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DIMENSION OF MEASURES: THE PROBABILISTIC
APPROACH

YANICK HEURTEAUX

Abstract

Various tools can be used to calculate or estimate the dimension
of measures. Using a probabilistic interpretation, we propose very
simple proofs for the main inequalities related to this notion. We
also discuss the case of quasi-Bernoulli measures and point out
the deep link existing between the calculation of the dimension of
auxiliary measures and the multifractal analysis.

The notion of dimension is an important tool to classify the subsets
in R? and in particular to compare the size of small sets. There exist var-
ious definitions of dimension. The Hausdorff and the packing dimensions
are probably the most famous one and can be considered as “extremal”
notions of dimension. We refer to [Fal90] for precise definitions and we
denote H* (resp. P*) the Hausdorff (resp. packing) measures. Finally,
dim(F) and Dim(F) are respectively the Hausdorff and the packing di-
mension of a set .

The computation of the dimension of a set F is naturally connected
to the analysis of auxilliary Borel measures. The first elementary result
in this direction is the following.

Proposition 0.1. Let E be a Borel subset in R* and m be a Borel
measure such that m(E) > 0. Suppose that there exist s > 0 and C >0
such that

VeeE, m(B(z,r) <Cr® ifr issmall enough.
Then, H*(E) > 0 and dim(F) > s.

There is a converse to Proposition 0.1 known as Frostman’s Lemma
(see for example [Mat95]).
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Proposition 0.2. Suppose that E is a Borel subset in R such that
H*(E) > 0. There exists a Borel measure m such that m(E) > 0 satis-
Tying

VeeE,VYr>0, m(B(z,r)) <Cr.
In particular, the result is true if dim(F) > s.

Similar results, involving the packing dimension of the set E are also
true (see [Fal97, Propositions 2.2, 2.3 and 2.4]).

In vue of Propositions 0.1 and 0.2, it is natural to introduce the local
dimensions (also called Holder exponents) of the measure m which are
defined as

dim m(z) = lim inf 280B@:)
r—0 logr

- 1 B
dim m(x) = lim sup w.
r—0 logr
The quantities dim and dim are respectively called the lower and the
upper local dimension of the measure m at point x.
Finally, Propositions 0.1 and 0.2 can be reformulated as

Proposition 0.3. Let E be a Borel subset in RY.
dim(E) = sup{s, Im, m(E) >0 and dimm(z) >s, Vze€E}.
We can also refer to Tricot ([Tri82]) and Cutler ([Cut95]) who stud-

ied the link between the Hausdorff dimension (or the packing dimension)
of a set E and the local exponents of auxiliary measures.

The deep relation between the value of the local exponent of auxiliary
measures and the dimension of a given set F is very useful in practice.
In many situations, this is the natural way to compute the dimension of
the set E.

It is for example the case for self-similar sets. Let S1,..., Sk be sim-
ilarities in R? with ratio 0 < r; < 1 and E be the unique nonempty
compact set such that E = |J S;(F) (see [Hut81]). For the sake of sim-

K3
plicity, suppose that the compact sets S;(F) are disjoint. Then F is a
Cantor set and the application

(1) = (i1 in,...) €L B ) S 00 08, (E)

is an homeomorphism. Let s be the unique positive real number such
that Zle r; =1 and m be the unique probability measure such that

M (Siy 0+0 i, (B) = 13,7

n "
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The measure m is nothing else but the image of a multinomial measure
on the symbolic Cantor set {1,...,k}" through the application (1).
Computing the local exponents of m, we find

dim(F) = Dim(F) = s.

This result remains true if the so called Open Set Condition is satisfied
(see [Hut81], [Fal97]). The case of self-affine sets is much more difficult
((McM84], [Urb90], [0O1s98)).

The thermodynamic formalism is an interesting tool to give the value
of the Hausdorff dimension of sets that are obtained in more general
dynamical contexts. This is for example the case for cookie-cutter sets
([Bed86], [Bed91]), graph-directed sets ([MWB88]) and Julia sets
([Rue82], [Zin97]). We can also refer to [Fal97].

Another famous result, due to Eggleston ([Egg49]) concerns the oc-
curence of digits in the f-adic decomposition of real numbers. Let ¢ > 2,
p = (po,-..,pe—1) a probability vector and z = Z_:i rl~% €[0,1) be
the (proper) decomposition of the real number z in base ¢. Finally let

File) = ~t{k e {1, n}; o = i)

be the frequency of the digit ¢. If E(p) is the set of real numbers z € (0, 1)
such that for all i € {0,...,¢— 1}, hIJIrl fi(x) = pi, then

-1
(2) dim(E(p)) = Dim(E(p)) = — 3 pi log, pi.
=0

The proof of this result is based on the analysis of an auxiliary measure m

defined by
m ( ial[*i, isifﬂ' —i—f")) = ﬁpgi.
i=1 i=1 i=1

The strong law of large numbers easily ensures that the measure m is
carried by the set E(p) and that

-1
dimm(z) = dimm(z) = — Zpi log,p; if x € E(p).
=0
Formula (2) follows (see Part 1 of the present paper for a detailed study
of the case = 2).

We can also reverse the point of view and try, for a given measure m
in R%, to compute or to estimate the dimension of sets that are naturally
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related to the measure m. In that way, we can in particular think to the
negligible sets and the sets of full measure and define the quantities

dim,(m) = inf(dim(E); m(E) > 0)
(3) dim*(m) = inf(dim(E); m(E) = 1).

Dimension dim*(m) first appears in [You82]. These two dimensions
are respectively called the lower and the upper dimension of the mea-
sure m (see for example [Fal97] or [Edg98]). They precise how much
the measure m is a “singular measure” or a “regular measure” and they
are important quantities for the understanding of m. Similar definitions
involving the packing dimension can also be proposed:

Dim,(m) = inf(Dim(FE); m(E) > 0)
(4) Dim*(m) = inf(Dim(E); m(E) = 1).

There are numerous works in which estimates of the dimension of a
given measure are obtained.

In particular, a lot of papers deal with the harmonic measure w in a
domain Q C R%. Let us recall some results in this direction. A famous
result due to Makarov ([Mak85]) states that the harmonic measure in a
simply connected domain of R? is always supported by a set of Hausdorff
dimension 1 while every set with dimension strictly less than 1 is neg-
ligible with respect to the harmonic measure. A few years later, Jones
and Wolff ([JW88]) extended this result and proved that in a general
domain in R?, the harmonic measure is always supported by a set of di-
mension one. When (2 is the complementary of a self-similar Cantor set,
Carleson proved that the dimension of the harmonic measure w satisfies
dim, (w) = dim* (w) < dim(9Q). In that case, the harmonic measure can
be seen as a Gibbs measure on a symbolic Cantor set and the proper-
ties of the harmonic measures are consequences of Ergodic theory (see
also [M'V86]). Such approach was also used in the more general situ-
ation of “conformal Cantor sets”, generalized snowflakes and Julia sets
of hyperbolic polynomials (see the survey paper [Mak98] on this sub-
ject). In a nondynamical context, Batakis proved in [Bat96] the relation
dim*(w) < dim(99) for a large class of domains 2 for which Q¢ is a Can-
tor set. Let us finally recall Bourgain’s result in higher dimension: the
harmonic measure is always supported by a set of dimension d — e where
e only depends on the dimension d (see [Bou8T]).

Explicit values of the dimension of measures can also often be obtained
in dynamical contexts. This is for example the case for self-similar mea-
sures on self-similar Cantor sets. Let us briefly explain the calculus. Let
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Si,...,5; be similarities in R? with ratio 0 < 7, < 1 and E be the
unique nonempty compact set such that E = |JS;(E) (see [Hut81]).

K3
Suppose that the compact sets S;(E) are disjoint. Let p = (p1,...,Dk)
be a probability vector and m be the unique probability measure such
that

k
(5) m:ZpimoSi_l,
1=1

The measure m is nothing else but the image of a multinomial measure
on the symbolic Cantor set {1,...,k} through the homeomorphism

i:(il""’i""")e{17"'a/€}N*’—>mSi1°"'OSin(E).

Let
Eiy,..in = Siy 0+ 0.5, (E).
For every z € E there exists a unique sequence i1(z), ..., i,(z),... such
that @ € E; (4),....in (z) for all n. Moreover, if f7*(x) is the frequency of
the digit ¢ in the sequence i1(x),. .., iy (), we have
k n
log m(Es, (@)....,in(x)) > i [ (@) log pi

Using the strong law of large numbers we get
©6) lim 10g (B (2), coin(x)) _ Yoy Pilog pi
n—-+00 log dlam(E“(x) VVVVV in (z)) Zf:l i log T

If we observe that E; (4, .., (x) iS in some sense similar to the ball of
center x and radius diam(E;, ;),.. 4, (2)), We get

dm-almost surely.

k
>oiiq pilogp;

dimm(z) = dimm(z) =
— @ S pilogr;

dm-almost surely

and we can conclude that

k
> i1 pilogp;

3 .
21:1 p;logm;
This formula is always true when the Open Set Condition is satisfied
(see Part 1 for an elementary example). The calculus is much more
complicated (and often impossible) in “overlapping” situations (see for
example [LIN98]|, [FL02], [Fen03], [Tes04], [Tes06a]).

More generally, the thermodynamic formalism and the ergodic the-
ory are in practice good tools to compute the dimension of measures.

(7) dim, (m) = dim*(m) =
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Let us for example mention the nice paper of L. S. Young in which a
formula (involving the entropy and the Lyapunov exponents) is given
for the upper dimension of invariant ergodic measures with respect to a
C1+o diffeomorphism of a compact surface ([You82]).

Multifractal analysis is the natural way to obtain a more precise anal-
ysis of the measure m. The object is to compute the spectrum, defined
as the following function:

d(a) = dim ({z; dimm(z) = dimm(z) = a}).

In many situations, d(«) is nothing else but the Legendre trans-
form 7* () of the L9-spectrum

. . 1 .
8) (g = 171113?;5711((1) with  7,(q) = g 7108 < > m() )

IeF,

where (F,)n>0 are the natural partitions in dyadic (or ¢-adic) cubes
in RY. When d(a) = 7*(a), we say that the multifractal formalism is
valid.

A heuristic justification of the multifractal formalism runs as follows:
First, the contribution to 7,,(¢) of the set of points where the local expo-
nents takes a value « is estimated. If the dimension of this set is d(«),
then there are about £ cubes in F,, which cover this set and such
a cube I satisfies m(I) ~ £~°". Therefore, the order of magnitude of
the required contribution is ¢~ (@¢=@)n  When n goes to +oo, the
maximum contribution is clearly obtained for the value of a that mini-
mizes the exponent ag — d(«); thus 7(q) = infs (g — d(a)). If d(a) is
a concave function, then this formula can be inverted and d(«) can be
obtained from 7(g) by an inverse Legendre transform:

9) d(a) = inf (g +7(q))-

There are many papers who support formula (9). Frisch and Parisi
([FP85]) were the first to introduce the Legendre transform in multifrac-
tal analysis. Rigorous approaches are given by Brown, Michon Peyriere
([BMP92]) and Olsen ([Ols95]). They enlighten the link between for-
mula (9) and the existence of auxiliary measures m, satisfying

1 T T
(10) )| @ < mg(1) < Cm(I)179.
In fact, it is shown in [Ben94], [BBHO02] that the existence of a mea-
sure m, satisfying

(11) mg(I) < Cm(I)?|17@
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is sufficient to obtain the nontrivial inequality
d(e) > inf(aq + 7(q)).
q

Now again, the dynamical context is a paradigm for multifractal analy-
sis. In many situations, the existence of measures m, satisfying (10) and
the validity of (9) are proved. This is for example the case for quasi-
Bernoulli measures ([BMP92], [Heu98], [Pey92]), self-similar mea-
sures ([CM92], [Fen03], [Fen05], [FO03], [HLO01], [LN98|, [LN0O],
[Rie95], [Tes06a], [Ye05]), measures on cookie-cutters ([Ran89]),
graph-directed constructions ([EM92]), invariant measures of rational
maps on the complex plane ([Lop89]). The context of self-affine mea-
sures is much more complicated ([Kin95|, [O1s98]). The case of ran-
dom self-similar measures was also studied ([Man74], [KP76|, [Bar99],
[Bar00a], [Bar00b)).

Let us briefly explain the ideas that are used to validate the multi-
fractal formalism in the context of self-similar measures on a self-similar
Cantor set. The notations are the same as before (see (5) and the no-
tations below). The partitions given by the compact sets E;, . ;, are
prefered to the (Fy,)n>0. In fact, it is easy to show that the measure m
is doubling and that the sequence Fj (4),... i, (2) of neighborhoods of z
calculates the local exponents at point z. Let ¢ € R and let 7 = 7(¢) be
the unique real number such that

k
(12) > ph =1.
=1

The function 7 = 7(q) is similar to the LI-spectrum defined by (8). The
function 7 is convex and real analytic. Let m, be the self-similar measure
such that for all 7,

mq(E;) = pir].
The measure my is such that for all iy, ..., %,
mg(Eiy,...i) = Wi -0, )" (riy - ri,) mm (B, ) diam (B, ,)T
which is similar to (10). Let

k
Y i1 DTl log pi

a=-7(q) =
Zle plrT logr;

and

E,=<drx€eF; lim log.m (Eil(m)""’i"(w)) =a,.
n—+00 10g diam (Eil (m),,zn(m))
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We observe that x € E, if and only if

TR 1 CC S PREAES) A Lz i log(piry)
n—oo log diam (Eil(x) ,,,,, in(z)) Zi:l pgnr log r;

Applying (6) and (7) to the measure mg, we obtain

dim(E,) = dim(m,) = —q7'(¢) + 7(q) = inf(aq + 7(q))

which is the desired formula.

This example points out the importance of auxiliary measures in the
multifractal analysis. In Part 5, we will apply the same technique to
quasi-Bernoulli measures.

The purpose of this survey paper is to revisit the notion of dimension
of a measure in a very simple way. We do not refer to any dynamical
context and we try to obtain estimates of the lower and the upper di-
mension which are always true. The probabilistic interpretation of the
notion of dimension will be useful to achieve our purpose.

As it is shown in Part 3, the lower and the upper dimension of a
measure m are related to the asymptotic behaviour of a sequence of
random variables. More precisely, if (F,)n>0 are the natural partitions
in dyadic (or f-adic) cubes in R? and if I,,(z) is the unique cube that
contains z, we will see that the lower dimension (resp. upper dimension)
of the measure m coincides with the lower essential bound (resp. upper
essential bound) of the random variable lim inf S,, /n, where

n—-+o0o
m(Inl(x))) '

Similar interpretation of Dim,(m) and Dim*(m) in terms of the essential

bounds of lim sup S,, /n is also possible. It is then not surprising that the
n—-+4oo
lower and the upper dimension of the measure m are related to the

log-Laplace transform of the sequence S,,:

S X+ + X,
_ At and Xn(:v)z—logg(

n
n n

1
L(q) =1 Zlog, E [¢95»
() = lim sup — log, E [¢#5] .

n—-+oo

where the expectation is related to the probability m.
An easy calculation gives

L(1 - q) = limsup nl(l)gf log ( Z m(j)tl) = 7(q)

nteo IeF,
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where we recognize the classical L?-spectrum 7 used in multifractal anal-
ysis. The lower and the upper entropy of the measure m can also be ex-
pressed in terms of the sequence of random variables .S,,. More precisely,
we have

-1 S
hy(m) = %g_‘l_lg - IEZF m(I)log, m(I) = %llg_‘l_lgE {7}

h*(m) := lim sup -1 Z m(I)log,m(I) = limsupE [&}

n—+too TN Ier n—-4oo n

and these quantities are also related to the dimension of the measure m.
All those estimates are gathered in Theorem 3.1 which states that

(13)  —74(1) < dim,(m) < hy(m) < h*(m) < Dim*(m) < —77(1).

A probabilistic interpretation of (13) is proposed in Theorem 3.2 and the
equality cases are discussed in Part 4. Classical examples and concrete
estimates are also developed to illustrate the purpose.

In the last part (Part 5), we revisit the notion of quasi-Bernoulli mea-
sures in order to explain the importance of the estimates that are devel-
oped in the previous sections. Ergodicity properties are explained, the
existence of the derivative function 7’ is shown and an elementary proof
of the validity of the multifractal formalism is given. Such a proof points
out the important role played by the dimension of auxiliary measures in
multifractal analysis.

1. A classical example: the Bernoulli product

We begin this paper with the study of a classical example. It is a
convenient way to introduce the notion of dimension of measures and to
precise some notations. Moreover, generalizations of this example will
be developed later (see Part 3.1).

Let F,, be the family of dyadic intervals of the n'" generation on [0, 1),
0 < p < 1 and let m be the Bernoulli product of parameter p. It is defined
as follows. If 1 - - - £, are integers in {0,1}, and if

Z%, —i+i> € Fn

=1 7

5
20 2

Lje, =

n n
=1

then

S

m(Iey.c,) =p°" (1 —p)"~°", where s, =¢e1+ - +¢n.



252 Y. HEURTEAUX

If x € [0,1), we can find &1,...,&,,... € {0,1} uniquely determined and
such that for every n, x € I, ..., . Recall that 0,e;---¢, -+ is the proper
dyadic expansion of the real number z. In the space [0, 1) equipped with
the probability m, it is easy to see that (¢, ),>1 are independent Bernoulli
random variables with parameter p. More precisely,

m({e;=1})=p and m{e;=0})=1-0p.

Using the strong law of large numbers, we know that s,/n converges
dm-almost surely to p. If I,,(z) is the unique interval in F,, which con-
tains z, we deduce that for almost every z € [0, 1),

In(m(I,(z))) ~ L Sn lnp+ (n—s,) In(1—p)
n—+oco In |In(x)| n—-+oo nln?2

= —(plogy(p) + (1 — p) log, (1 — p)).

Let h(p) = —(plog,(p) + (1 —p)log, (1 —p)). Using Billingsley’s theorem
(see for example Proposition 2.3 in [Fal97]), it is easy to conclude that

dim, (m) = dim*(m) = h(p)

where dim,(m) and dim*(m) are the lower and the upper dimension
defined in (3). It means that the measure m is supported by a set
of Hausdorff dimension h(p) and that every set of dimension less that
h(p) is negligible. We say that the measure m is unidimensional with
dimension h(p).

We also have

Dim,(m) = Dim*(m) = h(p)
where Dim, (m) and Dim*(m) are the lower and the upper packing di-
mension defined in (4). This example is well known. The measure m

allows to prove that the set F}, of real numbers x such that s,, /n converges
to p has dimension h(p) (see for example [Bes35|, [Egg49] or [Fal90]).

2. Dimensions of a measure
2.1. Lower and upper dimension of a measure.
In general, a probability measure m is not unidimensional (in the

sense described in the previous example). Nevertheless, we can always
define the so called lower and upper dimension in the following way.
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Definition 2.1. Let m be a probability measure on R?. The quantities
dim, (m) = inf(dim(E); m(E) > 0) and
dim*(m) = inf(dim(F); m(E) = 1)

are respectively called the lower and the upper dimension of the mea-
sure m.

The inequalities 0 < dim,(m) < dim*(m) < d are always true. When
the equality dim,(m) = dim"(m) is satisfied, we say that the measure m
is unidimensional and we denote by dim(m) the common value.

Recall that m; < mga (resp. mj;Lmsg) says that the measure my
is absolutely continuous (resp. singular) with respect to ms. Quanti-
ties dim,(m) and dim*(m) allow us to compare the measure m with
Hausdorff measures. More precisely, we have the following quick result:

Proposition 2.2. Let m be a probability measure on R*. Then
dim,(m) = sup(o; m < H*) and dim*(m) = inf(a; mLH®).

When the upper dimension of the measure is small, it means that the
measure m is “very singular”. In the same way, when the lower dimension
of the measure is large, then the measure m is “quite regular”.

Quantities dim,(m) and dim*(m) are also related to the asymptotic
behavior of the functions @, (x) = W. More precisely, we have
Theorem 2.3 ([Fan94|, [Fal97], [Edg98], [Heu98|). Let m be a prob-
ability measure on R?. Let

| B
O, (z) = liminf ®,(x) where &,(x) = M

r—0 IH(T)
We have
dim,(m) = essinf(®,) and dim"(m) = esssup(P.,),

the essential bounds being related to the measure m. In particular, the
iequalities 0 < &, < d are true dm-almost surely.

Proof: Let us prove the equality dim, (m) = essinf(®,). The proof of the
equality dim*(m) = esssup(®.) is quite similar. Let o < essinf ®,. For
dm-almost every z, there exists 1o such that if r < ro, m(B(z,r)) < r*.
Let

E,={x;Vr<1/n, m(B(z,r)) <r*}.
The measure m is carried by |J,, E,. If m(E) > 0, we can then find
an integer n such that m(E N E,) > 0. Using the definition of E,, it
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follows that H*(E N E,) > 0 and that dim(E) > «. We have proved
that essinf(®.) < dim,(m).

Conversely, if @ > essinf ., we can find E such that m(E) > 0
and such that for every z € E, ®,(z) < a. If 2z € E, and if § > 0,
we can find r, < 6 such that m(B(z,r;)) > r¢. The balls B(z,7y)
constitute a 2d-covering of E. The problem is that these balls are not
disjoint. Nevertheless, using Besicovitch’s covering lemma, we can find
a constant ¢ which only depends on the dimension d and we can choose
¢ sub families B(x15,74, ), B¢ j, 72, ,); of disjoint balls which
always cover E. We then have

Vi, Z(diam(B(xi,ja Tmi,j)))a = Z(2Tﬂti,j)a

J J
<2¢ Z m(B(xiJv r%‘,j))
J

< 2%m(RY)
< +00.

Finally, HS5(E) < £2°m(R%) and we can conclude that H®(E) < +oo
and that dim(F) < a. When o — essinf ®,, we obtain dim,(m) <
essinf (®.). O

Remark 1. We can also use Proposition 2.2 in [Fal97] to give another
proof of Theorem 2.3.

Remark 2. The measure m is unidimensional (that is dim.(m)=dim*(m))
if and only if there exists o > 0 such that m is carried by a a set of
dimension « while m(E) = 0 for every Borel set E satisfying dim(E) < a.
In that case, o = dim,(m) = dim*(m). This notion was first introduced
by Rogers and Taylor ([RT59]) and revived by Cutler ([Cut86]).

2.2. And what about packing dimensions ?

It is then natural to ask about the interpretation of the essential
bounds of the function ®* = limsup,_,, ®,. Those are related to the
packing dimension of the measure m (for more details on packing di-
mension, see [Fal90] or the original paper of Tricot [Tri82]). Without
any new idea, we can prove the twin results of Proposition 2.2 and The-
orem 2.3.
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Proposition 2.4. Let m be a probability measure on R®. Let us denote
Dim,(m) = inf(Dim(E); m(E) > 0) and
Dim*(m) = inf(Dim(E); m(E) = 1).
Then,
Dim, (m) = sup(o; m < P*) and Dim*(m) = inf(a; mLP?),
where (750‘)a>0 are the packing measures and Dim the packing dimension.

Theorem 2.5 ([Fal97], [Edg98], [Heu98]). Let m be a probability mea-
sure on R?. Let
1 B

O*(z) = h?l_s)élp O, (x) where @.(x)= W
We have

Dim, (m) = essinf(®*) and Dim*(m) = esssup(d*),
the essential bounds being related to the measure m. In particular, the
inequalities 0 < ®* < d are true dm-almost surely.

2.3. Unidimensionality and ergodicity.

Let us come back to the Bernoulli product which is described in Sec-
tion 1. This measure satisfies:

Dim,(m) = Dim*(m) = dim,(m) = dim*(m) = h(p)
O*(z) = ®.(x) = h(p) dm-almost surely.
In particular, it is a unidimensional measure.

Moreover, the Bernoulli product has interesting properties with re-
spect to the doubling operator

o(x) = 2z — [2z]

where [2z] is the integer part of 2z.
Let us precise those properties. Denote by

V=1, c,,,6 it I=1I, . andJ=1I ..,
Independence properties of the random variables &,, easily ensure that
(14) m(e™(I)) =m(I), VIe|JF,
and
(15) m(INo () =mIJ)=m(I)m(J) if Ie€F,.

Finally, using a monotone class argument, it is easy to deduce from (14)
and (15) that the measure m is o-invariant and ergodic (see also Part 5).
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This result is not surprising. More generally we can prove the follow-
ing property which can be found in [Fal97].

Proposition 2.6. Let X be a closed subset of R, T: X — X a lipschitz
function and m a T-invariant and ergodic probability measure on X.

Then:
dim,(m) = dim*(m) and Dim.(m) = Dim"(m).

Proof: Let us give a proof of this proposition which is somewhat sim-
pler to the one proposed by Falconer in [Fal97] and which does not
need the use of the ergodic theorem. If T is C-lipschitz, T'(B(z,r)) C
B(T(x),Cr). We can deduce that

m(B(z,r)) < m(T_l(T(B
<m(T~YB(T

So, ®,.(z) > @CT(T(;C))%, which proves that ®.(x) > @.(T(x)).
The function @, (z) — ®.(T'(x)) is then positive and satisfies [(P,(z) —
D, (T(z)))dm(xz) = 0. We can conclude that ®,.(x) = @, (T(z)) almost
surely and that ®, is T-invariant. On the other hand, ®, is essentially
bounded (see Theorem 2.3) and the measure m is ergodic. It follows
that @, is almost surely constant, which says that dim,(m) = dim*(m).

The proof of Dim, (m) = Dim*(m) is similar. O

Remark 3. The function o(x) = 22 — [22] is not lipschitz. Apparently,
Proposition 2.6 is not relevant for this function. Nevertheless, if we
identify the points 0 and 1, that is, if we imagine the measure m defined
on the circle R/Z = Sy, then, m is invariant with respect to the doubling
function which is a smooth function on Sj.

Remark 4. Another way to study m is to consider that the Bernoulli
product is defined on the Cantor set {0, 1}". Then, the intervals I,....,
become the cylinders ¢; - - - &, of the Cantor set and the function o is
nothing else but the shift operator (¢,)n>1 — (€n)n>2 on the Cantor
set.

Remark 5. Ergodic criteria for unidimensionality are also given by Cut-
ler ([Cut90]) and Fan ([Fan94]).
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3. The discrete point of view

The Hausdorff dimension may be calculated with the use of the ¢-adic
cubes. Therefore we can obtain discrete versions of the previous results.
Let £ > 2 be an integer and F,, the dyadic cubes of the n*" generation.
Suppose that m is a probability measure on [0, 1)¢. If I,,(z) is the unique
cube in F,, which contains x and if log, is the logarithm in base ¢, we
can introduce the sequence of random variables X,, defined by

(16) Xofo) = log, ( r2ED).
If |I,(x)] = €™ is the “length” of the cube I,,(z), we have
Sn(x) _ Xa(x)+---+ Xu(x) _ logm(ln(x))

n n log | I ()|

and the quantities dim,(m) and dim*(m) are related to the asymptotic
behavior of the sequence S;l—" More precisely, we have the two following
relations
. . . S
dim, (m) = essinf | liminf —

n—oo N

(17) dim*(m) = esssup (lim inf S

n—oo N

In the same way, we can also prove that

Dim, (m) = essinf (Hm sup &>

n—oo N

(18) Dim™*(m) = esssup (Hm sup &> .

n—oo N

3.1. An example.

Let us describe a well known elementary example (see for exam-
ple [BK90] or [Bis95]) which is more general than the Bernoulli product
and indicates that the probabilistic point of view is useful. Let d = 1,
¢ = 2 and let us consider a sequence (py)n,>1 of real numbers satisfy-
ing 0 < p, < 1. With the notations of Section 1, let us construct the
measure m in the following way.

m (Ial---anfll) = PnMm (Ialw'é‘n—l) and
m (Ial...gnflo) =(1—pp)m (Ial...gnfl) .
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The random variables ¢; are independent and verify
m{e,=1})=p, and m({e, =0})=1-p,.

The random variables X,,, defined by (16) are independent and bounded
in L2. The strong law of large numbers ensures that the sequence

Sy, —E[Sy]

n

(19)

is almost surely converging to 0. We can easily conclude that for dm-al-
most every = € [0,1),

lim inf 7logm(ln(x)) = liminf E [&}

s logTu(@)| | nese | n

s
= lim inf — kzlpk logy pi + (1= pi) logy (1 — pr).
We write h.(m) = liminf, .o E [%} This quantity is called the lower
entropy of the measure m (see Section 3.2).
In this case, the measure m is always a unidimensional measure with
dimension dim(m) = h.(m). More precisely, we can deduce from (19)
the existence of a subsequence ny, such that for almost every z € [0, 1),

log m(In, (x))

= h. .
k—too log I, ()] (m)

We will see in Section 4.3 that this kind of property characterizes
measures for which the dimension can be calculated with an entropy
formula.

Of course, a similar result can be written with packing dimensions.
The measure m is unidimensional and satisfies

Dim(m) = limsupE {&}
n

n—oo

: 1 ¢
= limsup — " pylogy pi + (1 = pi) logy(1 — pi)

= h*(m).

Note that we may have dim(m) # Dim(m).
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3.2. The function 7, probabilistic interpretation and links with
entropy.

Relations (17) and (18) do not help to find the dimensions of the
measure m. From now on we try to obtain estimates of the quanti-
ties dim,(m), dim*(m), Dim.(m), Dim*(m) and describe some equality
cases.

Let us introduce the function 7 which is well known in multifractal
analysis. It is defined as

(20) 7(¢) =limsup7,(q) with 7,(q)

1
_ q
n—s+00 ~ nlogt log ( Z m(l) )

where m is a probability measure on [0,1)¢. The function 7 is finite
on [0, +00) and may be degenerated on the open interval (—oo,0). It is
convex, non increasing on its definition domain. If we equip the set [0, 1)¢
with the probability m, we can write:

1 1
(21) Tn(l—q)zﬁlong[ﬁqS”} and T(l—q):limsupﬁlogﬂi[KqS“].

n—oo
Taking the derivative, we get

=8 |2 = 2 Y mintogem(n),

n n
IeF,

This quantity is nothing else but the entropy of the probability m related
to the partition F,,. It will be denoted by h,(m). In a general setting
the sequence h,,(m) does not necessarily converge. Nevertheless, one can
always define the lower and the upper entropy with the formula

(22) h«(m) =liminf h,(m) and h*(m) = limsup h,(m).

n—00 n— oo

If ho(m) = h*(m), the common value is denoted by h(m). It is the
entropy of the measure m.
Let us remark that convexity properties ensure that

(23) —74 (1) < hu(m) < h*(m) < —72(1),

where 7/ et 7/ are respectively the left and the right derivative of the
convex function 7.
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Let us finish this section with the example described in Part 3.1. Easy
calculations give

. 1
7(g) = limsup — > logy (pf + (1 — px)?)
n—+4oo N 1

|
hy«(m) = liminf — Zpk logs pr. + (1 — pi) logs (1 — pi)

n— o0
k=1

: -1\
h*(m) = lim sup . Zpk logy pi. + (1 — pi) logs (1 — pi).

In particular, if m is a Bernoulli product with parameter p (that is,
if pr, = p for all k), we get

7(q)=logy (p?+ (1 —p)?) and h(m)=—(plog,(p)+(1—p)log,(1—p)).
3.3. General estimates.

There are deep links between the function 7, entropy and the dimen-
sion of the measure m. These can be resumed in the following theorem.

Theorem 3.1 ([Heu98|, [BHO02|). Let m be a probability measure
on [0,1)%. We have

(24) -7, (1) < dim,(m) < hy(m) < h*(m) < Dim*(m) < —77(1).

Remarks. 1. In particular, (17) and (18) ensure that if dim,(m) =
Dim*(m), then the entropy h(m) exists and
L —logm(L(x))
n

n—oo

= h(m), dm-almost surely.

We then obtain some kind of “Shannon-McMillan conclusion” in a
non dynamical context. It is in particular the case if 7/(1) exists.

2. Conversely, if there exists a real number h such that
lim 710#(["(%)) = h almost surely, we have

dim,(m) = Dim*(m) and h.(m)=h"(m) = h.

3. In [Nga97], S.-M. Ngai proves inequalities like —7/ (1) < dim, (m)
and Dim*(m) < —7/ (1). His purpose is then to consider the case
where 7/(1) exists. Here we will first consider the non differentiable
case (see Parts 3.4 and 4.2) and then find conditions that ensure
that 7/(1) exists (see Part 5).
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Formulas (17) and (18) give links between the dimension of the mea-
sure m and the asymptotic behavior of the sequence S, /n. They allow us
to propose a very simple proof of Theorem 3.1. This is not the way used
in [Heu98| but we can isolate the following result which immediately
gives Theorem 3.1.

Theorem 3.2. Let (Sp)n>0 be a sequence of random wvariables on a
probability space (Q, A, P). Suppose that the function

1
L(g) = limsup — log, E [¢75"]

n—oo T
is finite on a neighborhood V of 0. Then we have:
L’ (0) < essinf (lim inf &) and  esssup (lim sup &) < L (0).
n—oo n n—oo n

Moreover, the sequence ST" is dominated in L*(P) and

n—+4oo N n—-+4oo n

ess inf <lim inf &) < liminfE [&]

Sh Sn
<limsupE [—] < esssup (limsup —) .

Proof of Theorem 3.2: Let o > L', (0) and ¢ > 0. Using Cramer-Cher-
nov’s idea, we have

S 1
P2 >a) < —E[@5].

( n a) - gqna [é }
Taking the logarithm and the lim sup, we get

1 Sh

lim sup — log, (IP’ (— > a)) < L(q) — qa
n—oo N n
and we can conclude that
1 Sn
lim sup — log, (]P’ (— > a)) <— sup (gqa—L(g)=-L"(a) <0,
n—oo M n ¢>0,q€V

where L* is the Legendre transform of L. If 0 < ¢ < L*(«) and if n is
sufficiently large, we obtain

P (i > a) < oL (@)-e),

n

Then, Borel-Cantelli’s lemma gives

P (limsup {& > a}) =0,
n—oo n
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which clearly implies that limsup,, S—n" < « almost surely. The

inequality

ess sup <lim sup &) < L, (0)
n

n—oo

follows. With a similar argument, we can also prove the other inequality
n—oo N

L’ (0) < essinf (lim inf &> :

In order to obtain the second point of the theorem, we first observe that
the sequence ST" is dominated in L!(P). Indeed, let X = sup,, ’%‘ We

have:
Sh Sh
t] = Pl{—>t¢t Pl— < —t].
St) = r (o) v (<)

Sn

P (X < -

(X>0)<YF <‘ "
n>1

On the other hand, if ¢ > 0 is such that L(g) < +oo and if € > 0, the

preceding calculus allows us to find an integer ng such that for every n >

no,

1 Sh
— log, (]P’ (— > t)) < L(q) + ¢ — qt.
n n

If ¢ is large enough, we get
S (L(@)+e—qt
=n n(L(q)+e—qt)
SEICENED Y <
n>ngo n>ng
which proves that the function
ts Y P <& > t>
n
n>1

is integrable with respect to the Lebesgue’s measure. A similar result is
true for the function t — > P (% < —t). Finally,

]E[X]z/OJrOO]P’(X>t) dt < +oo.

Having just proved that the sequence % is dominated in L!(PP) by the
random variable X, Fatou’s lemma applied to the positive sequence X +
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Sp o
n gives

E [X] + essinf <lim inf &) =E {X + essinf <1im inf &ﬂ

n—+oo N n—+oo N

<E {X + (liminf &)]
n—4oco N

< liminf E {X + &]
n

n—-+o0o
o Sn
=E[X]+ liminfE | —|,
n—-+o0o n

and the first inequality follows. In order to prove the second inequality,
it suffices to apply Fatou’s lemma to the positive sequence X — % O

3.4. How to use Theorem 3.1.

In general it is awkward or even impossible to obtain exact values
for the function 7 and the numbers 7/ (1) and 7/ (1). Nevertheless, if
we can estimate in a neighborhood of 1 the function 7 by a function y
satisfying x (1) = 0, we obtain

dim,(m) > —x/.(1) and Dim*(m) < —x_(1).
In particular, this remark can be applied to x = log,(3) where

B(q) =limsup B,(¢) and G,(q) = sup Z (%)

n—+oo Iern JCI,JEFn4+1

This is a consequence of the inequalities

log 8,-1(q) +--- +log Bo(q)

7(¢q) < limsup

n——+00 nlog/t

: log Bn(q) _ logB(q)
<1 = .
- fﬁfﬁf log ¢ log ¢

Finally, using 5(1) = 1, we get the following corollary:
Corollary 3.3 ([Heu95|, [Heu98]). Let m be a probability measure
on [0,1)% and 3 defined as above. We have

. gL (1)
dim,(m) > — thr(ﬁ)

pL(1)
In(¢)

and Dim*(m) < —
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3.5. Contrasts and dimension’s estimates.

The function 3, gives estimates of the contrasts between the mass of a
cube I and the mass of its sons. In numerous situations, those contrasts
can be estimated and we can then deduce estimates of the dimension of
the measure. In particular, this is what is done by Bourgain in [Bou87]
and Batakis in [Bat96] when they give estimates of the dimension of
the harmonic measure. Some elementary situations, which are particular
cases of Propositions 3.4 and 3.5 are also proposed in [Heu95].

Let us describe a general way to obtain concrete estimates. Suppose
that every cube I € |, F,, has a positive mass. Let k € {1,...,¢¢ -1}
andif I € F,, n > 1, let

m(l U U I)

5k(I)_max< (D s I, T sonsof]).

We first remark that if Ji, ..., Jye are the sons of I and satisfy m(J;) >
-+« >m(Jpa), we have

Cm(JL U U )

It follows that

m(J;) (01— k)
f— <
1 5k(1)+z (D) < ox(I) 3 k(1)
>k

and we can claim that
k

(25) 7 <o) < 1.

If 65 (I) ~ %, the measure m is quite homogenous in the cube I. If it is
true in every cube, we can hope that the dimension of m is big. On the
other hand, if for every cube I, §;(I) ~ 1, a small part of I contains a
large part of the mass and we can hope that the dimension of m is small.
These remarks can be made precise in the following propositions.

Proposition 3.4. Let m be a probability measure on [0,1)%, 1 < k < ¢4
and k=% < § < 1 such that for every I € \J, Fn, 0x(I) > 6. Then, the
measure m satisfies

Dim*(m) < —dlog, <%> — (1 =9)log, <%> .
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Proposition 3.5. Let m be a probability measure on [0,1)¢, 1 < k < ¢4
and kf~¢ < § < 1 such that for every I € U, Fn, 6x(I) < 6. Let
p= [571}. Then, the measure m satisfies

dim, (m) > —pdlog,(§) — (1 — pd) log,(1 — pd).

Proposition 3.5 is in fact an elementary consequence of the more gen-
eral following result.

Proposition 3.6. Let m be a probability measure on [0,1)% and 0<6<1.
Letp = [5_1} and suppose that for every cube I € |J,, Frn, we can find a
partition Aq,..., A; of the set of sons of I such that

; . m (UJeAv J)
e ———— <.
Vie{l,...,j}, () <d
Then
dim, (m) > —pdlog,(§) — (1 — pd) log,(1 — pd).
Remark 6. If 6 > 1/2, then p=1. This is in particular the case when {=2
and d = 1.

Remark 7. When k =1 and ¢ = 2, similar estimations are also obtained
by Gonzilez Llorente and Nicolau in [LIN04|. Logarithm corrections are
also proposed.

Proof of Proposition 3.4: This proposition can be found in [Heu98]. Let
us sketch the proof in order to be self contained. Let I € F, and

I,..., Iy the sons of I such that 6x(I) = W Denote S =

{L,...,I}}. If ¢ < 1, Holder’s inequality gives
m(J)\? m(J)\? m(J)\?
miJ)\ _ LCCHR m(J)
2 Ga) -x6e) 2 6m)
<K (I)T + (00— k)19 (1 = 6,(1)).

Let us observe that the function t ~— k1797 4+ (¢4 — k)1=9(1 — ¢)7 is
decreasing on the interval [k¢~¢ 1]. Under the hypothesis of Proposi-
tion 3.4, we obtain

Vq€el0, 1, Bulg) < k70T + (¢ — k)91 —-0)7,
and the conclusion follows from Corollary 3.3.

Proof of Proposition 3.6: We begin with the following lemma.
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Lemma 3.7. Let ¢ > 1, j > 2 and ]l < ¢ < 1. Denote by M(4,7)
the mazimum of the function F(ay,...,a;) = ai +--- + af under the
constraints a1 + - +a; =1 and 0 < a; <6, Vi. Then

M(6,j) = po + (1 — pd)*
where p = [571} .

Proof: The function F' being symmetric, we can add the constraint a; >
.-+ > aj. Observe that we have j > p+ 1.

If 0 < ag < a; < 4, the function € > 0 — (a1 +€)? + (az —€)? is
increasing, so that the maximum is obtained when a; = §. We then
prove the lemma by recurrence on the integer p.

Suppose first that p = 1, that is % < <1. We have

F(d,a9,...,a;) <674 (aa+---+a;)? =04+ (1-96)".
Moreover, under the hypothesis p = 1, we have 0 <1 -6 < 4, F(d,1 —
4,0,...,0) = §24(1—0)? and we can conclude that M (¢, j) = §9+(1-4§)%.

Suppose now that the conclusion of the lemma is satisfied for every
value of [67!] between 1 and p — 1 and let § such that [67'] = p. The
real number ¢ satisfies the inequalities ﬁ <§< % and we observe that

F(a,a2,...,aj)_5q+(1—5)q<(1“_25>q+~-~+(1“_jé>q>.

The real numbers ;%5 satisfy the constraints

Qi

1-9

1-6 1 é

We can then use the recurrence hypothesis and obtain

F((S,CLQ,...,CLJ')S5q+M<%,j—1>

e ) 0 ))

= p6 + (1 — pd)".

It follows that M(, j) < pd? + (1 — pd)9. In fact, the last inequality is
an equality if we remark that 1 —pd < § and

F(,...,0,(1 —pd),0,...,0) =pd?+ (1 — pd)i.

0<

0
< —.
—1-9

Moreover,
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We can now finish the proof of Proposition 3.6. We want to estimate
the function 8 of Part 3.4. Let I € F,,. If ¢ > 1, Lemma 3.7 ensures
that

= ()

i=1

IN

< pd?+ (1 —pd)i.
We can deduce that
Blg) <pd?+ (1 —pd)? ifg>1

and conclude that

' (1
dim. (m) 2 ~2E0) > —pslog (5) - (1 - po) og, (1 ~ ).

4. Situations where it is possible to obtain an exact
formula for the dimension

4.1. Equalities —7/ (1) = Dim*(m) and —7/ (1) = dim.(m) are
often false.

In general —7/ (1) # dim,(m) and —7’ (1) # Dim*(m). For ex-
ample, Olsen in [Ols00] gives an example of a discrete measure such
that —7/ (1) = 1 and —7/ (1) = 0. We give here a more convincing
example.

Proposition 4.1. Let u be a continuous measure with support [0,1].
We can construct a measure m which is equivalent to p and for which
the function T satisfies

7(¢) =sup(l —q,0) if ¢> 0.
In particular, the measures p and m have the same dimensions but the
function T associated to m is degenerated.

Applying this proposition to a Bernoulli product for which the pa-
rameter p satisfies

—(plogy(p) + (1 — p)log,y (1 —p)) = h,

we obtain the following corollary.
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Corollary 4.2. Let 0 < h < 1. There exists a probability measure m
on [0,1) such that

7(q) = sup(l — ¢,0) if ¢ >0 and

1 I,
im M = h dm-almost surely.
oo log | ()]

Proof of Proposition 4.1: Suppose that ¢ = 2 (the construction is quite
similar if £ > 2). Let pu be a measure with support [0,1] and for which
the points have no mass. The construction of the measure m needs two
steps. If I € Fy,, let py = (u(I)) " Lz be the “localized measure” on I.
Define the measure m; with the formula

oo

=3 Y w22,

n=1I1eF,

where c is chosen such that ¢~ ., n~? = 1. The measure m; is clearly
equivalent to the measure p. Moreover, if I € F,,, we remark that

my(I) > en=227"
which implies that for every 0 < ¢ < 1,
Z my (1)1 >2" [cn7227"}q.
IeF,

With obvious notations, we get 71(¢) > 1 — ¢ if 0 < ¢ < 1. Moreover,
the inequality 71(q) < 1 — ¢ is always true in dimension 1. So,

T1(g)=1—¢q if0<qg<l.

In the second step, we denote by J,, the interval J,, = [27",27"*+1) and
observe that the open interval (0, 1) his the union of all the J,,. Let

1
n = ) 1
fn =P (anl(Jn) )

—+oo
m = g conly my

n=1

and

where ¢ is chosen such that m is a probability measure. Using that
m > c¢mq, we find (with obvious notations) 7(¢) > 71 (¢) if ¢ > 0. In
particular, the equality 7(¢g) =1 — ¢ if 0 < ¢ < 1 is always true. On the
other hand,
q
> omyt = mi) =[]

I1eF,
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which implies that 7(¢) > 0 if ¢ > 1. The inequality 7(¢) < 0 being
always true if ¢ > 1 we finally get

(@) =0 ifg>1
and the proof is finished. o
4.2. A sufficient condition for the equalities —7 (1) = dim.(m)
and —7’ (1) = Dim™*(m).

Corollary 4.2 proves that homogeneity properties are necessary if we
want to obtain the equalities

7y (1) = dim,(m) and 7’ (1) = Dim"(m).

A possible way to obtain such equalities is the following. Suppose for
simplicity that d = 1 and let us code the intervals of F,, with the
words €1 - - - &, where g; € {0,...,¢ — 1}. More precisely, let

- E; ~ i 1
Ial"'an = l; ?7; 5 * é_n> '
Let us introduce the following notation

(26)  IJ=1.,. if IT=1I.,.. and J =1

“En4p n En+1"""Entp*

Suppose that there exists a constant C' > 1 such that

(27) VI,JelJF., m(IT)<Cm(I)m(]).

We have the following result.
Theorem 4.3 ([Heu98]). Under the hypothesis (27),
dim,(m) = —7/.(1) and Dim"(m)=—7"(1).

Remark. Hypothesis (27) is in particular satisfied if m is a Bernoulli
product (in fact, the equality m(IJ) = m(I)m(J) is true in this case).
More generally, it is also satisfied if m is a quasi-Bernoulli measure (see
Part 5). Nevertheless, there are measures satisfying (27) which are not
quasi-Bernoulli measures. In particular every barycenter of two quasi-
Bernoulli measures satisfies inequality (27) but is in general not a quasi-
Bernoulli measure (see the example developed p. 333 in [Heu98]).
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Suppose that (27) is satisfied and let ¢ > 0. As a consequence of
the sub-multiplicative property of the sequence a,, = C3 ;. m(I)9,
we know that (a,)'/™ converges to its lower bound. It follows that the

sequence T, (q) converges and that

(28) > m(n) = cmur@),

IeF,

In particular, near ¢ = 1, we have the inequality

(29) T(a) = 7(q) - =

In fact, inequality (29) is sufficient to obtain Theorem 4.3. This remark
can also be found in Benoit Testud thesis ([Tes04]) and we have the
general following result.

Theorem 4.4. Let m be a probability measure on [0,1)%. Suppose that

there exists a constant ¢ > 0 and a neighborhood V of 1 such that
Vnzl, VeV, o)zl - <.

Then, the measure m satisfies
dim,(m) = —7,.(1) and Dim"(m)=—7"(1).

As in Part 3.3, Theorem 4.4 is a consequence of a result which is true
in a general probability context. More precisely, we have

Theorem 4.5. Let (Sp)n>0 be a sequence of random wvariables on a
probability space (2, A, P). Let

1
L,(q) = - log, E [éqs"} and L(q) =limsup L,(q)

n—oo

and suppose that L(q) is finite on a neighborhood V of 0. Suppose more-
over that there exists a constant C > 0 such that

C
(30) VgeV, Lu(q) > L(g)——.

n

Then we have

essinf <lim inf &) =L"(0) and esssup (Hm sup %) =11 (0).

n—oo n n—oo

Remark. Inequality (30) ensures that 11111 L, (q) exists if ¢ € V.
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Proof of Theorem 4.5: We first prove the inequality
S,
ess sup (hm sup —> > L (0).
n—oo N

Replacing S, by S, +nA where A is a sufficiently large number, we can
suppose that L/ (0) > 0. Let ap = L (0), & < g and ¢ > 0. The
convexity of the function L ensures that L(q) > apq. We get

(=C¢one < E [¢957]

=E [ 15, cna] +E [0 15, >na]

< [1 = P[S, > na]] ¢ + P[S, > na]'/?E [¢245+]"/2.

We claim that we can find a; > 0 and gg > 0 such that if 0 < ¢ < qq,
E [qu"} < ¢ for all n. More precisely, if L,(qg) < A for all n,

convexity inequalities imply that L, (g) < qioq = a1q.
Ifq:%ﬁ%”,weget
(31) OP[S,, > na] — 0 P[S,, > na'/? < %0 — ¢=C oo,

We can chose ¢ sufficiently large such that £°® — ¢/=¢¢%@0 < (. The zeros
of the polynome ®(t) = £2%¢? — (2@1¢ are nonnegative and we can deduce
from inequality (31) the existence of a positive real number « such that

P[S,, > na) > 72

if n is large enough. Finally

S,
g {hmsup {—n > OzH > 0.
n—-—400 n
In that set, % > « infinitely often and limsup,, ,,
proved that

S

Zn
n

> . We have

(o)
esssup ( limsup — | > «

n—oo T

and the conclusion follows when o — .
In order to prove that essinf (liminf, .. 2=) = L’ (0), it suffices to
apply the previous result to the sequence —5,. O

4.3. Measures whose dimensions can be calculated with an en-
tropy formula.

In this part, we are interested in probability measures such that

dim,(m) = h.(m) or Dim*(m) = h"(m).
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This kind of property is due to a very special behavior of the sequence

% = %. This is the object of the following theorem.

Theorem 4.6 ([BHO2|). Let m be a probability measure on [0,1)%. The
following are equivalent.

(i) dim.(m) = h(m).
(ii) dimy(m) = dim*(m) = h.(m).

(i) There exists a sub-sequence (ng)i>1 such that

1 I, Sn .
logm(ln, (v)) = lim S (7) = dim.(m) dm-almost surely.
k—+oo log |1, ()] k—+oo My
Remarks. 1. In particular, measures for which dimension can be cal-

culated with an entropy formula are unidimensional. Nevertheless,
the equality dim,(m) = h.(m) corresponds to a deeper homogene-
ity property: the measure m is unidimensional if and only if for al-
most every x, there exists a subsequence ny, such that Sy, /ny con-
verges to dim,(m), but it satisfies dim.(m) = h.(m) if and only
if there exists a sub-sequence mj such that for almost every x,
Sn, /nk converges to dim,(m). In particular, we can construct
unidimensional measures for which the dimension is not equal to
the entropy (see [BHO02]).

2. Conclusion (iii) is some kind of “Shannon-McMillan result” ob-
tained in a non dynamical context.

3. We can of course also prove the equivalence between
(i) Dim*(m) = h*(m).
(ii) Dim,(m) = Dim*(m) = h*(m).
(ili) There exists a sub-sequence (ny)g>1 such that

log m(In, (w)) _ lim S ()

= = Dim* dm-almost surely.
k—+oo  log|lp,| k—+oo N im*(m)  dm-alm urey

Like in Sections 3.3 and 4.2, Theorem 4.6 is a consequence of a result
which is valid in a general probability context.

Theorem 4.7. Let (Z,,)n>0 be a sequence of random variables on a prob-
ability space (Q, A,P). Suppose that the sequence (Zp)n>0 is dominated
in L*(P). Let

Z, = liminf Z,.

n—-+o0o

The following are equivalent:

(i) essinf (Z,) = limJirnfE [Z,].
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(ii) Z, =liminfE[Z,] dP-almost surely.

n—-+o0o
(iii) There exists a sub-sequence (ny)p>1 such that

lim Z,, =essinf (Z,) dP-almost surely.

k—+o0

Remark. To obtain Theorem 4.6, it suffices to apply Theorem 4.7 to the

sequence Z, = % where S”ém) = lol’iggl’zg‘)).

Proof of Theorem 4.7: Let X be a non negative random variable such
that E[X] < +o0 and |Z,| < X for all n. Fatou’s Lemma applied to the
positive sequence X + Z,, shows that

(32) E[X]+essinf(Z,) <E[X + Z,] <E[X]+1liminfE[Z,].

n—-+4oo

Proof of (iii) = (i). The dominated convergence theorem applied to the
sequence Z,, gives

essinf (Z,) =E [ lim an] = lim E[Z,,] > liminfE[Z,].
k—+ k— 400 n——+oo
The reverse inequality follows from (32).

Proof of (i) = (ii). We are in the equality case in (32) so that Z, =
liminf E [Z,,] dP-almost surely.

n—-+o0o

Proof of (ii) = (iii). Replacing Z,, by Z, + X, we can suppose that
Zn > 0. Let § = liminf, ;- E[Z,]. We begin with the following
lemma.

Lemma 4.8. Let 0 <n <1 andng > 1. We can find ny > ng such that
P(Z,, >d+mn] < (2+)n.

Proof: Hypothesis (ii) says that Z, = ¢ almost surely. We can then find
ng > no such that

P m {Zn>§—n2} >1-—7n2

n>n|
Moreover, we can find nq > ng such that
E[Z,,] <6+ n°

Let
A={Z, >6-n*} and B={Z, >d+n}.
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Recalling that Z,, > 0, we get
S5+ >E (Zn,]

z/ and]P’+/Zmd]P>
A\B B

> (6 —*)(P[A] = P[B]) + (6 + )P [B].
Moreover, P[A] > 1 — n?, so that

272 + 6
]}D[B]<L2n§
n+n

In order to prove Theorem 4.7, we use Lemma 4.8 with n = 27% and
then construct a subsequence nj such that

Vk, P[Z, >0+27%] <(2+0)27"

(24 9)n.

Using Borel-Cantelli’s lemma, we deduce that
limsup Z,,, <& dP-almost surely.
k—+oo
Moreover
0=25,< 1kim inf Z,,, dP-almost surely
— 400

and we can conclude that the subsequence Z,,, is almost surely converg-
ing to . The proof is finished if we observe that under hypothesis (ii),
Z. = essinf(Z,) = § dP-almost surely. O

4.4. Entropy is a bad notion of dimension.

Entropy can not allow us to classify measures. For example, there
exist equivalent probability measures with different entropies. Let us
precise this phenomenon in the following example.

Proposition 4.9. Let mg and m;y be two probability measures on [0, 1)%
such that the entropies h(mg) and h(mq) exist and are different. If 0 <
a<l,let
me = amy + (1 — a)my.

Then,

h(my) = ah(mi) + (1 — a)h(myg).
In particular, the family (ma)o<a<1 s constituted of equivalent measures
for which entropy varies in a non trivial interval.
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Proof: The notations are the same as in Part 3.2. We remark that the
function x — —xlog,(z) is concave. It follows that

hn(meg) > ahy(my) + (1 — a)hy(mg),
and
(33) hi(ma) > ah(mi) + (1 — a)h(my).
On the other hand, if ¢ < 1 and if x and y are two positive numbers, it
is well known that
(ax+ (1 —a)y)? < afz? + (1 —a)lyl.
We can deduce that
Z m(N? < af Z mi(1)?+ (1 —a)! Z mo(I)4.
IeF, IEF, IEF,

These two quantities are equal to 1 if ¢ = 1. We can then take the
derivative at ¢ = 1 and obtain

hn(ma) S ahn(ml) - M + (1 - a)hn(mo) — (1 — CY) l(fl(l — CY) .
Finally,
(34) h*(ma) < ah(my) + (1 — a)h(mo).

Inequalities (33) and (34) give the conclusion of Proposition 4.9.

5. Quasi-Bernoulli measures

In this section, we suppose for simplicity that d = 1. The notations
are the same as in Section 4.2. We say that the probability measure m
is a quasi-Bernoulli measure if we can find C' > 1 such that

im(I) m(J) <m(IJ) < Cm(I)m(J).

35 VI.J -
(35) : ELan 5

Quasi-Bernoulli property does appear in many situations. In particu-
lar, this is the case for the harmonic measure in regular Cantor sets
([Car85], [IMV86]) and for the caloric measure in domains delimited by
Weierstrass type graphs ([BHO0O]).

Let us introduce the natural applications between [0, 1) and the Can-
tor set C = {0,...,0 — 1}

J:[0,1) — C and S:C—[0,1].
They are defined by:

J(@) = (ei)iz1 if {z} = [ Ieye, and S((€i)iz1) = () Leyoe,.-
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The application J is a bijection between [0,1) and the complement of a
countable subset of C. Observing that a quasi Bernoulli measure does
not contain any Dirac mass, we can carry the measure m through the
application J and work on the Cantor set C. We always denote by m
this new measure and every property that is proved for this new measure
can be pulled back.

Let M be the set of words written with the alphabet {0,...,¢ —1}.
There is a link between the words of M and the cylinders in the Cantor
set C, so that Property (35) can be rewritten

ém(a) m(b) < m(ab) < Cm(a) m(b).
(ab is the concatenation of the words a and b.) We say that the mea-
sure m is a quasi Bernoulli measure on the Cantor set C.

Let M,, be the set of words of length n, and if z = z122--- € C, let
I,(z) = 21 - - - x, be the unique cylinder M,, that contains x.

In this new context, it is always possible to define 7,, and 7. Sub-
multiplicative properties like in Part 4.2 ensure that the sequence 7,(q)
is convergent when m is a quasi-Bernoulli measure. We then have

(36) Yabe M,

(37) 7(q) = lim 7,(q) with 7,(q)

1
p— q
n—+oo nlogt log ( Z m(a) ) ’

and the following inequalities are true

(38) Cc-lalgnr(a) < Z m(a)? = (@) < clalgnr(a),
aEMyp

Let us finally remark that we can suppose that for every a € M,
m(a) > 0. Indeed, if it is not the case, quasi-Bernoulli property ensures
that there exists a cylinder a € M such that m(a) = 0. Finally, several
letters are not useful in the alphabet and one can work in a smaller
Cantor set.

5.1. 0-1 law and mixing properties.

The interest in working on the Cantor set C is the dynamical context
related to the shift

(39) o: (en)n>1 € C+— (En)n>2 € C.

In particular, if a € M,,, then ab =anNo~"(b).
We can isolate the following properties that precise some previous
remarks due to Carleson and Makarov-Volberg ([Car85], [MV86]).
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Proposition 5.1. Let m be a quasi-Bernoulli measure on the Cantor
set C. Let By be the o-field of Borel sets , B, = 0~ "(By) and By =

N, Bn-
(i) For every E € Bs,, m(E) =0 or m(E) =1. (0-1 law).
(ii) Moreover, if m is o-invariant, the strong mizing property is true.
That is
VA BeB, lim m(ANo "(B))=m(A)m(B).

n—oo

Remark. In particular, every o-invariant quasi-Bernoulli measure is er-
godic.

Proof: Let E € By be such that m(E) > 0. For every n € N we
can find a Borel set F' such that E = ¢ "(F). We can also find a
cylinder ag € M,, such that

m(ap N E)

m(a)

1

Quasi-Bernoulli property ensures that

m(ano="() _ 1 m(aoNo~"(b))

VaeM,,Vbe M, m(a) Z &z m(ac)

Observing that an open set is the union of a countable family of
disjoint cylinders, the previous inequality is also true if b is an open set.
Finally, using the regularity properties of the measure m, it is true for
every Borel set b. Replacing b by F', we obtain

m(aNE) S 1 m(ao N E) S 1
m(a) — C? m(ag) 202"

VaeM,, (E).

A similar argument proves that the inequality

m(a N E) > (20%2)~' m(E)m(a) is also true for every Borel set a. In
particular, m((C \ E) N E) > (2C%)"'m(E)m(C \ E), which says that
m(C \ E) = 0. That is what we wanted to prove.

The proof of (ii) is then classical. Let Z, = E[l4 | B,]. It is a
martingale with respect to de decreasing sequence of o-fields B,. It is
converging in the L? sense (and also almost-surely) to Zo = E[14 | Bool.
But By, is the trivial o-field. Then Z,, is a constant random variable.
Moreover, E[Z,] = m(A). Taking the limit, we get

Zoo =E[Zs] =m(A) dm-almost-surely.
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Finally,
|m(A n O'_n(B)) - m(A)m(B)| = ‘E []lAILU—n(B)] —E [m(A)]lU—n(B)} |

= [E[(Zn — Zoo)Lo-n()]|

< (2fia-2ar)"

and the strong mixing property is proved. O
Let us now introduce the following definition.

Definition 5.2. Let m; and mo be two probability measures on C. We
say that my and mq are strongly equivalent if we can find ¢ > 0 such
that:

—my <mg < cmy.
C

We then have the following corollary.

Corollary 5.3. Let m be a quasi-Bernoulli measure on C. There exists
a unique probability measure, which is quasi-Bernoulli, o-invariant and
strongly equivalent to m. Moreover, it is obtained as the weak limit of
the sequence m,, defined by

mn(E) = % > m(e7HE)).
k=1

Proof: Observe that every probability measure which is strongly equiv-
alent to a quasi-Bernoulli measure is also a quasi-Bernoulli measure.
Moreover, it is well known that two equivalent ergodic probabilities are
equal. These two facts prove the uniqueness.

In order to prove the existence, we first compare the measures m,,
and m. If a € M, we have:

m(ak(a))—m< U ba)- Z m(ba) < C Z m(b)ym(a)=Cm(a).

be My, be My, beMy,

It follows that m,, < Cm with a constant C' that does not depend on n.
The inequality m,, > %m is also true. We can then deduce that the
measures m,, are quasi-Bernoulli with a constant that does not depend
on n. It follows that every weak limit of a subsequence m,, is quasi-
Bernoulli and strongly equivalent to m.

Let us finally consider an adherent value u of the sequence m,, and a
subsequence m,,, which is weakly convergent to u. If f is a continuous
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function on C, then

/foa Y dmy, (x mZ/foaﬁl ) dm(x)

/f x) dmy, (v +—[/foa”’“+l ) dm(x /foa ) dmy( )}

Taking the limit, we obtain [ foo(z =[flz ), which says
that p is o-invariant.

Finally, using the uniqueness, there is only one adherent value for the
sequence m,. Then, the sequence m,, is converging.

5.2. Showing that 7 is differentiable at point 1.

Corollary 5.3, Theorem 4.3 and the Shannon-McMillan’s theorem al-
low us to prove that 7/(1) exists. This was done in [Heu98|.

Theorem 5.4. Let m be a quasi-Bernoulli measure on C. Quanti-
ties 7' (1) and h(m) exist and we have

il (@)

n— o0 n

—7'(1) = h(m) dm-almost surely.

Remark. If the Cantor set C is equipped with the natural ultra metric
which gives the diameter £~ to each cylinder in M,,, then _log"+(1”(w))
is nothing else but the quotient of the logarithm of the mass of I,,(x)
and the logarithm of its diameter. So, the measure m is unidimensional
with dimension dim(m) = —7/(1) = h(m).

Let us now introduce the sets
(40) Eaz{xe(,’; limM:a}.

n—o00 n
Using Billingsley’s theorem (see [Fal90]), Theorem 5.4 shows that
(41) dim(E_. (1)) = dim(m) = —7'(1).
This is the first step in the multifractal analysis of the measure m.

Proof of Theorem 5.4: Let i be the unique quasi-Bernoulli probability
which is strongly equivalent to m and o-invariant. The measures m
and p have the same function 7 and the same dimensions. Moreover,
results of Part 4.2 can be applied to the measures m and u. It follows
that

dim, (m) = dim,(p) = =74 (1) and Dim*(m) = Dim*(u) = —77(1).
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Let us apply Shannon-McMillan’s theorem (see [Zin97]) to the mea-
sure u. It says that the entropy

B = tim S u(a)log(u(a))

n—+oo N
aEM,,

exists and that for du almost every z = x1x2--- € C,

—log, p(In(x)) _ —logyp(z---n)

n n n—-+400

(42)

h()-

So, the measure y is unidimensional. Measures m and p being strongly
equivalent, one can replace p by m in (42). Finally, we have

dim, (m) = =7, (1) = h(m) = —7_(1) = Dim"*(m),
which proves that 7/(1) exists. O

Let us finally remark that Theorem 5.4 and Corollary 3.3 allow us to
deduce the following corollary.

Corollary 5.5. Let m be a quasi-Bernoulli probability on C. Let mg be
the homogenous probability on C which gives the mass £~ to each cylin-
der in M,,. We have:

dim(m) =1 <= 7'(1) = —1 <= m is strongly equivalent to my.

Proof: Suppose that m is not strongly equivalent to mg. We can for
example suppose that the inequality mo < cm is never satisfied. We can
then find an integer ny and a cylinder ag € M,, such that m(ag) <
%mo(ao) where C' is the constant which appears in the quasi-Bernoulli
property. If a € M, we have
m(aap)

1
<> = ¢~ (not1),
m(a) ~ gmo(ao) ¢

If0 < g <1, then

3" m(ab)t < m(aag)? + (0™ —1) | THE =T
14 1

m(a) — m(aao)]q
bEMon,
_ p—(no+1)74
< (g—(no-i-l)q + (gno _ 1) [16507_1] ) m(a)q
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We can then sum this inequality on every cylinder of the same generation
and then iterate the process. We get

> m@)? < (@), ¥Yp=0,
a€EMypn,

which gives

Finally we have

. o / _7/(1)
dim(m) = —7'(1) < Tl

<1

5.3. Multifractal analysis of quasi-Bernoulli measures.

In [BMP92], Brown, Michon and Peyriére proved that the multi-
fractal formalism is valid for quasi-Bernoulli measures at every point «
which can be written « = —7'(¢q). This result was one of the first rig-
orous results on multifractal analysis of measures. Unfortunately, they
could not prove that the function 7 is of class C'. This has been done a
few years later in [Heu98] and we can resume these two results in the
following theorem.

Theorem 5.6 ([BMP92|, [Heu98]). Let m be a quasi-Bernoulli mea-
sure on C. The function T is of class C*. Moreover, for every —7'(+00) <
a < —7'(—00),

dim(E,) = 7" ()
where the level set Eo is defined like in formula (40) and 7 (o) =
inf,(aq + 7(q)) is the Legrendre transform of the function 7.

Remark. In [Tes06a], Testud introduces a weaker notion which is called
weak quasi-Bernoulli property. In this more general context, he proves
that the function 7 is differentiable on [0, +00) and satisfies dim(E,) =
7" (a) for every —7'(+00) < a < —7/,(0). Moreover, he also proves
in [Tes06b] that the function 7 is not necessary differentiable on (—o0, 0].
His results can be applied to a large class of self-similar measures with
overlaps.

5.4. An easy proof of Theorem 5.6.

We can give a proof of Theorem 5.6 which is much simpler than the
original one and which points out the important role of auxiliary mea-
sures in multifractal analysis of measures. This approach is quite differ-
ent to the one used in [BMP92] and [Heu98|. It was already present in
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my “mémoire d’habilitation” [Heu99] but never published. It makes use
of the relation between the real number 7/(1) (when it exists) and the
asymptotic behavior of m(I,(z)) (see Theorem 3.1 and the associated
remarks).

We begin with the construction of auxiliary measures mg, ¢ € R (so
called Gibbs measures) which satisfy m,(a) ~ m(a)?|a|™@ for every a €

M (here |a| =7 if a € M,,).

Lemma 5.7. Let ¢ € R. There exists a probability measure my and a
constant ¢ > 1 such that

1
YaeM, —m(a)q|a|7(q) < my(a) < cm(a)qmr(q).
c
The measure mq is called the Gibbs measure at state q.

Proof: In [Mic83|, Michon proposed a construction of such measures.
Let us present a simpler proof.

Let us introduce some notation. If F; and Fy are two functions which
depend on ¢ and on cylinders in M = J,, M,,, we will write F} = F, if
there exists a constant C' > 0 which eventually depends on ¢ but which
does not depend on the cylinders such that %Fl < F5 < CFi. Let us
first observe that

(P Tnsp(a) — Z m(ab)? ~ Z Z b)? = ¢ (@) pp7o(a)

a€M.,, beM,, a€EM,, bEM,,

Let p, be the unique measure such that

pin(a) = m(a)?|a|™ D = m(a)2¢~"™(9 if 4 € M,, and which is homoge-
nous on the cylinders of M,,. The measure p,, is a probability measure.
If a € M,, and if p > 1, we have

Pntp(a Z Hntp(ab)
bEM,
= Z m(ab)?0= (TP Tarn(0)
bEM,,
a)1g—nn(a) Z b)2¢—Pe(a)
beEM,,

= m(a)qﬁ_m"(q).
Moreover, we saw in (38) that £77(9) ~ ¢*7(9) Finally,
VaeM,, Yk>n, u(a)=m(a) "D =ma)?a @
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Let mq be an adherent value of the sequence (px)r>1. The function 1,
being continuous on the Cantor set C, we can take the limit and obtain

1
(43) VaeM, - m(a)?)a|™? < my(a) < em(a)a]™@,
which finishes the proof of Lemma 5.7. O

We can now prove Theorem 5.6. An elementary computation shows
that the function 7 associated with the measure m, (which is denoted
by 74) satisfies:

7q(t) = 7(qt) — t7(q).
Moreover,

myg(ab) ~ m(ab)?|ab|" V) ~ [m(a)m (b)) (jal[b)™ @ ~ my(a)mq(b),

which says that m, is a quasi-Bernoulli measure. The existence of 7, (1)
proves the existence of 7/(¢) and the relation

—1,(1) = —q7'(q) + 7(q) = 7" (—=7'(9))-

Let « = —7'(q). Inequality (43) ensures that

E, = {x e tim —08Man(®) —75(1)} .

n—oo n
Finally, Relation (41) written for the measure m, gives

dim(Eq) = dim(mg) = —7,(1) = 7% ().

Of course, we need another argument to prove the existence of 7/(0).
Taking the logarithm in (38), we have

ra(a) — 7la)] < A18eC

In particular, 7,,(0) = 7(0) and we deduce that
(@) =72 (0) _ 7(q) —7(0)| _ log, C

q q oon
If g— 0% and ¢ — 0™, we get
log, C
[72.(0) - 71(0)] < ==
log, C
|7 (0) — 7. (0)| < =22
n

and we can conclude that 7/ (0) = 7 (0). O
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5.5. Coming back to the case of Bernoulli products.

Let us finish this paper by applying the previous results to the Ber-
noulli products which are the simplest cases of quasi-Bernoulli measures.
The notations are the same as in Part 1 and m is a Bernoulli product
with parameter p. Let

. logm(In(x)) . Sn
Ea = {x, nh—>ngo log |I,(z)| @ and  F = {x, nh—>ngo n 6}

Let us remember that the quantities m(I,(x)) and s,, satisfy the relation
m(Iy(x)) =p* (1 —p)" "

So, if 0 < 8 <1 andif a = —pflogyp— (1 — B)logy(1 — p), we have
E, = Fg. Moreover, let us remark that the sets Fi are empty if § ¢ [0, 1].
It follows that the sets E, are empty if o & [—logy p, —logy (1 — p)].

Let 113 be Bernoulli product with parameter 3. The results of Part 1
say that

dim (pg) = dim (Fp) = h(B) = —(Blogy(B) + (1 — B) logy(1 — 3))
and we can write
dim (Eq) = —(Blogy(B) + (1 — B8) logy (1 — 3))

where
a = —(Blogyp + (1 — B)logy(1 —p)).

In other words,
. a +logy(1 —p) >

44 dim(E,) =h

s (Z) <10g2(1 —p) — log,(p)

where h(t) = —tlogyt — (1 —t)log,(1 — t).

Remark 8. We know that 7(q) = log, (p?+ (1 —p)?). Another way
to obtain (44) is to calculate the Legendre transform 7* and to use
Theorem 5.6.

Remark 9. If a = —(Blogyp + (1 — ) logy(1 — p)) and if ¢ is such that
a = —7'(q), it is easy to show that pg is nothing else but the Gibbs
measure at state ¢ for the measure m (see Lemma 5.7).

Acknowledgements. The author wants to thank Claude Tricot for his
careful reading of the manuscript and the referee for useful remarks and
comments on the previous version of the paper.



[Bar99]

[Bar00a]

[Bar00b]

[Bat96]

[BH02]

[Bed&6)

[Bed91]

[Ben94]

[BBH02

[Bes35]

[Bil65]
[Bis95]

[BK9O]

[Bou87]

ON DIMENSION OF MEASURES 285

References

J. BARRAL, Moments, continuité, et analyse multifractale
des martingales de Mandelbrot, Probab. Theory Related Fields
113(4) (1999), 535-569.

J. BARRAL, Differentiability of multiplicative processes related
to branching random walks, Ann. Inst. H. Poincaré Probab.
Statist. 36(4) (2000), 407-417.

J. BARRAL, Continuity of the multifractal spectrum of a
random statistically self-similar measure, J. Theoret. Probab.
13(4) (2000), 1027-1060.

A. Batakis, Harmonic measure of some Cantor type sets,
Ann. Acad. Sci. Fenn. Math. 21(2) (1996), 255-270.

A. BATAKIS AND Y. HEURTEAUX, On relations between en-
tropy and Hausdorff dimension of measures, Asian J. Math.
6(3) (2002), 399-408.

T. BEDFORD, Dimension and dynamics for fractal recurrent
sets, J. London Math. Soc. (2) 33(1) (1986), 89-100.

T. BEDFORD, Applications of dynamical systems theory to
fractals-a study of cookie-cutter Cantor sets, in: “Fractal ge-
ometry and analysis” (Montreal, PQ, 1989), NATO Adv. Sci.
Inst. Ser. C Math. Phys. Sci. 346, Kluwer Acad. Publ., Dor-
drecht, 1991, pp. 1-44.

F. BEN NASR, Analyse multifractale de mesures, C. R. Acad.
Sci. Paris Sér. I Math. 319(8) (1994), 807-810.

F. BEN NASR, I. BHOURI AND Y. HEURTEAUX, The valid-
ity of the multifractal formalism: results and examples, Adv.
Math. 165(2) (2002), 264-284.

A. S. BesicoviTcH, On the sum of digits of real numbers
represented in the dyadic system, Math. Ann. 110(1) (1935),
321-330.

P. BILLINGSLEY, “Ergodic theory and information”, John Wi-
ley & Sons, Inc., New York-London-Sydney, 1965.

A. BisBAS, A multifractal analysis of an interesting class of
measures, Collog. Math. 69(1) (1995), 37-42.

A. BisBas AND C. KARANIKAS, On the Hausdorff dimen-
sion of Rademacher Riesz products, Monatsh. Math. 110(1)
(1990), 15-21.

J. BOURGAIN, On the Hausdorff dimension of harmonic
measure in higher dimension, Invent. Math. 87(3) (1987),
477-483.



286

[BHO0]

[BMP92]

[Car85)]

[CM92]

[Cut86]

[Cut90]

[Cut95]

[Edg98]

[EM92]

[Egg49]

[Fal90]
[Fal97]
[Fan94]

[Fen03]

[Fen05]

Y. HEURTEAUX

T. BouscH AND Y. HEURTEAUX, Caloric measure on domains
bounded by Weierstrass-type graphs, Ann. Acad. Sci. Fenn.
Math. 25(2) (2000), 501-522.

G. BrROWN, G. MICHON AND J. PEYRIERE, On the multi-
fractal analysis of measures, J. Statist. Phys. 66(3—4) (1992),
775-790.

L. CARLESON, On the support of harmonic measure for sets of
Cantor type, Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985),
113-123.

R. CAwWLEY AND R. D. MAULDIN, Multifractal decomposi-
tions of Moran fractals, Adv. Math. 92(2) (1992), 196-236.
C. D. CUTLER, The Hausdorff dimension distribution of finite
measures in Euclidean space, Canad. J. Math. 38(6) (1986),
1459-1484.

C. D. CUTLER, Connecting ergodicity and dimension in
dynamical systems, Ergodic Theory Dynam. Systems 10(3)
(1990), 451-462.

C. D. CUTLER, Strong and weak duality principles for fractal
dimension in Euclidean space, Math. Proc. Cambridge Philos.
Soc. 118(3) (1995), 393-410.

G. A. EDGAR, “Integral, probability, and fractal measures”,
Springer-Verlag, New York, 1998.

G. A. EDGAR AND R. D. MAULDIN, Multifractal decomposi-
tions of digraph recursive fractals, Proc. London Math. Soc. (3)
65(3) (1992), 604-628.

H. G. EGGLESTON, The fractional dimension of a set defined
by decimal properties, Quart. J. Math., Ozford Ser. 20 (1949),
31-36.

K. FALCONER, “Fractal geometry. Mathematical foundations
and applications”, John Wiley & Sons, Ltd., Chichester, 1990.
K. FALCONER, “Techniques in fractal geometry”, John Wiley
& Sons, Ltd., Chichester, 1997.

A. H. FAN, Sur les dimensions de mesures, Studia Math.
111(1) (1994), 1-17.

D.-J. FENG, Smoothness of the L%-spectrum of self-similar
measures with overlaps, J. London Math. Soc. (2) 68(1)
(2003), 102-118.

D.-J. FENG, The limited Rademacher functions and Bernou-
1li convolutions associated with Pisot numbers, Adv. Math.
195(1) (2005), 24-101.



[FLO2]

[FO03)]

[FPS85]

[LNO4]

[Heu95]

[Heu98]

[Heu99]

[HLO1]

[Hut81]

[TWS8S]

[KP76]

[Kin95]

[LNOS]

ON DIMENSION OF MEASURES 287

D.-J. FENG AND K.-S. LAU, The pressure function for prod-
ucts of non-negative matrices, Math. Res. Lett. 9(2—3) (2002),
363-378.

D.-J. FENG AND E. OLIVIER, Multifractal analysis of weak
Gibbs measures and phase transition-application to some Ber-
noulli convolutions, Ergodic Theory Dynam. Systems 23(6)
(2003), 1751-1784.

U. FriscH AND G. PARISI, On the singularity structure of
fully developed turbulence, in: “Turbulence and predictabil-
ity in geophysical fluid dynamics”, Proceedings of the Interna-
tional Summer School in Physics Enrico Fermi, North Holland,
Amsterdam, 1985, pp. 84-88.

J. GONZALEZ LLORENTE AND A. NICOLAU, Regularity prop-
erties of measures, entropy and the law of the iterated loga-
rithm, Proc. London Math. Soc. (3) 89(2) (2004), 485-524.
Y. HEURTEAUX, Sur la comparaison des mesures avec les
mesures de Hausdorff, C. R. Acad. Sci. Paris Sér. I Math.
321(1) (1995), 61-65.

Y. HEURTEAUX, Estimations de la dimension inférieure et de
la dimension supérieure des mesures, Ann. Inst. H. Poincaré
Probab. Statist. 34(3) (1998), 309-338.

Y. HEURTEAUX, Présentation de travaux en vue de I'habili-
tation & diriger des recherches, Technical report, Orsay (1999).
T.-Y. Hu anD K.-S. LAu, Multifractal structure of convolu-
tion of the Cantor measure, Adv. in Appl. Math. 27(1) (2001),
1-16.

J. E. HUTCHINSON, Fractals and self-similarity, Indiana Univ.
Math. J. 30(5) (1981), 713-747.

P. W. JoneEs AND T. H. WoLFrF, Hausdorff dimension of
harmonic measures in the plane, Acta Math. 161(1-2) (1988),
131-144.

J.-P. KAHANE AND J. PEYRIERE, Sur certaines martin-
gales de Benoit Mandelbrot, Advances in Math. 22(2) (1976),
131-145.

J. F. KiNG, The singularity spectrum for general Sierpinski
carpets, Adv. Math. 116(1) (1995), 1-11.

K.-S. LAU AND S.-M. Ncal, Li-spectrum of the Bernoulli
convolution associated with the golden ratio, Studia Math.
131(3) (1998), 225-251.



288
[LN99)]

[LN00]

[Lop89]

[Mak85]

[Mak98]

[MVS6]

[Man74]

[Mat95)

[MWSS]

[McMs4]
[Mic83]

[Nga97]

[Ols95]

[O1s98]

Y. HEURTEAUX

K.-S. LAau AND S.-M. Ncai, Multifractal measures and a
weak separation condition, Adv. Math. 141(1) (1999), 45-96.
K.-S. Lau AND S.-M. N@GAI, Second-order self-similar identi-
ties and multifractal decompositions, Indiana Univ. Math. J.
49(3) (2000), 925-972.

A. O. LopPgs, The dimension spectrum of the maximal mea-
sure, SIAM J. Math. Anal. 20(5) (1989), 1243-1254.

N. G. MAKAROV, On the distortion of boundary sets un-
der conformal mappings, Proc. London Math. Soc. (3) 51(2)
(1985), 369-384.

N. G. MAKAROV, Fine structure of harmonic measure, Alge-
bra i Analiz 10(2) (1998), 1-62; translation in St. Petersburg
Math. J. 10(2) (1999), 217268 .

N. G. MAKAROV AND A. VOLBERG, The harmonic measure
of discontinous fractals, Preprint LOMI E-6-86, Lenningrad
(1986).

B. B. MANDELBROT, Intermittent turbulence in self-similar
cascades: divergence of high moments and dimension of the
carrier, J. Fluid Mech. 62 (1974), 331-358.

P. MATTILA, “Geometry of sets and measures in Euclidean
spaces”, Fractals and rectifiability, Cambridge Studies in Ad-
vanced Mathematics 44, Cambridge University Press, Cam-
bridge, 1995.

R. D. MAuLDIN AND S. C. WiLLiAMS, Hausdorff dimen-
sion in graph directed constructions, Trans. Amer. Math. Soc.
309(2) (1988), 811-829.

C. MCMULLEN, The Hausdorff dimension of general Sierpinski
carpets, Nagoya Math. J. 96 (1984), 1-9.

G. MicHON, Mesures de Gibbs sur les Cantor réguliers, Ann.
Inst. H. Poincaré Phys. Théor. 58(3) (1993), 267-285.
S.-M. N@GAI, A dimension result arising from the L9-spec-
trum of a measure, Proc. Amer. Math. Soc. 125(10) (1997),
2943-2951.

L. OLSEN, A multifractal formalism, Adv. Math. 116(1)
(1995), 82-196.

L. OLSEN, Self-affine multifractal Sierpinski sponges in R¢,
Pacific J. Math. 183(1) (1998), 143-199.



[O1s00]

[Pey92]

[Rans9]
[Rie95]
[RT59]
[Rue8?2]

[Tes04]

[Tes05]

[Tes06a)

[Tes06b]
[Tri82]

[Urb90]

[Ye05)
[Yous2]

[Zin97]

ON DIMENSION OF MEASURES 289

L. OLSEN, Dimension inequalities of multifractal Hausdorff
measures and multifractal packing measures, Math. Scand.
86(1) (2000), 109-129.

J. PEYRIERE, Multifractal measures, in: “Probabilistic and
stochastic methods in analysis, with applications” (Il Ciocco,
1991), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 372,
Kluwer Acad. Publ., Dordrecht, 1992, pp. 175-186.

D. A. RAND, The singularity spectrum f(«) for cookie-cut-
ters, Ergodic Theory Dynam. Systems 9(3) (1989), 527-541.
R. RIEDI, An improved multifractal formalism and self-similar
measures, J. Math. Anal. Appl. 189(2) (1995), 462-490.

C. A. ROGERS AND S. J. TAYLOR, The analysis of additive set
functions in Euclidean space, Acta Math. 101 (1959), 273-302.
D. RUELLE, Repellers for real analytic maps, Ergodic Theory
Dynamical Systems 2(1) (1982), 99-107.

B. TESTUD, Etude d’une classe de mesures autosimilaires: cal-
culs de dimensions et analyse multifractale, PhD. thesis, Uni-
versité Blaise Pascal (2004).

B. TesTUD, Transitions de phase dans ’analyse multifrac-
tale de mesures auto-similaires, C. R. Math. Acad. Sci. Paris
340(9) (2005), 653-658.

B. TESTUD, Mesures quasi-Bernoulli au sens faible: résultats
et exemples, Ann. Inst. H. Poincaré Probab. Statist. 42(1)
(2006), 1-35.

B. TESTUD, Phase transitions for the multifractal analysis of
self-similar measures, Nonlinearity 19(5) (2006), 1201-1217.
C. Tricor, JR., Two definitions of fractional dimension,
Math. Proc. Cambridge Philos. Soc. 91(1) (1982), 57-74.

M. UrBANSKI, The Hausdorff dimension of the graphs of con-
tinuous self-affine functions, Proc. Amer. Math. Soc. 108(4)
(1990), 921-930.

Y .-L. YE, Multifractal of self-conformal measures, Nonlinear-
ity 18(5) (2005), 2111-2133.

L. S. YouNngG, Dimension, entropy and Lyapunov exponents,
Ergodic Theory Dynamical Systems 2(1) (1982), 109-124.
M. ZINSMEISTER, “Formalisme thermodynamique et systemes
dynamiques holomorphes”, Panoramas et Syntheses 4, Société
Mathématique de France, Paris, 1996.



290 Y. HEURTEAUX

Laboratoire de Mathématiques, UMR 6620

Université Blaise Pascal

F-63177 Aubiere

France

E-mail address: Yanick.Heurteaux@math.univ-bpclermont.fr

Primera versié rebuda el 18 d’octubre de 2006,
darrera versié rebuda el 16 de febrer de 2007.



