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SHELAH’S SINGULAR COMPACTNESS THEOREM

Paul C. Eklof

Abstract

We present Shelah’s famous theorem in a version for modules,
together with a self-contained proof and some examples. This
exposition is based on lectures given at CRM in October 2006.

0. Introduction

The Singular Compactness Theorem is about an abstract notion of
“free”. The general form of the theorem is as follows:

If λ is a singular cardinal and M is a λ-generated module
such that enough < κ-generated submodules are “free” for
sufficiently many regular κ < λ, then M is “free”.

Of course, for this to have any chance to be a theorem (of ZFC) there
need to be assumptions on the notion of “free”. These are detailed in
the next section along with a precise statement of the theorem (The-
orem 1.4), including a precise definition of “enough”. Another version
of the Singular Compactness Theorem —with a different definition of
“enough”— is given at the start of Section 3. The proof of Theorem 1.4
is given in Sections 3 and 4; some examples and applications are given
in Sections 2 and 5.

First a few words about the history of the theorem.

0.1. History. In 1973 Saharon Shelah proved that the Whitehead prob-
lem for abelian groups of cardinality ℵ1 is undecidable in ZFC; in par-
ticular he showed under the assumption of the Axiom of Constructibil-
ity, V = L, that all Whitehead groups of cardinality ℵ1 are free (see [14]).
His argument easily extended, by induction, to prove that for all n ∈ ω,
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Whitehead groups of cardinality ℵn are free. But for Whitehead groups
of cardinality ℵω, the first singular cardinal, a new ingredient was needed.
In fact, that ingredient already existed for singular cardinals of cofinal-
ity ω or ω1, by theorems of Paul Hill (see [9] and [10]); these imply that
if an abelian group has singular cardinality λ where λ is of cofinality ω
(or ω1) and has the property that every subgroup of smaller cardinality
is free, then the group itself is free. In 1974 Shelah proved a general
theorem which applied not only to arbitrary singular cardinals but to a
general notion of “free” defined axiomatically. The case of the ordinary
notion of freeness for abelian groups, combined with the argument in his
first paper on Whitehead’s problem, led immediately to the conclusion
that V = L implies that Whitehead groups of arbitrary cardinality are
free. (See Corollary 5.4 below.)

Shelah’s theorem was applicable to much more than abelian groups, or
even modules; in fact, there was another application that Shelah had in
mind when he proved his theorem in a general form: that of transversal
theory; the parallels between results there and results about “almost
free” abelian groups had already been noted. (See [12]; see also [5] for
more on the history.)

Wilfrid Hodges [11] later wrote up and generalized another proof
(due also to Shelah) of the Singular Compactness Theorem, one which
is more user-friendly than the original. A version of this proof, adapted
to modules, is given in [7].

Recently the Singular Compactness Theorem (for Q-filtered modules,
as in part III of Section 2) has proved an essential tool in the study of
Baer modules and tilting modules (see the references in Section 5). So it
seems useful to give a self-contained and streamlined exposition, based
on the one in [7].

0.2. Notation and terminology. An infinite cardinal λ is singular if
it is the supremum of a set S of fewer than λ cardinals each less than λ;
the smallest possible cardinality of such an S is the cofinality of λ. If it is
not singular, λ is called regular. Every successor cardinal is regular. For
any sets X and Y , X \ Y denotes their difference, i.e., {x ∈ X : x /∈ Y }.

A chain of sets {Xν : ν < ρ} is continuous if for each limit ordinal
σ < ρ, Xσ =

⋃

ν<σ Xν .
Throughout we consider left R-modules, where R is an arbitrary ring.

Given a module M and a subset Y of M , 〈Y 〉 denotes the submod-
ule of M generated by Y . M is λ-generated if it has a generating set
of cardinality λ, and it is ≤ λ-generated if it has a generating set of
cardinality ≤ λ.
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These notes are a revised and expanded version of lectures given at
the CRM in early October 2006, as part of the Programme in “Discrete
and Continuous Methods in Ring Theory”. I would like to thank the
organizers for the invitation to participate, and the CRM, and especially
Professor Dolors Herbera, for their support and hospitality.

1. Statement of the theorem

Given a class F of modules containing the zero module, a module M
is called F-free if and only if M belongs to F . Since F will be fixed, we
will usually simply say M is “free” when we mean M is F -free. Some
examples of F are given in the next section.

The following is a precise version of enough< κ-generated submodules
of M being “free”.

Definition 1.1. For any regular uncountable cardinal κ, define M to
be κ-F-free, or simply κ-“free” if there is a set C of < κ-generated
submodules of M such that:

(1) every element of C is “free”;
(2) every subset of M of cardinality < κ is contained in an element

of C; and
(3) C is closed under unions of well-ordered chains of length < κ.

Now we can state the general form of the Singular Compactness The-
orem a little more precisely as follows:

If λ is a singular cardinal and M is a λ-generated module
which is κ-“free” for sufficiently many regular κ < λ, then
M is “free”.

As was said in the introduction, some conditions must be imposed
on the notion of “free”, that is, on the class F . So our next task is to
introduce the assumptions on F ; the reader may want to study these in
parallel with the examples given in Section 2.

The hypotheses (specifically 1.2(iii)) involve a parameter µ, an infinite
cardinal which occurs in the statement of Theorem 1.4 below. They also
involve two other primitive notions. One is that of a “basis” of an F -free
module. More precisely, we are given for each M ∈ F , a non-empty
set, B(M), of sets of subsets of M (so if Y ∈ X ∈ B(M), then Y is a
subset of M). Each member X of B(M) is called a “basis” of M .

We say that a submodule A of M is a “free” factor of M if A = 〈Y 〉
for some member Y of a “basis” X of M . For each “free” factor A of a
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“free” module M , we are given a set D(A,M) of pairs of bases of A and
M respectively; we write X

′ = X ↾ A if (X′,X) ∈ D(A,M).

1.2. Hypotheses on F . For each M ∈ F and each “free” factor A
of M , there are non-empty sets B(M) ⊆ P(P(M)) and D(A,M) ⊆
B(A)×B(M) satisfying for some infinite cardinal µ the following condi-
tions for all X ∈ B(M):

(i) ∅ ∈ X; if Y ∈ X, then 〈Y 〉 is “free”;

(ii) X is closed under unions of chains, i.e., if C ⊆ X such that for
all Y , Y ′ ∈ C, Y ⊆ Y ′ or Y ′ ⊆ Y , then

⋃

C ∈ X;

(iii) if Y ∈ X and a ∈ M , there exists Y ′ ∈ X such that Y ⊆ Y ′,
a ∈ 〈Y ′〉 and |Y ′| ≤ |Y | + µ;

(iv) if Z, Y ∈ X and Z ⊆ Y , then Z is a member of a “basis” of 〈Y 〉,
so 〈Z〉 is a “free” factor of 〈Y 〉;

(v) if A is a “free” factor of M , then for any “basis” X
′ of A, there is

a “basis” X of M such that X
′ = X ↾ A, i.e., (X′,X) ∈ D(A,M);

(vi) if {Mα : α < ρ} is a continuous chain of “free” modules and for
each α + 1 < ρ, Mα is a “free” factor of Mα+1, then

⋃

α<ρMα is
“free”;

(vii) given a chain {Mn : n ∈ ω} of “free” modules s.t. for each n ∈ ω,
Mn is a “free” factor of Mn+1, and given a “basis” Xn of each Mn

such that Xn = Xn+1 ↾ Mn for all n ∈ ω, then
⋃

n∈ω Xn is con-
tained in some “basis” of

⋃

n∈ω Mn.

Proposition 1.3. If F satisfies 1.2 for µ and M is a λ-generated F-free
module where λ is an uncountable cardinal, then for any regular cardi-
nal κ such that µ < κ ≤ λ, M is κ-F-free.

Proof: Let X be a “basis” of M . Let C = {〈Y 〉 : Y ∈ X and |Y | < κ}.
One can check easily that Definition 1.1 is satisfied for this C.

This proposition shows that the hypothesis in the following theorem
is necessary for M to be free. The theorem says that the condition is
sufficient when λ is singular; it will follow immediately from the two
theorems (3.1 and 4.1) proved in Sections 3 and 4.

1.4. The Singular Compactness Theorem. Suppose that F satisfies
1.2 for µ. Let λ be a singular cardinal > µ and let M be a λ-generated
module such that M is κ-F-free for all regular cardinals κ such that
µ < κ < λ.

Then M is F-free.
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2. Some examples

We give three different types of examples; there is a non-empty inter-
section between the different classes of examples.

I. The usual notion of free. F is the class of free modules, that is,
modules which have a linearly independent generating set, or, equiva-
lently, are isomorphic to a direct sum of copies of R. Here µ = ℵ0.

If M ∈ F , we let B(M) consist of all X such that there is a basis B
of M (in the usual sense) such that X is the set of all subsets of B.
If A is an F -free factor of M , let (X′,X) ∈ D(A,M) if and only if
X

′ = {Z ∈ X : Z ⊆ A}. It is easy to verify the conditions in 1.2.

II. Modules defined by direct sum decompositions. For a given
set L of ≤ µ-generated modules, let F consist of all modules which are
isomorphic to a direct sum of the form

(†)
⊕

i∈I

Li

where each Li ∈ L, and I is an arbitrary (possibly empty) set. (When
I is empty, we obtain the zero module.) In particular, when L is the set
of countably-generated projective modules (and µ = ℵ0), F is the class
of all projective modules, by a theorem of Kaplansky.

For each L ∈ L, fix a generating set SL of cardinality ≤ µ for L.
For M ∈ F , let B(M) consist of all sets X such that there is an isomor-
phism ϕ of M with a direct sum of the form (†) and

(∗) X =

{

Y : ∃ J ⊆ I s.t. Y = ϕ−1

[

⋃

i∈J

SLi

]}

.

(Here we abuse notation by identifying SLi
with its image under the

canonical embedding of Li as the ith summand of M .) Note that if Y is
as in (∗), then ϕ induces an isomorphism of 〈Y 〉 with

⊕

i∈J Li.
If A is an F -free factor of M , let D(A,M) consist of all pairs (X′,X) ∈

B(A) × B(M) such that

X
′ = {Z ∈ X : Z ⊆ A}.

Then one can check that 1.2 is satisfied for the parameter µ. Indeed,
1.2(i), (ii) and (iii) are clear; regarding 1.2(iv), note that if Y is as above,
Z ∈ X, and Z ⊆ Y , then Z = ϕ−1[

⋃

i∈J′ SLi
] for some J ′ ⊆ J . So Z is a

member of the “basis” of 〈Y 〉 determined by the isomorphism ϕ of 〈Y 〉
with

⊕

i∈J Li.
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Regarding 1.2(v), if A = 〈Y 〉 is a “free” factor of M , then there is an
isomorphism θ of M with

A⊕
⊕

i∈(I\J)

Li

which is the identity on A; if X
′ is a “basis” of A, we can define a

“basis” X of M to consist of all W such that

W = Z ∪ θ−1

[

⋃

i∈K

SLi

]

for some Z ∈ X
′ and some subset K (possibly empty) of I \ J . The last

two parts of 1.2 are also easy to check.

III. Q-filtered modules. For a set of modules Q such that 0 ∈ Q,
define M to be Q-filtered if M is the union of a continuous chain {Mα :
α < σ} s.t. M0 = 0 and Mα+1/Mα ∈ Q for all α+1 < σ. For a fixed set
Q, let F consist of all Q-filtered modules. A continuous chain {Mα : α <
σ} with M0 = 0 which demonstrates that M is “free”, i.e., Q-filtered,
will be called a “free” chain for M .

We claim that if Q consists of ≤ µ-presented modules, then F satisfies
1.2 for µ. (We follow the proof in [7].)

First we need to define the auxiliary notions B(M) and D(A,M).
For M ∈ F , let B(M) consist of all sets X such that there is a “free”
chain {Mν : ν < σ} for M such that Y ∈ X if and only if Y ⊆M and for
all ν+1 < σ, 〈Y 〉∩(Mν+1\Mν) 6= ∅ implies Mν+1 ⊆Mν +〈Y 〉. If A is an
F -free factor ofM , let D(A,M) consist of all pairs (X′,X) such that there
is a “free” chain {Mν : ν < σ} for M with A = Mν0

for some ν0, X is
the “basis” for M determined by this chain, and X

′ = {Z ∈ X : Z ⊆ A}.
To prove 1.2(i), assume Y ∈ X and let A = 〈Y 〉. Suppose that X is

determined by the “free” chain {Mν : ν < σ}; for all ν < σ, let Aν =
A ∩Mν . Since Y ∈ X, for all ν < σ, either Aν+1/Aν = 0 or Aν+1/Aν

is isomorphic to Mν+1/Mν; in either case, the quotient belongs to Q,
so {Aν : ν < σ} is a “free” chain witnessing that A ∈ F . Notice also
that the “basis” of A determined by this chain is {Z ∈ X : Z ⊆ A}, so
1.2(iv) follows.

Condition 1.2(ii) is obvious. For 1.2(iii) we use the assumption that
the members of Q are ≤ µ-presented. Suppose that X is determined by
the “free” chain {Mν : ν < σ}, as in the definition of “basis”. Let Mσ =
M . We prove by induction on ν ≤ σ that for any Y ∈ X and any subset S
of Mν of cardinality ≤ µ, there is an element Y ′ of X such that Y ⊆ Y ′,
|Y ′| ≤ |Y |+µ and S ⊆ 〈Y ′〉, and such that Y ′ = Y if S ⊆ 〈Y 〉. If ν = 0,
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there is nothing to prove. If ν is a limit ordinal, define by induction
on β < ν a chain of sets Yβ in X of cardinality ≤ |Y |+µ such that Y ⊆ Y0

and 〈Yβ〉 contains S ∩Mβ+1; since X is closed under unions of chains,
we can do this by the inductive hypothesis, and Y ′ =

⋃

β<ν Yβ will be

the desired set. If ν = β + 1, suppose first that 〈Y 〉 ∩ (Mβ+1 \Mβ) 6= ∅;
then Mβ+1 ⊆ Mβ + 〈Y 〉 by the definition of a “basis”. For each a ∈ S
(⊆ Mβ+1) such that a /∈ 〈Y 〉, choose ya ∈ 〈Y 〉 such that a − ya ∈ Mβ.
By induction there exists Y ′ ∈ X such that Y ⊆ Y ′, |Y ′| ≤ |Y | + µ and
{a − ya : a ∈ S} ⊆ 〈Y ′〉; hence S ⊆ 〈Y ′〉. If 〈Y 〉 ∩ (Mβ+1 \Mβ) = ∅

and S * 〈Y 〉, it suffices to show that there exists Ỹ ⊇ Y in X such that

|Ỹ | ≤ |Y |+µ and
〈

Ỹ
〉

∩(Mβ+1\Mβ) 6= ∅, for then we are reduced to the

first case. Since Mβ+1/Mβ is isomorphic to a member of Q, there exists a
generating set, G, ofMβ+1 overMβ of cardinality ≤ µ such that 〈G〉∩Mβ

is ≤ µ-generated. By induction we can choose Y ′′ in X containing Y such
that |Y ′′| ≤ |Y | + µ and 〈G〉 ∩Mβ ⊆ 〈Y ′′〉. If 〈Y ′′〉 ∩ (Mβ+1 \Mβ) 6= ∅,

let Ỹ = Y ′′. Otherwise, let Ỹ = Y ′′ ∪G; in this case we must show that

Ỹ ∈ X, in other words, for all ν < σ,
〈

Ỹ
〉

∩ (Mν+1 \Mν) 6= ∅ implies

Mν+1 ⊆ Mν +
〈

Ỹ
〉

. For ν = β the conclusion follows by construction.

In general suppose that y+ g ∈Mν+1 \Mν where y ∈ 〈Y ′′〉 and g ∈ 〈G〉.
If ν < β, then y + g ∈ Mβ so y belongs to Mβ+1 (since g ∈ Mβ+1) and
hence y ∈ 〈Y ′′〉 ∩Mβ+1 ⊆ Mβ; but then g ∈ Mβ ∩ 〈G〉 ⊆ 〈Y ′′〉; thus
y+ g shows that 〈Y ′′〉∩ (Mν+1 \Mν) 6= ∅ and we are done since Y ′′ ∈ X.
The final case is when ν > β; then y ∈Mν+1 \Mν since g ∈Mβ+1 ⊆Mν

and therefore Mν+1 ⊆ Mν + 〈Y ′′〉 since Y ′′ ∈ X. This completes the
proof of 1.2(iii).

As for 1.2(v), suppose that A = 〈Y 〉 where Y belongs to the “basis”
determined by the “free” chain {Mν : ν < σ}. Suppose that X

′ is a
“basis” for A determined by a “free” chain {A′

ρ : ρ < τ} for A. We will
define by induction an extension {A′

ρ : ρ < τ ′} of the chain {A′
ρ : ρ < τ}

which will be a “free” chain for M . The extension will be defined to
have the property that for all ρ ≥ τ and ν < σ,

(†) A′
ρ ∩ (Mν+1 \Mν) 6= ∅ implies Mν+1 ⊆Mν +A′

ρ.

Let A′
τ = A. If A′

ρ has been defined for all ρ ≤ β for some β ≥ τ ,

choose γ minimal such that Mγ+1 * A′
β . (If there is none, then A′

β = M

and we stop the construction.) Then, by continuity, Mγ ⊆ A′
β . Set

A′
β+1 = A′

β +Mγ+1. It follows from the choice of A′
β+1 and the inductive

property (†) for ρ = β and ν = γ that the natural map Mγ+1/Mγ →
A′

β+1/A
′
β is an isomorphism, so A′

β+1/A
′
β ∈ Q. (Note that the map
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is one-one because otherwise (†) implies Mγ+1 ⊆ Mγ + A′
β ⊆ A′

β , a

contradiction.) One can then check that (†) holds for ρ = β + 1 and
all ν. Finally, if X is the basis determined by the chain {A′

ρ : ρ < τ ′},

then (X
′

,X) ∈ D(A,M).
The proof of 1.2(v) shows that whenever A is a “free” factor of M ,

any “free” chain for A can be extended to a “free” chain for M . This
allows us, given {Mα : α < ρ} as in 1.2(vi), to inductively define a
continuous chain {Bν : ν < τ} whose union is

⋃

α<ρ Mα and such that

for every α < ρ, some initial segment of the chain {Bν : ν < τ} is a
“free” chain for Mα.

Finally, for 1.2(vii), we will show that there is a chain {Bν : ν <
τ} such that for all n ∈ ω, some initial segment {Bν : ν < αn} is
a “free” chain for Mn which determines Xn. It is then clear that the
“basis” determined by this chain contains

⋃

n∈ω Xn. Suppose that we
have constructed {Bν : ν < αn} for some n ∈ ω; by assumption, there
is a “free” chain {Kν : ν < σ} for Mn+1 which determines Xn+1 and is
such that Mn = Kν0

for some ν0 and Xn = {Z ∈ Xn+1 : Z ⊆Mn}. Let

Bαn+ℓ = Kν0+ℓ

for all ℓ ≥ 0 such that ν0 + ℓ < σ.

3. Proof of Theorem 1.4, part 1

In this section we will prove the following version of a singular com-
pactness theorem:

Theorem 3.1. Suppose that F satisfies 1.2 for µ. Let λ be a singular
cardinal > µ and let M be a λ-generated module such that M is strongly
κ+-F-free for all cardinals κ such that µ < κ < λ.

Then M is F-free.

This theorem involves the following notion:

Definition 3.2. For a cardinal κ, define M to be strongly κ
+-F-free,

or simply strongly κ
+-“free” if there is a family S of ≤ κ-generated

“free” submodules of M containing 0 and such that for any subset X
of M of cardinality κ and any N ∈ S, there exists N ′ ∈ S such that
N ′ ⊇ N ∪X and N is a “free” factor of N ′.

Remark. A module which is strongly-κ+-F -free is not necessarily κ+-F -
free. (See [17] for a counterexample.) The terminology originally arose
in the context of abelian groups, where the implication does hold.
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The rest of this section is devoted to the proof of the theorem. Let
τ = cf(λ); so τ < λ since λ is singular. Choose and fix a continuous
increasing sequence of cardinals 〈κν : ν < τ〉, each strictly less than λ,
whose supremum is λ and such that κ0 > max{τ, µ}. Choose a generat-
ing set G for M of cardinality λ and a continuous increasing chain {Gν :
ν < τ} of subsets of G whose union is G and such that the cardinality
of Gν equals κν .We will define by induction on n ∈ ω simultaneously,
for all ν < τ , the following:

• a subset Cn
ν of M of cardinality κν ;

• a “free” submodule Fn
ν of M which is ≤ κν-generated;

• X
n
ν ∈ B(Fn

ν );

• Y n
ν ∈ X

n
ν+1 of cardinality κν .

We require the following for all n ∈ ω and ν < τ :

3.3. Properties.

(0) Gν ⊆ Fn
ν ⊆ 〈Cn

ν 〉 ⊆ Fn+1
ν ;

(1) Fn
ν is a “free” factor of Fn+1

ν , and X
n
ν = X

n+1
ν ↾ Fn

ν ;

(2) Cn−1
ρ ⊆ Cn

ν for all ρ ≤ ν;

(3) Y n
ν ⊆ Y n+1

ν ⊆ Cn+1
ν ⊆

〈

Y n+3
ν

〉

;

If we let Cν =
⋃

n∈ω 〈Cn
ν 〉, (2) implies that the Cν form a chain. We

require also that

(4) {Cν : ν < τ} is a continuous chain.

Assuming, for the moment, that we can do the inductive construction,
we will finish the proof.

By 3.3(0), Cν =
⋃

n∈ω F
n
ν and

⋃

ν<τ Cν = M . By 1.2(vi) and (vii)
and 3.3(1), Cν is “free” and

⋃

n∈ω X
n
ν is contained in a “basis” of Cν ; call

this “basis” Xν . By 3.3(3), Cν is generated by
⋃

n∈ω Y
n
ν and by 1.2(ii),

⋃

n∈ω Y
n
ν ∈ Xν+1. Therefore, Cν is a “free” factor of Cν+1. But then,

by 1.2(vi) and 3.3(4), M =
⋃

ν<τ Cν is “free”.

It remains to do the inductive construction. For each ν < τ , fix a
set Sν of ≤ κν-generated “free” submodules of M which witness that
M is strongly κ+

ν -“free”, as in Definition 3.2; we will choose Fn
ν to be a

member of Sν . At stage n we choose Fn
ν , X

n
ν , Cn−1

ν , and Y n
ν as well as

a set {un
ν,α : α < κν} of generators of Fn

ν . We begin with n = 0:

Pick F 0
ν ∈ Sν so that it contains Gν and is ≤ κν -generated. Pick

X
0
ν ∈ B(F 0

ν ). Let C−1
ν = ∅ = Y 0

ν .
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Now suppose n ≥ 0 and F k
ν , X

k
ν , Ck−1

ν , and Y k
ν have been chosen for

all k ≤ n and all ν < τ , along with a set of generators {uk
ν,α : α < κν}

for F k
ν . Define

Cn
ν = Y n

ν ∪
⋃

ρ≤ν

Cn−1
ρ ∪ {un

ρ,α : ρ < τ, α < κν}.

Note that 〈Cn
ν 〉 contains Fn

ν because Cn
ν contains {un

ν,α : α < κν}. Now

choose Fn+1
ν ∈ Sν containing Fn

ν ∪Cn
ν which is ≤ κν-generated and such

that Fn
ν is a “free” factor of Fn+1

ν ; this is possible by Definition 3.2.
By 1.2(v) we can select X

n+1
ν ∈ B(Fn+1

ν ) such that the second part of
3.3(1) holds. We can choose Y n+1

ν ∈ X
n+1
ν+1 containing Y n

ν and such that
〈

Y n+1
ν

〉

contains Cn
ν ∩ Fn+1

ν+1 . (Add one element of Cn
ν ∩ Fn+1

ν+1 at a time
using 1.2(iii) and take unions at limit stages, using 1.2(ii).) It is easy
to see that 3.3(0), (1), and (2) are satisfied. The first two inclusions in
3.3(3) are clear from construction. For the last one, note that Cn+1

ν ⊆
Cn+2

ν+1 ⊆ Fn+3
ν+1 and Cn+1

ν ⊆ Cn+2
ν , so Cn+1

ν ⊆ Cn+2
ν ∩ Fn+3

ν+1 ⊆
〈

Y n+3
ν

〉

.
It remains to check 3.3(4). Suppose that γ is a limit ordinal less

than τ . We must prove that Cγ ⊆
⋃

ν<γ Cν . But

Cγ =
⋃

n∈ω

Cn
γ =

⋃

n∈ω

Fn
γ

by 3.3(0), which, by construction, equals
⋃

n∈ω

〈

un
γ,α : α < κγ

〉

=
⋃

n∈ω

⋃

ν<γ

〈

un
γ,α : α < κν

〉

since κγ = sup{κν : ν < γ}. But the latter is contained in
⋃

n∈ω

⋃

ν<γ

〈Cn
ν 〉

by construction of Cn
ν . (Note that in defining Cn

ν we include un
ρ,α for all

ρ, as long as α < κν .) Finally
⋃

n∈ω

⋃

ν<γ

〈Cn
ν 〉 =

⋃

ν<γ

Cν

by definition of Cν . This completes the proof of Theorem 3.1.

4. Proof of Theorem 1.4, part 2

The proof of Theorem 1.4 will be complete once we prove the following
result.

Theorem 4.1. For any infinite cardinal κ > µ, if M is κ++-F-free,
then M is strongly κ+-F-free.
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We begin the proof of Theorem 4.1. Fix a cardinal κ such that M is
κ++-“free”. For any ≤ κ-generated “free” submodule N of M define the
N -Shelah game. This is a game between two players, I and II, who take
turns making moves. For each n ∈ ω, player I plays first a subset Xn of
M of cardinality κ; Player II replies with a ≤ κ-generated submodule Nn

of M (containing N). So after n + 1 moves by each player, we have a
sequence

X0, N0, X1, N1, . . . , Xn, Nn.

The game may go on for ω moves by each player. Player II wins if
at each move he plays a “free” submodule Nn containing Nn−1 ∪ Xn

(where N−1 = N) such that Nn−1 is a “free” factor of Nn. Otherwise
player I wins; that is, I wins if and only if after some move Xn, player II
is unable to respond with a legal move.

A winning strategy for player I in the N -Shelah game is a function sN

which gives a first move sN (N) for player I, and then for all n ∈ ω gives
a move sN (N0, . . . , Nn−1) to follow the play

sN (N), N0, sN (N0), N1, sN (N0, N1), . . . , sN (N0, . . . , Nn−2), Nn−1

such that player I will eventually win the game played according to the
strategy, i.e., player II will be unable to move at some stage.

We claim that player I does not have a winning strategy in the 0-She-
lah game. Assuming this is the case for a moment, we can complete the
proof. Let S consist of all ≤ κ-generated “free” submodules N of M
such that I does not have a winning strategy for the N -Shelah game.
We must check that S satisfies the conditions in Definition 3.2. By the
claim, 0 belongs to S. Suppose that N ∈ S and X is a subset of M of
cardinality κ. Consider a play of the N -Shelah game where player I’s
first move is X . Since I does not have a winning strategy for the N -She-
lah game, player II must be able to respond with a legal move N ′ such
that I does not have a winning strategy for the N ′-Shelah game, for
otherwise player I would have a winning strategy for the N -Shelah game
(whose first move is X). But then N ′ belongs to S and (because N ′ is
a legal move) N ∪X ⊆ N ′ and N is a “free” factor of N ′.

So it remains to prove the claim. Given a strategy s = s0 for player I
in the 0-Shelah game, we show how player II can defeat the strat-
egy. Let C be a set of ≤ κ+-generated submodules as in the definition
of κ++-“free” (cf. Definition 1.1). We will construct by induction on ν
a continuous chain {Nν : ν < κ+} consisting of ≤ κ-generated submod-
ules of M . At each stage we will also pick an element Fν of C which
contains Nν , and a set {uν

τ : τ < κ+} of generators of Fν . We also fix
a bijection ψ of κ+ with κ+ × κ+ such that for all ν, if ψ(ν) = (α, τ)
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then α ≤ ν. Let N0 = 0 and let F0 be any member of C. Suppose
that Nα, Fα, and {uα

τ : τ < κ+} have been chosen for each α < ν for
some ν. If ν is a limit ordinal we simply take unions. If ν is a suc-
cessor, choose Nν so that it contains uα

τ where ψ(ν − 1) = (α, τ), and
such that it also contains s(0) and s(Nα1

, . . . , Nαk
) whenever k ≥ 1 and

α1 < · · · < αk < ν and s(Nα1
, . . . , Nαk

) is defined. (This is possible
since there are at most κ such sequences.) Choose Fν in C to contain
Nν ∪ Fν−1. This completes the inductive step in the construction.

Now let F =
⋃

ν<κ+ Nν . Then F =
⋃

ν<κ+ Fν by construction; so F ∈C
since C is closed under unions of well-ordered chains of length < κ++, so
F is “free”; let X be a “basis” of F .

Let D be the subset of κ+ defined by α ∈ D if and only if Nα is
generated by an element Yα of X. Then D is an unbounded subset
of κ+. Indeed, given any γ < κ+, we can choose an increasing sequence

γ = ν0 < ν1 < · · · < νn < · · ·

of elements of κ, and a chain of elements of X

Y0 ⊆ Y1 ⊆ · · · ⊆ Yn ⊆ · · ·

such that for all n, Yn (⊆ F ) has cardinality κ and

Nνn
⊆ 〈Yn〉 ⊆ Nνn+1

.

This is possible by properties of a “basis”. Then α = sup{νn : n ∈ ω} is
an element of D where Yα =

⋃

n∈ω Yn.
Now player II’s strategy to defeat s is to play Nα where α ∈ D; thus

a play of the game according to this strategy will look like

s(0), Nα1
, s(Nα1

), Nα2
, s(Nα1

, Nα2
), . . .

where each αk ∈ D and α1 < α2 < · · · . Player II will win because for
each k, Nαk

is a “free” factor of Nαk+1
by 1.2(iv) because Yαk

⊆ Yαk+1
.

Thus the claim is proved, and the proof of Theorem 4.1 is finished.

Remark 4.2. Examination of the proofs of Theorems 3.1 and 4.1 will
show that the following weaker notion of “sufficiently many” suffices for
the conclusion of Theorem 1.4: there is a continuous increasing sequence
of cardinals 〈κν : ν < τ〉, each strictly less than λ, whose supremum is λ,
such that κ0 > max{τ, µ} and such that M is κ++

ν -F -free for all ν < τ .

5. Applications to deconstruction

The purpose of this section is to illustrate the role of the Singular
Compactness Theorem in some applications. Complete proofs will not
be given. Recall that the notion of Q-filtered is defined in III of Section 2.
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Definition 5.1. A class A of modules is κ-deconstructible if every
module in A is Q-filtered, where Q is the set of ≤ κ-generated elements
of A. A is deconstructible (or bounded) if it is κ-deconstructible for
some κ.

We want to explain the role of the Singular Compactness Theorem in
proving the deconstructibility of certain classes A. The Singular Com-
pactness Theorem will be applied for F the class of Q-filtered modules,
where Q is as above. The classes A we consider will be of the form

⊥B = {N | Ext1R(N,M) = 0 for all M ∈ B}

for some class B (which could be a proper class or a set).
The proof that every member M of A is κ-deconstructible (for a

fixed κ) proceeds by induction on the minimal number of generators, λ,
of M . When λ is regular, a result of the following type is used:

5.2. If M is λ-generated and is the union of a continuous
chain {Mα : α < λ} of < λ-generated submodules belonging
to A = ⊥B, then there is a continuous increasing f : λ → λ
such that the continuous chain {Mf(α) : σ < λ} has the
property that Mf(α+1)/Mf(α) ∈ A for all α < λ.

Such a result can be obtained under either a set-theoretic hypothesis
(the so-called “diamond” principles which are consequences of the Axiom
of Constructibility, V = L) or (in ZFC) under a hypothesis on B (that
B is closed under direct sums). Once one has the conclusion of 5.2,
one can apply the inductive hypothesis to Mf(α+1)/Mf(α) and “fill-in”
between Mf(α) and Mf(α+1) with a chain whose successive quotients
are ≤ κ-generated.

When λ is singular, the Singular Compactness Theorem is applied.
The conclusion sought is exactly that M is F -free (where F is as de-
scribed above) but some argument must be made to obtain the hypoth-
esis of Theorem 1.4. We give an example where it is easy to verify the
hypothesis of Thoerem 1.4.

Theorem 5.3. Assume V = L. Suppose N is an R-module of injective
dimension 1. Then ⊥N is deconstructible.

Proof: Let µ = |R| + |N | + ℵ0. We will prove that ⊥N is µ-decon-
structible. It is a fact, which we will not prove here, that 5.2 holds when
λ is a regular cardinal > µ (under the hypothesis V = L). The proof
that a λ-generated M ∈ ⊥N is µ-deconstructible proceeds by induction
on λ. For λ ≤ µ, there is nothing to prove. When λ > µ is regular, we
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use 5.2 as discussed immediately after 5.2. Suppose that λ is singular.
We apply the Singular Compactness Theorem 1.4, with F the class of
Q-filtered modules, where Q is the set of ≤ µ-generated elements of ⊥N .
(Note that since µ ≥ |R|, a ≤ µ-generated module is ≤ µ-presented.)
Since N has injective dimension 1, every submodule of M also belongs
to ⊥N . By inductive hypothesis, every < λ-generated submodule is F -
free; so the hypothesis of Theorem 1.4 is satisfied and we conclude that
M is F -free.

As a special case, we have the conclusion about Whitehead groups
mentioned in 0.1. The Whitehead groups are, by definition, the members
of ⊥Z. (For more on Whitehead groups, see [7, Chapters XII and XIII].)

Corollary 5.4. Assume V = L. Then every Whitehead group is ℵ0-de-
constructible. Hence, since every countable Whitehead group is (provably
in ZFC) free, every Whitehead group is free.

Proof: The first assertion is a special case of Theorem 5.3 and its proof.
It is a classical theorem of K. Stein that every countable Whitehead
group is free, so the last assertion follows because whenever {Mν : ν < σ}
is a continuous chain such that M0 = 0 and every quotient of successive
members is free, we can inductively find a basis for the union of the
chain.

Theorem 5.3 has been extended by J. Šaroch and J. Trlifaj ([13]) to
the more general assumption that ⊥N is closed under pure submodules.
Other applications of the Singular Compactness Theorem in a decon-
structibility argument can be found in:

(1) [6], for Baer modules over arbitrary domains;
(2) [2], for 1-tilting modules;
(3) [16], for n-tilting modules.

In all of these, the deconstructibility is a theorem of ZFC, and not all
submodules of smaller cardinality are “free”, so some effort is involved
in showing that there are enough “free” submodules.

These deconstructibility results are a key step in obtaining structural
information about the modules in question. In particular, the first re-
sult implies that every Baer module (over an arbitrary integral domain)
is projective provided that the countably-generated Baer modules are
projective. The latter has been proved by Angeleri-Hügel, Bazzoni and
Herbera (see [1]). The second and third results are used to prove that
all tilting modules are of finite type. The case of 1-tilting modules was
settled by Bazzoni and Herbera [3] and the general case by Bazzoni and
Šťov́ıček [4].
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