ - 5 g
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Hence
v 1 “+o00 n kp
||(€n—1)f|| = mkzo (n—H> Ak(1+k) p
where
k j R +oo ) P
A=Y (”:1> - 11 ORI SN0
=0 k1

By the Hoélder inequality, we obtain

k sp—p/p’ . ,
n—+1 ) j p/p" '
A 1 1 J P
k< (ug + vg) ZO ( ) 1 mln( ’n) |£(5)]
1 =
14 )P P
+(n+1)p/p’(k+1)sp7p/p’ Z( +]) |f(])|
j=k+1
where
k J P 1—sp’ AN
1
uk:jgo (”: ) _11 min(l,%)
’ = ’
and v = (n+ (ke + 170 DT (145)7
j=k+1
We have clearly vx < ——(n 4+ 1). We write
n—1 +1 j p' +1—sp’ +1 p'+1—sp’
n n
= _1 J
w=3| (") ] () (=) -

k +1
with the understanding that “> 7 =0 if k¥ < n. Since ( ) —-1<
j=n
J

. ; ~N
min(l,l)("T“) and (n—i— ) <eif0<j<n—1, we get
n n

n .\ P —sp k (@' +1-sp")
’ ’ +1
up < eP TP z + n
e S ()T (e

j=n

’ ’
b —sp

>(j—n)(p/+1—sp/)

k
p’+175p’ TL+1
oy (2

j=n

n—1 ]
< P/t (—)
< > \5

Jj=0
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Since p’ — sp’ > —1, it follows from the last inequality that
Yy

(n + 1)(k"+1)(P’+15p’) ]
-1

up < P T (n 4 1) e T (n 4 1) -

3

k(p'+1—sp’)
S ePIJrlfsp’ (n + 1) <n + 1>
n

where the notation A < B means that there exists a constant C' > 0,
independent of n, k and f such that A < CB.
So

Ap < (n+ 1)p/p’ (n—l— 1>k(p+p/p/_5p)
kS

i qeel N
(”“) —1] mm(l,l> FG)P
n n

q)s

§=0
1 = )
14 )P £(5)|P
T TG 2 LDTIO)
Jj=k+1
Thus we get
lten=D)7]" < (n+ 1777
+00 j sp—p/p’ \p/P
n+1 X i 20 p
x> ( - )—1] mm(lag) £
§=0
I k(sp—p/p")
1+ k)%
(33) . Z_(n+1> (1+k)
k=j
+oo )
+(n+ 1) ()PP
3=0

j—1 n k(sp—p/p") ,
X ( 1) (1+ k)PP | .
—\n +
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Let 8 > 0 be a real number and j > 0 an integer. Then there exists
a constant C' > 0 such that for every real number z with 0 <z < 1,

+oo j 1 8
34 1+ k) < 02— i1, —— ) .
I e
Applying this ingquality for 3 = sp and x = (nLH)Spfp/p/ and using the

j j
fact that ("TH) —-1< (”TH) min (1, u ), we obtain

n

+oo SN\ P .
(35) [(en —Df]|" £ min (1%) |f(j)Pmax (j +1,n+ 1)

Jj=0

+oo R j—1 n k(sp—p/p’) ,
T+t Y +j)5”|f(j)|”< ( ) <1+k>m> |

= i \n +1

Using again (34), we obtain

n k(sp—p/p") I +o00 n
1+ k)PP <
(1) o= (h

< (n+ 1P = (n 4 1)P.

1

<.
|

(14 k)P

>k(5pp/p’)

el
Il

0

It follows now from (35) and the Lebesgue dominated convergence the-

orem that
lim ||(e, — 1)f| = 0. O

n—oo

Remark 4.3. For s = 1+ 1/p’, we have Nxp ) = 0. But in this case
we have

, 1 LS g e
[(en — 1)(a - 1)]| _(n+1)p+np(n+1)l’k_l(n+l> 4k

(]

which implies that
[[(en — 1)(a—1)|| - 0, as n — 0.

We get this with the help of the following inequality:

1

WSH(H@ZWI’“, (3>0,0<z<1).

k>1
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4.3. The algebra A,,. Let w be a nonnegative nondecreasing subaddi-
tive function on (0,4o00) such that w(0+) = 0. Let p be a nonnegative
integer. We define the Banach algebra

X = {f € arD): |f9(z) - )| = o(w(lz — #)), |2~ /| — 0},
|f(p)(2)_f(p)(2/)| '

w(|z — 2[)

We set /\7(4?) = Ay. When p > 1, all closed ideals of )\1(5) are standard,
but when p = 0, this holds if w(z) = O(z%), z — 0, for some « € (0, 1]
or if w satisfies the Zygmund condition, that is

equipped with the norm HfHAw,p: Hchp(qr)""SUpz7Z’6T

/5 de =o(w(d)), 6§—0
0

x
(see [28], [30], [19]). For a > 0, we set

1
Wo(2) = ———F%, z>0.
(z) ( |log %| + 1)
There is no characterisation of closed ideals of the algebras A, (see the
introduction of [30]). For this reason we consider here this algebra.
Let us introduce the following condition:

(36) There exists C' > 0, such that wiy) < Cg, 0<z<y.
x

w(x)
This condition is satisfied by concave functions and in particular by
functions wy, a > 0.

Lemma 4.4. Assume that w satisfies condition (36). Then A\, satisfies
the strong analytic Ditkin condition.

Proof: We have Ny, = 0. Let f € A\, such that f(1) = 0, we have to
prove that

(37) lim  sup |[(en = D F](2) = [(en = DF] ()]

=0.
n—+00 , »reT ’LU(|Z—Z/|)

For 2,2’ € T and n > 1, set

[(en = A1) = [(en = DIAE).

A, N =

=2 wllz— 1)

Let € > 0. Since f € Ay, there exists 7 > 0 such that
_ !

(38) |z—z’|§n:>M§5.

w(lz = 2')
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Let z, 2 € T. We will distinguish two cases:
Case 1: |z — 1| > g and |2/ — 1| > g

An easy calculation shows that A, (z, 2’) = Bn(z,2')+Cy(z, '), where

(39) Bu(2,%) = (ea(2) - ”%

(40) and Cy(z,2") = ” /(=)

wlz— o] (en(2) — en(2)).

Since lim  sup |e,(§) — 1| = 0, it is easily seen that there exists
n—-4o0o ‘5—1|>%

ny > 0 such that, for all n > nq, |B,(z,2’)| < e. On the other hand side
we have

z—2z

n(z—1-1/n)(z' = 1-1/n)’

en(2) —en(2) =

4|z — 2’|
nn?

< ', where C' = #(2) So there exists ny > 0

which implies that |e,(2) —e,(2')] < . Moreover condition (36),

_ S
implies that M
w(|z —2'])
such that, for all n > na, |Cy(z,2")] < e. So, in this case, there exists
n3 = max{ny, na} such that, for all n > ns, |A4,(z,2")| < 2e.
Case 2: |z — 1| < 7 or |2/ —1] < iy
2 2
Without loss of generality, we can suppose that |z’ — 1| < BT
|z — 2'| <n, we deduce from (38) that |B,(z,2")] < 3e. If |z — 2/| > n,
then |z — 1| > ﬂ, and we can find, as in the previous case, ny > 0 such
that, for all n > na, |B,(z,2’)| <e. Now, we have to estimate Cy,(z, 2").
Since |2/ — 1| < g and f(1) =0, we have by (38), |f(2/)| < ew(]z’ — 1),

and so

1)) |2 — |
41 w(2,2')] < w(l2 '
(41 [ (Z’Z)‘_Ew(|z—2’|)n|2—1_1/n||2/_1_1/n|
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!/
-1
Suppose that |z’ —1| > |z—2z'|. By condition (36), we have wilz' —~ 1)) <
w(lz = 2')
!/
-1
12 |, so that
e
! _ 1|
Cn(z,2)| <C E
|Cn(z,2")] < P 1

< Ce.
Suppose that |2 — 1| < |z — 2/|. Then, since w is nondecreasing,
w(lz’ = 1))

< 1. Furthermore, a standard computation shows that
w(|z —2'|)

|z = 2]

<len n(2")] <2,
nlz—1—=1/n||z’ —=1—-1/n| — len(2)] + fen(2)] <

(n>1and 2,2 €T).
So we deduce from (41) that |Cy,(z, 2")| < 2e. In this case, for all n > ny,
we have |4, (z,2")| < Cie, where C; = 3 + max{2,C}.
Finally, if we set ng = max{ns,ns}, we have
|An(Z,Z/)| < Claa (TL > o and szl € T)v
which proves (37). O

Theorem 4.5. Let B be one of the following algebras:
(a) HL, form >1 an integer.

1
(b) fép(N75)7f0T1<p<+OO and0<$—17<1

(¢) Aw, for w satisfying condition (36).
Let I be a closed ideal of B such that h°(I) is at most countable. Then
I is standard.

Proof: Tt is easily checked that B is continuously imbedded in @ (D) and
satisfies conditions (H1)-(H3). Now the theorem follows immediately
from Lemmas 4.1, 4.2, 4.4, and Theorem 2.11. O
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