
Chapter VIII
Priority Arguments

In this chapter some standard results of classical recursion theory are lifted to every
Σλ admissible ordinal α by techniques hinted at in earlier chapters. Since the
classical proofs use the Σ 2 admissibility of L(ω), the proofs to come may be
regarded as instances of the austere art of making Σ1 admissibility do the work of
Σ 2 . The initial technique relies strongly on the L-ness of L, the ability of L to
support downward Skolem-Lόwenheim arguments. The later technique depends
on combinatoric consequences of Σx admissibility. Its dynamic nature makes it
applicable to Σ1 admissible structures for which hull-collapsing arguments fail.

1. (x-Finίte Injury via α*

In this section and the next it will be shown that there exist α-recursively
enumerable sets A and B such that neither is α-recursive in the other. The method
extends that applied in Section 5.VII, to construct a hyperregular, non-α-recursive,
α-recursively enumerable set. The injury sets become more complex. Back in
Chapter VII each negative requirement was injured at most once for the sake of
each positive requirement of higher priority. Such simplicity is rare in the present
chapter. Consequently the α-recursive projection of α into α*, which arranges that
each negative requirement be opposed by less than-α* positive requirements of
higher priority, does not always compel the injury sets to be α-finite. In Section 2
below, when α* = α and there is a greatest α-cardinal, it will be necessary to project
α downward by means of a carefully chosen Σa

2 function.

1.1 Strategy. Define {p~1ε}B for each ε < α* as in the beginning of the proof of
Theorem 5.5.VII. Thus A <waBiffA = {p~ 1ε}B for some ε < α*. The requirements
on A and B are as follows.

Requirement 2ε: If {p - 1 ε} β is a total function, then A Φ \v~ιε\B.
Requirement 2ε + 1: Same as req 2ε with A and B interchanged.
Let {ZJε < α*} be a collection of simultaneously α-recursive, pairwise disjoint,

unbounded subsets of α. The strategy for satisfying req 2ε consists of finding an
xeZε such that:

(1) if {/>~^}B(x) = 0, then xeA.
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(Recall that A(x), the characteristic function of A, is 1 when xεA.) As in the proof of
Theorem 5.5.VII, {p~1ε}B(x) is approximated at stage σ of the construction of A
and B by {p~ 1ε}B. < σ(x), an α-recursive function of ε, σ and x. B<σ is that part of B
enumerated prior to stage σ.

Suppose {p~1ε}ξ<σ(x) = 0 and xφA<σ for some xeZε. Then at stage σ an
attempt to satisfy req 2ε can be made by adding x to A and making a commitment
to preserve the computation of {p~1ε}B<σ(x) through all future stages. The
commitment reduces to: exclude all the elements of some α-finite K from B, where
K is the set of negative facts about B<σ used in the computation of {p~ * ε}*}<σ(x). If
the attempt is made at stage σ, and if the resulting commitment is honored at all
future stages, then xeA, {p~xε}B(x) = 0 and req2ε is satisfied.

The commitment is broken the first time some member of K is added to B for the
sake of some req 2ε0 + 1 at some stage τ > σ. In that event req 2ε is said to be
injured at stage τ for the sake of req2ε0 + 1. Let

hε = {τ|req2ε is injured at stage τ}.

I2ε is called an injury set. Define I2ε+i similarly. The injury sets are simultaneously
α-recursively enumerable. Once it is seen that all injury sets are α-finite, it is not
difficult to show all requirements are met.

Two devices are employed to limit the extent of injury sets. The first assigns
priorities. Requirement x has higher priority than requirement y if x < y. The
priority method consists of allowing requirement y to be injured for the sake of
requirement x only if x has higher priority than y. Thus req2ε can be injured by
adding some element to B for the sake of req 2ε0 + 1 only when 2ε0 + 1 < 2ε. The
second device enhances the first. It indexes the requirements so as to form the
shortest possible list compatible with a Σ" construction. The shorter the list, the
smaller the set of requirements of higher priority than a given requirement. In this
section the requirements are indexed by ordinals less than α* with the aid of p, an
α-recursive projection of α into α*. In the next section they are indexed by ordinals
less than a certain ordinal below α* with the aid of a Σa

2 projection.

1.2 Construction of A and B. At each stage attention is paid to only one require-
ment, but every requirement is paid attention unboundedly often. Let σ be a stage
at which attention is paid to req 2ε.

First suppose an attempt was made to satisfy req2ε prior to stage σ and no
subsequent injury was inflicted on req 2ε prior to stage σ. To elaborate: there was a
stage σ0 < σ at which some element of Zε was put in A and a commitment was
made to keep some α-finite K from touching B; that commitment has been honored
up to now, in short, K ^ cB<σ. There is clearly no need to make a new attempt at
stage σ to satisfy req2ε. Let Aσ = A<σ and Bσ = B<σ.

Now suppose every attempt to satisfy req 2ε made prior to stage σ was injured
prior to stage σ. Let mβ(σ, ε) be the supremum of all y such that prior to stage σ, a
commitment was made to keep y out of A for the sake of req 2ε0 + 1 for some
ε0 < ε. Then any y > mB(σ, ε) can be added to A at stage σ without injuring any
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requirement of higher priority than req 2ε. Define

w(σ,ε) = μyly>mB(σ, ε) & yeZE-A<σl

(1) If{p-1ε}rσ(w(σ,ε)) = O,then

Aσ = A<σκj{w(σ, ε)} and Bσ = Bκσ;

in addition a commitment is made to keep all of K out of B, where K is an α-finite
set of negative membership facts about B<σ needed for the computation of (1). If (1)
is false, then Aσ = A<σ and Bσ = B<σ.

Req 2ε + 1 is handled similarly. End of construction.
The next lemma captures the so-called cc-finite injury method. The analogous

Friedberg-Muchnik lemma says that the n-th requirement is injured less than 2n

times.

1.3 Lemma. Suppose β is an infinite on-cardinal and δ < β. Then injury set Iδ is
OL-finite and has (^-cardinality < β.

Proof. Let β0 < β be a regular α-cardinal such that δ < β0. For the sake of an
induction, assume for y < δ,

ly is α-finite and has α-cardinality < β0.

the /y's are simultaneously α-recursively enumerable, and so by Lemma 2.3.VII,

u {Iy\γ < δ} is α-finite and has α-cardinality < β0.

Now define

Ay = {σ|an attempt is made at stage σ to satisfy req. y}.

Observe that Ay and Iy are interlaced: between any two elements of either set lies a
member of the other. Hence if either set is α-finite, then so is the other, and in
addition their α-cardinalities differ by at most 1. Consequently

(1) u {Aγ\y < δ} is α-finite and has α-cardinality < β0.

Iδ is a subset of u {Ay\y < <5}, and so can be viewed as an α-recursively enumerable
subset of some ordinal less than β0. Since β0 < α*, Iδ is α-finite. D

Theorem 1.4 solves half of Post's problem. The other half is in the next section.

1.4 Theorem. Suppose α* < α, or α* = α and there is no greatest a-cardinal. Then
there exist ^-recursively enumerable sets A and B such that A £waB and B £waA.
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Proof. Let A and B be the sets enumerated in subsection 1.2. Assume {pε'1}8 is
total with the intent of showing A Φ {pε~ 1}B. According to formula (1) of the proof
of Lemma 1.3, there exists a σ0 such that for δ < 2ε, all attempts to satisfy req2ε
occur prior to stage σ0.

Case 1: there was an attempt at some stage σ to satisfy req 2ε, and the associated
commitment was honored at all subsequent stages. Then

{ p - ' e j r "(w(*. e)) = 1 = {p-h}B(w(a9 ε))

and /Γ(w(σ, ε)) = 0 = A(w(σ, ε)).

Case 2: otherwise. Let σ > σx > σ 0 and suppose σ and σx are stages at which
attention is paid to req 2ε. Then

mB(σ, ε) = mB(σ1, ε) and wB(σ, ε) = wβ(σ!, ε)φ A< σ.

No attempt is made to satisfy req 2ε at stage σ, so

Since {p"^} B is total, it follows that

Thus wβ(σ1, ε) is a witness to the inequality of A and {p~^}B. ϋ

The technology of the next section is more than is needed to solve Post's
problem. Exercise 1.5 describes a much less technical solution. Sections 1 and 2 are
intended to introduce ideas needed for further results such as the uniform solution
of subsection 3.7.

1.5 Exercise. Assume α* = α. Construct A and B as in subsection 1.2 with one
additional proviso: suppose reqx is injured at stage σ for the sake of reqy; then
reqx can be injured at stage τ > σ for the sake of reqz only if z < y. Show each
injury set is finite. Show A and B are α-recursively enumerable, A £waB, and

2. oc-Finίte Injury and Tameness

In this section it is assumed that α* = α and there exists a greatest α-cardinal, call it
K. The solution to Post's problem given in the previous section now fails, because
α* is no longer the limit of regular α-cardinals, and consequently Lemma 1.3 is not
applicable to all δ < α*. One way around the difficulty is to project α into



2. α-Finite Injury and Tameness 179

something potentially smaller than α*. The new mode of projection will be ΣΛ

2

rather than Σ *, and the range of the projection will be some ordinal multiple of R
Lemma 1.3 will apply to each block of requirements of length X, and a further idea
will be involved to control the injuries within a short union of blocks. The
arguments of this section rely strongly on the fine structure of L and are as concrete
as possible. Lemma 2.7 provides rare bounds on α-finite injury sets. In succeeding
sections the method is dealt with more abstractly so as to be applicable to a wide
range of Σ x admissible sets.

2.1 Tame Σ2 Maps. The notion of tameness was invented by M. Lerman to clarify
the proof of Theorem 2.6. It has many applications. Let / :α -> α be Σ^. / h a s an
α-recursive approximation that will not surprise students of classical recursion
theory. Since / e Σ α

2 , there is a DeΔ£ such that

f(x) = y~L(α) N (Ew)(u)D(u9 v,x,y)

for all x, y < α. Define α-recursive w and g by:

(1) w(σ, x) = μww<σ(u)u<σD(u, (w)0, x, (w^);

(2) g(σ,x) = (w(σ,x))v

2.2 Proposition. feΣa

2 iff there exists an ̂ -recursive g such that f(x) = limg(σ, x).
σ

Proof. Suppose /(x) = lim#(σ, x). Then
σ

f(x) = y~(Eσ)(τ)τ^σlg(σ9x) = y±

Now suppose/is Σ2. Define w(σ, x) and g(σ, x) as in (l)-(2) of subsection 2.1.
Fix x and let w be the least <f, y) such that (w)D(u, v, x, y) holds in L(α). Then
(w)1 =f(x). Define

h(z)*μu~D(u,(z)09x,(z)1).

h is partial α-recursive and defined for all z < w. Let

τ = sup{/i(z)|z < w}.

τ < α thanks to the Σt admissibility of L(α). For all σ > τ, w(σ, x) = w and
g(σ,x)=f(x). D

Let / : δ -> α for some δ < α. / is said to be tame Σa

2 if there exists an α-recursive g
such that

(y)γ<δ(Eτ)(σ)σ>τ{x)x<γlg(σ, x) =/(x)] .
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Thus lim g(σ, x) = f(x\ and so / e Σa

2 as in the first part of the proof of Proposition
σ

2.2. The tameness of / refers to the way g approximates / on proper initial
segments of the domain of / Let gσ denote λx\g(σ, x). Then

(y)γ<δ(Eτ)(σ)σ>τlgσ[y=f[yl

A Σ2 function need not be tame Σa

2 (cf. Exercise 2.14).
The tame Σ% projectum of α, denoted by tσp2(a\ is

μy(Ef ) [ / e t a m e Σ 2 & / maps γ onto α].

Warning: it can happen that α > tσ2p(oc) and tσ2p(oc) is not an α-cardinal.

2.3 Lemma (Lerman). Let g(σ,x) be an ^-recursive function such that limg(σ, x)
σ

exists for all x. Suppose \img(σ, x) maps α one-one into δ. Assume: (y)γ<δ (Eτ)(y)y<γ
σ

either

) σ > τ [ 0 ( , ) ) ] or

Then tσlp(θL) < δ.

Proof. The map limg(σ,x) is collapsed and inverted. Let h(σ, y) be the least
σ

member of

{g(σ, w)|w < σ) - {h(σ9 z)\z < y}

if there is one, and zero otherwise. Let δ0 be the ordertype of the range of

λx\limg(σ, x). Then for each y < δ0, limh(σ, y) exists and is equal to y-th smallest
σ a

member of the range of λx\X\mg(σ, x). For y < <50, define
σ

k(σ, y) = μxx<σlg{σ, x) = h(σ, y)].

Then k(σ, y) is α-recursive, and limk(σ, y) is a tame Σa

2 map of δ0 onto α. D
σ

2.4 Corollary. ίσ2p(α) < α*.

Proof Let g: α -> α* be one-one, into, and α-recursive. Define g(σ, x) = g(x) for all
σ, x < α. g(σ, x) satisfies the hypotheses of Lemma 2.3 (δ = α*) with the aid of
Proposition 2.1.VII. D
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The Σa

2 cofinality of a, denoted by σ2cf(α), is

μβ(Ef) [ / G Σa

2 & / i s strictly increasing

& dom/ = β & sup range / = α].

σ2cf(α) measures the failure of L(α) to be Σ 2 admissible. Thus L(α) is Σ 2 admissible
iff σ2cf (α) = α.

The greatest cardinal ofoc, denoted by gc(α), is the greatest α-cardinal, if there is
one, and α otherwise.

2.5 Lemma. If tσ2p(a) > gc(α), then

tσ2p((x) = gc(α) σ2cf(α).

Proof. Let tσ2p(cc) = gc(α) y + λ, where 0 < γ < α and λ < gc(α); and l e t / b e a
tame Σ 2 map from tσ2p(oc) onto α. Suppose λ > 0. Then/[gc(α) y] is α-finite by the
tameness of/ Let t be a one-one, α-recursive map of α—/[gc(α) y] onto α. Then/ 0,
defined by

is a tame Σ^ map from λ onto α. But that is impossible because λ < tσ2p(oί).
Thus tσ2p(μ) = gc(α) y. Suppose y is not a limit ordinal. Then tσ2p(oc)

= gc(α) (y — 1) + gc(α), and the argument of the previous paragraph can be
repeated with gc(α) in place of λ to obtain a tame Σa

2 map from gc(α) onto α. An
impossibility since gc(α) < tσ2p(oc).

Thus tσ2p(a) = gc(α) y for some limit γ. For each δ < γ, let

h(δ) = sup{f(x)\x<gφ) δ}+δ.

The tameness of / implies h(δ) < α. h is a strictly increasing Σ^ map from γ into an
unbounded subset of α. Hence σ2cf (α) < y.

It remains only to construct a tame Σ 2 map) from gc(α) σ2cf (α) onto α. Let k be
a strictly increasing Σ^ map from σ2cf (α) onto an unbounded subset of α. Assume
fe(0) = 0. The range of k divides α into blocks. For each δ < σ2cf (α), the <5-th block
is [fc(<5), k(δ + 1)). Let zδ be the least α-finite map of gc(α) onto the (5-th block
("least" is defined by Proposition 1.8.VII). Define

j(x) = zδ(x-(gφ)δ)) if gc(α) <5<x<gc(α)

for all x < gc(α) σ2cf (α). j is tame Σ 2 because k is. k is tame because every Σ\
function with domain < σ2cf (α) is tame (cf. Exercise 2.15). D

The ideas behind Lemma 2.5 are helpful when studying Σγ admissible structures
that are not L-like. The present section concludes with the original solution to
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Post's problem for Σ t admissible ordinals. It relies on a tame Σ 2 phenomenon
derived from stability properties in L.

2.6 Theorem (Sacks & Simpson 1972). There exist two ^-recursively enumerable
sets such that neither is weakly ^-recursive in the other (Posfs problem).

Proof. By Theorem 1.4 it is safe to assume α* = α and there is a greatest α-cardinal,
call it X. By Lemma 2.6. VII, α is the limit of α-stable ordinals. Let

0 = δ0 < X = < δi < δ2 < < δ y < — ' ( γ < λ 0 )

be a listing of all α-stable ordinals beyond X. A tame Σa

2 map / from X λ0 onto α
will be defined in a moment. (It is possible that tσ2p((x) < X Λ,0.) The α-stable
ordinals divide α into λ0 blocks. Block y is [δy,δy + J . Let hγ be the least α-finite map
of K onto block y. Define

/ maps X λ0 onto α.
Guessing tamely at/proceeds as follows. At stage σ let

X = δ\ < δσ

2 < < δ° < (y < λσ

0)

be a listing of all σ-stable ordinals beyond X. (β is σ-stable if β < σ and
L(β) -< ί L(σ).) If β is σ-stable and σ > some α-stable ordinal > β, then β is α-stable.
Hence

δy = δy for all σ > δy + 1.

Thus δy is a tame Σ2 function of y.
Let hy be the least α-finite map of X onto [δσ

yi δy+1) in L(σ), if there is one;
otherwise hσ

y = 0. Then hσ

y = hy for all σ > δy + 2. Let

for all x < X - λσ

0. Then/ is tame Σa

2 via the α-recursive approximation g. In essence
/is tame because a correct guess of one α-stable ordinal implies a correct guess of all
lesser α-stable ordinals.

The construction of A and B proceeds as in subsections 1.1-1.2 save that re-
quirements are indexed by ordinals less than X /l0. For each ε < X /l0, req 2ε is: if
{fε}B is total, then A φ {fε}B. req 2ε + 1 is similar with A and B exchanged. Stage
σ unfolds as it did in subsection 1.2 with {p~ίε}B ° replaced by {g(σ, ε)}B °.
Consequently there is a new reason for making repeated attempts to satisfy req 2ε.
Reduction procedure {g(σ, ε)} varies with σ. The resulting disturbance dies down
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quickly. By the Σ 2 tameness of/ via g,

( 4 < N . A 0 ( £ τ ) ( 4 > t ( 4 < χ [ # 5 fi) =/(β)]

For ε < X /ί0 and i < 2, define injury set

I[ = {σ|req(2ε + ϊ) is injured at stage σ).

The next lemma should be compared with Lemma 1.3.

2.7 Lemma. I\,.y+βeL{δy+2) (y < λ0 & β < K).

/ Req(2ε 4- i) is said to be active at stage σ if it is injured at stage σ, or if an
attempt to satisfy it is made at stage σ, or if

{τ)τ<σ(Eη)τ<η<σ[g(η, ε) Φ g(σ, ε)].

By induction on y the following is proved: all activity occasional by req 2(K y + β)
+ i takes place before stage τ for some τ < <5y + 2 .

Req(2ε + i) is said to be in block y if

Fix 7. By induction all activity with respect to requirements in block y, for all y < 7,
takes place before stage δy + 1. hyeL(δγ + 2% so there is a τ 0 < δy+2 such that

Now an induction on β shows that reqz(K y + /?) + i is inactive after stage τ for
some τ < δy + 2. The induction on jS proceeds in the same fashion as the induction
on δ in the proof of Lemma 1.3. After stage τ 0 , injuries to, and attempts to satisfy,
req 2(K y + β) + i are interlaced. As in the proof 1.3, Lemma 2.3.VII is applied to
show I^.γ+β is α-finite and has α-cardinality less than K. In short, the argument of
1.3 works within block β. Let

τ 0 < σ0 < σί < . . . <σ f < . . . (i < p)

be a listing of I\<. y+β — τ 0 . {σt | i < p} is an α-recursively enumerable set defined by a
Σ* formula whose parameters are i, 7, β, τ 0 and K. (X is the only parameter
needed for the enumeration of A and B.) Since p < K < δy+2, the α-stability of <5γ+2

pins down the σf's. Suppose {fft\i<j} ^L(δy+2). Proceed by induction on j .
If j < p, then {crf|i <7'}GL(<5y + 2 ) , because δy+2 is Σ t admissible. Hence
{σi\i<p}eL(δγ + 2).

The proof of Theorem 2.6 is completed as in the proof of Theorem 1.4. D
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2.8-2.15 Exercises

2.8. Assume A, B c α. L[B, α] was defined in subsection 3.5.VII. L[B, α ] + is the
least C 2 l [ ΰ , α ] such that <C, £> is Σx admissible. Λ is said to be
α-computable from B (in symbols A < ΛCB) iff A is Δx over <L[£, α] + , £>.
Suppose 5 is α-recursively enumerable and hyperregular. Show

2.9. Show there exist α-recursively enumerable sets A and B such that
A £acB and B £acA.

2.10. Show that σ2cf (α) equals

μβ(Eϊ)lfeΣa

2 & dom/ = 0 & sup range / = α].

(In other words the clause "/is strictly increasing" can be dropped from the
definition of σ2cf(α).)

2.11. Show that ίσ2p(α) equals

μy(Ef) /etameΣ^ &f:γ

2.12. Find an α such that tσ2p((x) < α and tσ2p((x) is not an α-cardinal.

2.13. Find an α such that tσ2p(ot) < N A0, where X and Λo are as in the proof of
Theorem 2.6.

2.14. Show α is Σ 2 admissible iff every Σ^ function is tame Σ^.

2.15. Suppose fεΣa

2 and dom/< σ2cf (α). Show/is tame Σ*2.

3. Dynamic Versus Fine-Structure

An argument in higher recursion theory, particularly an argument about
"recursively enumerable" sets, is said to be fine-structure in character if it relies on
the collapsing (or condensation) method associated with L. The proof of Theorem
2.6 is such an argument, because the stable ordinals δγ (γ < λ0) owe their existence
to Lemma 2.6.VII, whose proof makes explicit use of Mostowski's collapsing map.
A dynamic argument relies on combinatoric reasoning about cofinalities and
projecta. It may form hulls, but it does not collapse them. The regular sets theorem,
4.2.VII, is proved dynamically. A less obvious example is Theorem 5.3.VII, the
existence of a non-α-recursive, hyperregular set. It makes use of Lemma 2.3. VII and
Proposition 2.1.VII, both proved dynamically. Both 2.3 and 2Λ have a dependence
on admissibility. If α is not Σx admissible, then 2.3 can fail, but 2.1 remains true by a
fine-structure argument.
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Dynamic methods possess the force needed to operate outside L and are in
harmony with classical recursion theory. Fine structure techniques are more
delicate. They keep careful count of injuries to requirements. Shore's density
theorem, Chapter IX, is a powerful combination of both approaches.

The purpose of this section is to enlarge the repertoire of dynamic methods.

3.1 Lerman's Tame Σ2 Approach. The fine-structure aspects of the proof of
Theorem 2.6 (Post's problem) can be eliminated systematically as follows. (The
proof of 2.6 employed a tame Σ£ map from N l 0 onto α when α* = α and
K = gc(α) < α.) Requirements are indexed by ordinals less than tσ2p((x).

The treatment of requirements breaks into two cases.

(i) ίσ2p(α)<gc(α)(<α).
(ii) ίσ2p(α) = gc(α) σ2cf(α).

By Lemma 2.5 either (i) or (ii) holds for all α. If (i) holds, then ε is less than some
α-cardinal. If (ii) holds, then ε sits in block γ, that is,

gc(α) y <ε<gc(α) (y+l),

and can be viewed as less than some α-cardinal modulo gc(α).
The reasoning behind Lemma 1.3 applies to both cases. Fix ε and choose τ so

that the α-recursive approximation of/Γ(ε+ 1) is correct from stage τ onward.
Assume Ix, the x-th injury set, is α-finite for all x < ε. If (i) holds, then Iε is α-finite,
as in 1.3, by the combinatoric lemma (2.3.VII). Note the use of Proposition 2.1.VII
in the proof of 1.3.

Suppose (ii) holds. Let

Jδ = u {/,|gc(α) a < x < gc(α) (<5 + 1)}.

Assume Jδ is α-finite for all δ < y. Since Jδ is a Σ^ function of δ, and γ < σ2cf (α), it
follows that u {Jδ\δ < y} is α-finite. Hence there is a stage σy(>τ) after which all
activity with respect to requirements in block δ, for all δ < y, ceases. Then
requirements in [gc(α) γ9 ε) can be handled the same way as requirements in [0, ε)
were handled in case (i). In short: y < σ2cf (α) implied a bound on activity in the
first y blocks; and the combinatoric lemma implies a bound on activity up to any
point within a block, since the length of a block is an α-cardinal.

It still has to be shown that Jy is α-finite. Let Γx be the set of stages after σy at
which req x is injured. It suffices to show

(1) u{/;|gc(α) r < x < g φ ) (? + l)}

is α-finite. The combinatoric lemma implies (by induction on x in block γ) that each
Γx is α-finite and has α-cardinality less than gc(α). The simultaneous enumeration of
the 7̂ 's gives rise to a partial α-recursive, 1-1 map of (1) into gc(α) gc(α). If b is the
j8-th member of Γx to be enumerated, then b is mapped to <jS, x — gc(α)>. Suppose
(1) is not α-finite. Then there is an α-recursive, one-one map from α into (1), and
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from (1) into gc(α) gc(α). Hence α* < gc(α), and so tσ2p{oc) < gc(α) by Corollary
2.4. But that contradicts the hypothesis of case (ii). D

3.2 Shore's Blocking Method. The notion of block is carried a step further. For
Shore there is no conflict between requirements in the same block. For example, the
requirements in a given block might all be of the form A Φ {ε}B. The success of
the method turns on a lemma concerning cofinalities. Define σ2cϊa(δ), the Σ 2

cofinality of <5, to be

μβ(Eh)[heΣa

2 & h is strictly increasing

& domh = β & sup range h = <5].

Thusσ2cfα(α) = σ2cf(α).

3.3 Lemma (Shore). σ2cfα(α*) = σ2cf(α).

Proof. Let / : α -• α* be α-recursive, one-one and into. Suppose g is a strictly
increasing Σ 2 map from β into α* with range unbounded in α*. Then there exists a
strictly increasing Σ2 map h from β into α with unbounded range. A rough
approximation of h is f~ίg. The details are as follows. Define

h(x) = sup{f'x(y)\y < g(x) & yerange /} + x.

The " + x" insures that h is strictly increasing. Proposition 2.1.VII implies h is Σ^;
for each x < β there exists α-finite sets w1 and w2 such that

W l u w2 = g(x) & wx c range f & w2n range / = φ.

Thus h(x) = z iff

(1) (EwXEwJ(Ew2)[w = g(x) & w = w 1 u w 2 & w £ range /

& w2 orange/ = φ & z = suplf'^^iy^yεw^ + x].

(1) is easily seen to be Σ 2 save for perhaps one detail. The formula, w c rg/,

rendered as

(2) (W)tt

appears to be Π^, but is in fact Σ". Let P(x, M, V) be a ΔQ formula such that

/(x) = II <->(Ev)P(x, !<,!;).

Then (2) is equivalent to

(Eq)(u)uew(Ex)xeq(Ev)veqP(x, u9 v).
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Thus the Σ1 admissibility of L(α) is needed to show h is Σ2. Hence
σ2cf(α)<σ2cfα(α*).

Now suppose a strictly increasing Σa

2 map h from σ2cf (α) into α is given. A good
approximation of the desired cofinality map g from σ2cf(α) into α* is fh. Clearly fh
is Σ2. The range offh is unbounded in α*; otherwise range fh ^ δ for some δ < α*,
and then range h is bounded by sup/~ * [<5] < α. The only difficulty is that fh may
not be strictly increasing. Define

β = μy(Ei)[teΣa

2 & domί = y & sup range t = α].

Let t be a Σa

2 map from β into α with unbounded range, ft is Σa

2 and its range is
unbounded in α*. Define β0 to be

μy(Ep)[peΣΛ

2 & domp = y & sup range = α*].

then βo< β < σ2cf (α). Let g0 be a Σ2 map from β0 into α* with range unbounded
in α*. To show σ2cfα(α*) < σ2cf(α), it suffices to transform g0 into a strictly
increasing function g with the same domain ( = βo)

For x < βθ9 let
g(x) =

To see # is Σa

2, let /c(α, x) be an α-recursive function such that

go{x) = limk(σ,x) (x < β0).
σ

k exists by Proposition 2.2. Let

m(x) = μσ(τ)τ>σ[fc(σ, x) = k(τ, x)].

m is Σ5, since m(x) = σ iff

(3a) (τ)τ

(3b) & (p)p<AEy)p<y<σlk(p,x) Φ k{y,x)l

Hence for each x < β0 < β,

{m(y)\y<x}

is bounded below α. In other words, for each x < β0

(4) (Eσ)(τ)τUyUxίHσ, y) = k(τ, y)].

(4) is Σ2 and serves as the principal part of a Σa

2 definition of g. Note that
sup{0o()>)|;y < x} equals sup{k(σ, y)\y < x} for all sufficiently large σ. D
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Note well the use of Σx admissibility in the above proof to show a formula is Σa

2.

3.4 Blocking. As in subsection 1.1 the requirements for Post's problem are indexed
by ordinals less than α*. Let g be a strictly increasing, Σa

2 map from σ2cf (α*) into α*
with range unbounded in α*. Shore's blocking method uses g to distribute require-
ments as follows, p is an α-recursive, 1-1 map of α into α*.

Block 2(5: all requirements of the form A Φ {p~1ε}B

9 where g(δ) < ε < g(δ + 1).
Block 2δ + 1: all requirements of the form B φ {p~1ε}A, g(δ) < ε < g(δ + 1).

The procedure for trying to meet requirements is the one established in sub-
section 1.1. Hence there is no conflict between requirements in the same Shore
block. Block γ is said to have a higher priority than block p if γ < p. Thus a
requirement in block 2δ can be injured only by an attempt to satisfy a requirement
in block 2η + 1 for some η < δ. In order to proceed effectively at stage σ, the Σa

2

cofinality map g(δ) is replaced by an α-recursive approximation g(σ9 δ) supplied by
Proposition 2.2.

Define lim g(τ,x) to be z iff

(Ey)y<σ(τ)γ<τ<σlg(τ,x) = zl

For each p < σ2cfα(α*), let Jp be the set of all σ such that:

(i) an attempt is made to satisfy, or an injury occurs to, a requirement in
u {blockx\x < p) at stage σ; or

(ii) g(σ,x) φ limg(τ,x) for some x < p.
τ <σ

As in Section 1 it suffices to see Jp is α-finite.
Assume Jx is α-finite for x < p. Then Jx is a Σ^ function of x below p. Since

p < σ2cfα(α*), Lemma 3.3 implies

Choose σγ>σ0 so that (τ) t> f f l [#(τ,p) = g{σup)~]. Let J p

1 = J p - σ 1 . Suppose
σ G J\. The only activity at stage σ with respect to block δ is an attempt to meet one
requirement in that block. (Recall that the procedure for meeting requirements
established in subsection 1.1 allows an attempt on at most one requirement at each
stage.) Each requirement in block δ will be attempted at at most one stage in J p .
Thus Jp is in α-recursive, 1-1 correspondence with an α-recursively enumerable
subset of block p. That subset is α-finite, since block p is shorter than α*. Hence J\
is α-finite.

3.5 Post's Problem for Admissible Sets. Let A be a Σί admissible set as defined in
Section l.VII. Recall that B ^ A is said to be ^-recursively enumerable if B is Σf
and A-recursive if A is Δf. Also z is said to be A-finite ifzeA. Many, but not all, of
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the notions of α-recursion theory extend to A. For example, regularity can only
mean: B ^ A is regular iff (B n z)e A for allzeA. On the other hand, the notion of
Σί projectum does not seem to make sense for all Σ x admisible A's. If A is (Ad(2ω)),
the least Σx admissible set with 2 ω as an element, then there does not appear to be
any useful way of defining the Σλ projectum of A.

To formulate Post's problem for all A, all that is needed is an extension of
"α-recursive in" to ">4-recursive in". Suppose B9C ^ A. B is ^-recursive in C,
symbolically B < A C, if there exist partial ^-recursive functions φ and φ such that

y,z) = O & y^C & z<^A-C\

x^A-B~(Ey)(Ez)lψ(x,y,z) = O & y^C & z ^ A - C \

for all x e A. (y and z range over A.) Clearly < A is reflexive and transitive. Two sets
have the same A-degree if each is ^-recursive in the other. The notion of "weakly
^-recursive in" ( < W j 4 ) is defined by substituting " x e " for "x ^ " in the definition

of <Λ

One formulation of Post's problem for A is: do there exist ^-recursively
enumerable sets B and C such that B £AC and C £ BΊ Another formulation that
asks for more: B £wAC and C ^ wA BΊ Still another asks for less: does there exist an
^-recursively enumerable set B such that B is neither ^-recursive nor complete?
(B is complete if every ^-recursively enumerable set is A-recursive in B.)
Simpson showed that HC, the set of all hereditarily countable sets, yields a negative
answer to the third formulation above, if the axiom of determinateness is assumed.
Later Harrington showed, as a theorem of ZF, that there exists a countable Σ1

admissible set for which the third formulation has a negative answer. His proof can
be found in Chong 1984.

On the other hand, Simpson 1974b and Stoltenberg-Hansen 1977 showed that the
second (and strongest) formulation has a positive answer if A can be suitably well-
ordered. The condition to be considered here is: A is effectively well-orderαble, that
is, there exists a one-one A-recursive map of A onto ord(^), the least ordinal not in
A. If A is effectively well-orderable, then the notion of Σγ projectum is meaningful
for A, and the dynamic solutions of Post's problem given above via Lerman's tame
Σ 2 projectum (subsection 3.1) or Shore's blocking method (subsection 3.2) apply to
A. The fine structure approach (Theorem 2.6) fails in A, because it is based on
collapsing arguments that need initial segments of L to succeed. The next prop-
osition is an aid to understanding why dynamic methods succeed in A when A is
effectively well-orderable.

3.6 Proposition. Assume AisαΣ1 admissible set. Let α = ord(4) . Then (i) iff{ii).

(ί) A is effectively well-orderable.

(iί) There exists a Δf B ^ α such that A = L [ £ , α ] .

Proof. L [ £ , α ] was defined in subsection 3.5.VII. If (ii) holds, then the natural
enumeration of L(α), described in subsection 1.7.VII, extends to one of L[B, α], and
yields an effective well-ordering of A.
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Suppose (i) holds. Let/: A -> α be a one-one, onto, Σf map. β will encode all sets
in A by relations on ordinals. Let x e A, and define tc(x\ the transitive closure of x,
to be the least transitive y^x. (Note that tc{x\ as a function of x, is Σf.) Define

then <ίc(x),e> « < / [ ί φ ) ] , ε / > . Let

r = <fίxlfίtc(x)l β/

r is an effective code for x in that the passage from r to x can be accomplished inside
L(α, r). Note chat the collection of all such r is ̂ -recursive, r can be further coded as
a set of ordinals.

Thus it will be enough for B to encode all sets of ordinals in A. ^-recursive
functions g,h: α -> α are defined by recursion. Let/0 be a one-one, ^-recursive map
of α onto A n 2α. Define

Each y e A n 2α can be recovered from a sufficiently long initial segment of h and #.
Since ft, # ̂  α 2, they can be encoded by a B ̂  α. D

3.7 Theorem. Let A be an effectively well-orderable, Σ1 admissible set. Then there
exist two A-recursively enumerable sets such that neither is weakly A-recursίve in the
other.

Proof. By Shore's blocking method. Define

geΣ* & g:oL-^y \.
I into I

(x% is the Σ x projectum of A. The proof of Proposition 2.1.VII was entirely dynamic
in nature and so applies to α̂ f . Suppose X ^ δ ^ α̂ f and X is A-recursively
enumerable. Let/be a one-one, ̂ -recursive map of A onto oτd(A). With the aid of/,
X becomes the range of a partial, one-one, A-recursive map g with domain equal to
an initial segment of oτd(A). The domain of gr cannot be oτd(A) because δ ^ α^.
Thus the domain of g, and hence X, is α-finite.

Similarly the proof of Proposition 2.2 shows that each Σ2 function from ord(A)
into ord(>4) is the limit of an ,4-recursive approximation. And the proof of Lemma
3.3 becomes a proof of
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The arguments of subsection 3.4 transfer to A straightforwardly. The two "incom-
parable" sets obtained are subsets of α. D

3.8 Uniform Solutions to Post's Problem. Call a Σ" subset of L(α) lightface if its Σx

definition has all its parameters in ω, and boldface otherwise. Thus the set of
ordinals less than α* in L(oc) is boldface, but not lightface, Σ ", because its definition
needs α* as a parameter. All the solutions of Post's problem given prior to this
section yield "incomparable" sets that are boldface Σ". The parameters needed arise
out of various definable projecta and confinalities. For example, the blocking
argument of subsection 3.4 needs the parameters occurring in the Σ" definition of/?
and the Σa

2 definition of g. The solution given below avoids all such parameters and
is uniform in α.

3.8 Theorem (R. Shore 1974). There exist integers m and n such that for all α: the
m-th and n-th lightface Σ* sets have the property that neither is weakly ^-recursive in
the other.

Proof Curiously the uniform construction, viewed locally, is similar to that given in
Section 1 when α* < α. The idea is to divide α into intervals that are independent in
the sense that requirements in different intervals do not conflict. The top of each
interval is to be a Σ x admissible ordinal with strictly smaller Σ x projectum. The
α-stable ordinals are Σ x admissible and, according to Lemma 2.7, define somewhat
independent intervals.

Let {ί(σ, δ) 10 < δ < σ0} be a list in ascending order of the σ-stable ordinals. Set
ί(σ,0) = ω and ί(σ,σo) = σ.

Define tδ = t(α,<5). Thus tδ is the <5-th α-stable ordinal. t(σ,δ) =• tδ if σ >tδ, and
ί(σ,(5) is a lightface α-recursive function of σ and δ. Hence tδ is a lightface, tame Σa

2

function of δ.
Let h be the universal, partial α-recursive function central to the proof of Lemma

2.6.VII. Recall that h is lightface Σ", uniformly in α, and that fc[y] is a Σ t

substructure, and an initial segment, of L(α) for every infinite y < α. It follows that

(0) (i) hlu + 1] = L(tδ + 1) and (ii) tJ + x < tδ

for all δ < σ0. (ii) is obtained from (i) by inverting h.
Since tf+1 <tδ+ί(δ< α0), the local strategy of the uniform construction can be

modeled on that of subsection 1.1. Suppose

tδ<p<σ<t{ δ+ l

At stage σ the intention is to consider only requirements of the form A Φ {p}B

(req 2p) or B Φ [p}Λ (req 2p + 1). The priorities are governed by/σ, a partial, one-
one ΣJ«+i map from t$+1 onto tδ+1 defined below. The local strategy yields the
desired global result: req p is satisfied prior to stage tδ+19 and that will be so thanks
to the α-stability oϊtδ + 1.Oϊ course at stage σ the local strategy can only be guessed
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at. The guesses must converge properly, and above all, must be lightface α-recursive
uniformly in α.

Define fδ = hgδ9 where gδ is the first member oϊ L(tδ+1) to be a one-one map of
t$+! onto tδ. h Γ tδ is Σi*+1 because tδ + 1\s stable. Thusj^ is a partial Σ ^ 1 function
from tf+ί onto tδ + 1. It is safe to assume^ is one-one (cf. Exercise 1.16.VII). The
only non-trivial parameter in the Σ1 definition oϊfδ is gδ. gδ is the best guess in L(σ)
at a one-one map of the σ-cardinality of t(σ,δ) onto t(σ,δ). (Recall that for any Σ x

admissible y, if y* < y, then y* is the greatest y-cardinal.) As σ approaches tδ+1

σ-card(tδ)=tf+u

and gδ=gδ. Let hσ be the result of restricting the Σ^ definition of h to L(σ). Then hσ

is lightface Σ?.
Define/£ = hσgσ

δ. Then

(1) z<tf+1^ lim fσ

δ\z=fδ\z.

Suppose ω < p < σ. Let tm(σ p) be the greatest σ-stable ordinal < p. Then

(2) tδ<p<tδ+1 ^ lim tmiσ,p) = tδ.

(Remember that lim xσ = x means (Eτ)τ< y (σ)τ < σ < y (xσ = x).)
σ->y

The uniform solution.
Stage σ < ω. Identical with the Friedberg-Muchnik solution to Post's problem.
Stage σ > ω. Suppose p < σ and an attempt was made at stage τ < σ to satisfy

req p. That attempt, specifically the negative requirement imposed by that attempt
on A or B, is now discarded if

tm(τ,p) > tm(σ,p)'

If r < σ, then r belongs to a unique block of the form [ί(σ,<5), t(σ,δ + 1)). The
local priority assigned to req r at stage σ is (fiy1 (r). As usual req x has higher
priority than req y if the priority assigned to x is less than that assigned to y.

Req r needs attention at stage σ if:

(i) every attempt to satisfy req r prior to stage σ was injured prior to stage σ, or
discarded prior to or at stage σ; and

(ii) there is an opportunity to satisfy req r at stage σ that does not threaten injury
to any req of higher priority in the same block as r, or to any requirement in any
block below that of r.

Go to the lowest block in which there is a requirement that needs attention. In
that block go to the highest priority requirement that needs attention, and take the
least opportunity to satisfy it.



3. Dynamic Versus Fine-Structure 193

End of uniform solution.
Fix δ < α0 and z <tf+1 in order to show by induction that Jδ (the set of all σ

such that an injury to, or attempt to satisfy, req^(z) occurs at stage σ) is tδ + λ -finite.
As in (1) and (2) there is a σίe[tδtδ + ί) such that for all σ > σ1:

Then for all x < z at stage σ > σx:

(3) no prior attempt to satisfy r e q / ^ x ) is discarded;

(4) reqj^(x) is injured only for the sake oϊfδ(y)(y < x).

(4) follows from the induction hypothesis that Jy

veL(tγ + 1 ) ; for all y<δ and
v<t*+1.

By induction the j£'s (x < z) are simultaneously ί^.^-recursively enumerable,
and each is ίδ+1-finite. The combinatoric lemma (2.3.VII) implies u {Jδ

x\x < z} is
ί̂  + i-finite. After stage σx and after U{Jδ

x\x < z) is enumerated, there is at most
one attempt to satisfy req z. Hence Jδ is α-finite.

Fix re[ίδ,tδ + x) to see req r is met. r=fδ(z) for some z <tf+ί. Assume req r is of
the form A Φ {r}B. Choose σ2e(σί9tδ + ί) so that

σx is as above. Any attempt to satisfy req r involves a witness w and the inequation
A(w) φ {r}B{w). w is drawn from a witness set Zδ

r. The witness sets are pairwise
disjoint, unbounded in α, and simultaneously lightface α-recursive. The α-stability
of tδ +! implies that Zδ — tδ is unbounded in tδ + x . Let w0 be a member of Zδ — tδ not
put in A prior to stage σ2. Then w0 is never put in A, i.e. Λ(w0) = 0. Suppose
{r}B(w0.) = 0. Then there is a σ < α such that

(5) <τ>σ 2 & Λ < σ (w o ) = 0 & {r}B<σ(wo) = 0.

Since A and β are lightface Σ", there is a σ < tδ + x that satisfies (5). No requirement
in any block below block δ, or in block δ and of higher priority than r, receives
attention at stage σ. If r does not need attention at stage σ, then it was satisfied at an
earlier stage by an attempt not yet discarded or injured, and hence never to be
discarded or injured. If r does need attention at stage σ, then it will be satisfied at
stage σ and remain so forever. D

The proof of Theorem 3.8 was dynamic in nature save for one fine-structure fact:

(6) ft[ί,5+l] = L(tδ+ι).
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The proof of (6) is a collapsing argument. Nonetheless the proof of Theorem 3.8 can
be adjusted so as to avoid (6) (cf. Exercise 3.10). The result is an entirely dynamic,
lightface solution to Post's problem that is uniform with respect to a wide class of
structures.

3.9-3.12 Exercises

3.9. Suppose α* < α. Show there exists a lightface, tame Σ 2 map with range α and
domain less than α.

3.10. Let A be a Σ x admissible set. Suppose A is effectively wellorderable via a
lightface one-one, ^-recursive map of A onto ord(^). Show Post's problem
for A has a lightface solution.

3.11. (R. Shore 1974). Suppose L(oc) is Σw admissible, that is, it satisfies Σa

n replace-
ment. Find sets At (i < 1) such that At is Σ£, but is not ΔJ, over

3.12. Let A be a Σx admissible structure of the form <L[£,α],ε,£>. Solve Post's
problem for A.

4. Σ x Doing the Work ofΣ2

Chapter VIII ends on the same note with which it began. Certain Σ 2 constructions
that occur in classical recursion theory can, after some modification, be carried out
for every Σ\ admissible ordinal. A Σ 2 construction is one that succeeds by appeal to
Σ 2 replacement. Although the Friedberg-Muchnick (F-M) construction is a Σ x

recursion, Σ 2 replacement is needed to check that every requirement is met. σ(e\
the stage by which the e-th requirement is met, is a Σ 2 function of e\ and the proof
that the £-th requirement is met begins with finding a bound on {σ(c)\ c < e). Thus
the proof that the F-M construction works can be lifted, with no conceptual
change, from L(ω) to every Σ 2 admissible L(α).

The previous sections of this chapter studied various methods of lifting the F-M
construction to every Σx admissible ordinal. All the methods had in common the
idea of projecting α downward to an ordinal with combinatoric properties remi-
niscent of Σ 2 replacement. The present section focuses on Lerman's tame Σ 2 ap-
proach and uses it to lift tame Σ 2 recursions, in a systematic fashion, from ω to α.
The simplest example of a tame Σ 2 recursion in classical recursion theory is the
construction of a 1-generic Δ 2 set. After the combinatoric facts about tame Σ 2

recursion are established, they will be applied to obtain a 1-generic Δ^ set, and
finally to prove Simpson's inversion theorem for the α-jump.

4.1 Tame Σ 2 Recursion. Let JR be an α-recursively enumerable predicate, and S an
α-recursive function. A tame Σ 2 recursion is defined by

,y) if (Ey)R(f\γ,γ,y)

S(f\y) otherwise.
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If α is Σ 2 admissible, then there exists a unique Σ 2 /from α into α satisfying the
above recursion equations. If α is merely Σ x admissible, then the recursion may
break down at some δ such that (/ [ δ)φL(oc). The first such δ is at least ίσ2p(α)
according to Lemma 4.2.

A tame Σa

2 recursion arises out of attempts to meet requirements indexed by
ordinals less than α. The requirements are simultaneously α-recursively enumerable
sets. A typical member of a requirement is an ordered pair of disjoint α-finite sets.

f(y) might be the least extension of/Γ y that satisfies requirement y. Since the
desired extension may not exist,/is Σ 2 in character rather than Σ x .

4.2 Lemma. The equations for a tame Σ 2 recursion define a unique tame Σ^ffrom
tσ2p(oc) into α.

Proof. The idea is to construe/as the limit of an α-recursive sequence fσ.f(y) is
approximated at the beginning of stage σ by f<σ(y)9 and at the end of stage σ by
fσ(y). Convergence oϊfσ to/is assured by a system of priorities. At stage σ the best
guess for/iyj may be inconsistent with the best guess for/(y2). If yί <y2 then y1 is
given preference. Thus a guess made for/(y2) at stage σ may be discarded at a later
stage for the sake of a new guess for f(γx). Recall that

lim k{τ) = z means (Eρ)p <σ(τ)p < τ < σ [/c(τ) = z] .

τ -*• σ

Define (by induction on y):

lim/(y) if the limit exists,

S(f<σΐy) otherwise.

y needs attention at stage σ if:

L(σ)h(Ey)K(/<σΓy,y,)>)]; and

( 1 ) f<Λy) Φ μyLL(σ) N R(f<σ Γ y, y, y)].

Let yσ be the least y that needs attention at stage σ, and y0 the least y alluded to in
(1) when y = yσ. Define

f<σ(y) i f y < y σ

fa(7)=Vo ify = 7σ

Let Iy be {σ | y > yσ}. It need only be shown that Iy is α-finite for all y < ίσ2p(α).
It then follows from the definition oίfσ t h a t / converges tamely to some /with
domain ίσ2p(α). Then/ by induction on 7, is a solution of the tame Σ 2 recursion
equation.

Fix y to see Iγ is α-finite. The argument splits into two cases, as it did in Lerman's
tame Σ x approach to Post's problem in subsection 3.1.
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Case 1: tσ2p(oc) < gc(α) <α. Let K be a regular α-cardinal such that y <κ. Assume
Ίx(x <γ) is α-finite and of α-cardinality less than K. Then the combinatoric lemma
(2.3.VII) implies u {Ix\x < y} is α-finite and of α-cardinality less than K. It follows
from the manner in which Iγ — u {Ix\x < y} is interlaced with u {Ix\x < y} that Iγ

is α-finite with α-cardinality less than K. The interlacing effect is similar to the one
discussed in the proof of Lemma 1.3 with one change. Finite sequences of elements
of Iγ — u { / J x < y } , rather than single elements, are separated by elements of
u {Ix\x < y}. The change is caused by the insistence that/(y) be the least y that
satisfies R.
Case 2: tσ2p(oc) = gc(α) σ2cf(α). Hence

y = gc(α) <5 + w

for some <3 < σ2cf(α) and w < gc(α). Assume

Jz = u {/Jgc(α)z < x < gc(α) (z + 1)}

is α-finite for each z <δ. Then Jz is a Σ 2 function of z (z < δ% and so u { Jz \ z < δ } is
α-finite, since δ < σ2cf(α). Let its supremum be σ2. The argument of Case 1 shows,
for each xe(gc(α) <5, gc(α) (<5 + 1)), that Ix — σ2 is α-finite and of α-cardinality less
than some regular α-cardinal. Hence Iγ is α-finite.

To complete case 2 it must be shown that Jδ is α-finite. Consider the simul-
taneous α-recursive enumeration of {Ix — σ 2 |xe[gc(α) 'δ, gc(α) ((5 + 1))}. It gives
rise to a one-one, α-recursive map of Jδ — σ2 into gc(α) gc(α). When the p-th entry
in the enumeration of Ix — σ2 appears, it is mapped to < x — gc(α) δ, p >. p < gc(α)
because the α-cardinality of Ix — σ2 is less than some regular α-cardinal. If Jσ — σ2 is
not α-finite, then there is one-one, α-recursive map of α onto Jδ — σ2. But then
α* < gc(α) < ίσ2p(α), an impossibility by Corollary 2.4.VII. D

4.3 Reduced Tame Σ2 Recursion. The equations for a tame Σ 2 recursion were
formulated with the idea that/(y) would be defined so as to satisfy requirement y in
some construction involving α requirements. Since a tame Σ 2 recursion may break
down long before α is reached, it is necessary to re-index requirements. Let t be a
tame Σ 2 map from tσ2p{<x) onto α. The equations for tame Σ 2 recursion, reduced by
ί, are

μyR{f\yΛy\y) if (Ey)Λ(/Γ yAy\y)

S(f[y) otherwise.

The intention now is that/(y) be defined to satisfy requirement t(y). Thus there will
be time to satisfy all requirements if the recursion does not break down before stage
tσ2p(oc). And it does not, according to the next result.

4.4 Theorem. Let t be a tame Σa

2 mapjrom ίσ2p(α) onto α. Then the equations for a
tame Σ 2 recursion, reduced by ί, define a unique function f from tσ2p(oc) into α.
Furthermoref is tame Σ2.
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Proof. Same as that of Lemma 4.2. The presence of t makes very little difference. At
stage σ, t(y) is guessed at by ί(σ, y), an α-recursive function that converges tamely to
t(γ). Each of the arguments of 4.3 is altered in the same fashion. First wait for t(σ9 y)
to settle down on the appropriate proper initial segment of tσ2p(σ\ and then
proceed as in 4.2. D

Theorem 4.4 is a precise interpretation of the phrase: "making Σ1 do the work of
Σ 2 " . It will be applied in the proof of Theorem 4.5 to obtain a 1-generic subset of α
for every Σ x admissible α. More generally, and less precisely, if a Σ 2 construction is
tame, then it can be executed using only Σ x admissibility.

4.5 1-Genericity. A set A £ α is 1-generic if it is generic with respect to certain
bounded Π2 sentences in the sense defined below. ("Bounded" means the universal
quantifier is bounded.)

p,q,r . . . are forcing conditions. A condition p is a pair (p+,p~) of disjoint α-
finite sets. p>q (p is extended by q) if p+ ^ q+ and p~ ^ q~. Aep{A satisfies p) if
p+ c A and p~ ^ α - A Define

{y}p(δ) = x by (p\p-,δ9x)eRy.

Ry is the y-th reduction procedure as in subsection 3.2.VII. Let | mean undefined,
and I defined. Thus

if

Note that {y}p(<5)J, is an α-recursively enumerable relation on y, p and δ.
A is 1-generic if for all y, <5, x < α:

(1) ί{y}A(δ)U - (EpWβ)^,[{y} (ί)t]; and

(2) (δ)s<xL{y}A(δ)Π^(Ep)Aep(δ)δ<xi{y}p(δ)H

A set is said to be tame Δ^ if its characteristic function is tame Σa

2.

4.6 Theorem. There exists a tame Δ*2, 1-generic set.

Proof. Let S be an α-recursive function such that

Jsϊ, [j sΛ
δ<β δ<β )

where s is an α-finite sequence (of length β) of forcing conditions. Let R(s, y, p) be
the α-recursively enumerable relation

S(s)>p & {(y)o
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According to Theorem 4.4.VII there is a tame Σ^ function/with domain tσ2p((x)
that satisfies

) if (Ey)R(f[y, t(y\ y)

S(f[y) otherwise.

/is a sequence of forcing conditions. f(δx) > f(δ2) when δ1 <δ2. Define

A = v{f(γ)+\γ<tσ2p(aL)}.

Suppose {y}^(^)t with the intent of checking clause (1) of the definition of 1-
genericity. Choose x so that (t(x))0 = y and (ί(x))x = δ, where t is as in subsection
4.3. Let p = S(f[ x). Then A ep and there is no q < p such that {y}q(δ)l If there
were such a q, then/(x) would be such a q, Aef(x\ and { y } ^ ) would be defined.

The checking of clause (2) of the definition of 1-genericity is managed by a trick
learned from Normann [1975]. It is based on standard manipulations with closed
unbounded subsets of regular cardinals. Let fσ be the α-recursive function in the
proof of Theorem 4.4. Define

Thus A < σ is the α-recursive approximation to A provided by the proof of Theorem
4.4 at the beginning of stage σ.

Assume (δ)δ<x\_{y}A(δ)l~\. The "closed unbounded sets" trick is needed to show

(1) (τ)(Eσ)σ *τ(Z,(σ) N (δ)a

Suppose for the moment that (1) holds. Let ε be an index such that for all B c α,

Choose y so that (t(y))0 = ε and (t(y))ί = 0. Then (1), and the tame Σ2 convergence
of X to / imply {y} fiy)(δ)i for all δ < x. A ef{y\ so clause (2) of the definition of
1-genericity holds.

It remains to prove (1). Let p be the α-cardinality of x, and m an α-finite map of p
onto x. ym is an index such that

for all B ^ α. Hence

Thus it suffices to prove (1) when x is an α-cardinal. Proving (1) by induction on the
α-cardinality of x makes it safe to assume x is a regular α-cardinal. (Replace x by its
cofinality.) According to Lemma 2.5 there are only two cases.
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Case 1: tσ2p(<x) < gc(α) < α. By Exercise 4.14 there is a regular α-cardinal β and
an α-finite sequence yδ(δ < x) such that

Λ < A (*(Λ))O = 7 and

Define

fc(σ, δ) is defined for all σ < α and <5 < x, since

{y}/(Λ)(δ) ^ {y}A(<5) is defined.

Let v be an α-finite map of β onto x such that v~ x(^) is an unbounded subset of β for
every <5 < x.

Fix τ in order to generate a σ that satisfies the matrix of (1). Let

σ 0 = τ,

σ w + 1 =fe(σw, v(w)) (w<β),

σA = sup{σw |w < λ} ( l a limit < β).

Fix 5 and consider the behavior of {y}^yδ\δ) asσ-^σ^. The choice of v implies
{y}^yδ\δ)[ unboundedly often as σ -> σβ. Since yδ< β and β is α-regular,^(y5)
suffers fewer than β changes as σ -• α. (This point is discussed in Case 1 of the proof
of Lemma 4.2. The argument there uses Lemma 2.3.VII to show fσ(y) changes less
than K times, where K is a regular α-cardinal and y < K.) Consequently fσ(yδ)
changes less than β times asσ-^σ^. Since the cofinality of σβ is /?, it follows that
fσ(yδ) is constant for all sufficiently large σ as σ-+σβ. That constant value is

/<.,(*), and so M ^ ' m
Case 2: tσ2p(oή = gc(α) σ2cf(α). Similar to Case 1. The idea is to repeat the
argument of Case 1 inside the block occupied by y. Define σ2 as in Case 2 of the
proof of Lemma 4.2. Then consider only what happens after stage σ 2. For example,
fσ(yδ) suffers fewer than β changes after stage σ2 as σ -* α. D

4.7 Proposition. If A is Ugeneric, then A is regular and hyperregular.

Proof. Suppose/ < w α A and x < α. By Lemma 5.2.VII it suffices to show / [ x is α-
finite. If / i s {y}A, then there exists a p such that

Asp and (δ)δ<Λ{y}p(δ)ϊl

Then/ΓxisWΓ*. •

4.8 The α-Jump. Let A ^ α. By analogy with the Turing jump of classical recursion
theory, the α-jump of A should be a universal, α-recursively-enumerable-in-^4 set.
To be precise, the α-jump of A should be a set B such that B is α-recursively
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enumerable in A, and such that C < α B for every C α-recursively enumerable in A.
Three candidates for the definition of "B is α-recursively enumerable in A" come to
mind,

(i) There is a y < α such that

B = {δ\{y}A(δ)i}.

(Recall that " Γ means "defined".)
(ii) There is a y < α such that for all (5 < α,

(5 < α} is the strong enumeration of α-finite sets, cf. 3.1.VΠ.)
(iii) B is ΣΛ{A. That is, B is definable over <L[A,α], ε, A} by means of a Σi

formula with parameters in L\_A, α] with xeA regarded as a Δ o formula.
Clearly (ii) -• (i) -> (iii). (x -• y means if B is enumerable by definition x, then it is

enumerable by definition y.) If A is regular, then (iii) -• (i). If A is regular and
hyperregular, then all three notions agree by Lemma 5.2.VII. Hence if A is α-
recursively enumerable and hyperregular, then all three notions coincide. There
exists an α and an α-recursively enumerable A on which all three differ.

One objection to (iii) is its dependence on non-α-finite computations. If (iii) holds,
then an element is added to B because some bounded, but not necessarily α-finite,
set of membership statements is satisfied by A. (ii) and (i) are based on α-finite
computations, (ii) has the virtue of symmetry over (i). If (ii) holds, then an α-finite set
of positive facts about B follows from an α-finite set of facts about A. Symmetry
considerations led to the rejection of < wa in favor of < α. On the other hand there is
in general no universal set as defined above in the sense of (ii).

Thus (i) is the preferred choice for the definition of relative α-recursive enumer-
ability on which to build the definition of α-jump. Let

A'be{<y9δ)\{y}A(δ)l}.

Then A' is α-recursively enumerable in A (in the sense of (i)). Suppose B is α-r.e. in A.
Thus

B = {δ\{yo}
A(δ)i}.

Then
H^B<r+{y0} xf/<= A\ and

J c α — B<r+{γ0} x J ^OL — A'.

Hence B <ΛA'. If Ax <aA2, then A\ is α-recursively enumerable in A2, conse-
quently α-recursive in A'2. Thus the α-jump is well defined on α-degrees. For any α-
degree, d, let d\ the u-jump of d, be the α-degree of D, where D is any set of degree d.
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Define Ain+1) to be μ w ) ' , and Λ(0) to be A
Warning: φ' has the same α-degree as some complete Σ" set, but in general φ{2)

does not have the same α-degree as some complete Σa

2 set. Thus the familiar
connection between φin) and Σn is broken.

4.9 Theorem. If A is regular and hyperregular, then A' has the same oc-degree as
some regular set ^-recursively enumerable in A.

Proof. Since A is regular and hyperregular, the structure (L\_A, α], ε, A> is Σγ

admissible (cf. Exercise 5.8.VII). In addition L\_A, α] equals L(α). The proof of the
regular sets theorem (4.2.VII) is entirely dynamic in nature, and consequently can
be extended from L(α) to (L[A, α], ε, A} without significant change. The extended
version states: if BeΣa{A, then there is a CeΣ\A such that

(i) C is regular in the sense of L\_A, α], and

(ii) C = β i i l A

(i) means (Cnx)eL[A, α] for all xeL[A,α]. In (ii), = α v 4 refers to reduction
procedures that are Σ*tΛ sets of 4-tuples <H, J, <5, y> fromX[A, α]. To visualize the
extended proof, extend the natural enumeration of L(α) to one of L[A, α].

Since L[A, α] = L(α), it follows that C is regular, C®A=ΛB®A, and C is α-
recursively enumerable in A. If £ is Ar, then C® Ais the desired regular set. D

The Simpson jump theorem is a lifting of the Friedberg jump theorem of classical
recursion theory. The latter states: φ' < d iff d = d for some c.

4.10 Theorem (Simpson 1974a). (i) and (ii)'are equivalent.
(i) φ' <aD and D has the same oc-degree as some regular set.

(ii) C = α D for some regular, hyperregular C.

Proof (ii) implies (i) by Theorem 4.9. Now assume D satisfies (i). C is constructed
from D so that

(0) (a) C<aφ\D and ( b ) D < α C , φ'.

The idea is to make C 1-generic so that (a) holds, and to code D into C so that (b)
holds. In addition, the 1-genericity of C implies C is regular and hyperregular by
Proposition 4.7.

Note that 4.7 makes it safe to assume that all forcing conditions are equivalent to
initial segments of characteristic functions. If p and q are forcing conditions then
p^q is the condition that begins with p and continues with q.

iϊx<lh(p)

if ih(p) < x < lh(p) + lh(q).
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Assume D is regular. Let s be an α-finite sequence of length y of forcing conditions.
Let S(s) be as in the proof of Theorem 4.6. Define

R0(s,y,q)~S0(s)>q & {(y)0Y

Consider the reduced recursion equations

) if
m fM=
K ' J W S0(f[y) otherwise.

t is a tame ΣΛ

2 map from tσ2p(oc) onto α.
Fix 2 < tσ2p((x) in order to study the recursion defined by (1). As the recursion

progresses through y's less than z, the only information about D that is needed is

Dz = D[(sup t(y)\
\γ<z )

The regularity of D and tameness of t imply Dz α-finite. Let (1)2 be the result of
replacing D by Dz in (1). By Theorem 4.4, (1)2 has a tame ΣΛ

2 solution f2 from
tσ2p(a) into α. The α-finite function fz[z is a solution of (1) for y < z. Hence

u{/ z [z\z<tσ2p(oc)}

is a solution of (1). In short, (1) does have a solution /, necessarily unique, from
tσ2p(<x) into α. Define

Initial segments of the characteristic function of C correspond to initial segments of
/ The value of f[ y is determined by (1) from an α-finite set of facts about Z), t and
φ'. φ' is needed to decide when there is a y that satisfies Ro. Ro was defined so that

yeC~(Ey)R0(f[y9t(y\y).

It follows that C <aφ\ A t. The Σ£ tameness of t implies ί < α φ ' (cf. Exercise 4.13).
Thus (0) (a) is proved.

A simultaneous recursion on y shows λy\f[y and λy\D[t(y) are weakly α-
recursive in C, φ'. Suppose f[y has been computed α-finitely from C, 0'.
I(fΐy)^D[t(y) is an initial segment of/(y), hence an initial segment of C. So
D[b(y) can be extracted from C, /Γy, t(y). Then/(y) can be computed α-finitely
from f[y, D[ t{y\ φ'. Thus (0) (b) is proved. D

A jump theorem (Sacks 1963) of classical recursion theory that relates recursive
enumerability and the Turing jump states: D is recursively enumerable in φ' and
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D >ωφr iff D =ωC for some incomplete, recursively enumerable C. Maass 1977
has shown this statement holds for α (in place of ω) iff α is Σ 2 admissible.

4.11-4.15 Exercises

4.11. Use Shore's blocking method to prove Theorem 4.10.

4.12. Show a 1-generic set cannot be α-recursively enumerable.

4.13. Let A c α. Show ,4 is α-recursively enumerable in φ' iff AisΣa

2. Show Λ is

tame Aa

2 iff 4 <«(/>' and /I is regular.

4.14. Suppose tσ2p(oc) < gc(α). Find a tame Σa

2 function t from tσ2p(oc) onto α with
the following properties. For each y < α and each regular α-cardinal x, there
exists a regular α-cardinal β and an α-finite sequence yδ(δ < x) such that

y* < βΛt(yδ))0 = y and

4.15. Provide the details of Case 2 of the proof of Theorem 4.6.




