
Chapter 1
Further Topics in Computable Analysis

Introduction

This chapter starts where Chapter 0 leaves off, but involves a transition to more
difficult topics. It begins with differentiation and the classes Cn, 1 ^ n ^ oo, and
progresses through the computable theory of analytic functions. It concludes with
a general theorem on "translation invariant operators" which subsumes several of
our previous results. We continue to use the "Chapter 0" notion of computability
for continuous functions.

Naively, one might suppose that since the derivative, the operations of complex
analysis, etc. are given by formulas, they should be computable. Of course, as we
know, this is not necessarily the case. In fact, it is not always easy to guess what the
results should be. Consider, for example, differentiation, the topic of Section 1. If
a computable function possesses a continuous derivative, is the derivative necessarily
computable? The answer turns out to be no. This raises the question: are there
regularity conditions which we can impose on the initial computable function
(e.g. being Cn for some fixed rc, or C00) which insure the computability of the
derivative. Here the answer is yes. The problem is to find the right conditions.

Theorem 1, essentially due to Myhill [1971], asserts that there exists a computable
C 1 function whose derivative is not computable. Theorem 2, due to the authors
[1983a], asserts that, on the other hand, if the initial function is C2, then the
derivative is computable. Thus the cutoff point must lie somewhere between C 1 and
C2. Where is it located? We give a slight strengthening of MyhilΓs example, which
shows that the function / can be twice differentiable (but not continuously so)
and still give a noncomputable / ' . Hence the cutoff is pinned between "twice
differentiable" (Theorem 1) and "twice continuously differentiable" (Theorem 2).

A curious result which emerges from Theorems 1 and 2 is the following: There
exists a function on [0, 1] which is effectively continuous at each point of [0, 1] but
not effectively uniformly continuous on [0, 1] (Corollary 2b). Thus the classical
theorem that a continuous function on a compact set is uniformly continuous does
not effectivize.

An immediate consequence of Theorem 2 (Corollary 2a) asserts that if a computable
function / is C00, then each derivative fin) is computable. This raises the question:
Is the sequence of derivatives {/(w)} computable, effectively in nΊ The answer is no,
as we show in Theorem 3 (cf. Pour-El, Richards [1983a]).
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We turn now to Section 2, on analytic functions. Let / be a computable function
which is analytic (but with no computability assumptions on its derivatives). Here,
in contrast to the C00 case, everything effectivizes—at least for compact domains. In
particular, the sequence of derivatives {/(/l)} and the sequence of Taylor coefficients
are computable. Surprisingly enough, even analytic continuation is computable.
These results are spelled out in Proposition 1.

In view of the rather pervasive effectiveness cited above, the following result seems
a bit surprising. There exists an entire function which is computable on every
compact disk, but not computable over the whole complex plane (Theorem 4).

Section 3 presents the Effective Modulus Lemma (Theorem 5), a technical result
which is useful for the creation of counterexamples. We use it to produce a con-
tinuous function / which is sequentially computable—i.e. / maps every computable
sequence {xn} onto a computable sequence {/(*„)}—but such that/is not comput-
able (Theorem 6). A second application, involving the wave equation, is cited
without proof (cf. Pour-El, Richards [1981]).

The chapter closes with Section 4, translation invariant operators. The section
begins with a detailed account of translation invariance. Many of the standard
operators of analysis and physics are translation invariant. We prove a theorem
about these operators (Theorem 7) which has several applications. In particular,
Theorem 2 from Section 1 is an immediate corollary of Theorem 7. So too are the
extensions of Theorem 2 to partial derivatives. A deeper application of Theorem 7
involves weak solutions of the wave equation (Theorem 8).

1. Cn Functions, 1 ^ n < oo

lΊere we present the key results about the computability theory of derivatives, as
outlined in the introduction to this chapter.

Note. We recall that a function /, of one or several variables, is said to be Cn if all
derivatives of order ^ n exist and are continuous. We say that / is C00 if / is Cn for
aίlln.

As noted above, our first theorem is essentially due to Myhill [1971].

Theorem 1 (Noncomputability of the derivative for a computable C1 function).
There exists a computable function f on [0, 1] such that f is C1, but the derivative

f is not computable. Furthermore, the function f can be chosen to be twice differenti-

able {but not twice continuously differentiable).

Proof We begin by describing the derivative f'{x\ and then obtain f(x) by
integration:

[X

Jo
= [f'(u)du.
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The derivative fl(x) will be a superposition of countably many "pulses", and we 
start by taking a canonical Cm pulse function cp(x): 

e-x21(1-x2) for 1x1 < 1 
for 1x1 2 1. 

Then cp E Cm, cp has support on [- 1, 11, and cp(0) = 1. The sequence of derivatives 
{cp(")(x)) is computable, effectively in n. 

Let a: N -+ N be a one-to-one recursive function listing a recursively enumerable 
nonrecursive set A. We can assume that 0 4 A. Define the n-th pulse cp,(x) by: 

Then cp,(x) is a pulse of height 1 and half width 2-("+a(")+2), centered on the point 
= 2-0'") 

We now give a (noneffective) description of the derivative f '(x): 

We observe that the sequence of partial sums 

is computable, effectively in n, since the sequences (4-"("'1 and {cp,(x)) are both 
computable. Moreover, f,'(x) -t f'(x) uniformly (although not necessarily effectively) 
as n -+ co, since a(n) gives a one-to-one listing of the set A, and hence the series 
converges uniformly by comparison with the series C4-". Thus the limit function 
f '(x) is continuous. 

We assert that f '(x) is also differentiable (although its derivative is discontinuous). 
For the individual pluses cp, are Cm and their supports approach the point x = 0. 
Hence f '(x) is differentiable except perhaps at x = 0. 

We now show that near x = 0 the graph of f'(x) is bounded between the two 
parabolas y = f 4x2. As a first step, we observe that the pulses 4-"(")(p,(x), centered 
at the points x = 2-"("), have heights y = 4-"(") = x2 when x = 2-"("). However, the 
pulses have finite width, and we cannot just consider the central point x = 2-"("). 
But the half-width of the pulse is < (112). 2-"(") (with room to spare), and so for any 
point x in support(cp,), x > (1/2).2-"("). Thus, for any such x, 2x 2 2-"("), and 
4x2 > y 4-"(") = amplitude of n-th pulse. 

Since f '(x) is bounded between the two parabolas y = f 4x2, f "(0) exists and is 
zero. Hence f '(x) is differentiable at all points. 

To complete the proof, we must show that f '(x) is not computable, but that its 
antiderivative f(x) is computable. We begin with fl(x). As a first step, we observe 
that the pulses cp, in the series for f '  have disjoint supports. For the half-width of 
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φn is 2-{n+ain)+2) ^ 2"α ( π )- 2, whereas the pulse-center x = 2"fl(M) differs from its near-
est possible neighbor x = 2~a(n)~ί by a distance of 2~α(n)~1.

Recall that each pulse φn, centered at x = 2~a(n\ has height 1 and is multiplied by
4"α(π). Hence the value off\x) at the point x = 2~a is given by:

f(2~a) =
[0 otherwise.

That is, /'(2"fl) = 4~a tiaeA, and f\2~a) = 0ϋaφA.
The sequence of values {/'(2~fl)}, a = 0, 1, 2,. . . , is not a computable sequence

of reals. For suppose it were. Then there would exist a computable double sequence
of rationals {rak} such that \rak — f'(2~a)\ ^ 2~k for all k and a (Definition 5a,
Section 2, Chapter 0). From this we could derive the computable rational sequence
{r̂ } given by r'a = r f l,2fl+2, and we would have \r'a - / '(2" f l) | ^ (l/4) 4"fl for all a.
Since {r'a} is a computable rational sequence, exact comparisons involving {r'a} can
be made effectively. This would give a decision procedure for the set A. as A if
r'a ̂  (l/2)4~~fl, and a φ A otherwise. Since A is not recursive, this is a contradiction.

Now we recall (Definition A in Chapter 0) that a computable function must be
sequentially computable. Since {2~a} is a computable sequence of reals which is
mapped by / ' onto a noncomputable sequence {/'(2~fl)}, the function / ' is not
computable.

To show that the antiderivative f(x) is computable, we reason as follows. Since
the fl-th pulse 4~a(n)φn(x) has height ^4~ f l ( π ), and since this pulse has half-width
2~("+α(π)+2), its antiderivative

Φn(x) = I 4-ain)φn(u) du ^ (4"α ( w ))(2 2-{n+a{n)+2)) ^ 2~n.
Jo

Hence the series for /(x),

00

f(x) = X Φk(x),

φnverges uniformly and effectively by comparison with Y^2~k. Furthermore the
sequence of summands (Φfc(x)} is computable. Hence by Theorem 4 in Chapter 0,
/ is computable. This proves Theorem 1. •

In the opposite direction, we have:

Theorem 2 (Computability of the derivative for computable C 2 functions). Let
[a, b~\ be an interval with computable endpoints. Let fbe a computable function on
[a, b] which is C2. Then the derivative f is computable. Moreover, the hypothesis that

f is C2 could be replaced by the weaker hypothesis that f is effectively uniformly
continuous.

Before proving Theorem 2 we give two corollaries.
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Corollary 2a (Computability of each derivative of a computable C00 function). ///
is computable on [α, ft] and f is C00—i.e. infinitely differ-entίable—then the n-th
derivative fin) is computable for each fixed n.

Proof This is an immediate consequence of Theorem 2. •

For the next corollary, we need a definition of "pointwise effective continuity".
As expected, a function g is effectively continuous at a point x if there is a recursive
function d: N -> N such that \y - x\ ^ l/d{N) implies \g(y) - g(x)\ ^ 2~N. A func-
tion which is effectively continuous at each point of its domain will be called, for
simplicity, "effectively continuous".

Corollary 2b (Effective continuity does not imply effective uniform continuity).
There exists a function g on [0, 1] which is effectively continuous at each point
x e [0, 1], but which is not effectively uniformly continuous.

Proof We combine the results of Theorems 1 and 2. By Theorem 1, there exists a
computable function / on [0, 1] whose derivative / ' is itself differentiable but not
computable. Let g = / ' .

By Theorem 2, g is not effectively uniformly continuous. For this theorem asserts
that if g = f were effectively uniformly continuous, then it would be computable,
which it is not.

On the other hand, since g is differentiable, it is effectively continuous at each
point x. To see this: Fix x. Let c = g'(x). Then lim [(g(y) — g(x))/(y — x)] = c. Let

M be an integer with M ^ \c\ + 1. Then for all points y sufficiently close to x,
\g(y) — g(x)\ ^ M\y — x\. (The points y which are not close to x are irrelevant.) Thus
to achieve \g(y) - g(x)\ ^ 2~N

9 it suffices to take \y - x\ ^ 1/M 2N, so that an
effective modulus of continuity is given by d(N) = M 2N. •

Proof of Theorem 2. First we verify that if / is C2, then / ' is effectively uniformly
continuous. For if f" is continuous, then there is some integer M with |/"(x)| ^ M
for all x e [a, ft]. Then, by the Mean Value Theorem, / ' satisfies

\f'(x)-Γ(y)\^M'\x-y\

for all x, y e [α, ft]. Hence / ' is effectively uniformly continuous.
From here on, we will merely assume that / ' is effectively uniformly continuous.

This means (cf. Definition A in Chapter 0) that there is a recursive function d(N)
such that, for all x, y G [a, ft], |x - y\ ^ l/d(N) implies |/'(x) - f\y)\ ^ 2~N. We can
assume that d(N) is a strictly increasing function.

The assertion (*) below is a technicality, but it must be dealt with. The problem,
of course, is to keep ykN within the interval [α, ft], since we cannot decide effectively
which of the boundary points α, ft is closer to xk.

(*) Let {xk} be a computable sequence of real numbers in [α, ft]. Then there exists an
integer No and a computable double sequence {ykN}, ykN e [α, ft], such that for each k
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and N ^ No,

. , _ 1 '
eitner VkN — ^t ~ττ r or Vtv — -̂ t *

d(JV) ykN k

Proof of (*). First we find suitable rational approximations to the computable reals
α and ft, and to the computable real sequence {xk}. For α and b, we merely
observe that there exist rational numbers A and B with |α — A\ ^(b — α)/1000 and
\b — B\ *ζ (b - α)/1000. For {xk}> we readily deduce from Definition 5a, Section 2,
Chapter 0, that there exists a computable sequence of rationals {Xk} with \Xk —
xk\ ^ (b - α)/1000 for all k. We also choose No so that N ^ No implies l/d(N) ^
(b — α)/1000. Now, working with the computable rational sequence {Xk}, we set
ykN = xk + (l/d(N)) if Xk is closer to ,4 than to 5, and set yfcN = xk — (l/d(N))
otherwise. This is an effective procedure which satisfies all of the conditions set down
in (*). •

Now we come to the body of the proof. We want to show that / ' is computable,
and by Definition A in Chapter 0, this means that / ' is (i) sequentially computable
and (ii) effectively uniformly continuous. We have (ii) by hypothesis. Now, as we
recall, (i) means that if {xk} is a computable sequence, then {ff{xk)} is computable.
To compute {f'(xk)}> we proceed as follows:

Take {ykN} as in (*) above. Recall that the points ykN are approximations to the
xk, lying either above or below xk and spaced an exact distance l/d(N) away from
xk. Now consider the difference quotients

n
kN ~

Since the function / itself is computable, {DkN} is computable, effectively in k and
N. Now by the mean value theorem,

DkN=Γ(ξ)

for some ξ = ξkN between xk and ykN. (It makes no difference here whether we
can compute ξ effectively or not. It suffices that ξ exists.) By definition of ykN, the
distance \ykN — xk\ = l/d(N), and hence \ξ — xk\ < l/d(N). Finally, by definition of
the modulus of continuity d(N), \ξ - xk\ < \/d{N) implies \f'{ξ) - f'(xk)\ ^ 1/2N.
Hence

\DkN-ff(xk)\ = \f'(ξ)-f'(Xk)\ < 1/2N.

Thus the computable sequence {DkN} converges to {ff(xk)} as N -> oo, effectively
in N and k. Hence {fr(xk)} is computable, as desired. This proves Theorem 2. •

Theorem 3 (Noncomputability of the sequence of n-th derivatives). There exists a
computable function jon [— 1, 1] which is C00, but for which the sequence of derivatives
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{/(π)(x)} is not computable. In addition, fcan be chosen so that the sequence of values
{|/(w)(0)|} is not bounded by any recursive function ofn.

Proof Take a one-to-one recursive function a: N -• N which generates a recursively
enumerable nonrecursive set A. We assume that 0, 1 φ A. Let w(n) be the "waiting
time"

w(ή) = max{m: a(m) < n)

defined in Chapter 0, Section 1. As we saw in Chapter 0, w(n) is not bounded above
by any recursive function. (Otherwise, as we recall, there would be an effective
procedure for deciding whether or not an arbitrary integer belongs to A.)

We shall construct a computable C00 function / such that \f(n)(0)\ ^ w(n) when-
ever w(tt) ^ n. The exceptional cases where w(n) < n are of no interest, since we know
that w(n) is not bounded above by any recursive function, and clearly this failure to
be recursively bounded cannot involve those values n for which w(n) < n.

We define Rn recursively by setting Ro = 1,

(Although we do not need to know the exact size of Rn9 we observe that 2nl

Rn ^ 2nn for n ^ 1.)
We now construct the desired function /. Let

f(x)= Σ
k=o

By Theorem 4 of Chapter 0, / is computable, since the terms of the series are
computable (effectively in fe), and the series is effectively uniformly convergent (being
dominated by R^1 since 0,1 φ A and thus a(k) ^ 2).

For fixed n, the series for the n-th derivative is also effectively uniformly con-
vergent: since the series is

and a(k) ^ n + 1 for only finitely many k. Thus, again by Theorem 4 of Chapter 0,
f{n)(x) exists and is a computable function. In particular, since fin) exists for all n, /
isC0 0.

We now show that |/ ( π )(0)| ^ w(n) for w{n) ̂  n ^ 3. Take such an n, and for
convenience set

m = w(n).

In the series for / (π)(x), the m-th term (which turns out to dominate all of the others) is

#m+1~α(m) {±sinorcos( )}.
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Hence |(m-th term)(x = 0)| = R^1 a{ m)J\β, since the sin or cos is evaluated at π/4.
Since a(m) ^ n (by definition m = w(ή) is the last k for which a(k) ^ n), we obtain

We must show that the sum of all other terms in the series for f(n)(x) is smaller than
the m-th term. Consider first the previous terms, involving k < m. These terms

Rn

k

+1~a{k)' {±sin or cos( )}, k < m,

are dominated by R% (since a(k) ^ 2), and K£ ^ R% (here we use the fact that
m = w(n) ^ n). Furthermore, there are m such terms. Since Rm = 2mR™_1, the sum
of these previous terms (i.e. the terms with k <m) has absolute value at most Rm/2.
Since JΪ/2 - (1/2) > 1/10,

I m-th term I —
m - l

k=O

(fc-thterm)

Now consider the terms with k> m. These give a(k) ^ n + 1 (again since m = w(n)
is the last k for which a{k) ^ n). For at most one value of k is a(k) = n + 1. Otherwise

> n + 1, and the exponent n + 1 — a(k) in

Λϊ+ 1"β ( k ) {±sinorcos( )}

is negative. We bound the possible term with a(k) = n + 1 by Λj = 1, and the sum
OO

of the other terms (with k> m) by £ K*:1 ^ 1 (since Kk ^ 2fc). Thus the effect of all
k = l

terms with k > m is dominated by 1 + 1 = 2. Hence for /(w)(0), which is the sum of
all the terms (with k = m,k < m, and k > m):

| / ( ) | ^ ( M / ) - 2.

Now for m = w(n) ^ n ^ 3,

(Λm/10) - 2 > m.

(In fact, since Λm ^ 2m!, this inequality is absurdly weak.) Combining the last two
displayed inequalities, we have, for w(n) ^ n ^ 3:

|/<w)(0)| ^ m = vφ),

as desired. This proves Theorem 3. •

The final remarks in this section all relate to Theorem 2. As we recall, this theorem
gives conditions under which the derivative is computable (i.e. if / is computable
and C2, then / ' is computable).
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Partial derivatives. Theorem 2 extends in an obvious way to partial derivatives. Thus
if /(x, y) is computable and C 2 on a computable rectangle in IR2, then df/dx and
df/dy are computable. If /(x, y) is computable and C00 on this rectangle, then each
partial derivative

dm+nf

dxm dyn

is computable. Similar results hold for Uq, q > 2.
In Section 4 we give a general result (Theorem 7) from which Theorem 2,

its extension to partial derivatives, and numerous other results are immediate
corollaries.

It is natural to ask whether Theorem 2 extends (A) to noncompact domains, or
(B) to sequences of functions. The answer is "no" in both cases, as the following two
remarks show.

Remark A (The noncompact case). Theorem 2 breaks down if the domain [α, b~\ is
replaced by U. For there exists a C00 function / on IR which is computable on IR (in
the sense of Definition A" of Chapter 0), but such that /'(x) is not computable on U.

Here is the construction of/. Start with the C00 function φ used in the proof of
Theorem 1 above. Let φ(x) = φ[x - (1/2)], so that φ'{0) = c> 0. Set φk(x) =
(l/k)'φ(k2x% so that φk has amplitude 1/fe but φ'k has amplitude = Const -k. As
previously, let α: N -> f̂J be a recursive function generating a recursively enumerable
nonrecursive set A in a one-to-one manner. Let

oo

Then it is easy to verify that / is C00 and computable on IR.
We now show that /'(x) is not computable. This is done by showing that the

sequence {f'{n)} is not computable. Let k ^ 2. Then

otherwise.

Suppose {/'(π)} were computable. Then, since φ'( —1/2) is computable, the sequence
{μn} where

would also be computable. Hence A would be recursive. For n e A if and only
if one of the following holds: n = a(0) or n = a(l) or μn ^ 2. Thus we have a
contradiction. •
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It is interesting to note that the sequence {f'(n)} grows faster than any recursive
function. For, except for a finite number of values,

max/'(p) = max (kφ'(-\/2)) = φ'(-l/2)w(n),

where w(n) = max {fe: a(k) ̂  n} is the function defined in the Waiting Lemma of
Chapter 0, Section 1. As we showed there, w(n) grows faster than any recursive
function of n.

Remark B (Sequences of functions). Theorem 2 also breaks down for sequences of
functions. For there exists a computable sequence {fk} on [0, 1], such that each fk

is C00, but the sequence of derivatives {fk'} is not computable.

To construct this example, simply take the function / from Remark A and set

ΛW = f(x + k), 0 < x < 1. D

A final note. The explanation of the pathological behavior exhibited in Remarks A
and B above is that, in both cases, there is a noncompact domain. In Remark A the
domain is U; whereas in Remark B the sequence {fk} can be viewed as a function
on the noncompact set [0, 1] x IU

We will see further instances of these phenomena in the section which follows.

2. Analytic Functions

Here we deal with the computability theory of analytic functions of a complex
variable. In what follows, the function / will be assumed to be analytic on some
region Ω in the complex plane, and we will also assume that / is computable in the
sense of Chapter 0 (details to follow). However, we do not assume that /is "comput-
ably analytic"—i.e. we do not assume that the derivatives or the power series
expansion of / are computable. In fact, this assumption is redundant, as we show
in the proposition below.

First some technicalities. In Chapter 0 we defined "computability" for a function
/ whose domain was a computable closed rectangle in Uq—i.e. a rectangle with
computable coordinates for its corners. To do complex analysis, one needs more
general domains. For, in complex analysis, we are usually given a function / which
is analytic on a connected open region Ω. The shape of Ω can be quite complicated,
and frequently / will have no analytic extension beyond Ω. We want to describe
"computability" on arbitrary compact subsets K of Ω. The natural approach,
following Chapter 0, is to begin by defining computability on a closed region Δ
which is a finite union of computable rectangles. Then any compact set K c Q can
be covered by such a region Δ, K c Δ c Ω. Thus:
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Definition, (a) Let Δ ^ C be a finite union of computable rectangles. A function
/ : Δ -• C is called computable if / i s computable on each of the constituent comput-
able rectangles in Δ.

(b) A function / defined on a compact set K ^ C is called computable if / has a
computable extension to a finite union of computable rectangles Δ ^ K.

In the proposition below, we deal with all of the standard themes of elementary
complex analysis, including analytic continuation.

Proposition 1 (Basic facts for analytic functions). Let Ω be an open region in C. Let
f: Ω -» C be analytic in Ω. Suppose f is computable on some computable rectangle D
with nonempty interior, D ^ Ω. Then:

(a) Effective analytic continuation—the function f originally assumed to be comput-
able only on D, is computable on any compact subset K <Ξ Ω.

(b) The sequence of derivatives {f(n)(z)} is computable on K, effectively in n.
(c) For any computable point a e Ω, the sequence of Taylor coefficients off(z) about

z = a is computable.
(d) For any computable point α e Ω and all computable reals M ^ 0, the Taylor

series for f converges effectively and uniformly in any closed disk {\z — a\ ^ M } c Ω.

Note. This result contrasts with Theorem 3 (for C00 functions) in the preceding
section. In Theorem 3, each derivative f(n)(x) was computable, but the sequence of
derivatives was not. Here the entire sequence of derivatives is computable. Of course,
this corresponds to well known distinctions between the properties of C00 functions
and analytic functions.

We observe that part (a), about the computability of analytic continuation,
applies only when the continuation is to a compact region K. For continuations to
the entire complex plane, the result fails, as Theorem 4 below shows.

Proof Since any compact set K c Ω can be covered by a finite union of computable
rectangles Δ c Ω, it suffices to prove the proposition for Δ. Thus we replace the
arbitrary compact set K by a set of the special form Δ.

The proof proceeds in several stages. Initially we know only that / is computable
on the rectangle D. We first prove parts (b) and (c) for a smaller rectangle D'
contained in the interior of D. Then, using this information, we prove parts (d) and
(a) in general. Then we come back and prove parts (b) and (c) for the larger region
Δ, Δ 2 K.

Let y be the boundary of the rectangle D, where the curve y is taken in the positive
sense. Let D' be any computable rectangle in the interior of D (and hence inside of
y). As already noted, we first prove (b) and (c) of the proposition for the special case
of the rectangle D'.

For part (b) on D'. By the Cauchy integral formula, for points z e D\
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Now γ (= boundary of D) consists of a finite number of vertical or horizontal line
segments with computable coordinates for their endpoints. Hence, by Corollary 6b
in Chapter 0, the integration can be carried out effectively, and {/(w)(z)} is comput-
able on D\ effectively in n.

For part (c) on D'. It follows immediately that, for any computable point a ε D\
the sequence of Taylor coefficients {fin)(a)/n\} is computable.

For part (d) in general. Here assume that we have any computable point a e Ω for
which it is known that the sequence of Taylor coefficients {fin)(a)/nl} is computable.

We wish to show that the Taylor series for / converges effectively and uniformly
in any disk {|z — α| < M} c Ω. Take a larger closed disk {\z — a\ ^ M + ε}, still
contained inside the region Ω. Now the standard estimates found in any complex
analysis text (e.g. Ahlfors [1953]) are already effective. Namely, let

fin)(a)
f(z) = f(a) + + L-j1iz - a)n + Rn+1(z),

where

Then for \z — a\ ^ M, the "error" Rn+1(z) satisfies

|KH + I(z)| ^ Const —
ε

(

ε \M -f 8)

where

Const = max {|/(w)|: |w - a\ ^ M + ε}.

Thus the "Const" depends on /, M, and ε, but it does not depend on z or n. This
gives effective uniform convergence of Rn+1(z) to zero as n -> oo, and hence proves
part (d).

Now we turn to part (a)—effective analytic continuation. Take a computable
point a e Dr and a closed disk {| z — a \ ̂  M} as above. The Taylor series for / about
z = a is computable by part (c), and this series is effectively uniformly convergent
on the disk {\z — a\ ^ M) by part (d). Hence, by Theorem 4 in Chapter 0, / has a
computable analytic continuation to this disk. Now, starting with D' and using a
finite chain of overlapping closed disks, we can cover any compact region Δ ^ Ω.
Hence by part (d), already proved, / has a computable analytic continuation to Δ.
This proves part (a).

Now, as promised, we extend parts (b) and (c) from the small rectangle Dr to any
finite union of computable rectangles A c Q . Let Δ* ^ Ω be another finite union of
computable rectangles, such that each rectangle in Δ lies in the interior of some
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rectangle in Δ*. By part (a), already proved, / has a computable analytic continua-
tion to Δ*. But then our previous proofs of (b) and (c) (for the rectangle D' inside of
D) extend mutatis mutandis to all of the rectangles which make up Δ. This completes
the proof of Proposition 1. •

We have seen that on compact domains, everything goes as one would expect.
However, for noncompact domains, the results are a little more startling. The
following theorem is due to Caldwell and Pour-El [1975].

Theorem 4 (An entire function which is computable on every compact disk but not
computable over the whole plane). There exists an entire function/which is comput-
able on any compact domain in C, but such that f is not computable over the whole
complex plane. Furthermore, f can be chosen so that, as x -• oo along the positive real
axis, f(x) grows more rapidly than any computable function ofx.

Note. In fact we will have that the sequence of values /(0), /(I), /(2), ... is not
bounded by any recursive function.

Proof. Let a: N -• 1̂1 be a one-to-one recursive function enumerating a recursively
enumerable non recursive set A. We can assume that 0 φ A. Now we define / by

Clearly the sequence of Taylor coefficients {l/α(m)m} is computable. Furthermore,
the series is effectively uniformly convergent on any compact disk {\z\ ^ M}, where
M is an integer > 0. To see this, we observe that there are only finitely many values
of m with a(m) ^ M. For all other m, a(m) ^ M + 1, and since \z\ ̂  M, the series is
dominated by

Of course, this dominating series is effectively convergent.
Thus on the disk {|z| < M}, / is the effective uniform limit of a computable

sequence of functions (the partial sums of its Taylor series), and so by Theorem 4
of Chapter 0, / is computable.

[It should be noted that the above construction is not effective in M. For, as
M -^ oo, there is no effective way of telling how many m's there are with a(m) ^ M.]

We now show that the sequence of values /(0), /(I), /(2),... is not bounded above
by any recursive function. Suppose otherwise, that there is a recursive function g
with

f{n) ^ g(ή) for all n.
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Now we recall the "waiting time"

w(ή) = max {m: a(m) ^ n}

defined in Section 1 of Chapter 0. As we showed in Chapter 0, w(ή) is not bounded
above by any recursive function. Now we will show that w(n) ^ /(2n) < g{2n\ and
thus derive a contradiction.

To show that w(n) ^ /(2n). We observe that all of the coefficients in the Taylor
series for / are positive, and hence f(2ή) > any single term in its Taylor series
expansion. We use the term with m = w(n). Then, since by definition a(m) ^ n,

f(2n)> -f- >[-) = 2™ = 2^>w(n).
\a(m)J \nj

Hence w(ή) < f(2ή) ^ g(2ή), giving a recursive upper bound g(2n) for vv(rc), and thus
giving the desired contradiction. This proves Theorem 4. •

We conclude this section with another counterexample. In Proposition 1 we
proved the effectiveness of analytic continuation to compact domains. (Theorem 4
shows that this breaks down for noncompact domains.) Even for compact domains,
however, the result fails if we consider sequences of analytic functions. The failure
for sequences is connected with the fact that analytic continuation is not "well
posed" in the sense of Hadamard. That is, analytic functions which are "small" on
a compact domain Dί can grow arbitrarily rapidly when continued to a larger
compact domain D 2 . This the following example shows.

Example (Failure of effective analytic continuation for sequences of functions).
There exists a sequence {fk} of entire functions which is computable on the disk
Dx = {\z\ ^ 1} but not computable on D2 = {\z\ ^ 2}.

Since this is similar to several of our other examples, we shall be very terse. Let
a: N -» f̂J give a one-to-one recursive listing of a recursively enumerable non recur-
sive set A. Delete the value α(0) from A. Define

"' zm

— if k = a(m) for some m, 1 ^ m ^ n,

/*„(*) H m

0 otherwise.

Clearly {fkn} is computable. Let

"zm

- if k = a(m) for some m ^ 1,
0 otherwise.
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As displayed, {fk} is not computable. But on Dl9 fkn converges effectively and
uniformly to fk as n -> oo. Namely when z e Dl9 \fkn(z) - fk(z)\ ^ 1/n. Thus {fk} is
computable on D1.

On the other hand, when we enlarge the domain to D 2, the values {fk(2)} increase
faster than any recursive function of k. To see this: We recall that fk(z) = zm/m if
k = a(m) for some m ^ 1, and fk(z) = 0 otherwise. Set z = 2. We observe that

/m ^ m for all m ^ 4. So, with finitely many exceptions,2m

max/(2) ^ max {m: α(m) ^ fe} = vv(fe),

where w(k) is the function defined in the Waiting Lemma. By that lemma, w(k) and
hence fj(2), j ^ /c, are not dominated by any recursive function. •

Real-analytic functions. Part (b) of Proposition 1 above (computability of the se-
quence of derivatives) extends in a natural way to real analytic functions. For details,
see Pour/El, Richards [1983a].

3. The Effective Modulus Lemma and Some of Its
Consequences

Our first result, the Effective Modulus Lemma, is useful for the construction of
counterexamples. We give this result and then give two applications of it.

Before we state the Effective Modulus Lemma, a brief introduction seems in order.
Recall from Chapter 0, Sections 1 and 2, that if {rm} is a computable monotone
sequence of reals which converges noneffectively to a limit α, then α is not comput-
able. Examples of this type are used several times in this book. However, sometimes
one needs a sharper version of this construction. The Effective Modulus Lemma
provides such a sharpening. In this lemma, we have {rm} and α as above (so that, in
particular, α is a noncomputable real), but we also have more. Namely, for any
computable real sequence {yfc}, there exists a recursive function d: N -> 1̂1 such that
17k — α I ̂  l/d(k) for all k. The striking thing here is that, although the moduli | yk — α |
are effectively bounded away from zero, there is no effective way to determine the
signs of the numbers (yk — α). Indeed, if there were, then α would be computable—for
to compute α, we would merely take for {yk} any recursive enumeration of the
rationals.

Both of the applications given below appear to require the full strength of the
Effective Modulus Lemma. The first application gives an example of a continuous
function / which is sequentially computable—i.e. {/(*„)} is computable whenever
{xn} is—but such that / is not computable. This example has an interesting
connection with the history of recursive analysis. Originally, Banach and Mazur
defined a function/to be "computable" if/was sequentially computable (condition
(i) in Definition A of Chapter 0). Later it was realized that this definition was too
broad, and condition (ii) of Definition A—effective uniform continuity—was added.
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In Theorem 6 below, we give an example of a continuous function / which satisfies
the Banach-Mazur condition (i), but which is not "computable" in the modern sense,
since it fails to satisfy condition (ii).

Our second application, which we cite without proof (cf. Pour-El, Richards
[1981]), shows that all of the above mentioned phenomena can occur for solutions
of the wave equation of mathematical physics. Again, the proof of this assertion
depends on the Effective Modulus Lemma.

Theorem 5 (Effective Modulus Lemma). There exists a computable sequence of
rational numbers {rm} such that:

(1) the sequence {rm} is strictly increasing, 0 < rm < 1, and {rm} converges to a
noncomputable real number α.

(2) the differences (rm — r ^ . J do not approach zero effectively.
(3) for any computable sequence of reals {γk}9 there exist recursive functions d(k) and

e(k) such that

\γk-rm\>l/d(k) form>e(k).

[In particular, \yk- oc\> l/d(k) for all k.~\

Proof. We begin with a pair of recursively inseparable sets of natural numbers A
and B; as we recall, this means that the sets A and B are recursively enumerable and
disjoint, and there is no recursive set C with A ^ C and B nC = 0. Let a: N -• hJ
and b: N -> N be one-to-one recursive functions listing the sets A and B respectively.
We assume that 0 φ A.

For the time being, we put aside the set B and work with A. We set

rm = I + Σ 10"αίπ)

5 « = I + Σ 10"α(Π)

" n=0 y n=0

Thus the decimal expansion of α is a sequence of 5's and 6's, with a 6 in the s-th
place if and only if s ε A. (Since 0 φ A, 0 < α < 1.)

Here we recall briefly some facts which were worked out in detail in Sections 1
and 2 of Chapter 0. The above construction already gives parts (1) and (2) of
Theorem 5. Begin with (2): rm — rm_x = 10~α(m), which cannot approach zero effec-
tively, else we would have an effective test for membership in the set A, and A would
be recursive. Now (2) implies (1)—for, since α — rm ^ rm + 1 — rTO, (2) shows that rm

cannot approach α effectively. We know from Chapter 0 that this forces α to be a
noncomputable real.

Now we come to part (3). Take any computable sequence of reals {yk}. We must
construct the recursive functions d(k) and e(k) promised in (3). To do this, we will
use the decimal expansions of the numbers γk. However, there is the difficulty that
the determination of these expansions may not be effective, because of the ambiguity
between decimals ending in 000... and those ending in 999 To circumvent this
difficulty, we use "finite decimal approximations" to the γk. These are constructed
as follows:
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Since {yk} is computable, there exists a computable double sequence of rationals
{Rkq} such that \Rkq - yk\ ^ 10~(*+2) (cf. Chapter 0, Section 2). Of course, as we have
often noted, exact comparisons between rationals can be made effectively. We define
the (q-th decimal for γk) to be that decimal of length q + 1 which most closely
approximates Rkq—in case of ties we take the smaller one. Then \{q-th decimal for
7k) ~ Ruq\ < (1/2)1(Γ<«+1> and \Rkq - yk\ ^ (l/10)l(Γ(«+1>, so that

\(q-th decimal for yk) - yk\ ^ l(Γ ( ί Z + 1 ).

Now suppose we write out this decimal:

(q-th decimal for γk) = Nq0 NqίNq2...Nq,q+1.

Then the "digits" Nqs = Nqs(k) (where s ^ q + 1) are recursive in q, s, and k. This is
the desired effective sequence of finite decimal approximations to yk.

Now we come to the heart of the proof. It is here that we use the other set B in
our recursively inseparable pair. We shall give the construction for a particular γk,
but in a manner which is clearly effective in k. Here is the construction:

List the sets A and B in turn, using the recursive functions a and b. Stop when an
integer se AKJB occurs such that either:

a) se A and Nss Φ 6, Ns >JS+1 φ 0 or 9, or
b)seB and Nss = 6, Ns]s+1 φ 0 or 9, or
c) s e Au B and N 5 > s + 1 = 0 or 9.

This process eventually halts. To prove this, suppose that (c) never occurs. Let C
denote the set of integers {s: Nss = 6}. Since Nss(k) is recursive, C is recursive,
effectively in k. Hence, since the sets A and B are recursively inseparable, we cannot
have A ^ C and B nC = 0. If AφC then we have (a): for there is some se A with
sφ C, which means that se A and Nss Φ 6, and—since we have ruled out (c)—this
is precisely what we need for (a). Similarly, if B n C φ 0 then we have (b). This covers
all cases; for we have shown that if (c) fails, then we eventually arrive at either (a) or
(b)—i.e. the process halts. Furthermore, the process can be carried out for all of the
yk, by using an effective procedure which returns to each k infinitely often.

Now we define the functions d(k) and e(k). Let s be the first occurrence of a value
s = α(ή) or s = b(n) for which (a), (b), or (c) holds. Then set

d(k) = 10 s+1, e(k) = n.

We must show that |yk - rm| ^ l/d(k) for m ^ e(k).
First we examine the case where the above process terminates in (c). Consider the

true (i.e. exact) decimal expansion for yk. By (c), the (s + l)st decimal digit for yk is
8, 9, 0, or 1 (allowing for errors in the decimal approximation). By contrast, the
(s + l)st digit for rm is 5 or 6. This gives \yk - r j ^ 10" ( s + 1 ) = l/d(k\ as desired.

Now we turn to the case where the process terminates in (a) or (b). This will be a
standing assumption throughout the remainder of the proof.

Recall that the s-th decimal digit for α is a 6 if 5 e A and a 5 if 5 φ A. Furthermore,
since α{n) gives a one-to-one listing of A, and since A n B = 0, the s-th decimal digit
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for both rm and α is determined as soon as some a(n) or b(n) equals s (the 5-th digit
is 6 if s e A, 5 if s e B). By definition of e{k\ this occurs as soon as m ^ e(k). Thus,
for m ^ e{k\ the s-th digit for rm coincides with that for α.

Now suppose that the process terminates in (a). Then s G A, so that the s-th digit
for rm is 6. However, Λίss = the s-th digit for γk is not 6. Finally, JVSf5+1 Φ 0 or 9,
which guarantees that JVM is the "true" s-th decimal digit for γk (i.e. that Nss is not
"off by 1" due to an error in approximation). Hence \γk — rm\ ^ 10~(5+1) = \/d(k\
as desired.

The case (b) is handled similarly, and this completes the proof of Theorem 5. •

Now as promised above, we give two results which depend on the Eflective
Modulus Lemma.

Theorem 6 (A continuous function which is sequentially computable but not com-
putable). There exists a continuous function f on [0, 1] such that f is sequentially
computable—i.e. f maps computable sequences {xn} onto computable sequences
{f(xn)}—but f is not computable. Furthermore, f can be chosen to be differentiable
(but not continuously differ entiable).

Proof We use the results and notation of the Effective Modulus Lemma (Theorem 5
above). Let {rm} be as in the lemma, and set

am = rm~ rm-U

hm = min(αm,αm_ 1), m ^ 2.

Since {rm} is strictly increasing, bm > 0. Finally, we use a computable C00 pulse
function φ(x) with support on [ — 1, 1] as in the proof of Theorem 1 in Section 1.
Now we define / by:

Σ
m=2

Since am = rm — rm_x and {rm} converges, £ am converges, and since 0 < am < 1,
Σ am converges (although not effectively). Hence the series for / is uniformly
convergent (again not effectively), and / is continuous.

Now the individual pulses in the series for / have

amplitudes = a^ (since φ(0) =1) ,

half-widths = 2~mbm ^ 2"m,

and are centered at the points x = rm^. By definition of bm (and since m ^ 2) these
pulses do not overlap. Hence f(x) is C00 except at the point α = lim rm. But /'(α)
exists and is zero, since the graph of f(x) is squeezed between the two parabolas
y = ±4(x - α)2, which are tangent to the x-axis at x = α.

To see this: The amplitude of the m-th pulse is α 2 , and the pulse is centered at
x = γm_χ, However, the pulses have finite width, and we must consider how close the
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support of the m-th pulse comes to the limit point α. Now the half-width of the m-th
pulse is ^(l/2)bm < (l/2)αm = (l/2)(rm - rm_x) < (l/2)(α - rm_x). Thus the support
of the m-th pulse reaches less than half of the way from rw_x to α. Hence, for
x 6 support of m-th pulse, (α - x) ̂  (l/2)(α - rm_i). Thus 4(α - x)2 ̂  (α - rm^)2 ^
(rm - r m _!) 2 = α 2 = amplitude, as desired.

Thus /'(α) = 0, and hence / is differentiable at all points.
We now show that / is not effectively uniformly continuous, and hence not com-

putable. Recall that the pulses in the series for / have disjoint supports. The m-th
pulse has amplitude = α2 and half-width ^ 2"m. Thus the half-widths approach
zero effectively, and effective uniform continuity would force the amplitudes to do
likewise. But by (2) in the Effective Modulus Lemma, we have that am = rm — rm_x

does not approach zero effectively, and so neither does α 2 .
Finally, we show that/ i s sequentially computable, i.e. that {/()>„)} is computable

for any computable sequence of reals {yn}. It is here that we use part (3) of the
Effective Modulus Lemma. We recall that (3) gives recursive functions d(k) and e(k)
such that

\yk-rm\>l/d(k) form^(fc).

This allows us to sum the series for f(γk) in a finite number of steps, effectively in k.
Namely let

M(k) = max {d{k\ e(k)).

Then to compute f{yk)9 we simply compute the first M(k) terms in the series for / ;
all other terms vanish at x = γk. To see this, we recall that the m-th pulse is centered
on rm_x and has half-width ^ 2~m. When m > M(/c), then

but m — 1 ̂  e(k) and hence

so that the support of the m-th pulse does not contain the point x = yk. This proves
Theorem 6. •

Another result which depends on the Effective Modulus Lemma is the following.
We omit its proof; it can be found in Pour-El, Richards [1981].

Theorem* (The wave equation with computable initial data but a noncomputable
solution). Consider the wave equation

d^u d^u d2u S2u_
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with the initial conditions

u(x, y, z, 0) = /(x, y, z),

du
— (x,j;,z,0) = 0.

TTiere exists a computable function /(x, y9 z) such that the unique solution u(x, y, z, t)
is continuous and sequentially computable on IR4, but the solution u(x, y, z, 1) at time
t = 1 is not computable on U3.

It is worth remarking that the main point of Theorem*—the wave equation with
computable initial data / can have a noncomputable continuous solution u—will
be proved in Chapter 3, Section 5 below. The proof will be based on the First Main
Theorem and will be quite short.

4. Translation Invariant Operators

This section is not essential for the rest of the book and could be omitted on first
reading. It marks a transition between the concrete topics treated in Part I and the
more general notions introduced in Parts II and III. In Part I we have mainly
dealt with specific problems, and we have used one notion of computability—that
introduced in Chapter 0. In parts II and III we will introduce an infinite class of
"computability structures", of which the Chapter 0 notion becomes a special case.
Furthermore, rather than treating problems one at a time, we shall seek general
theorems which encompass a variety of applications.

This section harks back to Part I in that we are still dealing with the classical—
Chapter 0—notion of computability. On the other hand, it reflects the spirit of
Parts II and III in that we give a general theorem which has several applications.
In order to state this theorem, we need the idea of a translation invariant operator.

We now give a brief introduction to translation invariant operators. In a technical
sense, this introduction is unnecessary. Readers who prefer a pure definition/
theorem/proof style of presentation can turn to the conditions (l)-(3) below, and
omit the explanations which precede them.

The following is a heuristic discussion, designed to show that the formal conditions
which we give below do embody what we mean by "translation invariance". Begin
with translation itself. There are two notions of "translation" which are commonly
encountered in real analysis. The first is "discrete translation": the translation of
a function / through a displacement α, given by the mapping f(x) -* f(x — a).
The second (which could be called "continuous translation") is convolution, the
mapping from / into / * g given by the convolution formula

•J.(/*<?)(*)= f(x-a)g(a)da.
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Actually we shall need the q-dimensional analog, in which x, a E Rq. This is 

The two versions of "translation"-discrete translation and convolution-are closely 
related. For it is a small step from the single discrete translation f(x) + f(x - a) 
above to a finite linear combination of such translations. Namely, consider a finite 
sequence f(x - a,), ..., f(x - a,) of translates of f, and together with these a 
sequence of coefficients g,, . . . , g,. Then the corresponding linear combination is 

This is clearly analogous to a Riemann sum for the integral (f * g) above. Since 
we are only doing heuristics, there is no need to pursue this analogy further. For 
our purposes it is enough to know that convolution is a natural extension of the 
idea of a discrete translation. We shall work with convolutions because, in most 
applications, they are easier to deal with. 

Now thinking of convolution as a kind of "continuous translation", we define 
a translation invariant operator T to be one which commutes with convolution, i.e. 
such that: 

[To show the analogy with the discrete case, recall that there the operation f + f * g 
is replaced by f(x) + f(x - a). Then, by analogy with the above, translation in- 
variance means that T[ f(x - a)] = (Tf)(x - a), just as we would expect.] 

Many of the standard operators of analysis and physics are translation invariant: 
among them the derivative dldx, the partial derivatives aldx,, the Laplace operator, 
and the solution operators for the wave and heat equations. 

For our purposes, we must consider translation invariant operators which satisfy 
two side-conditions. We now list all of the hypotheses which we will set for the 
operator T. 

Let X and Y be vector spaces of real-valued functions on Rq, and let T: X + Y 
be a linear operator such that: 

(1) (Translation invariance.) T commutes with convolution, i.e. T( f * g) = (Tf) * g. 
(2) (Compact support). Iff has compact support, then so does Tf. 
(3) (Computability for smooth functions.) If {cp,) is a sequence of Cw functions 

with compact support on Rq, and if the partial derivatives {qp)) (a = multi-index) 
are computable effectively in k and a, then the sequence {Tqk) is computable. 

Now we give a general result which holds for operators of this type. By way of 
preface, we recall the two conditions in the definition of a computable function on 
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a compact domain (Definition A, Chapter 0):

(i) sequential computability;
(ii) effective uniform continuity.

These conditions are independent in the sense that, in general, neither implies the
other. However, there are situations where (ii) implies (i), and this has numerous
applications.

Theorem 7 (Translation invariant operators). Let T be a linear operator which
satisfies (l)-(3) above. Letf: Uq -+U1 bea computable function with compact support.
Suppose that f lies in the domain of T, and that Tf is effectively uniformly continuous.
Then Tf is computable.

[I.e. if Tf satisfies (ii) above, then Tf also satisfies (i).]

Proof Since the groundwork has been carefully laid, the proof is quite easy. We
begin by constructing a computable sequence {φk} of <C°° functions which form an
"approximate identity" for convolution—i.e., as k -> oo, the support of φk approaches
zero effectively, while the integral of φk over Uq remains equal to 1. In detail:

Begin with any C00 function φ ^ 0 with support on the unit disk in Uq

9 and such
that the sequence of derivatives {φi<x)} (α = multi-index) is computable. We can
assume without loss of generality that

φ dxx ...dxq = 1.

J Jr

Let

φk(x) = kqφ(kx).

Then the support of φk is a disk of radius l//c about the origin, and the integral of
φk over Uq is equal to 1. Furthermore, {φίa)} is computable, effectively in k and α.
Thus {φk} is the desired computable "approximate identity".

The following fact about convolutions is well known:
(*) If g: Uq -• IR1 is uniformly continuous, and ε, δ > 0 are chosen so that

|x - y\ ^ δ implies \g(x) - g{y)\ ^ ε, then

1/fe ^ (5 implies \(g * (Pu) — θ\ ^ ε-

Our proof consists in effectivizing this elementary fact, and at the same time using
the conditions (l)-(3) to connect it to the properties of the operator T.

Since the operator T satisfies (2) and / has compact support, so does Tf
By construction, {φίa)} is a computable multi-sequence. Since/is computable and

integration is a computable process, {/* [φ£α)] } is computable. Since differentiation
commutes with convolution, / * [φj[α)] = [/* φ k ] ( α ) . Hence by (3), {T[/* φfc]} is
a computable sequence.
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Now we use (1)—translation invariance. This gives T [ / * φk~\ = [Tf~] * φk, and
hence by the above {[Tf~\ * φk} is a computable sequence. We will show that
[ 7 / ] * φk converges effectively and uniformly to Tf so that by Theorem 4 of
Chapter 0, Tf is computable.

Here we use the assumption that Tf is effectively uniformly continuous. Thus there
is a recursive function d(N) such that \x — y\ ^ l/d(N) implies \Tf(x) - Tf(y)\ ^
2~N. Now the estimate (*) above becomes effective, and we have

k > d{N) implies | ([T/] * φk) - Tf\ ^ 2~N.

Thus [Tf~\ * φk approaches Tf effectively and uniformly. As we have already noted,
this implies that Tf is computable. The proof of Theorem 7 is complete. •

As promised, we give two applications of Theorem 7. The first—relating to partial
derivatives—is a generalization of Theorem 2 in Section 1. The second gives
information about noncomputable solutions of the wave equation.

Partial derivatives. We now give conditions which ensure the computability of
partial derivatives. We shall take pains to present the result in its most general form.

Let α = ( α l 9 . . . , aq) be a multi-index of order |α| = αx 4- + <xq. Let Da denote
the partial differential operator

dW\f

Daf = /(α) = - J

:...δxi-

Let / : Uq -> U1 be a computable function with compact support. Suppose that all
partial derivatives of/ of order < |α| are continuous (although not necessarily
computable, and not necessarily effectively uniformly continuous). Suppose that the
particular derivative Dα/is effectively uniformly continuous. Then Dα/is computable.

[Of course, as a corollary, if / is C00, then every partial derivative Daf is
computable.]

To prove this, we merely observe that the operator T = Da satisfies conditions
(l)-(3) above. Hence the result is an immediate consequence of Theorem 7.

Note. The general hypotheses above—in which only Daf itself is assumed effectively
uniformly continuous—can actually occur. Example: Let f(x) be as in Theorem 1
above, so that f'(x) is continuous but not effectively uniformly continuous.

Let h(x, y) = f(x). Then dh/dx = f'(x) is not effectively uniformly continuous,
but d2h/dxdy = 0 is.

Of course this is a technicality. However, the general result for Daf above—a trivial
consequence of Theorem 7—would be much harder to prove by the elementary
methods used in the proof of Theorem 2.

The wave equation. In Section 3 above, we remarked that the wave equation with
computable initial data can have a noncomputable solution. In fact we can start
with computable initial data at time t = 0 and obtain a noncomputable solution
at time t = 1. (This is further discussed in Section 5 of Chapter 3.)
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Here we consider one aspect of these noncomputable solutions—an aspect which
is related to Theorem 7 above. The noncomputable solutions are always "weak
solutions"—i.e. although continuous, they are not C2 or even C1. Indeed, if they
were C 1, they would be effectively uniformly continuous. This is impossible, for
we have:

Theorem 8 (Noncomputable solutions of the wave equation must be weak solutions).
Consider the wave equation

d2u d2u d2u d2u

with the initial conditions u(x, y, z, 0) = f(x, y, z), du/dt = 0 at time t = 0. Suppose
that f is computable and continuous with compact support. Suppose, however, that
the solution u(x, y, z, 1) is nρt computable. Then u(x, y, z, 1) is not effectively uniformly
continuous, and hence is not C2 or even C1.

Notes. As we will show in Chapter 3, such noncomputable solutions can be contin-
uous. Thus the break-point lies between continuity and effective uniform continuity.

Finally a trivial note: of course the time t = 1 could be replaced by any computable
time t = t0.

Proof Suppose that u(x, y, z, 1) is effectively uniformly continuous. We will show
that then u(x, y, z, 1) is computable.

Let T be the solution operator which maps the initial data f(x, y, z) onto the
solution u(x, y, z, 1). If we can show that T satisfies conditions (l)-(3) above, then
the desired result will follow immediately from Theorem 7.
i Now there is a well known formula (Kirchhoff 's equation) for T: it is displayed
in Chapter 3, Section 5. Using this formula, it is a routine matter to verify that T
satisfies (l)-(3). However, as an illustration of technique the following seems more
interesting:

Two of the key properties of T can be seen on "physical" grounds. That T is
translation invariant—condition (1) above—follows from the fact that the wave
equation is translation invariant. That T preserves compact supports—condition
(2) above—follows from the fact that waves travel with a finite velocity. Finally
(3)—computability for C00 functions—does require a glance at the formula in
Chapter 3, Section 5: but only long enough to verify that the formula involves
integrals and partial derivatives. The exact shape of the formula is irrelevant.

Since conditions (l)-(3) above are satisfied by T, the desired result follows at once
from Theorem 7. •






