Chapter VIII
 Priority Arguments

In this chapter some standard results of classical recursion theory are lifted to every Σ_{1} admissible ordinal α by techniques hinted at in earlier chapters. Since the classical proofs use the Σ_{2} admissibility of $L(\omega)$, the proofs to come may be regarded as instances of the austere art of making Σ_{1} admissibility do the work of Σ_{2}. The initial technique relies strongly on the L-ness of L, the ability of L to support downward Skolem-Löwenheim arguments. The later technique depends on combinatoric consequences of Σ_{1} admissibility. Its dynamic nature makes it applicable to Σ_{1} admissible structures for which hull-collapsing arguments fail.

1. α-Finite Injury via α^{*}

In this section and the next it will be shown that there exist α-recursively enumerable sets A and B such that neither is α-recursive in the other. The method extends that applied in Section 5.VII, to construct a hyperregular, non- α-recursive, α-recursively enumerable set. The injury sets become more complex. Back in Chapter VII each negative requirement was injured at most once for the sake of each positive requirement of higher priority. Such simplicity is rare in the present chapter. Consequently the α-recursive projection of α into α^{*}, which arranges that each negative requirement be opposed by less than- α^{*} positive requirements of higher priority, does not always compel the injury sets to be α-finite. In Section 2 below, when $\alpha^{*}=\alpha$ and there is a greatest α-cardinal, it will be necessary to project α downward by means of a carefully chosen Σ_{2}^{α} function.
1.1 Strategy. Define $\left\{p^{-1} \varepsilon\right\}^{B}$ for each $\varepsilon<\alpha^{*}$ as in the beginning of the proof of Theorem 5.5.VII. Thus $A \leq_{w \alpha} B$ iff $A=\left\{p^{-1} \varepsilon\right\}^{B}$ for some $\varepsilon<\alpha^{*}$. The requirements on A and B are as follows.

Requirement 2ε : If $\left\{p^{-1} \varepsilon\right\}^{B}$ is a total function, then $A \neq\left\{p^{-1} \varepsilon\right\}^{B}$.
Requirement $2 \varepsilon+1$: Same as req 2ε with A and B interchanged.
Let $\left\{Z_{\varepsilon} \mid \varepsilon<\alpha^{*}\right\}$ be a collection of simultaneously α-recursive, pairwise disjoint, unbounded subsets of α. The strategy for satisfying req 2ε consists of finding an $x \in Z_{\varepsilon}$ such that:

$$
\begin{equation*}
\text { if }\left\{p^{-1} \dot{\varepsilon}\right\}^{B}(x)=0 \text {, then } x \in A \tag{1}
\end{equation*}
$$

(Recall that $A(x)$, the characteristic function of A, is 1 when $x \in A$.) As in the proof of Theorem 5.5.VII, $\left\{p^{-1} \varepsilon\right\}^{B}(x)$ is approximated at stage σ of the construction of A and B by $\left\{p^{-1} \varepsilon\right\}_{\sigma}^{B<\sigma}(x)$, an α-recursive function of ε, σ and $x . B^{<\sigma}$ is that part of B enumerated prior to stage σ.

Suppose $\left\{p^{-1} \varepsilon\right\}_{\sigma}^{B<\sigma}(x)=0$ and $x \notin A^{<\sigma}$ for some $x \in Z_{\varepsilon}$. Then at stage σ an attempt to satisfy req 2ε can be made by adding x to A and making a commitment to preserve the computation of $\left\{p^{-1} \varepsilon\right\}_{\sigma}^{B<\sigma}(x)$ through all future stages. The commitment reduces to: exclude all the elements of some α-finite K from B, where K is the set of negative facts about $B^{<\sigma}$ used in the computation of $\left\{p^{-1} \varepsilon\right\}_{\sigma}^{B^{<\sigma}}(x)$. If the attempt is made at stage σ, and if the resulting commitment is honored at all future stages, then $x \in A,\left\{p^{-1} \varepsilon\right\}^{B}(x)=0$ and req 2ε is satisfied.

The commitment is broken the first time some member of K is added to B for the sake of some req $2 \varepsilon_{0}+1$ at some stage $\tau>\sigma$. In that event req 2ε is said to be injured at stage τ for the sake of req $2 \varepsilon_{0}+1$. Let

$$
I_{2 \varepsilon}=\{\tau \mid \text { req } 2 \varepsilon \text { is injured at stage } \tau\} .
$$

$I_{2 \varepsilon}$ is called an injury set. Define $I_{2 \varepsilon+1}$ similarly. The injury sets are simultaneously α-recursively enumerable. Once it is seen that all injury sets are α-finite, it is not difficult to show all requirements are met.

Two devices are employed to limit the extent of injury sets. The first assigns priorities. Requirement x has higher priority than requirement y if $x<y$. The priority method consists of allowing requirement y to be injured for the sake of requirement x only if x has higher priority than y. Thus req 2ε can be injured by adding some element to B for the sake of req $2 \varepsilon_{0}+1$ only when $2 \varepsilon_{0}+1<2 \varepsilon$. The second device enhances the first. It indexes the requirements so as to form the shortest possible list compatible with a Σ_{1}^{α} construction. The shorter the list, the smaller the set of requirements of higher priority than a given requirement. In this section the requirements are indexed by ordinals less than α^{*} with the aid of p, an α-recursive projection of α into α^{*}. In the next section they are indexed by ordinals less than a certain ordinal below α^{*} with the aid of a Σ_{2}^{α} projection.
1.2 Construction of \boldsymbol{A} and \boldsymbol{B}. At each stage attention is paid to only one requirement, but every requirement is paid attention unboundedly often. Let σ be a stage at which attention is paid to req 2ε.

First suppose an attempt was made to satisfy req 2ε prior to stage σ and no subsequent injury was inflicted on req 2ε prior to stage σ. To elaborate: there was a stage $\sigma_{0}<\sigma$ at which some element of Z_{ε} was put in A and a commitment was made to keep some α-finite K from touching B; that commitment has been honored up to now, in short, $K \subseteq c B^{<\sigma}$. There is clearly no need to make a new attempt at stage σ to satisfy req 2ε. Let $A^{\sigma}=A^{<\sigma}$ and $B^{\sigma}=B^{<\sigma}$.

Now suppose every attempt to satisfy req 2ε made prior to stage σ was injured prior to stage σ. Let $m_{B}(\sigma, \varepsilon)$ be the supremum of all y such that prior to stage σ, a commitment was made to keep y out of A for the sake of req $2 \varepsilon_{0}+1$ for some $\varepsilon_{0}<\varepsilon$. Then any $y>m_{B}(\sigma, \varepsilon)$ can be added to A at stage σ without injuring any
requirement of higher priority than req 2ε. Define

$$
w(\sigma, \varepsilon)=\mu y\left[y>m_{B}(\sigma, \varepsilon) \quad \& \quad y \in Z_{\varepsilon}-A^{<\sigma}\right] .
$$

(1) If $\left\{p^{-1} \varepsilon\right\}_{\sigma}^{B<\sigma}(w(\sigma, \varepsilon))=0$, then

$$
A^{\sigma}=A^{<\sigma} \cup\{w(\sigma, \varepsilon)\} \quad \text { and } \quad B^{\sigma}=B^{<\sigma}
$$

in addition a commitment is made to keep all of K out of B, where K is an α-finite set of negative membership facts about $B^{<\sigma}$ needed for the computation of (1). If (1) is false, then $A^{\sigma}=A^{<\sigma}$ and $B^{\sigma}=B^{<\sigma}$.

Req $2 \varepsilon+1$ is handled similarly. End of construction.
The next lemma captures the so-called α-finite injury method. The analogous Friedberg-Muchnik lemma says that the n-th requirement is injured less than 2^{n} times.
1.3 Lemma. Suppose β is an infinite α-cardinal and $\delta<\beta$. Then injury set I_{δ} is α-finite and has α-cardinality $<\beta$.

Proof. Let $\beta_{0} \leq \beta$ be a regular α-cardinal such that $\delta<\beta_{0}$. For the sake of an induction, assume for $\gamma<\delta$,

$$
I_{\gamma} \text { is } \alpha \text {-finite and has } \alpha \text {-cardinality }<\beta_{0}
$$

the I_{γ} 's are simultaneously α-recursively enumerable, and so by Lemma 2.3.VII,

$$
\cup\left\{I_{\gamma} \mid \gamma<\delta\right\} \text { is } \alpha \text {-finite and has } \alpha \text {-cardinality }<\beta_{0}
$$

Now define

$$
A_{\gamma}=\{\sigma \mid \text { an attempt is made at stage } \sigma \text { to satisfy req. } \gamma\} .
$$

Observe that A_{γ} and I_{γ} are interlaced: between any two elements of either set lies a member of the other. Hence if either set is α-finite, then so is the other, and in addition their α-cardinalities differ by at most 1 . Consequently

$$
\begin{equation*}
\cup\left\{A_{\gamma} \mid \gamma<\delta\right\} \text { is } \alpha \text {-finite and has } \alpha \text {-cardinality }<\beta_{0} . \tag{1}
\end{equation*}
$$

I_{δ} is a subset of $\cup\left\{A_{\gamma} \mid \gamma<\delta\right\}$, and so can be viewed as an α-recursively enumerable subset of some ordinal less than β_{0}. Since $\beta_{0} \leq \alpha^{*}, I_{\delta}$ is α-finite.

Theorem 1.4 solves half of Post's problem. The other half is in the next section.
1.4 Theorem. Suppose $\alpha^{*}<\alpha$, or $\alpha^{*}=\alpha$ and there is no greatest α-cardinal. Then there exist α-recursively enumerable sets A and B such that $A \not \leq_{w \alpha} B$ and $B \not \mathbb{K}_{w \alpha} A$.

Proof. Let A and B be the sets enumerated in subsection 1.2. Assume $\left\{p \varepsilon^{-1}\right\}^{B}$ is total with the intent of showing $A \neq\left\{p \varepsilon^{-1}\right\}^{B}$. According to formula (1) of the proof of Lemma 1.3, there exists a σ_{0} such that for $\delta \leq 2 \varepsilon$, all attempts to satisfy req 2ε occur prior to stage σ_{0}.

Case 1: there was an attempt at some stage σ to satisfy req 2ε, and the associated commitment was honored at all subsequent stages. Then

$$
\left\{p^{-1} \varepsilon\right\}_{\sigma}^{B<\sigma}(w(\sigma, \varepsilon))=1=\left\{p^{-1} \varepsilon\right\}^{B}(w(\sigma, \varepsilon))
$$

and $A^{\sigma}(w(\sigma, \varepsilon))=0=A(w(\sigma, \varepsilon))$.
Case 2: otherwise. Let $\sigma \geq \sigma_{1} \geq \sigma_{0}$ and suppose σ and σ_{1} are stages at which attention is paid to req 2ε. Then

$$
m_{B}(\sigma, \varepsilon)=m_{B}\left(\sigma_{1}, \varepsilon\right) \quad \text { and } \quad w_{B}(\sigma, \varepsilon)=w_{B}\left(\sigma_{1}, \varepsilon\right) \notin A^{<\sigma} .
$$

No attempt is made to satisfy req 2ε at stage σ, so

$$
\left\{p^{-1} \varepsilon\right\}_{\sigma}^{B<\sigma}\left(w_{\beta}(\sigma, \varepsilon)\right) \neq 1
$$

Since $\left\{p^{-1} \varepsilon\right\}^{B}$ is total, it follows that

$$
\left\{p^{-1} \varepsilon\right\}^{B}\left(w_{B}\left(\sigma_{1}, \varepsilon\right)\right) \neq 1
$$

Thus $w_{B}\left(\sigma_{1}, \varepsilon\right)$ is a witness to the inequality of A and $\left\{p^{-1} \varepsilon\right\}^{B}$.
The technology of the next section is more than is needed to solve Post's problem. Exercise 1.5 describes a much less technical solution. Sections 1 and 2 are intended to introduce ideas needed for further results such as the uniform solution of subsection 3.7.
1.5 Exercise. Assume $\alpha^{*}=\alpha$. Construct A and B as in subsection 1.2 with one additional proviso: suppose req x is injured at stage σ for the sake of req y; then req x can be injured at stage $\tau>\sigma$ for the sake of req z only if $z<y$. Show each injury set is finite. Show A and B are α-recursively enumerable, $A \not\left\{_{w \alpha} B\right.$, and $B \not \leq_{w \alpha} A$.

2. α-Finite Injury and Tameness

In this section it is assumed that $\alpha^{*}=\alpha$ and there exists a greatest α-cardinal, call it \aleph. The solution to Post's problem given in the previous section now fails, because α^{*} is no longer the limit of regular α-cardinals, and consequently Lemma 1.3 is not applicable to all $\delta<\alpha^{*}$. One way around the difficulty is to project α into
something potentially smaller than α^{*}. The new mode of projection will be Σ_{2}^{α} rather than Σ_{1}^{α}, and the range of the projection will be some ordinal multiple of \aleph. Lemma 1.3 will apply to each block of requirements of length \aleph, and a further idea will be involved to control the injuries within a short union of blocks. The arguments of this section rely strongly on the fine structure of L and are as concrete as possible. Lemma 2.7 provides rare bounds on α-finite injury sets. In succeeding sections the method is dealt with more abstractly so as to be applicable to a wide range of Σ_{1} admissible sets.
2.1 Tame Σ_{2} Maps. The notion of tameness was invented by M. Lerman to clarify the proof of Theorem 2.6. It has many applications. Let $f: \alpha \rightarrow \alpha$ be Σ_{2}^{α}. f has an α-recursive approximation that will not surprise students of classical recursion theory. Since $f \in \Sigma_{2}^{\alpha}$, there is a $D \in \Delta_{0}^{\alpha}$ such that

$$
f(x)=y \leftrightarrow L(\alpha) \vDash(\mathrm{Ev})(u) D(u, v, \underline{x}, \underline{y})
$$

for all $x, y<\alpha$. Define α-recursive w and g by:

$$
\begin{align*}
& w(\sigma, x)=\mu w_{w<\sigma}(u)_{u<\sigma} D\left(u,(w)_{0}, x,(w)_{1}\right) ; \tag{1}\\
& g(\sigma, x)=(w(\sigma, x))_{1} .
\end{align*}
$$

2.2 Proposition. $f \in \Sigma_{2}^{\alpha}$ iff there exists an α-recursive g such that $f(x)=\lim _{\sigma} g(\sigma, x)$.

Proof. Suppose $f(x)=\lim _{\sigma} g(\sigma, x)$. Then

$$
f(x)=y \leftrightarrow(E \sigma)(\tau)_{\tau \geq \sigma}[g(\sigma, x)=y] .
$$

Now suppose f is Σ_{2}^{α}. Define $w(\sigma, x)$ and $g(\sigma, x)$ as in (1)-(2) of subsection 2.1. Fix x and let w be the least $\langle v, y\rangle$ such that $(u) D(u, v, x, y)$ holds in $L(\alpha)$. Then $(w)_{1}=f(x)$. Define

$$
h(z) \simeq \mu u \sim D\left(u,(z)_{0}, x,(z)_{1}\right)
$$

h is partial α-recursive and defined for all $z<w$. Let

$$
\tau=\sup \{h(z) \mid z<w\} .
$$

$\tau<\alpha$ thanks to the Σ_{1} admissibility of $L(\alpha)$. For all $\sigma>\tau, w(\sigma, x)=w$ and $g(\sigma, x)=f(x)$.

Let $f: \delta \rightarrow \alpha$ for some $\delta \leq \alpha$. f is said to be tame Σ_{2}^{α} if there exists an α-recursive g such that

$$
(\gamma)_{\gamma<\delta}(E \tau)(\sigma)_{\sigma>\tau}(x)_{x<\gamma}[g(\sigma, x)=f(x)] .
$$

Thus $\lim g(\sigma, x)=f(x)$, and so $f \in \Sigma_{2}^{\alpha}$ as in the first part of the proof of Proposition 2.2. The tameness of f refers to the way g approximates f on proper initial segments of the domain of f. Let g_{σ} denote $\lambda x \mid g(\sigma, x)$. Then

$$
(\gamma)_{\gamma<\delta}(E \tau)(\sigma)_{\sigma>\tau}\left[g_{\sigma}\lceil\gamma=f\lceil\gamma] .\right.
$$

A Σ_{2}^{α} function need not be tame Σ_{2}^{α} (cf. Exercise 2.14).
The tame Σ_{2}^{α} projectum of α, denoted by $\operatorname{t\sigma p} 2(\alpha)$, is

$$
\mu \gamma(\mathrm{Ef})\left[f \in \operatorname{tame} \Sigma_{2}^{\alpha} \& f \text { maps } \gamma \text { onto } \alpha\right] .
$$

Warning: it can happen that $\alpha>\operatorname{t\sigma } 2 p(\alpha)$ and $t \sigma 2 p(\alpha)$ is not an α-cardinal.
2.3 Lemma (Lerman). Let $g(\sigma, x)$ be an α-recursive function such that $\lim _{\sigma} g(\sigma, x)$ exists for all x. Suppose $\lim _{\sigma} g(\sigma, x)$ maps α one-one into δ. Assume: $(\gamma)_{\gamma<\delta}(E \tau)(y)_{y<\gamma}$ either

$$
(x)(\sigma)_{\sigma>\tau}[g(\sigma, x) \neq y] \quad \text { or } \quad(\operatorname{Ex})(\sigma)_{\sigma>\tau}[g(\sigma, x)=y] \text {. }
$$

Then $t \sigma 2 p(\alpha) \leq \delta$.

Proof. The map $\lim g(\sigma, x)$ is collapsed and inverted. Let $h(\sigma, y)$ be the least member of

$$
\{g(\sigma, w) \mid w \leq \sigma\}-\{h(\sigma, z) \mid z<y\}
$$

if there is one, and zero otherwise. Let δ_{0} be the ordertype of the range of $\lambda x \mid \lim _{\sigma} g(\sigma, x)$. Then for each $y<\delta_{0}, \lim _{\sigma} h(\sigma, y)$ exists and is equal to y-th smallest member of the range of $\lambda x \mid \lim g(\sigma, x)$. For $y<\delta_{0}$, define

$$
k(\sigma, y)=\mu x_{x \leq \sigma}[g(\sigma, x)=h(\sigma, y)] .
$$

Then $k(\sigma, y)$ is α-recursive, and $\lim _{\sigma} k(\sigma, y)$ is a tame Σ_{2}^{α} map of δ_{0} onto α.

2.4 Corollary. $\operatorname{tr} 2 p(\alpha) \leq \alpha^{*}$.

Proof. Let $g: \alpha \rightarrow \alpha^{*}$ be one-one, into, and α-recursive. Define $g(\sigma, x)=g(x)$ for all $\sigma, x<\alpha . g(\sigma, x)$ satisfies the hypotheses of Lemma $2.3\left(\delta=\alpha^{*}\right)$ with the aid of Proposition 2.1.VII.

The Σ_{2}^{α} cofinality of α, denoted by $\sigma 2 \operatorname{cf}(\alpha)$, is

$$
\begin{array}{rll}
\mu \beta(\mathrm{Ef})\left[f \in \Sigma_{2}^{\alpha}\right. & \& & f \text { is strictly increasing } \\
& \& & \operatorname{dom} f=\beta \quad \& \quad \text { sup range } f=\alpha] .
\end{array}
$$

$\sigma 2 \operatorname{cf}(\alpha)$ measures the failure of $L(\alpha)$ to be Σ_{2} admissible. Thus $L(\alpha)$ is Σ_{2} admissible iff $\sigma 2 \operatorname{cf}(\alpha)=\alpha$.

The greatest cardinal of α, denoted by $\operatorname{gc}(\alpha)$, is the greatest α-cardinal, if there is one, and α otherwise.
2.5 Lemma. If $\operatorname{t\sigma } 2 p(\alpha)>\mathrm{gc}(\alpha)$, then

$$
t \sigma 2 p(\alpha)=\mathrm{gc}(\alpha) \cdot \sigma 2 \operatorname{cf}(\alpha)
$$

Proof. Let $\operatorname{t\sigma } 2 p(\alpha)=\operatorname{gc}(\alpha) \cdot \gamma+\lambda$, where $0<\gamma \leq \alpha$ and $\lambda<\operatorname{gc}(\alpha)$; and let f be a tame Σ_{2}^{α} map from $t \sigma 2 p(\alpha)$ onto α. Suppose $\lambda>0$. Then $f[g c(\alpha) \cdot \gamma]$ is α-finite by the tameness of f. Let t be a one-one, α-recursive map of $\alpha-f[\operatorname{gc}(\alpha) \cdot \gamma]$ onto α. Then f_{0}, defined by

$$
f_{0}(x)=t(f(\operatorname{gc}(\alpha) \cdot \gamma+x)),
$$

is a tame Σ_{2}^{α} map from λ onto α. But that is impossible because $\lambda<t \sigma 2 p(\alpha)$.
Thus $t \sigma 2 p(\alpha)=\operatorname{gc}(\alpha) \cdot \gamma$. Suppose γ is not a limit ordinal. Then $\operatorname{t\sigma } 2 p(\alpha)$ $=\operatorname{gc}(\alpha) \cdot(\gamma-1)+\operatorname{gc}(\alpha)$, and the argument of the previous paragraph can be repeated with $\operatorname{gc}(\alpha)$ in place of λ to obtain a tame Σ_{2}^{α} map from $\operatorname{gc}(\alpha)$ onto α. An impossibility since $\operatorname{gc}(\alpha)<t \sigma 2 p(\alpha)$.

Thus $t \sigma 2 p(\alpha)=\operatorname{gc}(\alpha) \cdot \gamma$ for some limit γ. For each $\delta<\gamma$, let

$$
h(\delta)=\sup \{f(x) \mid x<\operatorname{gc}(\alpha) \cdot \delta\}+\delta
$$

The tameness of f implies $h(\delta)<\alpha$. h is a strictly increasing Σ_{2}^{α} map from γ into an unbounded subset of α. Hence $\sigma 2 \operatorname{cf}(\alpha) \leq \gamma$.

It remains only to construct a tame Σ_{2}^{α} map j from $\operatorname{gc}(\alpha) \cdot \sigma 2 \operatorname{cf}(\alpha)$ onto α. Let k be a strictly increasing Σ_{2}^{α} map from $\sigma 2 \operatorname{cf}(\alpha)$ onto an unbounded subset of α. Assume $k(0)=0$. The range of k divides α into blocks. For each $\delta<\sigma 2 \operatorname{cf}(\alpha)$, the δ-th block is $\left[k(\delta), k(\delta+1)\right.$). Let z_{δ} be the least α-finite map of $\operatorname{gc}(\alpha)$ onto the δ-th block ("least" is defined by Proposition 1.8.VII). Define

$$
j(x)=z_{\delta}(x-(\operatorname{gc}(\alpha) \cdot \delta)) \quad \text { if } \quad \operatorname{gc}(\alpha) \cdot \delta \leq x<\operatorname{gc}(\alpha)
$$

for all $x<\operatorname{gc}(\alpha) \cdot \sigma 2 \operatorname{cf}(\alpha) . j$ is tame Σ_{2}^{α} because k is. k is tame because every Σ_{2}^{α} function with domain $\leq \sigma 2 \mathrm{cf}(\alpha)$ is tame (cf. Exercise 2.15).

The ideas behind Lemma 2.5 are helpful when studying Σ_{1} admissible structures that are not L-like. The present section concludes with the original solution to

Post's problem for Σ_{1} admissible ordinals. It relies on a tame Σ_{2} phenomenon derived from stability properties in L.
2.6 Theorem (Sacks \& Simpson 1972). There exist two α-recursively enumerable sets such that neither is weakly α-recursive in the other (Post's problem).

Proof. By Theorem 1.4 it is safe to assume $\alpha^{*}=\alpha$ and there is a greatest α-cardinal, call it \aleph. By Lemma 2.6.VII, α is the limit of α-stable ordinals. Let

$$
0=\delta_{0}<\aleph=<\delta_{1}<\delta_{2}<\cdots<\delta_{\gamma}<\cdots\left(\gamma<\lambda_{0}\right)
$$

be a listing of all α-stable ordinals beyond \aleph. A tame $\Sigma_{2}^{\alpha} \operatorname{map} f$ from $\mathbb{N} \cdot \lambda_{0}$ onto α will be defined in a moment. (It is possible that $t \sigma 2 p(\alpha)<\aleph \cdot \lambda_{0}$.) The α-stable ordinals divide α into λ_{0} blocks. Block γ is $\left[\delta_{\gamma}, \delta_{\gamma+1}\right.$). Let h_{γ} be the least α-finite map of \aleph onto block γ. Define

$$
f(x)=h_{\gamma}(x-(\aleph \cdot \gamma)) \quad \text { if } \quad \aleph \cdot \gamma \leq x<\aleph \cdot(\gamma+1)
$$

f maps $\aleph \cdot \lambda_{0}$ onto α.
Guessing tamely at f proceeds as follows. At stage σ let

$$
\aleph=\delta_{1}^{\sigma}<\delta_{2}^{\sigma}<\cdots<\delta_{\gamma}^{\sigma}<\cdots\left(\gamma<\lambda_{0}^{\sigma}\right)
$$

be a listing of all σ-stable ordinals beyond \aleph. (β is σ-stable if $\beta<\sigma$ and $L(\beta) \prec_{1} L(\sigma)$.) If β is σ-stable and $\sigma \geq$ some α-stable ordinal $\geq \beta$, then β is α-stable. Hence

$$
\delta_{\gamma}^{\sigma}=\delta_{\gamma} \quad \text { for all } \quad \sigma \geq \delta_{\gamma+1}
$$

Thus δ_{γ} is a tame Σ_{2}^{α} function of γ.
Let h_{γ}^{σ} be the least α-finite map of \aleph onto $\left[\delta_{\gamma}^{\sigma}, \delta_{\gamma+1}^{\sigma}\right)$ in $L(\sigma)$, if there is one; otherwise $h_{\gamma}^{\sigma}=0$. Then $h_{\gamma}^{\sigma}=h_{\gamma}$ for all $\sigma \geq \delta_{\gamma+2}$. Let

$$
g(\sigma, x)=h_{\gamma}^{\sigma}(x-(\boldsymbol{\aleph} \cdot \gamma)) \quad \text { if } \quad \aleph \cdot \gamma \leq x<(\gamma+1)
$$

for all $x<\aleph \cdot \lambda_{0}^{\sigma}$. Then f is tame Σ_{2}^{α} via the α-recursive approximation g. In essence f is tame because a correct guess of one α-stable ordinal implies a correct guess of all lesser α-stable ordinals.

The construction of A and B proceeds as in subsections 1.1-1.2 save that requirements are indexed by ordinals less than $\aleph \cdot \lambda_{0}$. For each $\varepsilon<\aleph \cdot \lambda_{0}$, req 2ε is: if $\{f \varepsilon\}^{B}$ is total, then $A \neq\{f \varepsilon\}^{B}$. req $2 \varepsilon+1$ is similar with A and B exchanged. Stage σ unfolds as it did in subsection 1.2 with $\left\{p^{-1} \varepsilon\right\}_{\sigma}^{B^{<\sigma}}$ replaced by $\{g(\sigma, \varepsilon)\}_{\sigma}^{B^{2 \sigma}}$. Consequently there is a new reason for making repeated attempts to satisfy req 2ε. Reduction procedure $\{g(\sigma, \varepsilon)\}$ varies with σ. The resulting disturbance dies down
quickly. By the Σ_{2} tameness of f via g,

$$
(x)_{x<\aleph \cdot \lambda_{0}}(E \tau)(\sigma)_{\sigma \geq \tau}(\varepsilon)_{\varepsilon<x}[g(\sigma, \varepsilon)=f(\varepsilon)] .
$$

For $\varepsilon<\aleph \cdot \lambda_{0}$ and $i<2$, define injury set

$$
I_{\varepsilon}^{i}=\{\sigma \mid \operatorname{req}(2 \varepsilon+i) \text { is injured at stage } \sigma\} .
$$

The next lemma should be compared with Lemma 1.3.
2.7 Lemma. $I_{\aleph \cdot \gamma+\beta}^{i} \in L\left(\delta_{\gamma+2}\right) \quad\left(\gamma<\lambda_{0} \& \beta<\aleph\right)$.

Proof. Req $(2 \varepsilon+i)$ is said to be active at stage σ if it is injured at stage σ, or if an attempt to satisfy it is made at stage σ, or if

$$
(\tau)_{\tau<\sigma}(E \eta)_{\tau \leq \eta<\sigma}[g(\eta, \varepsilon) \neq g(\sigma, \varepsilon)] .
$$

By induction on γ the following is proved: all activity occasional by req $2(\aleph \cdot \gamma+\beta)$ $+i$ takes place before stage τ for some $\tau<\delta_{\gamma+2}$.
$\operatorname{Req}(2 \varepsilon+i)$ is said to be in block y if

$$
\aleph \cdot y \leq \varepsilon<\aleph \cdot(y+1)
$$

Fix γ. By induction all activity with respect to requirements in block y, for all $y<\gamma$, takes place before stage $\delta_{\gamma+1} . h_{\gamma} \in L\left(\delta_{\gamma+2}\right)$, so there is a $\tau_{0}<\delta_{\gamma+2}$ such that

$$
(\sigma)_{\sigma \geq \tau_{0}}(\varepsilon)_{\varepsilon<\kappa \cdot(\gamma+1)}[g(\sigma, \varepsilon)=f(\varepsilon)] .
$$

Now an induction on β shows that req $z(\boldsymbol{\aleph} \cdot \gamma+\beta)+i$ is inactive after stage τ for some $\tau<\delta_{\gamma+2}$. The induction on β proceeds in the same fashion as the induction on δ in the proof of Lemma 1.3. After stage τ_{0}, injuries to, and attempts to satisfy, req $2(\aleph \cdot \gamma+\beta)+i$ are interlaced. As in the proof 1.3, Lemma 2.3.VII is applied to show $I_{\kappa \cdot \gamma+\beta}^{i}$ is α-finite and has α-cardinality less than \aleph. In short, the argument of 1.3 works within block β. Let

$$
\tau_{0} \leq \sigma_{0}<\sigma_{1}<\ldots<\sigma_{i}<\ldots(i<\rho)
$$

be a listing of $I_{\kappa \cdot \gamma+\beta}^{i}-\tau_{0} \cdot\left\{\sigma_{i} \mid i<\rho\right\}$ is an α-recursively enumerable set defined by a Σ_{1}^{α} formula whose parameters are $i, \gamma, \beta, \tau_{0}$ and \aleph. $(\aleph$ is the only parameter needed for the enumeration of A and B.) Since $\rho<\aleph<\delta_{\gamma+2}$, the α-stability of $\delta_{\gamma+2}$ pins down the σ_{i} 's. Suppose $\left\{\sigma_{i} \mid i<j\right\} \subseteq L\left(\delta_{\gamma+2}\right)$. Proceed by induction on j. If $j \leq \rho$, then $\left\{\sigma_{i} \mid i<j\right\} \in L\left(\delta_{\gamma+2}\right)$, because $\delta_{\gamma+2}$ is Σ_{1} admissible. Hence $\left\{\sigma_{i} \mid i<\rho\right\} \in L\left(\delta_{\gamma+2}\right)$.

The proof of Theorem 2.6 is completed as in the proof of Theorem 1.4.

2.8-2.15 Exercises

2.8. Assume $A, B \subseteq \alpha . L[B, \alpha]$ was defined in subsection 3.5.VII. $L[B, \alpha]^{+}$is the least $C \supseteq L[B, \alpha]$ such that $\langle C, B\rangle$ is Σ_{1} admissible. A is said to be α-computable from B (in symbols $A \leq{ }_{\alpha c} B$) iff A is Δ_{1} over $\left\langle L[B, \alpha]^{+}, B\right\rangle$. Suppose B is α-recursively enumerable and hyperregular. Show

$$
A \leq_{\alpha c} B \leftrightarrow A \leq_{\alpha} B
$$

2.9. Show there exist α-recursively enumerable sets A and B such that $A \not \Varangle_{\alpha c} B$ and $B \not \leq_{\alpha c} A$.
2.10. Show that $\sigma 2 \operatorname{cf}(\alpha)$ equals

$$
\mu \beta(\operatorname{Ef})\left[f \in \Sigma_{2}^{\alpha} \& \operatorname{dom} f=\beta \& \sup \text { range } f=\alpha\right] .
$$

(In other words the clause " f is strictly increasing" can be dropped from the definition of $\sigma 2 \mathrm{cf}(\alpha)$.)
2.11. Show that $t \sigma 2 p(\alpha)$ equals

$$
\mu \gamma(\mathrm{Ef})\left[f \in \operatorname{tame} \Sigma_{2}^{\alpha} \& f: \gamma \xrightarrow[\text { onto }]{1-1} \alpha\right] .
$$

2.12. Find an α such that $t \sigma 2 p(\alpha)<\alpha$ and $t \sigma 2 p(\alpha)$ is not an α-cardinal.
2.13. Find an α such that $\operatorname{t\sigma } 2 p(\alpha)<\aleph \cdot \lambda_{0}$, where \aleph and λ_{0} are as in the proof of Theorem 2.6.
2.14. Show α is Σ_{2} admissible iff every Σ_{2}^{α} function is tame Σ_{2}^{α}.
2.15. Suppose $f \in \Sigma_{2}^{\alpha}$ and $\operatorname{dom} f \leq \sigma 2 \operatorname{cf}(\alpha)$. Show f is tame Σ_{2}^{α}.

3. Dynamic Versus Fine-Structure

An argument in higher recursion theory, particularly an argument about "recursively enumerable" sets, is said to be fine-structure in character if it relies on the collapsing (or condensation) method associated with L. The proof of Theorem 2.6 is such an argument, because the stable ordinals $\delta_{\gamma}\left(\gamma<\lambda_{0}\right)$ owe their existence to Lemma 2.6.VII, whose proof makes explicit use of Mostowski's collapsing map. A dynamic argument relies on combinatoric reasoning about cofinalities and projecta. It may form hulls, but it does not collapse them. The regular sets theorem, 4.2.VII, is proved dynamically. A less obvious example is Theorem 5.3.VII, the existence of a non- α-recursive, hyperregular set. It makes use of Lemma 2.3.VII and Proposition 2.1.VII, both proved dynamically. Both 2.3 and 2.1 have a dependence on admissibility. If α is not Σ_{1} admissible, then 2.3 can fail, but 2.1 remains true by a fine-structure argument.

Dynamic methods possess the force needed to operate outside L and are in harmony with classical recursion theory. Fine structure techniques are more delicate. They keep careful count of injuries to requirements. Shore's density theorem, Chapter IX, is a powerful combination of both approaches.

The purpose of this section is to enlarge the repertoire of dynamic methods.
3.1 Lerman's Tame $\boldsymbol{\Sigma}_{2}$ Approach. The fine-structure aspects of the proof of Theorem 2.6 (Post's problem) can be eliminated systematically as follows. (The proof of 2.6 employed a tame Σ_{2}^{α} map from $\kappa \cdot \lambda_{0}$ onto α when $\alpha^{*}=\alpha$ and $\aleph=\operatorname{gc}(\alpha)<\alpha$.) Requirements are indexed by ordinals less than $\operatorname{t\sigma } 2 p(\alpha)$.

The treatment of requirements breaks into two cases.
(i) $t \sigma 2 p(\alpha) \leq \mathrm{gc}(\alpha)(\leq \alpha)$.
(ii) $t \sigma 2 p(\alpha)=\mathrm{gc}(\alpha) \cdot \sigma 2 \mathrm{cf}(\alpha)$.

By Lemma 2.5 either (i) or (ii) holds for all α. If (i) holds, then ε is less than some α-cardinal. If (ii) holds, then ε sits in block γ, that is,

$$
\operatorname{gc}(\alpha) \cdot \gamma \leq \varepsilon<\operatorname{gc}(\alpha) \cdot(\gamma+1)
$$

and can be viewed as less than some α-cardinal modulo $\mathrm{gc}(\alpha)$.
The reasoning behind Lemma 1.3 applies to both cases. Fix ε and choose τ so that the α-recursive approximation of $f\lceil(\varepsilon+1)$ is correct from stage τ onward. Assume I_{x}, the x-th injury set, is α-finite for all $x<\varepsilon$. If (i) holds, then I_{ε} is α-finite, as in 1.3, by the combinatoric lemma (2.3.VII). Note the use of Proposition 2.1.VII in the proof of 1.3.

Suppose (ii) holds. Let

$$
J_{\delta}=\cup\left\{I_{x} \mid \operatorname{gc}(\alpha) \cdot \delta \leq x<\operatorname{gc}(\alpha) \cdot(\delta+1)\right\}
$$

Assume J_{δ} is α-finite for all $\delta<\gamma$. Since J_{δ} is a Σ_{2}^{α} function of δ, and $\gamma<\sigma 2 \mathrm{cf}(\alpha)$, it follows that $\cup\left\{J_{\delta} \mid \delta<\gamma\right\}$ is α-finite. Hence there is a stage $\sigma_{\gamma}(\geq \tau)$ after which all activity with respect to requirements in block δ, for all $\delta<\gamma$, ceases. Then requirements in $[\operatorname{gc}(\alpha) \cdot \gamma, \varepsilon)$ can be handled the same way as requirements in $[0, \varepsilon$) were handled in case (i). In short: $\gamma<\sigma 2 \mathrm{cf}(\alpha)$ implied a bound on activity in the first γ blocks; and the combinatoric lemma implies a bound on activity up to any point within a block, since the length of a block is an α-cardinal.

It still has to be shown that J_{γ} is α-finite. Let I_{x}^{\prime} be the set of stages after σ_{γ} at which req x is injured. It suffices to show

$$
\begin{equation*}
\cup\left\{I_{x}^{\prime} \mid \operatorname{gc}(\alpha) \cdot \gamma \leq x<\operatorname{gc}(\alpha) \cdot(\gamma+1)\right\} \tag{1}
\end{equation*}
$$

is α-finite. The combinatoric lemma implies (by induction on x in block γ) that each I_{x}^{\prime} is α-finite and has α-cardinality less than $\mathrm{gc}(\alpha)$. The simultaneous enumeration of the I_{x}^{\prime} 's gives rise to a partial α-recursive, 1-1 map of (1) into $\mathrm{gc}(\alpha) \cdot \mathrm{gc}(\alpha)$. If b is the β-th member of I_{x}^{\prime} to be enumerated, then b is mapped to $\langle\beta, x-\mathrm{gc}(\alpha)\rangle$. Suppose (1) is not α-finite. Then there is an α-recursive, one-one map from α into (1), and
from (1) into $\operatorname{gc}(\alpha) \cdot \operatorname{gc}(\alpha)$. Hence $\alpha^{*} \leq \mathrm{gc}(\alpha)$, and so $\operatorname{t\sigma } 2 p(\alpha) \leq \mathrm{gc}(\alpha)$ by Corollary 2.4. But that contradicts the hypothesis of case (ii).
3.2 Shore's Blocking Method. The notion of block is carried a step further. For Shore there is no conflict between requirements in the same block. For example, the requirements in a given block might all be of the form $A \neq\{\varepsilon\}^{B}$. The success of the method turns on a lemma concerning cofinalities. Define $\sigma 2 \mathrm{cf}^{\alpha}(\delta)$, the Σ_{2}^{α} cofinality of δ, to be

$$
\begin{aligned}
\mu \beta(\mathrm{Eh})\left[h \in \Sigma_{2}^{\alpha}\right. & \& h \text { is strictly increasing } \\
& \& \operatorname{dom} h=\beta \& \text { sup range } h=\delta] .
\end{aligned}
$$

Thus $\sigma 2 \operatorname{cf}^{\alpha}(\alpha)=\sigma 2 \operatorname{cf}(\alpha)$.
3.3 Lemma (Shore). $\sigma 2 \operatorname{cf}^{\alpha}\left(\alpha^{*}\right)=\sigma 2 \operatorname{cf}(\alpha)$.

Proof. Let $f: \alpha \rightarrow \alpha^{*}$ be α-recursive, one-one and into. Suppose g is a strictly increasing Σ_{2}^{α} map from β into α^{*} with range unbounded in α^{*}. Then there exists a strictly increasing Σ_{2}^{α} map h from β into α with unbounded range. A rough approximation of h is $f^{-1} g$. The details are as follows. Define

$$
h(x)=\sup \left\{f^{-1}(y) \mid y<g(x) \& y \in \operatorname{range} f\right\}+x
$$

The " $+x$ " insures that h is strictly increasing. Proposition 2.1.VII implies h is Σ_{2}^{α}; for each $x<\beta$ there exists α-finite sets w_{1} and w_{2} such that

$$
w_{1} \cup w_{2}=g(x) \& w_{1} \subseteq \text { range } f \& w_{2} \cap \text { range } f=\phi
$$

Thus $h(x)=z$ iff

$$
\begin{gather*}
(\mathrm{Ew})\left(\mathrm{Ew}_{1}\right)\left(\mathrm{Ew}_{2}\right)\left[w=g(x) \& w=w_{1} \cup w_{2} \& w \subseteq \text { range } f\right. \tag{1}\\
\left.\& w_{2} \cap \text { range } f=\phi \& z=\sup \left\{f^{-1}(y) \mid y \in w_{1}\right\}+x\right] .
\end{gather*}
$$

(1) is easily seen to be Σ_{2}^{α} save for perhaps one detail. The formula, $w \subseteq \operatorname{rg} f$, rendered as

$$
\begin{equation*}
(u)_{u \in w}(\operatorname{Ex})(f(x)=u) \tag{2}
\end{equation*}
$$

appears to be Π_{2}^{α}, but is in fact Σ_{1}^{α}. Let $P(x, u, v)$ be a Δ_{0}^{α} formula such that

$$
f(x)=u \leftrightarrow(\operatorname{Ev}) P(x, u, v)
$$

Then (2) is equivalent to

$$
(\mathrm{Eq})(u)_{u \in w}(\mathrm{Ex})_{x \in q}(\mathrm{Ev})_{v \in q} P(x, u, v) .
$$

Thus the Σ_{1} admissibility of $L(\alpha)$ is needed to show h is Σ_{2}^{α}. Hence $\sigma 2 \operatorname{cf}(\alpha) \leq \sigma 2 \operatorname{cf}^{\alpha}\left(\alpha^{*}\right)$.

Now suppose a strictly increasing Σ_{2}^{α} map h from $\sigma 2 \operatorname{cf}(\alpha)$ into α is given. A good approximation of the desired cofinality map g from $\sigma 2 \operatorname{cf}(\alpha)$ into α^{*} is $f h$. Clearly $f h$ is Σ_{2}^{α}. The range of $f h$ is unbounded in α^{*}; otherwise range $f h \subseteq \delta$ for some $\delta<\alpha^{*}$, and then range h is bounded by sup $f^{-1}[\delta]<\alpha$. The only difficulty is that $f h$ may not be strictly increasing. Define

$$
\beta=\mu \gamma(\mathrm{Et})\left[t \in \Sigma_{2}^{\alpha} \& \operatorname{dom} t=\gamma \& \text { sup range } t=\alpha\right] .
$$

Let t be a Σ_{2}^{α} map from β into α with unbounded range. $f t$ is Σ_{2}^{α} and its range is unbounded in α^{*}. Define β_{0} to be

$$
\mu \gamma(\mathrm{Ep})\left[p \in \Sigma_{2}^{\alpha} \& \operatorname{dom} p=\gamma \& \text { sup range }=\alpha^{*}\right] .
$$

then $\beta_{0} \leq \beta \leq \sigma 2 \operatorname{cf}(\alpha)$. Let g_{0} be a Σ_{2}^{α} map from β_{0} into α^{*} with range unbounded in α^{*}. To show $\sigma 2 \mathrm{cf}^{\alpha}\left(\alpha^{*}\right) \leq \sigma 2 \operatorname{cf}(\alpha)$, it suffices to transform g_{0} into a strictly increasing function g with the same domain $\left(=\beta_{0}\right)$.

For $x<\beta_{0}$, let

$$
g(x)=\sup \left\{g_{0}(y) \mid y \leq x\right\}+x .
$$

To see g is Σ_{2}^{α}, let $k(\alpha, x)$ be an α-recursive function such that

$$
g_{0}(x)=\lim _{\sigma} k(\sigma, x) \quad\left(x<\dot{\beta_{0}}\right) .
$$

k exists by Proposition 2.2. Let

$$
m(x)=\mu \sigma(\tau)_{\tau \geq \sigma}[k(\sigma, x)=k(\tau, x)] .
$$

m is Σ_{2}^{α}, since $m(x)=\sigma$ iff

$$
\begin{gather*}
(\tau)_{\tau \geq \sigma}[k(\sigma, x)=k(\tau, x)] \tag{3a}\\
\&(\rho)_{\rho<\sigma}(E \gamma)_{\rho<\gamma<\sigma}[k(\rho, x) \neq k(\gamma, x)], \tag{3b}
\end{gather*}
$$

Hence for each $x<\beta_{0} \leq \beta$,

$$
\{m(y) \mid y \leq x\}
$$

is bounded below α. In other words, for each $x<\beta_{0}$

$$
\begin{equation*}
(E \sigma)(\tau)_{\tau \geq \sigma}(y)_{y \leq x}[k(\sigma, y)=k(\tau, y)] . \tag{4}
\end{equation*}
$$

(4) is Σ_{2}^{α} and serves as the principal part of a Σ_{2}^{α} definition of g. Note that $\sup \left\{g_{0}(y) \mid y \leq x\right\}$ equals $\sup \{k(\sigma, y) \mid y \leq x\}$ for all sufficiently large σ.

Note well the use of Σ_{1} admissibility in the above proof to show a formula is Σ_{2}^{α}.
3.4 Blocking. As in subsection 1.1 the requirements for Post's problem are indexed by ordinals less than α^{*}. Let g be a strictly increasing, Σ_{2}^{α} map from $\sigma 2 \operatorname{cf}\left(\alpha^{*}\right)$ into α^{*} with range unbounded in α^{*}. Shore's blocking method uses g to distribute requirements as follows. p is an α-recursive, 1-1 map of α into α^{*}.

Block 2δ : all requirements of the form $A \neq\left\{p^{-1} \varepsilon\right\}^{B}$, where $g(\delta) \leq \varepsilon<g(\delta+1)$.
Block $2 \delta+1$: all requirements of the form $B \neq\left\{p^{-1} \varepsilon\right\}^{A}, g(\delta) \leq \varepsilon<g(\delta+1)$.
The procedure for trying to meet requirements is the one established in subsection 1.1. Hence there is no conflict between requirements in the same Shore block. Block γ is said to have a higher priority than block ρ if $\gamma<\rho$. Thus a requirement in block 2δ can be injured only by an attempt to satisfy a requirement in block $2 \eta+1$ for some $\eta<\delta$. In order to proceed effectively at stage σ, the Σ_{2}^{α} cofinality map $g(\delta)$ is replaced by an α-recursive approximation $g(\sigma, \delta)$ supplied by Proposition 2.2.

Define $\lim _{\tau<\sigma} g(\tau, x)$ to be z iff

$$
(E \gamma)_{\gamma<\sigma}(\tau)_{\gamma \leq \tau<\sigma}[g(\tau, x)=z] .
$$

For each $\rho<\sigma 2 \mathrm{cf}^{\alpha}\left(\alpha^{*}\right)$, let J_{ρ} be the set of all σ such that:
(i) an attempt is made to satisfy, or an injury occurs to, a requirement in $\cup\{$ block $x \mid x \leq \rho\}$ at stage σ; or
(ii) $g(\sigma, x) \neq \lim _{\tau<\sigma} g(\tau, x)$ for some $x \leq \rho$.

As in Section 1 it suffices to see J_{ρ} is α-finite.
Assume J_{x} is α-finite for $x<\rho$. Then J_{x} is a Σ_{2}^{α} function of x below ρ. Since $\rho<\sigma 2 \mathrm{cf}^{\alpha}\left(\alpha^{*}\right)$, Lemma 3.3 implies

$$
\sup \left\{J_{x} \mid x<\rho\right\}=\sigma_{0}<\alpha
$$

Choose $\sigma_{1}>\sigma_{0}$ so that $(\tau)_{\tau \geq \sigma_{1}}\left[g(\tau, \rho)=g\left(\sigma_{1}, \rho\right)\right]$. Let $J_{\rho}^{1}=J_{\rho}-\sigma_{1}$. Suppose $\sigma \in J_{\rho}^{1}$. The only activity at stage σ with respect to block δ is an attempt to meet one requirement in that block. (Recall that the procedure for meeting requirements established in subsection 1.1 allows an attempt on at most one requirement at each stage.) Each requirement in block δ will be attempted at at most one stage in J_{ρ}^{1}. Thus J_{ρ}^{1} is in α-recursive, 1-1 correspondence with an α-recursively enumerable subset of block ρ. That subset is α-finite, since block ρ is shorter than α^{*}. Hence J_{ρ}^{1} is α-finite.
3.5 Post's Problem for Admissible Sets. Let A be a Σ_{1} admissible set as defined in Section 1.VII. Recall that $B \subseteq A$ is said to be A-recursively enumerable if B is Σ_{1}^{A} and A-recursive if A is Δ_{1}^{A}. Also z is said to be A-finite if $z \in A$. Many, but not all, of
the notions of α-recursion theory extend to A. For example, regularity can only mean: $B \subseteq A$ is regular iff $(B \cap z) \in A$ for all $z \in A$. On the other hand, the notion of Σ_{1} projectum does not seem to make sense for all Σ_{1} admisible A 's. If A is $\left(\operatorname{Ad}\left(2^{\omega}\right)\right)$, the least Σ_{1} admissible set with 2^{ω} as an element, then there does not appear to be any useful way of defining the Σ_{1} projectum of A.

To formulate Post's problem for all A, all that is needed is an extension of " α-recursive in" to " A-recursive in". Suppose $B, C \subseteq A$. B is A-recursive in C, symbolically $B \leq{ }_{A} C$, if there exist partial A-recursive functions ϕ and ψ such that

$$
\begin{aligned}
& x \subseteq B \leftrightarrow(\mathrm{Ey})(\mathrm{Ez})[\phi(x, y, z)=0 \quad \& \quad y \subseteq C \quad \& \quad z \subseteq A-C] \\
& x \subseteq A-B \leftrightarrow(\mathrm{Ey})(\mathrm{Ez})[\psi(x, y, z)=0 \quad \& \quad y \subseteq C \quad \& \quad z \subseteq A-C]
\end{aligned}
$$

for all $x \in A$. (y and z range over A.) Clearly \leq_{A} is reflexive and transitive. Two sets have the same A-degree if each is A-recursive in the other. The notion of "weakly A-recursive in" ($\leq_{w A}$) is defined by substituting " $x \in$ " for " $x \subseteq$ " in the definition of \leq_{A}.

One formulation of Post's problem for A is: do there exist A-recursively enumerable sets B and C such that $B \not{ }_{A} C$ and $C \nsubseteq B$? Another formulation that asks for more: $B \not \not_{w A} C$ and $C \not \overleftarrow{w}_{w A} B$? Still another asks for less: does there exist an A-recursively enumerable set B such that B is neither A-recursive nor complete? (B is complete if every A-recursively enumerable set is A-recursive in B.) Simpson showed that HC , the set of all hereditarily countable sets, yields a negative answer to the third formulation above, if the axiom of determinateness is assumed. Later Harrington showed, as a theorem of ZF , that there exists a countable Σ_{1} admissible set for which the third formulation has a negative answer. His proof can be found in Chong 1984.

On the other hand, Simpson 1974b and Stoltenberg-Hansen 1977 showed that the second (and strongest) formulation has a positive answer if A can be suitably wellordered. The condition to be considered here is: A is effectively well-orderable, that is, there exists a one-one A-recursive map of A onto $\operatorname{ord}(A)$, the least ordinal not in A. If A is effectively well-orderable, then the notion of Σ_{1} projectum is meaningful for A, and the dynamic solutions of Post's problem given above via Lerman's tame Σ_{2} projectum (subsection 3.1) or Shore's blocking method (subsection 3.2) apply to A. The fine structure approach (Theorem 2.6) fails in A, because it is based on collapsing arguments that need initial segments of L to succeed. The next proposition is an aid to understanding why dynamic methods succeed in A when A is effectively well-orderable.
3.6 Proposition. Assume A is $a \Sigma_{1}$ admissible set. Let $\alpha=\operatorname{ord}(A)$. Then (i) iff (ii).
(i) A is effectively well-orderable.
(ii) There exists a $\Delta_{1}^{A} \quad B \subseteq \alpha$ such that $A=L[B, \alpha]$.

Proof. $L[B, \alpha]$ was defined in subsection 3.5.VII. If (ii) holds, then the natural enumeration of $L(\alpha)$, described in subsection 1.7.VII, extends to one of $L[B, \alpha]$, and yields an effective well-ordering of A.

Suppose (i) holds. Let $f: A \rightarrow \alpha$ be a one-one, onto, Σ_{1}^{A} map. B will encode all sets in A by relations on ordinals. Let $x \in A$, and define $t c(x)$, the transitive closure of x, to be the least transitive $y \supseteq x$. (Note that $t c(x)$, as a function of x, is Σ_{1}^{A}.) Define

$$
\delta \varepsilon_{f} \gamma \text { by } f^{-1}(\delta) \in f^{-1}(\gamma)
$$

then $\langle\operatorname{tc}(x), \epsilon\rangle \approx\left\langle f[t c(x)], \varepsilon_{f}\right\rangle$. Let

$$
r=\left\langle f[x], f[t c(x)], \varepsilon_{f} \cap(f[\operatorname{tc}(x)])^{2}\right\rangle .
$$

r is an effective code for x in that the passage from r to x can be accomplished inside $L(\alpha, r)$. Note that the collection of all such r is A-recursive. r can be further coded as a set of ordinals.

Thus it will be enough for B to encode all sets of ordinals in A. A-recursive functions $g, h: \alpha \rightarrow \alpha$ are defined by recursion. Let f_{0} be a one-one, A-recursive map of α onto $A \cap 2^{\alpha}$. Define

$$
\begin{aligned}
h(\delta) & =\left(\sup _{\gamma<\delta} h(\gamma)\right)+\sup ^{+} f_{0}(\delta), \\
g(h(\delta)+x) & =\begin{array}{llll}
0 & \text { if } & x \in f_{0}(\delta) \\
1 & \text { if } & x \notin f_{0}(\delta)
\end{array} \quad\left(x<\sup ^{+} f_{0}(\delta)\right) .
\end{aligned}
$$

Each $y \in A \cap 2^{\alpha}$ can be recovered from a sufficiently long initial segment of h and g. Since $h, g \subseteq \alpha^{2}$, they can be encoded by a $B \subseteq \alpha$.
3.7 Theorem. Let A be an effectively well-orderable, Σ_{1} admissible set. Then there exist two A-recursively enumerable sets such that neither is weakly A-recursive in the other.

Proof. By Shore's blocking method. Define

$$
\alpha_{A}^{*}=\mu \gamma(\mathrm{Eg})\left[g \in \Sigma_{1}^{A} \& g: \alpha \xrightarrow[\text { into }]{1-1} \gamma\right]
$$

α_{A}^{*} is the Σ_{1} projectum of A. The proof of Proposition 2.1.VII was entirely dynamic in nature and so applies to α_{A}^{*}. Suppose $X \subseteq \delta \subseteq \alpha_{A}^{*}$ and X is A-recursively enumerable. Let f be a one-one, A-recursive map of A onto $\operatorname{ord}(A)$. With the aid of f, X becomes the range of a partial, one-one, A-recursive map g with domain equal to an initial segment of $\operatorname{ord}(A)$. The domain of g cannot be $\operatorname{ord}(A)$ because $\delta \subseteq \alpha_{A}^{*}$. Thus the domain of g, and hence X, is α-finite.

Similarly the proof of Proposition 2.2 shows that each Σ_{2}^{A} function from $\operatorname{ord}(\mathrm{A})$ into $\operatorname{ord}(A)$ is the limit of an A-recursive approximation. And the proof of Lemma 3.3 becomes a proof of

$$
\sigma 2 \mathrm{cf}^{A}\left(\alpha_{A}^{*}\right)=\sigma 2 \mathrm{cf}^{A}(\operatorname{ord}(A)) .
$$

The arguments of subsection 3.4 transfer to A straightforwardly. The two "incomparable" sets obtained are subsets of α.
3.8 Uniform Solutions to Post's Problem. Call a Σ_{1}^{α} subset of $L(\alpha)$ lightface if its Σ_{1} definition has all its parameters in ω, and boldface otherwise. Thus the set of ordinals less than α^{*} in $L(\alpha)$ is boldface, but not lightface, Σ_{1}^{α}, because its definition needs α^{*} as a parameter. All the solutions of Post's problem given prior to this section yield "incomparable" sets that are boldface Σ_{1}^{α}. The parameters needed arise out of various definable projecta and confinalities. For example, the blocking argument of subsection 3.4 needs the parameters occurring in the Σ_{1}^{α} definition of p and the Σ_{2}^{α} definition of g. The solution given below avoids all such parameters and is uniform in α.
3.8 Theorem (R. Shore 1974). There exist integers m and n such that for all α : the m-th and n-th lightface Σ_{1}^{α} sets have the property that neither is weakly α-recursive in the other.

Proof. Curiously the uniform construction, viewed locally, is similar to that given in Section 1 when $\alpha^{*}<\alpha$. The idea is to divide α into intervals that are independent in the sense that requirements in different intervals do not conflict. The top of each interval is to be a Σ_{1} admissible ordinal with strictly smaller Σ_{1} projectum. The α-stable ordinals are Σ_{1} admissible and, according to Lemma 2.7, define somewhat independent intervals.

Let $\left\{t(\sigma, \delta) \mid 0<\delta<\sigma_{0}\right\}$ be a list in ascending order of the σ-stable ordinals. Set $t(\sigma, 0)=\omega$ and $t\left(\sigma, \sigma_{0}\right)=\sigma$.

Define $t_{\delta}=t(\alpha, \delta)$. Thus t_{δ} is the δ-th α-stable ordinal. $t(\sigma, \delta)=t_{\delta}$ if $\sigma \geq t_{\delta}$, and $t(\sigma, \delta)$ is a lightface α-recursive function of σ and δ. Hence t_{δ} is a lightface, tame Σ_{2}^{α} function of δ.

Let h be the universal, partial α-recursive function central to the proof of Lemma 2.6.VII. Recall that h is lightface Σ_{1}^{α}, uniformly in α, and that $h[\gamma]$ is a Σ_{1} substructure, and an initial segment, of $L(\alpha)$ for every infinite $\gamma<\alpha$. It follows that

$$
\begin{equation*}
\text { (i) } h\left[t_{\delta}+1\right]=L\left(t_{\delta+1}\right) \quad \text { and } \quad \text { (ii) } t_{\delta+1}^{*} \leq t_{\delta} \tag{0}
\end{equation*}
$$

for all $\delta<\sigma_{0}$. (ii) is obtained from (i) by inverting h.
Since $t_{\delta+1}^{*}<t_{\delta+1}\left(\delta<\alpha_{0}\right)$, the local strategy of the uniform construction can be modeled on that of subsection 1.1. Suppose

$$
t_{\delta} \leq \rho<\sigma<t_{\delta+1}
$$

At stage σ the intention is to consider only requirements of the form $A \neq\{\rho\}^{B}$ (req 2ρ) or $B \neq\{\rho\}^{A}$ (req $2 \rho+1$). The priorities are governed by f_{σ}, a partial, oneone $\Sigma_{1}^{t_{\delta+1}}$ map from $t_{\delta+1}^{*}$ onto $t_{\delta+1}$ defined below. The local strategy yields the desired global result: req ρ is satisfied prior to stage $t_{\delta+1}$, and that will be so thanks to the α-stability of $t_{\delta+1}$. Of course at stage σ the local strategy can only be guessed
at. The guesses must converge properly, and above all, must be lightface α-recursive uniformly in α.

Define $f_{\delta}=h g_{\delta}$, where g_{δ} is the first member of $L\left(t_{\delta+1}\right)$ to be a one-one map of $t_{\delta+1}^{*}$ onto t_{δ}. $h\left\lceil t_{\delta}\right.$ is $\Sigma_{1}^{t_{\delta+1}}$ because $t_{\delta+1}$ is stable. Thus f_{δ} is a partial $\Sigma_{1}^{t_{\delta+1}}$ function from $t_{\delta+1}^{*}$ onto $t_{\delta+1}$. It is safe to assume f_{δ} is one-one (cf. Exercise 1.16.VII). The only non-trivial parameter in the Σ_{1} definition of f_{δ} is $g_{\delta} . g_{\delta}^{\sigma}$ is the best guess in $L(\sigma)$ at a one-one map of the σ-cardinality of $t(\sigma, \delta)$ onto $t(\sigma, \delta)$. (Recall that for any Σ_{1} admissible γ, if $\gamma^{*}<\gamma$, then γ^{*} is the greatest γ-cardinal.) As σ approaches $t_{\delta+1}$

$$
\begin{aligned}
t(\sigma, \delta) & =t_{\delta} \\
\sigma-\operatorname{card}\left(t_{\delta}\right) & =t_{\delta+1}^{*}
\end{aligned}
$$

and $g_{\delta}^{\sigma}=g_{\delta}$. Let h^{σ} be the result of restricting the Σ_{1}^{α} definition of h to $L(\sigma)$. Then h^{σ} is lightface Σ_{1}^{σ}.

Define $f_{\delta}^{\sigma}=h^{\sigma} g_{\delta}^{\sigma}$. Then

$$
\begin{equation*}
z<t_{\delta+1}^{*} \rightarrow \lim _{\sigma \rightarrow t_{\delta+1}} f_{\delta}^{\sigma}\left\lceil z=f_{\delta} \upharpoonright z\right. \tag{1}
\end{equation*}
$$

Suppose $\omega \leq \rho<\sigma$. Let $t_{m(\sigma, \rho)}$ be the greatest σ-stable ordinal $\leq \rho$. Then

$$
\begin{equation*}
t_{\delta} \leq \rho<t_{\delta+1} \rightarrow \lim _{\sigma \rightarrow t_{\delta+1}} t_{m(\sigma, \rho)}=t_{\delta} . \tag{2}
\end{equation*}
$$

(Remember that $\lim _{\sigma \rightarrow y} x_{\sigma}=x$ means $(E \tau)_{\tau<y}(\sigma)_{\tau \leq \sigma<y}\left(x_{\sigma}=x\right)$.)
The uniform solution.
Stage $\sigma<\omega$. Identical with the Friedberg-Muchnik solution to Post's problem.
Stage $\sigma \geq \omega$. Suppose $\rho<\sigma$ and an attempt was made at stage $\tau<\sigma$ to satisfy req ρ. That attempt, specifically the negative requirement imposed by that attempt on A or B, is now discarded if

$$
t_{m(\tau, \rho)}>t_{m(\sigma, \rho)} .
$$

If $r<\sigma$, then r belongs to a unique block of the form $[t(\sigma, \delta), t(\sigma, \delta+1))$. The local priority assigned to req r at stage σ is $\left(f_{\delta}^{\sigma}\right)^{-1}(r)$. As usual req x has higher priority than req y if the priority assigned to x is less than that assigned to y.
$\operatorname{Req} r$ needs attention at stage σ if:
(i) every attempt to satisfy req r prior to stage σ was injured prior to stage σ, or discarded prior to or at stage σ; and
(ii) there is an opportunity to satisfy req r at stage σ that does not threaten injury to any req of higher priority in the same block as r, or to any requirement in any block below that of r.

Go to the lowest block in which there is a requirement that needs attention. In that block go to the highest priority requirement that needs attention, and take the least opportunity to satisfy it.

End of uniform solution.
Fix $\delta<\alpha_{0}$ and $z<t_{\delta+1}^{*}$ in order to show by induction that J_{z}^{δ} (the set of all σ such that an injury to, or attempt to satisfy, req $f_{\delta}(z)$ occurs at stage σ) is $t_{\delta+1}$-finite. As in (1) and (2) there is a $\sigma_{1} \in\left[t_{\delta,} t_{\delta+1}\right)$ such that for all $\sigma \geq \sigma_{1}$:

$$
\begin{aligned}
& t(\sigma, \delta)=t_{\delta} \\
& f_{\delta}^{\sigma} \upharpoonright(z+1)=f_{\delta} \upharpoonright(z+1) \\
& t(\sigma, \delta+1)>\sup f_{\delta}[z+1]
\end{aligned}
$$

Then for all $x \leq z$ at stage $\sigma \geq \sigma_{1}$:
(3) no prior attempt to satisfy req $f_{\delta}(x)$ is discarded;
(4) req $f_{\delta}(x)$ is injured only for the sake of $f_{\delta}(y)(y<x)$.
(4) follows from the induction hypothesis that $J_{v}^{\gamma} \in L\left(t_{\gamma+1}\right)$; for all $\gamma<\delta$ and $v<t_{\gamma+1}^{*}$.

By induction the J_{x}^{δ} 's $(x<z)$ are simultaneously $t_{\delta+1}$-recursively enumerable, and each is $t_{\delta+1}$-finite. The combinatoric lemma (2.3.VII) implies $\cup\left\{J_{x}^{\delta} \mid x<z\right\}$ is $t_{\delta+1}$-finite. After stage σ_{1} and after $U\left\{J_{x}^{\delta} \mid x<z\right\}$ is enumerated, there is at most one attempt to satisfy req z. Hence J_{z}^{δ} is α-finite.

Fix $r \in\left[t_{\delta}, t_{\delta+1}\right)$ to see req r is met. $r=f_{\delta}(z)$ for some $z<t_{\delta+1}^{*}$. Assume req r is of the form $A \neq\{r\}^{B}$. Choose $\sigma_{2} \in\left(\sigma_{1}, t_{\delta+1}\right)$ so that

$$
\cup\left\{J_{x}^{\delta} \mid x \leq z\right\} \subseteq \sigma_{2}
$$

σ_{1} is as above. Any attempt to satisfy req r involves a witness w and the inequation $A(w) \neq\{r\}^{B}(w) . w$ is drawn from a witness set Z_{r}^{δ}. The witness sets are pairwise disjoint, unbounded in α, and simultaneously lightface α-recursive. The α-stability of $t_{\delta+1}$ implies that $Z_{r}^{\delta}-t_{\delta}$ is unbounded in $t_{\delta+1}$. Let w_{0} be a member of $Z_{r}^{\delta}-t_{\delta}$ not put in A prior to stage σ_{2}. Then w_{0} is never put in A, i.e. $A\left(w_{0}\right)=0$. Suppose $\{r\}^{B}\left(w_{0}\right)=0$. Then there is a $\sigma<\alpha$ such that

$$
\begin{equation*}
\sigma>\sigma_{2} \& A^{<\sigma}\left(w_{0}\right)=0 \&\{r\}_{\sigma}^{B<\sigma}\left(w_{0}\right)=0 \tag{5}
\end{equation*}
$$

Since A and B are lightface Σ_{1}^{α}, there is a $\sigma<t_{\delta+1}$ that satisfies (5). No requirement in any block below block δ, or in block δ and of higher priority than r, receives attention at stage σ. If r does not need attention at stage σ, then it was satisfied at an earlier stage by an attempt not yet discarded or injured, and hence never to be discarded or injured. If r does need attention at stage σ, then it will be satisfied at stage σ and remain so forever.

The proof of Theorem 3.8 was dynamic in nature save for one fine-structure fact:

$$
\begin{equation*}
h\left[t_{\delta}+1\right]=L\left(t_{\delta+1}\right) . \tag{6}
\end{equation*}
$$

The proof of (6) is a collapsing argument. Nonetheless the proof of Theorem 3.8 can be adjusted so as to avoid (6) (cf. Exercise 3.10). The result is an entirely dynamic, lightface solution to Post's problem that is uniform with respect to a wide class of structures.

3.9-3.12 Exercises

3.9. Suppose $\alpha^{*}<\alpha$. Show there exists a lightface, tame Σ_{2}^{α} map with range α and domain less than α.
3.10. Let A be a Σ_{1} admissible set. Suppose A is effectively wellorderable via a lightface one-one, A-recursive map of A onto $\operatorname{ord}(A)$. Show Post's problem for A has a lightface solution.
3.11. (R. Shore 1974). Suppose $L(\alpha)$ is Σ_{n} admissible, that is, it satisfies Σ_{n}^{α} replacement. Find sets $A_{i}(i \leq 1)$ such that A_{i} is Σ_{n}^{α}, but is not Δ_{n}^{α}, over $\left\langle L\left[A_{1-i}, \alpha\right], \varepsilon, A_{1-i}\right\rangle$.
3.12. Let A be a Σ_{1} admissible structure of the form $\langle L[B, \alpha], \varepsilon, B\rangle$. Solve Post's problem for A.

4. Σ_{1} Doing the Work of Σ_{2}

Chapter VIII ends on the same note with which it began. Certain Σ_{2} constructions that occur in classical recursion theory can, after some modification, be carried out for every Σ_{1} admissible ordinal. A Σ_{2} construction is one that succeeds by appeal to Σ_{2} replacement. Although the Friedberg-Muchnick ($\mathrm{F}-\mathrm{M}$) construction is a Σ_{1} recursion, Σ_{2} replacement is needed to check that every requirement is met. $\sigma(e)$, the stage by which the e-th requirement is met, is a Σ_{2} function of e; and the proof that the e-th requirement is met begins with finding a bound on $\{\sigma(c) \mid c<e\}$. Thus the proof that the $\mathrm{F}-\mathrm{M}$ construction works can be lifted, with no conceptual change, from $L(\omega)$ to every Σ_{2} admissible $L(\alpha)$.

The previous sections of this chapter studied various methods of lifting the $\mathrm{F}-\mathrm{M}$ construction to every Σ_{1} admissible ordinal. All the methods had in common the idea of projecting α downward to an ordinal with combinatoric properties reminiscent of Σ_{2} replacement. The present section focuses on Lerman's tame Σ_{2} approach and uses it to lift tame Σ_{2} recursions, in a systematic fashion, from ω to α. The simplest example of a tame Σ_{2} recursion in classical recursion theory is the construction of a 1 -generic Δ_{2} set. After the combinatoric facts about tame Σ_{2}^{α} recursion are established, they will be applied to obtain a 1 -generic Δ_{2}^{α} set, and finally to prove Simpson's inversion theorem for the α-jump.
4.1 Tame Σ_{2} Recursion. Let R be an α-recursively enumerable predicate, and S an α-recursive function. A tame Σ_{2}^{α} recursion is defined by

$$
f(\gamma)=\begin{aligned}
& \mu y R(f \upharpoonright \gamma, \gamma, y) \quad \text { if } \quad(\mathrm{Ey}) R(f \upharpoonright \gamma, \gamma, y) \\
& S(f \upharpoonright \gamma) \quad \text { otherwise } .
\end{aligned}
$$

If α is Σ_{2} admissible, then there exists a unique $\Sigma_{2}^{\alpha} f$ from α into α satisfying the above recursion equations. If α is merely Σ_{1} admissible, then the recursion may break down at some δ such that $(f\lceil\delta) \notin L(\alpha)$. The first such δ is at least $t \sigma 2 p(\alpha)$ according to Lemma 4.2.

A tame Σ_{2}^{α} recursion arises out of attempts to meet requirements indexed by ordinals less than α. The requirements are simultaneously α-recursively enumerable sets. A typical member of a requirement is an ordered pair of disjoint α-finite sets. $f(\gamma)$ might be the least extension of $f \Gamma \gamma$ that satisfies requirement γ. Since the desired extension may not exist, f is Σ_{2} in character rather than Σ_{1}.
4.2 Lemma. The equations for a tame Σ_{2}^{α} recursion define a unique tame Σ_{2}^{α} from $t \sigma 2 p(\alpha)$ into α.

Proof. The idea is to construe f as the limit of an α-recursive sequence $f_{\sigma} . f(\gamma)$ is approximated at the beginning of stage σ by $f_{<\sigma}(\gamma)$, and at the end of stage σ by $f_{\sigma}(\gamma)$. Convergence of f_{σ} to f is assured by a system of priorities. At stage σ the best guess for $f\left(\gamma_{1}\right)$ may be inconsistent with the best guess for $f\left(\gamma_{2}\right)$. If $\gamma_{1}<\gamma_{2}$ then γ_{1} is given preference. Thus a guess made for $f\left(\gamma_{2}\right)$ at stage σ may be discarded at a later stage for the sake of a new guess for $f\left(\gamma_{1}\right)$. Recall that

$$
\lim _{\tau \rightarrow \sigma} k(\tau)=z \text { means }(E \rho)_{\rho<\sigma}(\tau)_{\rho \leq \tau<\sigma}[k(\tau)=z] .
$$

Define (by induction on γ):

$$
f_{<\sigma}(\gamma)=\begin{aligned}
& \lim _{\tau \rightarrow \sigma} f_{\tau}(\gamma) \quad \text { if the limit exists, } \\
& S\left(f_{<\sigma}\lceil\gamma) \quad\right. \text { otherwise. }
\end{aligned}
$$

γ needs attention at stage σ if:

$$
L(\sigma) \vDash(\mathrm{Ey}) R\left(f_{<\sigma}\lceil\gamma, \gamma, y)\right] ; \text { and }
$$

$$
\begin{equation*}
f_{<\sigma}(\gamma) \neq \mu y\left[L(\sigma) \vDash R\left(f_{<\sigma} \upharpoonright \gamma, \gamma, y\right)\right] . \tag{1}
\end{equation*}
$$

Let γ^{σ} be the least γ that needs attention at stage σ, and y_{0} the least y alluded to in (1) when $\gamma=\gamma^{\sigma}$. Define

$$
\begin{array}{cl}
f_{<\sigma}(\gamma) & \text { if } \gamma<\gamma^{\sigma} \\
f_{\sigma}(\gamma)=y_{0} & \text { if } \gamma=\gamma^{\sigma} \\
S\left(f_{\sigma}\lceil\gamma)\right. & \text { if } \gamma>\gamma^{\sigma} .
\end{array}
$$

Let I_{γ} be $\left\{\sigma \mid \gamma \geq \gamma^{\sigma}\right\}$. It need only be shown that I_{γ} is α-finite for all $\gamma<t \sigma 2 p(\alpha)$. It then follows from the definition of f_{σ} that f_{σ} converges tamely to some f with domain $\operatorname{t\sigma } 2 p(\alpha)$. Then f, by induction on γ, is a solution of the tame Σ_{2}^{α} recursion equation.

Fix γ to see I_{γ} is α-finite. The argument splits into two cases, as it did in Lerman's tame Σ_{1} approach to Post's problem in subsection 3.1.

Case 1: $\operatorname{t\sigma } 2 p(\alpha) \leq \operatorname{gc}(\alpha) \leq \alpha$. Let κ be a regular α-cardinal such that $\gamma<\kappa$. Assume $I_{x}(x<\gamma)$ is α-finite and of α-cardinality less than κ. Then the combinatoric lemma (2.3.VII) implies $\cup\left\{I_{x} \mid x<\gamma\right\}$ is α-finite and of α-cardinality less than κ. It follows from the manner in which $I_{\gamma}-\cup\left\{I_{x} \mid x<\gamma\right\}$ is interlaced with $\cup\left\{I_{x} \mid x<\gamma\right\}$ that I_{γ} is α-finite with α-cardinality less than κ. The interlacing effect is similar to the one discussed in the proof of Lemma 1.3 with one change. Finite sequences of elements of $I_{\gamma}-\cup\left\{I_{x} \mid x<\gamma\right\}$, rather than single elements, are separated by elements of $\cup\left\{I_{x} \mid x<\gamma\right\}$. The change is caused by the insistence that $f(\gamma)$ be the least y that satisfies R.
Case 2: $\operatorname{t\sigma } 2 p(\alpha)=\operatorname{gc}(\alpha) \cdot \sigma 2 \operatorname{cf}(\alpha)$. Hence

$$
\gamma=\operatorname{gc}(\alpha) \cdot \delta+w
$$

for some $\delta<\sigma 2 \operatorname{cf}(\alpha)$ and $w<\operatorname{gc}(\alpha)$. Assume

$$
J_{z}=\cup\left\{I_{x} \mid \operatorname{gc}(\alpha) \cdot z \leq x<\operatorname{gc}(\alpha) \cdot(z+1)\right\}
$$

is α-finite for each $z<\delta$. Then J_{z} is a Σ_{2}^{α} function of $z(z<\delta)$, and so $\cup\left\{J_{z} \mid z<\delta\right\}$ is α-finite, since $\delta<\sigma 2 \operatorname{cf}(\alpha)$. Let its supremum be σ_{2}. The argument of Case 1 shows, for each $x \in(\operatorname{gc}(\alpha) \cdot \delta, \operatorname{gc}(\alpha) \cdot(\delta+1))$, that $I_{x}-\sigma_{2}$ is α-finite and of α-cardinality less than some regular α-cardinal. Hence I_{γ} is α-finite.
To complete case 2 it must be shown that J_{δ} is α-finite. Consider the simultaneous α-recursive enumeration of $\left\{I_{x}-\sigma_{2} \mid x \in[\operatorname{gc}(\alpha) \cdot \delta, \operatorname{gc}(\alpha) \cdot(\delta+1))\right\}$. It gives rise to a one-one, α-recursive map of $J_{\delta}-\sigma_{2}$ into $\mathrm{gc}(\alpha) \cdot \mathrm{gc}(\alpha)$. When the ρ-th entry in the enumeration of $I_{x}-\sigma_{2}$ appears, it is mapped to $\langle x-\operatorname{gc}(\alpha) \cdot \delta, \rho\rangle . \rho<\operatorname{gc}(\alpha)$ because the α-cardinality of $I_{x}-\sigma_{2}$ is less than some regular α-cardinal. If $J_{\sigma}-\sigma_{2}$ is not α-finite, then there is one-one, α-recursive map of α onto $J_{\delta}-\sigma_{2}$. But then $\alpha^{*} \leq \operatorname{gc}(\alpha)<t \sigma 2 p(\alpha)$, an impossibility by Corollary 2.4.VII.
4.3 Reduced Tame Σ_{2} Recursion. The equations for a tame Σ_{2} recursion were formulated with the idea that $f(\gamma)$ would be defined so as to satisfy requirement γ in some construction involving α requirements. Since a tame Σ_{2} recursion may break down long before α is reached, it is necessary to re-index requirements. Let t be a tame Σ_{2}^{α} map from $t \sigma 2 p(\alpha)$ onto α. The equations for tame Σ_{2} recursion, reduced by t, are

$$
f(\gamma)=\begin{aligned}
& \mu y R(f \upharpoonright \gamma, t(\gamma), y) \quad \text { if } \quad(\mathrm{Ey}) R(f \upharpoonright \gamma, t(\gamma), y) \\
& S(f\lceil y) \quad \text { otherwise. }
\end{aligned}
$$

The intention now is that $f(\gamma)$ be defined to satisfy requirement $t(\gamma)$. Thus there will be time to satisfy all requirements if the recursion does not break down before stage $t \sigma 2 p(\alpha)$. And it does not, according to the next result.
4.4 Theorem. Let t be a tame Σ_{2}^{α} map from $t \sigma 2 p(\alpha)$ onto α. Then the equations for a tame Σ_{2}^{α} recursion, reduced by t, define a unique function f from $\operatorname{t\sigma } 2 p(\alpha)$ into α. Furthermore f is tame Σ_{2}^{α}.

Proof. Same as that of Lemma 4.2. The presence of t makes very little difference. At stage $\sigma, t(\gamma)$ is guessed at by $t(\sigma, \gamma)$, an α-recursive function that converges tamely to $t(\gamma)$. Each of the arguments of 4.3 is altered in the same fashion. First wait for $t(\sigma, \gamma)$ to settle down on the appropriate proper initial segment of $t \sigma 2 p(\sigma)$, and then proceed as in 4.2.

Theorem 4.4 is a precise interpretation of the phrase: "making Σ_{1} do the work of Σ_{2} ". It will be applied in the proof of Theorem 4.5 to obtain a 1 -generic subset of α for every Σ_{1} admissible α. More generally, and less precisely, if a Σ_{2} construction is tame, then it can be executed using only Σ_{1} admissibility.
4.5 1-Genericity. A set $A \subseteq \alpha$ is 1 -generic if it is generic with respect to certain bounded Π_{2}^{α} sentences in the sense defined below. ("Bounded" means the universal quantifier is bounded.)
$p, q, r \ldots$ are forcing conditions. A condition p is a pair $\left(p^{+}, p^{-}\right)$of disjoint $\alpha-$ finite sets. $p \geq q(p$ is extended by $q)$ if $p^{+} \subseteq q^{+}$and $p^{-} \subseteq q^{-} . A \in p(A$ satisfies $p)$ if $p^{+} \subseteq A$ and $p^{-} \subseteq \alpha-A$. Define

$$
\{\gamma\}^{p}(\delta)=x \quad \text { by } \quad\left(p^{+}, p^{-}, \delta, x\right) \in R_{\gamma} .
$$

\boldsymbol{R}_{γ} is the γ-th reduction procedure as in subsection 3.2.VII. Let \uparrow mean undefined, and \downarrow defined. Thus

$$
\{\gamma\}^{p}(\delta) \downarrow \quad \text { if } \quad(\operatorname{Ex})\left[\{\gamma\}^{p}(\delta)=x\right] .
$$

Note that $\{\gamma\}^{p}(\delta) \downarrow$ is an α-recursively enumerable relation on γ, p and δ.
A is 1 -generic if for all $\gamma, \delta, x<\alpha$:

$$
\begin{equation*}
\left[\{\gamma\}^{A}(\delta) \uparrow\right] \rightarrow(E p)_{A \in p}(q)_{p \geq q}\left[\{\gamma\}^{q}(\delta) \uparrow\right] ; \text { and } \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
(\delta)_{\delta<x}\left[\{\gamma\}^{A}(\delta) \downarrow\right] \rightarrow(\mathrm{Ep})_{A \in p}(\delta)_{\delta<x}\left[\{\gamma\}^{p}(\delta) \downarrow\right] . \tag{2}
\end{equation*}
$$

A set is said to be tame Δ_{2}^{α} if its characteristic function is tame Σ_{2}^{α}.
4.6 Theorem. There exists a tame Δ_{2}^{α}, 1-generic set.

Proof. Let S be an α-recursive function such that

$$
S(s)=\left(\bigcup_{\delta<\beta} s_{\delta}^{+}, \bigcup_{\delta<\beta} s_{\delta}^{-}\right),
$$

where s is an α-finite sequence (of length β) of forcing conditions. Let $R(s, \gamma, p)$ be the α-recursively enumerable relation

$$
S(s) \geq p \quad \& \quad\left\{(\gamma)_{0}\right\}^{p}\left((\gamma)_{1}\right) \downarrow .
$$

According to Theorem 4.4.VII there is a tame Σ_{2}^{α} function f with domain $\operatorname{t\sigma } 2 p(\alpha)$ that satisfies

$$
f(\gamma)=\begin{aligned}
& \mu y R(f \upharpoonright \gamma, t(\gamma), y) \quad \text { if } \quad(\mathrm{Ey}) R(f \upharpoonright \gamma, t(\gamma), y) \\
& S(f\lceil\gamma) \text { otherwise. }
\end{aligned}
$$

f is a sequence of forcing conditions. $f\left(\delta_{1}\right) \geq f\left(\delta_{2}\right)$ when $\delta_{1} \leq \delta_{2}$. Define

$$
A=\cup\left\{f(\gamma)^{+} \mid \gamma<t \sigma 2 p(\alpha)\right\} .
$$

Suppose $\{\gamma\}^{A}(\delta) \uparrow$ with the intent of checking clause (1) of the definition of 1genericity. Choose x so that $(t(x))_{0}=\gamma$ and $(t(x))_{1}=\delta$, where t is as in subsection 4.3. Let $p=S\left(f\lceil x)\right.$. Then $A \in p$ and there is no $q \leq p$ such that $\{\gamma\}^{q}(\delta) \downarrow$. If there were such a q, then $f(x)$ would be such a $q, A \in f(x)$, and $\{\gamma\}^{A}(\delta)$ would be defined.

The checking of clause (2) of the definition of 1 -genericity is managed by a trick learned from Normann [1975]. It is based on standard manipulations with closed unbounded subsets of regular cardinals. Let f_{σ} be the α-recursive function in the proof of Theorem 4.4. Define

$$
A^{<\sigma}=\cup\left\{f_{<\sigma}(\gamma)^{+} \mid \gamma<t \sigma 2 p(\alpha)\right\} .
$$

Thus $A^{<\sigma}$ is the α-recursive approximation to A provided by the proof of Theorem 4.4 at the beginning of stage σ.

Assume $(\delta)_{\delta<x}\left[\{\gamma\}^{A}(\delta) \downarrow\right]$. The "closed unbounded sets" trick is needed to show

$$
\begin{equation*}
(\tau)(E \sigma)_{\sigma \geq \tau}\left(L(\sigma) \vDash(\delta)_{\delta<x}\left[\{\gamma\}^{A<\sigma}(\delta) \downarrow\right]\right) \tag{1}
\end{equation*}
$$

Suppose for the moment that (1) holds. Let ε be an index such that for all $B \subseteq \alpha$,

$$
\{\varepsilon\}^{B}(0) \downarrow \leftrightarrow(\mathrm{Eq})_{B \in q}(\delta)_{\delta<x}\left[\{\gamma\}^{q}(\delta) \downarrow\right] .
$$

Choose y so that $(t(y))_{0}=\varepsilon$ and $(t(y))_{1}=0$. Then (1), and the tame Σ_{2} convergence of f_{σ} to f, imply $\{\gamma\}^{f(y)}(\delta) \downarrow$ for all $\delta<x . A \in f(y)$, so clause (2) of the definition of 1 -genericity holds.

It remains to prove (1). Let ρ be the α-cardinality of x, and m an α-finite map of ρ onto $x . \gamma_{m}$ is an index such that

$$
\left\{\gamma_{m}\right\}^{B}(z) \downarrow \leftrightarrow\{\gamma\}^{B}(m(z)) \downarrow
$$

for all $B \subseteq \alpha$. Hence

$$
(z)_{z<\rho}\left[\left\{\gamma_{m}\right\}^{B}(z) \downarrow\right] \leftrightarrow(\delta)_{\delta<x}\left[\{\gamma\}^{B}(\delta) \downarrow\right] .
$$

Thus it suffices to prove (1) when x is an α-cardinal. Proving (1) by induction on the α-cardinality of x makes it safe to assume x is a regular α-cardinal. (Replace x by its cofinality.) According to Lemma 2.5 there are only two cases.

Case 1: $\quad \operatorname{ta} 2 p(\alpha) \leq \operatorname{gc}(\alpha) \leq \alpha$. By Exercise 4.14 there is a regular α-cardinal β and an α-finite sequence $y_{\delta}(\delta<x)$ such that

$$
y_{\delta}<\beta,\left(t\left(y_{\delta}\right)\right)_{0}=\gamma \quad \text { and } \quad\left(t\left(y_{\delta}\right)\right)_{1}=\delta .
$$

Define

$$
k(\sigma, \delta)=\mu \tau_{\tau \geq \sigma}\left[\{\gamma\}^{f_{\tau}\left(y_{\delta}\right)}(\delta) \downarrow\right] .
$$

$k(\sigma, \delta)$ is defined for all $\sigma<\alpha$ and $\delta<x$, since

$$
\{\gamma\}^{f\left(y_{\delta}\right)}(\delta) \simeq\{\gamma\}^{A}(\delta) \text { is defined. }
$$

Let v be an α-finite map of β onto x such that $v^{-1}(\delta)$ is an unbounded subset of β for every $\delta<x$.

Fix τ in order to generate a σ that satisfies the matrix of (1). Let

$$
\begin{aligned}
\sigma_{0} & =\tau \\
\sigma_{w+1} & =k\left(\sigma_{w}, v(w)\right) \quad(w<\beta), \\
\sigma_{\lambda} & =\sup \left\{\sigma_{w} \mid w<\lambda\right\} \quad(\lambda \text { a limit } \leq \beta)
\end{aligned}
$$

Fix δ and consider the behavior of $\{\gamma\}^{f_{\sigma}\left(y_{\delta}\right)}(\delta)$ as $\sigma \rightarrow \sigma_{\beta}$. The choice of v implies $\{\gamma\}^{f_{\sigma}\left(y_{\delta}\right)}(\delta) \downarrow$ unboundedly often as $\sigma \rightarrow \sigma_{\beta}$. Since $y_{\delta}<\beta$ and β is α-regular, $f_{\sigma}\left(y_{\delta}\right)$ suffers fewer than β changes as $\sigma \rightarrow \alpha$. (This point is discussed in Case 1 of the proof of Lemma 4.2. The argument there uses Lemma 2.3.VII to show $f_{\sigma}(\gamma)$ changes less than κ times, where κ is a regular α-cardinal and $\gamma<\kappa$.) Consequently $f_{\sigma}\left(y_{\delta}\right)$ changes less than β times as $\sigma \rightarrow \sigma_{\beta}$. Since the cofinality of σ_{β} is β, it follows that $f_{\sigma}\left(y_{\delta}\right)$ is constant for all sufficiently large σ as $\sigma \rightarrow \sigma_{\beta}$. That constant value is $f_{<\sigma_{\beta}}\left(y_{\delta}\right)$, and so $\{\gamma\}^{A^{<\sigma_{\delta}}}(\delta) \downarrow$.
Case 2: $\operatorname{t\sigma } 2 p(\alpha)=\mathrm{gc}(\alpha) \cdot \sigma 2 \mathrm{cf}(\alpha)$. Similar to Case 1. The idea is to repeat the argument of Case 1 inside the block occupied by γ. Define σ_{2} as in Case 2 of the proof of Lemma 4.2. Then consider only what happens after stage σ_{2}. For example, $f_{\sigma}\left(y_{\delta}\right)$ suffers fewer than β changes after stage σ_{2} as $\sigma \rightarrow \alpha$.
4.7 Proposition. If A is 1-generic, then A is regular and hyperregular.

Proof. Suppose $f \leq_{w \alpha} A$ and $x<\alpha$. By Lemma 5.2.VII it suffices to show $f\lceil x$ is $\alpha-$ finite. If f is $\{\gamma\}^{A}$, then there exists a p such that

$$
A \in p \quad \text { and } \quad(\delta)_{\delta<x}\left[\{\gamma\}^{p}(\delta) \downarrow\right] .
$$

Then $f \upharpoonright x$ is $\{\gamma\}^{p}\lceil x$.
4.8 The α-Jump. Let $A \subseteq \alpha$. By analogy with the Turing jump of classical recursion theory, the α-jump of A should be a universal, α-recursively-enumerable-in- A set. To be precise, the α-jump of A should be a set B such that B is α-recursively
enumerable in A, and such that $C \leq_{\alpha} B$ for every $C \alpha$-recursively enumerable in A. Three candidates for the definition of " B is α-recursively enumerable in A " come to mind.
(i) There is a $\gamma<\alpha$ such that

$$
B=\left\{\delta \mid\{\gamma\}^{A}(\delta) \downarrow\right\} .
$$

(Recall that " \downarrow " means "defined".)
(ii) There is a $\gamma<\alpha$ such that for all $\delta<\alpha$,

$$
K_{\delta} \subseteq B \leftrightarrow\{\gamma\}^{A}(\delta) \downarrow .
$$

($\left\{K_{\delta} \mid \delta<\alpha\right\}$ is the strong enumeration of α-finite sets, cf. 3.1.VII.)
(iii) B is $\Sigma_{1}^{\alpha, A}$. That is, B is definable over $\langle L[A, \alpha], \varepsilon, A\rangle$ by means of a Σ_{1} formula with parameters in $L[A, \alpha]$ with $x \in A$ regarded as a Δ_{0} formula.

Clearly (ii) \rightarrow (i) \rightarrow (iii). ($x \rightarrow y$ means if B is enumerable by definition x, then it is enumerable by definition y.) If A is regular, then (iii) \rightarrow (i). If A is regular and hyperregular, then all three notions agree by Lemma 5.2.VII. Hence if A is $\alpha-$ recursively enumerable and hyperregular, then all three notions coincide. There exists an α and an α-recursively enumerable A on which all three differ.

One objection to (iii) is its dependence on non- α-finite computations. If (iii) holds, then an element is added to B because some bounded, but not necessarily α-finite, set of membership statements is satisfied by A. (ii) and (i) are based on α-finite computations. (ii) has the virtue of symmetry over (i). If (ii) holds, then an α-finite set of positive facts about B follows from an α-finite set of facts about A. Symmetry considerations led to the rejection of $\leq_{w \alpha}$ in favor of \leq_{α}. On the other hand there is in general no universal set as defined above in the sense of (ii).

Thus (i) is the preferred choice for the definition of relative α-recursive enumerability on which to build the definition of α-jump. Let

$$
A^{\prime} \text { be }\left\{\langle\gamma, \delta\rangle \mid\{\gamma\}^{A}(\delta) \downarrow\right\} .
$$

Then A^{\prime} is α-recursively enumerable in A (in the sense of (i)). Suppose B is α-r.e. in A. Thus

$$
B=\left\{\delta \mid\left\{\gamma_{0}\right\}^{A}(\delta) \downarrow\right\} .
$$

Then

$$
\begin{array}{r}
H \subseteq B \leftrightarrow\left\{\gamma_{0}\right\} \times H \subseteq A^{\prime}, \text { and } \\
J \subseteq \alpha-B \leftrightarrow\left\{\gamma_{0}\right\} \times J \subseteq \alpha-A^{\prime} .
\end{array}
$$

Hence $B \leq{ }_{\alpha} A^{\prime}$. If $A_{1} \leq{ }_{\alpha} A_{2}$, then A_{1}^{\prime} is α-recursively enumerable in A_{2}, consequently α-recursive in A_{2}^{\prime}. Thus the α-jump is well defined on α-degrees. For any α degree, d, let d^{\prime}, the α-jump of d, be the α-degree of D, where D is any set of degree d.

Define $A^{(n+1)}$ to be $\left(A^{(n)}\right)^{\prime}$, and $A^{(0)}$ to be A.
Warning: ϕ^{\prime} has the same α-degree as some complete Σ_{1}^{α} set, but in general $\phi^{(2)}$ does not have the same α-degree as some complete Σ_{2}^{α} set. Thus the familiar connection between $\phi^{(n)}$ and Σ_{n} is broken.
4.9 Theorem. If A is regular and hyperregular, then A^{\prime} has the same α-degree as some regular set α-recursively enumerable in A.

Proof. Since A is regular and hyperregular, the structure $\langle L[A, \alpha], \varepsilon, A\rangle$ is Σ_{1} admissible (cf. Exercise 5.8.VII). In addition $L[A, \alpha]$ equals $L(\alpha)$. The proof of the regular sets theorem (4.2.VII) is entirely dynamic in nature, and consequently can be extended from $L(\alpha)$ to $\langle L[A, \alpha], \varepsilon, A\rangle$ without significant change. The extended version states: if $B \in \Sigma_{1}^{\alpha, A}$, then there is a $C \in \Sigma_{1}^{\alpha, A}$ such that
(i) C is regular in the sense of $L[A, \alpha]$, and
(ii) $C \equiv{ }_{\alpha, A} B$.
(i) means $(C \cap x) \in L[A, \alpha]$ for all $x \in L[A, \alpha]$. In (ii), $\equiv_{\alpha, A}$ refers to reduction procedures that are $\Sigma_{1}^{\alpha, A}$ sets of 4-tuples $\langle H, J, \delta, \gamma\rangle$ from $L[A, \alpha]$. To visualize the extended proof, extend the natural enumeration of $L(\alpha)$ to one of $L[A, \alpha]$.

Since $L[A, \alpha]=L(\alpha)$, it follows that C is regular, $C \oplus A \equiv{ }_{\alpha} B \oplus A$, and C is α recursively enumerable in A. If B is A^{\prime}, then $C \oplus A$ is the desired regular set.

The Simpson jump theorem is a lifting of the Friedberg jump theorem of classical recursion theory. The latter states: $\phi^{\prime} \leq d$ iff $c^{\prime}=d$ for some c.
4.10 Theorem (Simpson 1974a). (i) and (ii)' are equivalent.
(i) $\phi^{\prime} \leq_{\alpha} D$ and D has the same α-degree as some regular set.
(ii) $C^{\prime} \equiv{ }_{\alpha} D$ for some regular, hyperregular C.

Proof. (ii) implies (i) by Theorem 4.9. Now assume D satisfies (i). C is constructed from D so that

$$
\begin{equation*}
\text { (a) } C^{\prime} \leq_{\alpha} \phi^{\prime}, D \quad \text { and } \quad \text { (b) } D \leq_{\alpha} C, \phi^{\prime} \text {. } \tag{0}
\end{equation*}
$$

The idea is to make C 1-generic so that (a) holds, and to code D into C so that (b) holds. In addition, the 1 -genericity of C implies C is regular and hyperregular by Proposition 4.7.

Note that 4.7 makes it safe to assume that all forcing conditions are equivalent to initial segments of characteristic functions. If p and q are forcing conditions then $p \frown q$ is the condition that begins with p and continues with q.

$$
(p \frown q)(x)=\begin{array}{ll}
p(x) & \text { if } x<\ln (p) \\
q(x-\ln (p)) & \text { if } \ln (p) \leq x<\operatorname{lh}(p)+\ln (q)
\end{array}
$$

Assume D is regular. Let s be an α-finite sequence of length γ of forcing conditions. Let $S(s)$ be as in the proof of Theorem 4.6. Define

$$
\begin{gathered}
S_{0}(s)=S(s) \frown D\lceil(t(\gamma)), \\
R_{0}(s, \gamma, q) \leftrightarrow S_{0}(s) \geq q \quad \& \quad\left\{(\gamma)_{0}\right\}^{q}\left((\gamma)_{1}\right) \downarrow .
\end{gathered}
$$

Consider the reduced recursion equations

$$
f(\gamma)=\begin{align*}
& \mu y R_{0}\left(f\lceil\gamma, t(\gamma), y) \quad \text { if } \quad(\mathrm{Ey}) R_{0}(f \upharpoonright \gamma, t(\gamma), y)\right. \tag{1}\\
& S_{0}(f \upharpoonright \gamma) \quad \text { otherwise. }
\end{align*}
$$

t is a tame $\Sigma_{2}^{\alpha} \operatorname{map}$ from $t \sigma 2 p(\alpha)$ onto α.
Fix $z<t \sigma 2 p(\alpha)$ in order to study the recursion defined by (1). As the recursion progresses through γ 's less than z, the only information about D that is needed is

$$
D_{z}=D \Gamma\left(\sup _{\gamma<z} t(\gamma)\right)
$$

The regularity of D and tameness of t imply $D_{z} \alpha$-finite. Let $(1)_{2}$ be the result of replacing D by D_{z} in (1). By Theorem 4.4, (1) $)_{2}$ has a tame Σ_{2}^{α} solution f_{2} from $t \sigma 2 p(\alpha)$ into α. The α-finite function $f_{z}\lceil z$ is a solution of (1) for $\gamma<z$. Hence

$$
\cup\left\{f_{z}\lceil z \mid z<t \sigma 2 p(\alpha)\}\right.
$$

is a solution of (1). In short, (1) does have a solution f, necessarily unique, from $t \sigma 2 p(\alpha)$ into α. Define

$$
C=\cup\left\{f(\gamma)^{+} \mid \gamma<t \sigma 2 p(\alpha)\right\}
$$

Initial segments of the characteristic function of C correspond to initial segments of f. The value of $f\lceil\gamma$ is determined by (1) from an α-finite set of facts about D, t and $\phi^{\prime} . \phi^{\prime}$ is needed to decide when there is a y that satisfies $R_{0} . R_{0}$ was defined so that

$$
\gamma \in C^{\prime} \leftrightarrow(\mathrm{Ey}) R_{0}(f \upharpoonright \gamma, t(\gamma), y) .
$$

It follows that $C^{\prime} \leq_{\alpha} \phi^{\prime}, D, t$. The Σ_{2}^{α} tameness of t implies $t \leq_{\alpha} \phi^{\prime}$ (cf. Exercise 4.13). Thus (0) (a) is proved.

A simultaneous recursion on γ shows $\lambda \gamma \mid f\lceil\gamma$ and $\lambda \gamma \mid D\lceil t(\gamma)$ are weakly $\alpha-$ recursive in C, ϕ^{\prime}. Suppose $f\left\lceil\gamma\right.$ has been computed α-finitely from C, ϕ^{\prime}. $I(f\lceil\gamma) \frown D\lceil t(\gamma)$ is an initial segment of $f(\gamma)$, hence an initial segment of C. So $D\lceil b(\gamma)$ can be extracted from $C, f \upharpoonright \gamma, t(\gamma)$. Then $f(\gamma)$ can be computed α-finitely from $f \upharpoonright \gamma, D \upharpoonright t(\gamma), \phi^{\prime}$. Thus (0) (b) is proved.

A jump theorem (Sacks 1963) of classical recursion theory that relates recursive enumerability and the Turing jump states: D is recursively enumerable in ϕ^{\prime} and
$D \geq_{\omega} \phi^{\prime}$ iff $D \equiv{ }_{\omega} C^{\prime}$ for some incomplete, recursively enumerable C. Maass 1977 has shown this statement holds for α (in place of ω) iff α is Σ_{2} admissible.

4.11-4.15 Exercises

4.11. Use Shore's blocking method to prove Theorem 4.10.
4.12. Show a 1 -generic set cannot be α-recursively enumerable.
4.13. Let $A \subseteq \alpha$. Show A is α-recursively enumerable in ϕ^{\prime} iff A is Σ_{2}^{α}. Show A is tame Δ_{2}^{α} iff $A \leq{ }_{\alpha} \phi^{\prime}$ and A is regular.
4.14. Suppose $t \sigma 2 p(\alpha) \leq \operatorname{gc}(\alpha)$. Find a tame Σ_{2}^{α} function t from $t \sigma 2 p(\alpha)$ onto α with the following properties. For each $\gamma<\alpha$ and each regular α-cardinal x, there exists a regular α-cardinal β and an α-finite sequence $y_{\delta}(\delta<x)$ such that

$$
y_{\delta}<\beta,\left(t\left(y_{\delta}\right)\right)_{0}=\gamma \quad \text { and } \quad\left(t\left(y_{\delta}\right)\right)_{1}=\delta .
$$

4.15. Provide the details of Case 2 of the proof of Theorem 4.6.

