
Part C

oc-Recursion

α-recursion theory lifts classical recursion theory from ω to an arbitrary Σx

admissible ordinal α. Many of the classical results lift to every α by means of
recursive approximations and fine structure techniques.





Chapter VII
Admissibility and Regularity

The fundamental notions of α-recursion theory are introduced. Metarecursion is
shown equivalent to ω^κ-recursion. The essential properties of the Σ x projectum
are established and applied in a priority argument to obtain a non-α-recursive,
hyperregular, α-recursively enumerable set. A regular sets theorem is proved.

1. Σ 1 Admissibility

The notion of admissible set was invented by R. Platek (1966) in the course of his
investigations of the foundations of recursion theory. Here, for reasons soon to be
evident, "admissible" is called " Σ x admissible".

1.1 Σx Admissible Sets. Let A be a nonempty set. A is said to be transitive if xeA
whenever xey and ye A. A is closed under pairing if {x, y} e A whenever x e A and
ye A. A is closed under union if xeA implies ( u x ) e A ( u x = {y\(Έz)(yezexj}.)

The formulas of Zermelo-Fraenkel set theory (ZF) are built up from set vari-
ables x, y9 z, . . . , atomic formulas (s e ί, where s and t are set variables), prop-
ositional connectives, and set quantifiers ((Ex) (there exists x), (y) (for all y)). A
formula is bounded if all its quantifiers are bounded, that is of the form (Ex) x e y

or (y)yez. The Levy hierarchy of formulas is defined by induction on n. A formula
F is Δ o = Π o ( = Σ 0 ) if F is bounded. (ExJ . . . (ExJG is Σn if G is Un_1 (m > 0).
(Vi) (yJG is Πn if G is ! „ _ ! (m > 0). Δn = Ππ n ΣB.

Typical Δ o formulas are: x ^ y; x is an ordinal. An example of a formula that is
Πi but not Σ1 is: x is a cardinal.

A formula G is said to have parameters in a set A if G is of the form H{x1, . . . , xm,
al9 . . . ,απ), where H(xί9 . . . , x m , ) Ί , . . . ,yn) is a formula of ZF and ateA
(1 < i < n).

A satisfies Δ o separation if every sentence of the form

(Ex)(y)lyex^yeq & F(y)']

is true in <A,ε>, where aeA and F(y) is Δ o with parameters in A.
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A satisfies Δ o bounding (or collection) if every sentence of the form

(x)xea_ (Ey)F(x, y) -> (Ez) (x)x e a_ (Ey), ezF(x, y)

is true in <A,ε>. Again aeA and F(x,y) is Δ o with parameters in A.
A set A is said to be Σ x admissible if A is transitive, closed under pairing and

union, and satisfies Δ o separation and Δ o bounding. A pairing trick shows a Σ1

admissible set satisfies Δt separation and Σx bounding (Exercise 1.15). Suppose
B £ C. The structure <C, B} is said to be Σί admissible if C is Σx admissible when
x e B is added to the list of Δ o formulas.

The least Σi admissible set is HF, the set of all hereditarily finite sets, (x is
hereditarily finite iff x is finite and every member of x is hereditarily finite.) HF can
serve as the setting for classical recursion theory. It turns out that a partial function

/: ω -+ ω is partial recursive in the classical sense iff the graph of/is Σ x definable
over HF.

A set B c A is Σn definable over A if there is a Σn formula G(x) with parameters in
A such that

for all aeA. Similarly, Un and An definability.
Call a set A-recursive if it is Δx definable over A, and A-finite if it belongs to A.

Then Δx separation becomes: if B is A-recursive and c is A-finite, then B n c is
A-finite. Call a function / partial A-recursive if its graph is Σx definable over A.
Then Σ x bounding and Ax separation imply: if/ is partial A-recursive, c is A-finite,
and the domain of/includes c, then/[c] is A-finite. In this fashion the beginnings of
classical recursion theory can be generalized to every Σx admissible A. A great deal
can be lifted if A admits an A-recursive, one-to-one correspondence between A and
ord(A), the least ordinal not in A. Such a correspondence is available when A is an
initial segment of L, GόdeΓs universe of constructible sets, the setting for
α-recursion theory.

Metarecursion theory was developed in Part B in terms of Π} sets and unique
notations for recursive ordinals. Another approach, perhaps smoother, is via Σ t

admissibility. There exists a Σx admissible set called HYP such that the
metarecursively enumerable subsets of ω^ κ are just those Σx definable over HYP.

The definition of HYP needs the idea of coding hereditarily countable sets (HC)
by reals, that is, subsets of ω. x e HC iff x is countable and every member of x
belongs to HC. The set K of all codes for members of HC is defined by an
arithmetic closure condition C, hence is Π} by Theorem 1.6.1. C has two clauses:

{0} is a code;

if (0i<ω((r)i i s a code), then r is a code.

Recall that (r)f = {m|2'-3mer}. Define u>κv to be the transitive closure of

u,veK & (Eϊ)i<ω(v = (u)i).

> κ is wellfounded by the natural enumeration approach that showed < o is well-
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founded (Theorem 2.2.1). The set x(r) encoded by reK is defined by transfinite
recursion on >κ:

Thus each member of K encodes a member of HC, and each member of HC has at
least one code in K. (The latter is a consequence of ACω, the countable axiom of
choice.)

Let HC(HYP) be the set of all x such that x has a hyperarithmetic code in K.

1.2 Proposition. HC(HYP) is Σ x admissible.

Proof. To verify Δ o bounding, suppose

(1)

for some αeHC(HYP) and F(x,y)eΔ 0 with parameters in HC(HYP). Since each
member of HC(HYP) is countable in HC(HYP), a can be taken to be ω. (1) becomes

(2) (n)(Er)[reHYPnK & HC(HYP)hF(n,x(r))].

The notion of truth in HC(HYP) for Δ o sentences is Πj, because it can be defined
inductively by a Σj closure condition (cf. proof of Lemma 4.5.III). K is Π}, so the
matrix of (2) is Πj. In addition the real variable r of (2) can be regarded as a number
variable ranging over indices of hyperarithmetic reals. Then Lemma 2.6.II applies,
and r can be construed as a hyperarithmetic function of n. That function is in itself a
hyperarithmetic code for a set suitable for bounding y in (1). •

1.3 Proposition. Let A c CÔ K Then A is metarecursively enumerable iff A is Σ x

definable over HC(HYP).

Proof. First suppose A is metarecursively enumerable. Thus

for some Π} Ax. By Theorem 3.5.III, there is an arithmetic A(X,b) such that

(1) (5G/4^(Eb)(EX)[ΛΓeHYP & A(X,b) & \b\ = δl

To say |fe| = δ is the same as saying Wq(b) (from Theorem 3.5.1) is isomorphic to
{{u,v}\ueveδ}. It follows from 1.2 that the right side of (1) is Σ x .

Now suppose A is Σx is definable over HC(HYP). Then

& F(x(r),(5)]
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for some Δ 0 F . Let At be the set of all b such that

beO & ( E r ) [ r e H Y P n K & F(x(r\\b\)l

Then Aγ is Π}. •

1.4 Let X and Fbe sets. X is said to be a first order definable subset of Y if there is a
formula F(x) of ZF with parameters in Y such that

X={a\aeY & (Y9e}\= F(q)}.

The set of all first order definable subsets of Y is denoted by Fod(F). GόdePs
universe of constructible sets is defined by iterating Fod through the ordinals.

L(0) = φ.

L(<5 + l)=Fod(L((5)).

L(λ) = u {L(δ)\δ <λ}(λa limit).

L = u {L((5)|<5 is an ordinal}.

Some excellent sources of information about L are Jech (1978) and Devlin (1984).
Gόdel showed that L is a model of ZF, the axiom of choice and the generalized
continuum hypothesis. He obtained these extraordinary results by means of ideas
which can be refined to yield detailed information about initial segments of L.
Some of these refinements will be discussed in future sections. They combine
smoothly with ideas from classical recursion theory to produce methods for
classifying the Σ x definable subsets of L(α) when L(α) is Σ x admissible. The ordinal
α is said to be Σ1 admissible if L(α) is a Σ1 admissible set. α-recursion theory is the
study of α-recursively enumerable (Σ1 over L(<x)) subsets of α.

Recursion theory on initial segments of ordinals was invented by Takeuti (1960).
Σt admissible initial segments of ordinals were first studied by Kripke (1964) and
Platek (1966).

1.5 Proposition, α is Σx admissible <-+L(a) satisfies Δ o bounding.

Proof. A straightforward induction on δ shows that L{δ) is transitive and that the
ordinals in L(δ) are just those less than δ. If α is a limit, then L(α) is closed under
pairing and union, and satisfies Δ o separation. Suppose α = β+ 1. Consider the Δ o

function/defined by/(x) = β for all xeL(α). Δ o bounding implies βez for some
zeL(α). But then z c L(β) and so βsL{β\ an impossibility. Q

From now on α is a Σ 2 admissible ordinal. The fundamental notions of α-
recursion theory are defined as in subsection 1.1 with L(oc) in place of A. A set B £ α

is said to be ̂ -recursively enumerable if B is Σ1 definable over L(α). Remember that
parameters from L(α) are permitted (in the Σι definition of B). A function/<Ξ α2 is
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said to be partial α-recursive if its graph is α-recursively enumerable; if the domain
of/is α, then/is said to be α-recursive. The oc-finite subsets of α are those that belong
to L(α). There is a natural enumeration of L(α) that maps α onto L(α) (subsection
1.7). It is only slightly more complicated than the natural enumeration of all
hereditarily finite sets.

The first two Σ1 admissible ordinals are ω and ω^κ (Exercise 1.10). The classical
partial recursive functions are the same as the partial ω-recursive functions.
Metarecursion theory is equivalent to ω^κ-recursion theory by Proposition 1.3,
once it is seen that L(ω?κ) = HC(HYP) (Exercise 1.11). ω[ is Σ x admissible for
every T^ω. Conversely, every countable Σ x admissible ordinal greater than ω is
of the form ω[ for some T c ω (Sacks (1976)).

1.6 Recursion on α. The Σ x admissibility of L(α) makes it possible to define
α-recursive functions by Σ ron-L(α) transfinite recursions on α. Let I: L(α) -• α be
Σ x definable on L(α). There is at most one/such that

(1) (δ)s<Λf(δ)=I(fΐδ)l

Let Z be the set of all α-finite g such that g(γ) = I(g [γ) for all ye doing. Z is
α-recursive, and any two functions in Z agree on all arguments in common. Define

f(δ) = y by (Eg)[0eZ & δedomg & f(δ) = y].

/is Σ x on L(α). Furthermore, d o m / = α, otherwise/belongs to Z and extends to
some other member of Z.

The definition of/can be thought of as a process. At stage δ it is assumed that all
activity at previous stages is encapsulated in an α-finite object, s [ δ. Instruction / is
given in advance. It tells how to compute f(δ) from s [ δ. In general it will be
necessary to search through L(α) for some existential witness w that bears a
specified Δo relationship to s [ δ. s{δ) encodes not only f(δ) but also w and the
location of w. The Σ x admissibility of L(α), in particular Σ1 bounding, is needed to
bound the search for w below α so long as δ is bounded below α.

1.7 The Natural Enumeration of L(α). The elements of L(α) lend themselves to an
enumeration in α stages. At stage δ the elements of L(δ) are enumerated one at a
time. If δ is a limit ordinal, then the enumerations of L(γ)(y <δ) are stacked one on
top of another and repeated. Suppose δ = γ + 1. A typical element x of L(δ) is a first
order definable subset of L(y). A code for x is a sequence <e, bί9. . . , bm}. e is the
Gόdel number of a formula F(y, zu . . . , zm), feieL(y)(l </<m), and

x = {a\aeL(γ) & L{y)¥F(a9 bl9. . . , bj}.

The enumeration of L(δ) parallels the enumeration of all codes of elements of L(δ).
The latter is derived from the given enumeration of L(δ).

The main question avoided above is how to pass from a code for x to x. The
answer has to do with the definability of truth in L(y). If γ is a limit, then the
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relation L(γ) N F is definable over L(y +1). In fact, the usual Tarski-style definition
of truth works.

1.8 Proposition. There exists a one-one, (x-recursive f that maps α onto L(α).

Proof. By appeal to the picture of Σ x recursion sketched in subsection 1.6 and to
the natural enumeration of L(oc) given in Subsection 1.7. Let h{δ) be the enumer-
ation of L{δ) alluded to in 1.7. The α-finite object h(δ) is derived from the α-finite
object h [ δ by an instruction / easily (but tediously) seen to be Σ x over L(α). Let g
be the α-recursive function that enumerates L(α), repetitions permitted, by stacking
the h(δ)'s one on top of another. The desired f is g with the repetitions
omitted. D

1.9 Proposition. There exists a partial OL-recursiυe function φ(ε, δ) such that for each
partial (x-recursive φ(δ\ there exists an ε such that

for all δ. (Enumeration Theorem)

Proof By appeal to subsections 1.6 and 1.7, as in 1.8. Let φ be partial α-recursive.
There must be a Δo formula F(u, v, z) with parameters in L(α) such that φ(δ) = γ iff
for some weL(α),

(1) F{δ,γ,w) & W ( z ) < M > < ( , f w > - f ( ί j , 4

In (1) w is a witness to the fact that φ(δ) = y, and < is the α-recursive wellordering of
L(α) provided by Proposition 1.8, and derived from the natural enumeration of
L(α). The truth or falsity of (1) can be determined by examining any limit structure
L(β) whose members include <5, γ9 w, the parameters of F(M, t;, z), and < below
<y, w>. Thus the natural enumeration of L(α) gives rise to an α-recursive enumer-
ation of Γ, the set of all true sentences of type (1). A suitable code for (1) is
<ε, <5, y, w>, where ε is a code for F(u, v, z). Let T1 be the set of codes of elements of
T Define

φ(ε9δ)^γ by (Ew) [<ε, δ, y9 w> e 7\].

φ is partial α-recursive since T, hence Tί, is α-recursively enumerable. In fact, T is
α-recursive, because all false sentences of type (1) can be enumerated simul-
taneously with T. D

The immense power of Σι admissibility is not needed to prove Propositions 1.8
and 1.9. They hold for any L(β) such that β is a limit. In that case the proof of 1.8
relies on a condensation argument of the sort given in the next section rather than
the natural enumeration of subsection 1.7. If L(β) is closed with respect to some
primitive recursions, then the natural enumeration of 1.7 is available.
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1.10-1.15 Exercises

1.10. Show ω? κ is the first Σ x admissible ordinal after ω.

1.11. Show L(ω?κ) = HC(HYP).

1.12. Suppose A ^ ω^κ. Show A is metarecursively enumerable iff A is ω^κ-
recursively enumerable.

1.13. Show ω\ is Σ x admissible for all T ^ ω.

1.14. Suppose ,4 ^ α is α-recursively enumerable. Find a partial, one-one, α-
recursive g whose range is A and whose domain is an initial segment of α.

1.15. Show every Σ x admissible set satisfies Δx separation and Σ1 bounding.

1.16. Let/be partial and α-recursive. Find a one-one, partial α-recursive g with the
same range a s /

2. The Σ1 Projectum

In part B considerable use was made of a metarecursive, one-one map of ω^ κ into
ω. The priority arguments of Section 2.VI relied strongly on the fact that each
requirement was injured only for the sake of finitely many requirements of higher
priority. Thus some of the combinatoric tricks of classical recursion theory were
lifted to ω? κ by mapping ω^ κ into ω. In general there is no hope of mapping α down
to ω, or even down to something less than α, but the idea of mapping α downward
makes sense for every α. The Σ1 projectum of a, denoted by σlpct or α*, is defined to
be

Γ one-one Ί

μβ(Eϊ)\ / i s α-recursive: α >β .
|_ into J

Thus (ω^κ)* = ω. Mapping ω^ κ into ω proved useful because every metarecur-
sively enumerable subset of a finite set is finite, hence metafinite. In this manner
some troublesome, bounded, metarecursively enumerable, but not metafinite sets
were avoided. The Σ1 projectum of α has a similar virtue for every α according to
the next proposition.

2.1 Proposition. Assume A ^ δ<σlpa. If A is (x-recursiυely enumerable, then A is

oc-finite.

Proof Suppose not. Let g be a partial, one-one, α-recursive function whose range is
A, and whose domain is an initial segment of α (Exercise 1.14). Since <5<σlpα, the
domain of g must be less than α. But then the range of g is α-finite. D

2.2 Proposition, σlpα is the least β such that some a-recursively enumerable subset

of β is not <x-finite.
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Proof. Let β0 be the least β. By Proposition 2.1, σlpα < β0. To see that σlpα > β 0 ,
l e t / b e a one-one, α-recursive map of α into σlpα. I f/ [α] were α-finite, then
/ - 1 / M would be α-finite, hence bounded below α. D

If σlpα = ω, then there is little difference between metarecursion theory, that is
ωfκ-recursion theory, and α-recursion theory. If σlpα > ω, then L(oc) merits a finer
analysis in terms of the notion of α-cardinal. Suppose β < oc; β is said to be an
oί-cardinal if there is no α-finite, one-to-one correspondence between β and some
δ < β. In other words,

L(α) 1= [β is a cardinal].

Note that σlpα < α implies σlpα is the greatest α-cardinal. Each α-finite set has an
α-cardinality, namely the least ordinal with which it can be put into one-to-one, α-
finite correspondence. If an α-finite set H has α-cardinality less than σlpα, then
every α-recursively enumerable subset of H is α-finite by Proposition 2.1.

Each α-cardinal is either regular or singular, β is a regular α-cardinal if

L(α) 1= [β is a regular cardinal].

Equivalently, there is no α-finite function with domain p < β and range an
unbounded subset of β.

A collection {Aδ\ δ < y} of subsets of α is said to be simultaneously ̂ -recursively
enumerable if there exists a partial α-recursive function f(δ,σ) such that

Aa = {f(δ,σ)\σ<*}
for all δ < α.

2.3 Lemma (Sacks & Simpson 1972). Suppose y < β and β is a regular 0L-cardinal
Let {Aδ\δ < y} be a simultaneously oc-recursively enumerable collection of subsets of
α. If each Aδ is oc-finite and has ^-cardinality less than β, then u {Aό\δ < y } is oc-finite
and has ^-cardinality less than β.

Proof It is safe to assume the Aδs are pairwise disjoint, since otherwise each can be
replaced by Aδ x {δ}. The given simultaneous enumeration of the ,4/s gives rise to
an overall enumeration of u {Aδ\δ < y} without repetitions. At each stage of the
overall enumeration, just one element of just one Aδ is enumerated. If the number
of stages needed is less than /?, then the lemma is proved. Otherwise, let Aβ

δ be that
part of Aδ enumerated during the first β stages of the overall enumeration. Then
{Aβ

δ\δ < y) is an α-finite collection of α-finite sets whose union has α-cardinality
equal to β. But y < β and each Aβ

δ has α-cardinality less than β, so β is not
regular. D

Lemma 2.3 says that a regular α-cardinal is more regular than it appears; it is in
fact μ — Π" regular (Exercise 2.12). Note the strong use of Σ x admissibility in the
proof of 2.3. In the next Chapter, Lemma 2.3 will be needed to show that the
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α-recursively enumerable sets of "injuries" that arise in the solution to Post's
problem are α-finite.

2.4 α-Stability. Let M and N be sets. M is said to be a Σι substructure of N (in
symbols M •< x N) if M c M and

(1) [< JV,e> NF] -» [<M,e> t=F]

for every Σ x sentence of ZF with parameters in M. If M <̂ x JV, then (1) holds for
every Π 2 sentence of ZF with parameters in M. β is said to be oc-stable if β < α and
L(β)~<1 L(α). α-stable ordinals provide bounds for partial α-recursive functions.
Suppose φ is partial α-recursive and the parameters occurring in the Σt definition
of φ are ordinals less than β. If β is α-stable, then

(2) y < β & φ(y) defined -> φ(y) < β.

It will be seen very shortly that every α-cardinal beyond ω is α-stable by arguments
similar to those invented by Gόdel to show the generalized continuum hypothesis.
The first result of this sort was obtained by Takeuti (1960). He showed (2) holds if β
is a cardinal of L and φ is a partial recursive function of ordinals.

2.5 Lemma (H. Putnam). There exists a Π 2 sentence, [V = L], such that for every
transitive set M,

MϊlV=LΪ iff M = L(λ)

for some limit ordinal λ.

Proof The sentence \_V — L\ is

(1) (x)(Eδ)(Ey)ly = L(δ) & xey].

The function λδ\L(δ) is defined by a Σ x transfinite recursion. (Cf. Subsection 1.6.)
Hence (1) is Π 2 .

If xeL(λ) and λ is a limit, then xeL(δ) for some δ < λ. Also L(δ)eL(λ). Thus
[ F = L ] i s t r u e i n L ( A ) .

Suppose M is transitive and M N [ F = L]. Let A be the least ordinal not in M.
Then λ = M nλ. For each δ < A, let L(£)M be L(<5) in the sense of M, that is, the
result of executing within M the Σx recursion that defines λy\L(y). By induction on
δ, L(δ)M = L(δ) for all δeM. So L{λ) c M. On the other hand, if xeM, then
xeL(δ)M for some δ < λ. Hence xeL((5) c L(A). D

2.6 Lemma. Suppose ω < δ < α*. 77iβn ί/iβr^ βx/5ί5 an oi-stable ordinal δo>δ of the

same oc-cardinality as δ.

Proof The natural enumeration of L(α) outlined in subsection 1.7 yields a partial
α-recursive function h(e, < x l 9 . . ., xn>) (n>0) with properties similar to those of



160 VII. Admissibility and Regularity

the enumeration function φ of Proposition 1.9. Suppose P(xu . . .,xn,y) is the Σx

formula of Z F whose Gόdel number is e. If

L(*)ϊ(Ey)P(ql9...9qn9y)

for some al9 . . ., aneL(<x% then h(e,(al9 . . ., απ>) is defined and

L(aL)ΪP(ql9...9qH9h{e9<al9...9aH»);

otherwise h is undefined. h(e, <α1 ? . . ., an}) is the "first" y that is seen to satisfy
P(aί9 . . ., αn, y) as the natural enumeration of L(α) unfolds.

h is lightface Σ x ; its Σ^on-Z^α) definition does not require any parameters from
L(α). For any x c L(α), let

Λ[x] be {ft(e, < α 1 ? . . .,an})\e<ω & a^x}.

h[x] is called the Σ x hull of x. Note that Λ2[x] = fι[x] c x. By design h is a
universal, partial Σ t Skolem function for L(α).

Let ω < δ < α*. Then

l i H ^ i H α ) , and so fc[5]N[K=L].

Suppose for the moment that /ι[<5] is transitive. By Lemma 2.5, /ι[(5] = L((50) for
some limit (50. Clearly δ < δ0 and ^ 0 is α-stable. The domain of h[δ is
α-finite by Proposition 2.1, so /i[<5] is α-finite and <50 has the same α-cardinality as δ.

To check that /i[<5] is transitive, define an α-recursive map

by transfinite recursion:

t{x) = {t(y)\yex &

An induction on rank shows: for all x,

The induction succeeds because /i[<5] is extensional:

u,veh[δ~] & M#i;->(Ew)[weΛ[δ] & we(M-!?)u(ι?-tt)].

Thus ί maps <Λ[^],e> isomorphically to (M,e}> where M is
The definition of t implies M is transitive, t is often called (Mostowski's) collapsing
map, since it isomorphically collapses any set satisfying extensionality to a transi-
tive set.

t[δ is the identity, because δ e h[δ']. Fix ί?e/ι[(5]. Then b = h(y) for some
7 < δ. The sentence "ft = h(y)" is Σ x and true in L(α), hence true in /i[<5], and con-
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sequently true in M when b and y are replaced by their ί-images. t{y) = γ so
"t(b) = h{y)" is true in M. The transitivity of M implies t(b) = h(y) is outright
true, and so t(b) = b. Thus t [ ft [(5] is the identity. D

Corollary 2.7. Every en-cardinal greater than ω is ot-stable.

Proof. Every α-cardinal is less than or equal to α*, hence by Lemma 2.6 the limit of
stable ordinals. D

The method of proof of Lemma 2.6 was originated by Gόdel. It consists of
forming a Skolem hull in L and identifying its transitive collapse with an initial
segment of L. The method possesses great power, but must be applied with caution.
The proof of 2.6 shows that the Σί hull of a transitive set is transitive. This principle
can fail for Σ 2 hulls of transitive sets, and for Σ x hulls of intransitive sets. It is worth
noting that the collapse of a Σ x substructure of L(α) need not be a Σ x substructure
of L(α).

2.8-2.12 Exercises

2.8. Assume σ is α-stable and show σ is Σ x admissible.

2.9. Give an example of a Σ t admissible α such that ω < a* < α and α* is not the
greatest α-stable ordinal.

2.10. (R. Jensen). Prove Proposition 2.2 without assuming α is Σ x admissible.
Assume only that α is a limit.

2.11. (S. Friedman). Show Lemma 2.3 is false for some limit α that is not Σx

admissible.

2.12. A function/: α -• α is said to be μ — ΓTJ if

f{x) = μyP{x,y)

for some P(x,y)eIΓ1. Show: geΣ\ -*geμ-Il\ -+g€Σ*2. Suppose β is a
regular α-cardinal, y < β, and feμ-Yl\.Show/[y] is bounded below β if
/[?] ^ β> I n short: a regular α-cardinal is μ - Π^ regular.

3. Relative oc-Recursίveness

In this section the notion of α-degree is defined, and the first steps are taken
towards the proof of the regular sets theorem of Section 4.

3.1 Indices for α-Finite Sets. The proof of Proposition 1.8 is easily modified to yield
a one-one, α-recursive functionX that maps α onto the collection of all α-finite sets.
fo{δ) is simply the <5-th α-finite set to occur in the natural enumeration of L(α).
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Define
X,tobe/0((5).

If K is α-finite, then the unique δ such that Kδ = K is said to be the index of K as an
α-finite set. The 2-place predicate, ye Kδ, is α-recursive. A collection of α-finite sets,

(1) {Ka\δεJ}9

is said to be α-finite if J is. In that event the union of (1) is α-finite.

3.2 α-Recursive In. R is called a reduction procedure iϊR is α-recursively enumerable
and every member of R is of the form </f, J, γ9 δ}, where H and J are disjoint α-
finite sets. /: α -• α is weakly en-recursive in B ^ α if there exists a reduction
procedure R such that

(1) /(y) = <5^(EH)(EJ)[<i/,J,<5,y>e# & iί c B & J c c £ ]

for all γ, (5 < α. (c5 is α — 5). (1) is rendered in symbols a s / < w α β . Let (/> be the
enumerating partial function of Theorem 1.9. For each ε < α, define

Re = {δ\φ(ε,δ) is defined}.

Rε is called the ε-th α-recursively enumerable set. If R is α-recursively enumerable,
then R = RE for some ε.

For any B c α the expression {ε}β(<5) is defined and equal to γ iff

(2) (EH)(EJ)[<//,J,(5,y>eKε & H^B & J c c ί ] .

Note that {ε}β ((5) may have more than one value. If/ is a function, then

f <waB<^f = {ε}B for some ε.

The many-valued character of {ε} is a fact of life that can be avoided for some, but
not all, α. This oddity was discussed in subsection 4.V.

A is said to be weakly cc-recursive in B (symbolically A <waB) iϊcA < w α £, where
cA is the characteristic function of A. (It is customary to write A(n) in place of cA(ή),
and A = {ε}B in place of cA = {e}B.) It is a result of Driscoll (1968) (Corollary
2.3.VI) that < wa fails to be transitive on the α-recursively enumerable sets when
α = α/[κ. Shore (1975) characterizes those α's for which < w α does not have the
above failing.

The following notion of reducibility, suggested by Kreisel, is transitive by virtue
of its symmetry: an α-finite neighborhood condition on A is established by one on
B. A is cc-recursive in B (symbolically A <aB) if there exist reduction procedures Ro

and Rί such that

(3) K <=Λ^(EH)(EJ)[<//, J,K}eR0 & H^B & J c
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(4) K<=cΛ~(EH)(EJ)[<//,./,K>eK1 & H^B & J^cBI

for all α-finite X. Note that A < α B implies A < wa B. Define A and B to be of the
same α-degree (symbolically A =aB)iΐ A <aB and B <aA.

3.3 Proposition. Assume A is ^-recursively enumerable. Then for all B: A <aB iff
there exists a reduction procedure R such that for all oc-finite K,

KςzcA^{EH)(EJ)l(H,J,K}eR & H^B & J c c ΰ ] .

Proof Since A is α-recursively enumerable, so is

{K\K^A & K is α-finite}.

Thus clause (3) of the definition of < α can be expressed without reference
to B. D

3.4 Proposition. Let A* = {δ \Kδ n A Φ 0}. If A is ̂ -recursively enumerable, then
A* is ̂ -recursively enumerable, A* =aA, and

Proof The α-recursive enumerability of A* follows from that of A and the
α-recursiveness of the predicate yeKδ. Proposition 3.3 implies

(1) A*<waB~A<aB

for all B. (1), with A* in place of B, yields A<aA*.(l), with A in place of B, yields
A* <waA. Let t be an α-recursive function such that

Kt{δ)=u{Ky\γeKδ}

for all δ. Then
Kδ <= c(A*)<r+Kt(δ) <= cA^t(δ)ec{A*).

Hence A* <waA implies A* <aA with the aid of Proposition 3.3. D

3.5 Regularity. Let A ^ α. A is said to be regular if A n δ is α-finite for every δ < α.
The notion of regular set was inspired by GόdeΓs notion of constructible class, that
is, a class whose intersection with each constructible set is constructible. In Jensen's
terminology A is amenable. In the next section it will be shown that each α-
recursively enumerable set has the same α-degree as some regular, α-recursively
enumerable set.

It is immediate from Proposition 2.2 that there exists a non-regular, α-recursively
enumerable set iff σlp(α) < α.
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For a non-α-finite, α-recursively enumerable A, regularity is equivalent to a
dynamic property important in priority arguments. Assume A = / [ α ] for some
one-one, α-recursive /. Then A is regular iff

(1) (δ)(Eσ)(τ)τ^σlf(τ)>δ^

(1) says that for each α-finite K, there is a stage in the enumeration (without
repetitions) of A after which no member of K is added to A.

For all A ^ α, regularity can be expressed in static, set theoretic terms. Introduce
a predicate x E A. (Of course δ e A is true iff δ e A.) The formulas of ZF"4 are defined
as were the formulas of ZF in subsection 1.1 save that xeA is added to the list of
atomic formulas. Fod'4 is defined as in subsection 1.4 with ZF' 4 in place of ZF. The
definition of L[A~] parallels that of L.

, A] = u {LIA, (5] \δ < λ} (λ a limit).

L[v4] = u {LIA, <5] \δ an ordinal}.

is said to be constructίble from A as an additional predicate, and is not to be
confused with L(A), said to be constructible from A as a set, and to be defined later.
The structure <L|>l,α],e,,4> has L[Λ,α] as universe, and xey and x e i n α a s
atomic predicates.

3.6 Proposition. Assume A ^ α. A is regular iff L[A,α] = L(α).

Proof. By induction on δ the ordinals in L[A, <5] are just those less than δ. A further
induction shows

Hence A is regular iff L[A,δ~\ is α-finite for all δ < α. D

The formulas of ZFC' 4 fall into quantifier complexity classes (Δo, Σf, Π^, etc.) in
the same manner as the formulas of ZF in subsection 1.1. If F is a Σ;4 formula with
parameters in L[i4,α], then F is said to be Σ%A. Suppose B ^ L[\4,α]. If 2? is first
order definable over < L\_ A, α], e, A > by means of a formula in ΣJ" 4, then B is said
to be Σa

n'
A. Similarly for Π π and An. If A = φ, then Σ J M is written Σ£. Thus £ is

α-recursively enumerable iff B ^ α and BeΈ\.

3.7-3.8 Exercises

3.7. Suppose B <wa A. Show

3.8. Suppose A is regular, B c α ? and fίeA""4. Show £ < w α A
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4. Existence of Regular Sets

Let/be a one-one, α-recursive map of α into α. The deficiency set of/, in symbols
Df, is defined by:

δ & f(δ)

Deficiency sets are the source of regularity in α-recursion theory. They were
invented by Dekker (1954) in order to prove theorems about simple sets in the
setting of classical recursion theory.

4.1 Lemma
(1) Df is a regular, ̂ -recursively enumerable set.
(2) Df<JM.
(3) Iff[μ] is regular, then f la] <aDf.

Proof. Let g(τ) be the unique z such that

f{z) = μxlxefl*-τ]].

Then g < w α / [ α ] and range g = cDf.
Df is regular, because

fnτ~γ<τ & (Ey)[y<y <g(τ) & f(y)<f(y)].

Proposition 3.3 implies Df < α / [ α ] , since

K CΞ cDf~(y)γeK(y) [y < y < g(supK)

cDf is unbounded; otherwise there would be an infinite descending sequence of
ordinals. / [ {cDf) is strictly increasing. If/[α] is regular, then f\(cDf) is un-
bounded, and consequently

K^cfl<x]<r->(E\)lvφDf & supK</(t;) & K <= cflυ]].

4.2 Theorem (Sacks 1966). Let A be oc-recursίvely enumerable. Then there exists a
regular, ^-recursively enumerable B of the same a-degree as A.

Proof. Following Maass (1978a). Let A* = {δ\Kδn A Φ φ}. It is safe to assume
OeA. Then A* is unbounded, and there exists a one-one, α-recursive map/of α
onto A*. Let p: α -> α* be α-recursive, one-one and into, α* is the Σί projectum of α
as in section 2. Define

by

(Ey)[x < y & pf(y) < pf(x) & f(y) < w].
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Note that {x| (Ew)«w,x)eβ} is Dpof, the deficiency set of p°f. A typical member
of B consists of a deficiency point x with an upper bound w on a witness/(y) to the
deficiency of x. The regularity of B will be a consequence of its connection with
Dpof. The use oϊDpof, rather than Df, makes it possible to show A <aB without the
assumption, as in Lemma 4.1, that A is regular. The bound w is needed to show
B<aA.

To see that B is regular, fix τ and define

(w,x}eBτ

y by

<w,x>eτ2 & x<y & pf(y)<pf(x) &f(y)<w.

Observe that

(1) τ < y0 < y, & ^ 0 =έ Bτ

yί -> p / ( y i ) < p/(y0) V / ( y i ) </(y 0 ) .

Suppose Bnτ2 is not α-finite. Then there exists an infinite sequence

yo< yι < yi < s u c h that for all i <j,

τ<yi<yj & Bτ

yi^Bτ

yj.

But then (1) yields an infinite descending sequence of ordinals.
To show A <aB it suffices by Proposition 3.4 to show A* <WΛB. Fix z. The set

K = {v\v<p(z) & veplA*]}

is α-finite by Proposition 2.1, and sop'1 [K] is α-finite. It follows there is a y0 such
that

Let x0 > y0 be such that pf(x0) = min{p/M|x > y0}. Then

pf(xo)>p(z) &<z+l9x0}φB.

Observe that for all x,

pf(x)>p(z)& (z+lx}φB^zφA*-f

Thus

zφA*~(Ex)lpf(x)>p(z)&<z+l,xyφB & z

To prove £ < α A let J be an α-finite subset of α2 and define

JP= U
<>
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Jp is α-finite thanks to the bound on v. Then

and so B <aΛ by Propositions 3.3 and 3.4. D

The above proof of the regular sets theorem provides a uniformity absent from
earlier versions: there exists an α-recursive function t such that for all ε, Rt(ε) is
regular and of the same α-degree as Rε. Maass has obtained a further uniformity by
finding a definition of t independent of α. The above proof has a troublesome
parameter in the Σ" definition of p: α -> α*.

5. Hyperregularity

The notion of hyperregularity is useful in the study of relative α-recursiveness. The
main result of this section is the existence of a non-α-recursive, hyperregular,
α-recursively enumerable set via a mild priority argument. Here "mild" means that
the assignment of priorities is based on properties of α*, mild in contrast to Section
2.VIII, where a tame Σ 2 projection of α is invoked to solve Post's problem.

Suppose A ^ α. A is said to be hyperregular if

(1) {S)δ<a{f)U<WΛA^{Ey)y<a(f[_δ-] c=y].

If B < α A and A is hyperregular, then B is hyperregular. The hyperregularity of
A can be viewed as a weak form of Σx admissibility relative to A. A strong form
would be:

(2) (δ)δ<Λf)U<waΛ ->/ Γ δ is α-finite].

In general (1) and (2) are distinct, but they do coincide, as will be seen shortly, when
A is α-recursively enumerable.

5.1 Proposition. If A is a-recursiυely enumerable and hyperregular, then A is regular.

Proof. Fix δ to see A n δ is α-finite. Assume A is non-empty, hence the range of
some α-recursive function g. Let

fί x _
J(X)~ 0 iϊxφA.

Since f<waA, there is a γ ^ /[<5]. But then A n δ = g[y] n <5. D

Sets that are both regular and hyperregular figure prominently in the study of
α-degrees. They make it possible to lift certain constructions of classical recursion
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theory to α. Friedberg's jump theorem (1957a) is a good example: each Turing
degree above 0' is the Turing jump of some lesser degree. Simpson's jump theorem
(1974a) for α says: if an α-degree above 0', the α jump of the empty set, has a regular
representative, then it is the α-jump of some lesser α-degree with a regular,
hyperregular representative. Simpson's result is proved in Chapter VIII.

Lemma 5.2 captures the property of regular, hyperregular sets that makes them
so welcome in recursion-theoretic constructions.

5.2 Lemma. A is regular and hyperregular iff

(<%<«(/)[/< W«A ->/Γ δ is a-finite].

Proof. Suppose A has the latter property. Then A is hyperregular since each
α-finite function is bounded below α. Let c be the characteristic function of A. Then
c [ δ is α-finite, hence A n δ is α-finite.

Now suppose A has the former property. Fix δ < α and f<waA. Let R be
α-recursively enumerable and such that

(1) f(x) = y<r+(EH)(EK)l(H9K9x,y}eR & H^A & K^cA\.

R is the range of some α-recursive t. For simplicity write

Define: g(x) = μy[xy = x & Hy c A & Ky c CA];

h(x) < α since t is α-recursive. The regularity of A implies h(x) n A and h(x) — A are
α-finite. Hence g <waA, since the value of g(x) is determined by α-finitely much
of A

Since A is hyperregular there is a β such that

u{H9(x)uK9ix)\x<δ} c j8.

Anβ is α-finite. Consequently an α-finite definition oϊf[δ is obtained from the

right side of (1) by replacing R by ί sup#(x)+l , A by βnA, and cA by

lx<δ J
β-A. D

It is time for a mild priority argument in the setting of α-recursion theory. The
construction of a non-α-recursive, hyperregular set is an excellent choice, since the
associated injury sets are simpler than those developed in the solution to Post's
problem in the next Chapter. It first appears that the proof of Theorem 5.5 follows
the same lines as that of Theorem 2.1. VI with ω^ κ replaced by α, and ω by α*. But
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some unexpected difficulties arise when α* > ω. They are overcome by Lemma 2.1
of the present chapter.

5.3 Theorem (Sacks 1966). There exists a non-oc-recursίve, hyperregular,
^-recursively enumerable set.

Proof. Let p be a one-one, α-recursive map of α into α*. Recall Rε and {ε}B from
subsection 3.2. Let

x G R p - i ε mean p~ίε is defined and equal to γ & xeRy.

Then "xeRp-ι" is α-recursively enumerable, and so {Rp-iε\ε < α*} is a simul-
taneous α-recursive enumeration of all α-recursively enumerable sets. Define
{p~1ε}B as in subsection 3.2, formula (2), with Rε replaced by Rp-ιε. Then

f<waB iff/= {p~ιε}B for some ε < α*.
To prove the theorem a set B will be α-recursively enumerated with three

objectives in mind.

(1) cB is unbounded.
(2) If Rp-ίE is unbounded, then Rpiε nBΦ 0.
(3) Let tε be α* if α* is a regular α-cardinal, and ε otherwise. If {p~ ^}B(y) is defined

and single-valued for all γ < tε9 then {p~1ε}B [ tε is α-finite.

(1) and (2) combine to make B non-α-recursive. (3) will imply B is hyperregular. B
will be the union of an increasing, α-recursive sequence {Bσ\σ < α} of α-finite sets.
Bσ is that part of B enumerated by the end of stage σ. Let

B<σbtκj{Bδ\δ<σ).

E enumerates the even ordinals: £(0) = 0; E{ε + 1) = E(ε) + 2; and E(λ) = λ for
limit λ. Od enumerates the odd ordinals: Od(ε) = £(ε) + 1.

For the sake of (2) and (3) attempts are made during the enumeration of B to
satisfy the following requirements.

Req E(ε): If Rp-ιε is unbounded, then Rp-ιε nBσ Φ 0 for some σ.
Req Od(ε): If {p~1ε}B{y) is defined and single-valued for all y < tε9 then

(£σ)(τ) t>σ(y) v < ί ε such that

(4) {p-iε}?<τ(y) = {p-1ε}B

σ

<σ(y).

The right side of (4) is an α-recursive approximation of {p~ ^}5(y) at the beginning
of stage σ of the enumeration of B, and is defined as follows.

Suppose R is α-recursively enumerable. Then there exists a Δ£ formula F(x, y)
such that for all δ < α,

Define Rσ by
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Recall that F(x, y) may contain some parameter qeL(oc). Take Rσ to be
empty if qφL(σ). Each Rσ is α-finite, the function λσ\Rσ is α-recursive, and
R = u {Rσ\σ < α}. The right side of (4) is defined and equal to δ if

(5) (EH)(EJ)[<tf,J,y,a>eΛ;-i β & H ^ B<σ & JςzcB
<σl

If {p~1ε}B(γ) is defined and equal to δ, then for all sufficiently large <τ,

<H,J,γ,δ}eRσ

p-lE & H ^ B<σ & J^cB<σ.

Requirement £(ε) is said to be positive because it is met by adding an element to
B. Requirement Od(ε) is said to be negative because it is met by excluding α-finitely
many elements from B. If a stage σ can be found such that the right side of (4) is
defined for all y<tε, then requirement Od(ε) can be met by keeping out of B any
element that would falsify any of the facts about cB<σ used in the computation of
the right side of (4) for any y<tε. The preservation of {p~1e}B.<σ[te during all
stages τ > σ implies that (3) holds.

Positive and negative requirements tend to conflict. If an ordinal is added to B at
stage τ for the sake of requirement E(ε0), then that addition may falsify some
computation developed at stage σ < τ and being preserved for the sake of require-
ment Od(ε). Such an event is termed an injury to req Od(ε) for the sake of req E(ε0).
The adverse effect of injuries is limited by a system of Friedberg-Muchnik prior-
ities. Req£(ε0) is said to be of higher priority than reqθd(ε) if ε o <ε. An injury
occurs only for the sake of a requirement of higher priority. It will follow from the
fact that ε < α * that reqθd(ε) is injured only α-finitely often.

The construction of B consists of simultaneous α-recursive definitions of λσ\Bσ,
λσ\n(σ, ε), λσε\r(σ, ε) and λσε\m(σ, ε). r insures the unboundedness of B. m defines
the preservation requirements on B.

Stage σ. r(σ, ε) is the least β such that

j?>supr((5,ε) & βφB<σ

δ<σ

& [εep[σ]^>β>p~ίέ].

n(σ, ε) is the greatest m< tε such that {p~ 1ε}%<σ(y) is defined for all y <m. Jσ

εy is the
least J (least according to the ordering of L(α) supplied by Proposition 1.8) such
that: </f, J, y, δ} satisfies the matrix of (5) and sup J is as small as possible. m(σ, ε) is
the least β such that

β > supm((5, ε) & β > sup Jεγ.
δ<σ γ<n(σ,ε)

When possible, ordinals less than or equal to m(σ, ε) will be kept out of Bτ(τ>σ) in
order to preserve
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Stage σ is completed by attacking req£(ε0), where εo = h(r) and h is an α-recursive
function that enumerates every ordinal less than α* unboundedly often. If
Rσ

p-ιεonB<σ = 0 and there exists a β such that

(6) β€Rσ

p-ίeo & (ε)ε<EO[_m(σ,ε)<β & r(σ,β)</?],

then put the least such β in B. Otherwise Bσ = B<σ. End of stage σ.
The clause, RJ- i ε o nB = 0 , is important. It implies:

(7) For each ε0 there is at most one stage σ at which an ordinal is added
to Bσ for the sake of req£(ε0).

If β is added to B at stage σ and β<m(σ, ε), then Od(ε) is said to be injured.
Define

/ε = {σ|reqθd(ε) is injured at stage σ}.

IE is α-recursively enumerable. The priorities were designed to insure

(8) Iε is α-finite.

To prove (8) fix ε<α*. (6) implies h(σ)<ε for all σelε. ε<α*, so h[Iε~\ is α-finite
by Proposition 2.1. h [ Iε is one-one by (7). Hence

is α-finite (and has α-cardinality less than α*).

limr(σ, ε) is said to exist if there are τ and ί such that r(σ, ε) = *f for all σ>τ.
σ

λσ I r(σ, ε) is non-decreasing, so lim r(σ, ε) exists if λσ | r(σ, ε) increases only α-finitely
σ

often. Suppose r(σ - 1 , ε) φ r(σ, ε). This could be because ε = p(σ) > r(σ — 1, ε). Other-
wise r (σ — 1, ε) was put in Bσ " 1 for the sake of req E(ε0) for some ε0 < ε. The set of all
such σ's is α-finite by the same reasoning used to prove (8). Thus

r(ε) = limr(σ, ε)
σ

exists for all ε < α*.
To prove (1) observe that r(ε)φB, and that r(pγ)>y for all γ.
To prove (3) assume {p~1ε}B(y) is defined and single-valued for all y<tε. (8)

implies there is a stage σε after which reqθd(ε) is not injured. It follows that

(9) σ>σε & 7<n(σ,ε)^{p- 1 ε}r σ (7) = {p- 1εH7)

The function λσ \ n(σ, ε), restricted to σ > σε, is non-decreasing. The set Sε of stages
after stage σε at which n(σ9 ε) increases is α-recursive. Since n(σ, ε) is bounded above
by ί ε<α, it follows that the ordertype of Sε is less than α. Hence n(σ, ε) increases
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only α-finitely often and

, ε)

exists. Suppose n(ε)<ί ε. Then {p~1ε}B(n(ε)) is defined and single-valued. By the
remark following (5),

for all sufficiently large σ. But then n(ε)<n(σ, ε) for all sufficiently large σ. So n(s)
must equal tε, and (3) follows from (9).

The remainder of the proof of Theorem 5.5 splits into two lemmas.

5.4 Lemma. B is hyperregular.

Proof. Assume {p~1ε}B[ δ is defined and single-valued for some <5<α. The proof
that {p~1ε}B[ δ is α-finite breaks into three cases.
Case 1: α* = α. Then p can be the identity map. Choose η > δ so that {ε}* ~ {n}x for
all X £ α. η exists because of the endless repetitions that inevitably occur in any
standard enumeration of the α-recursively enumerable sets, η codes up the same
instructions as ε. Thus {ε}B[ δ = {η}B[ δ.tη = η>δ, so by (3), proved above, {η}B[ δ is
α-finite.
Case 2: α* < α and α* is a regular α-cardinal. Then α* is the greatest α-cardinal and
there is an α-finite map v of α* onto <5. Choose ε0 < α* so that

for all x<α*. ίεo = α*, so by (3), { r V Γ ^ ί ^ ί P " 1 ^ * ) i s α-fi
Case 3: α*<α and α* is a singular α-cardinal. As in case 2, it suffices to show
{p~lεo}B Γα* is α-finite. Let λ0 be the cofinality of α* in L(α). Then for some
A 0<α*, there is a sequence {yi\i<λ0} of α-cardinals whose limit is α*. For each
i<λ0, there is an n ^ y ; such that { p " 1 ^ } * ^ {p~17i}x for all X ^ α (as in case 1).
By (3) {p-Wΐyt is α-finite.

Choose εx so that

for all i<λ0. Then {p~1ε1}
B[λ0 is α-finite since 2 0 < α * . D

So far no reason has been given for setting tε equal to ε when α* is a singular α-
cardinal. Thus case 3 of the proof of Lemma 5.6 may appear to be an unnecessary
complication that could have been eliminated by setting tε equal to α* whenever
α* < α. The reason for distinguishing between regular and singular α*'s is made
evident in the next lemma.

5.5 Lemma. // Rεo is unbounded, then RεonB Φ 0 .



5. Hyperregularity 173

Proof. It suffices to show

{m(σ, ε ) | ε < ε 0 & σ<a} and {r(σ, ε ) | ε < ε 0 & σ<α}

are bounded sets. Recall from Theorem 5.5 the proof that lim r(σ, ε) exists, λε \ r(ε)
σ

is Σa

2 and unbounded; nonetheless the restriction of λε \ r(ε) to ε0 is bounded. It
follows from Proposition 2.1 and (8) of Theorem 5.5 that there is a σ0 such that:

(10) {ε | ε<ε 0 & εep[α]} <= p[σ 0 ] ;

and no element of Rε is added to B at or after stage σ0 for the sake of req E(ε) for
a n y ε < ε 0 .

The bounds on m are less apparent than those on r. Two cases have to be
considered. The second contains the principal twist in the proof of Theorem 5.5.
Case 1: α* = α or α is a singular α-cardinal. Fix ε<ε 0 . Let σ0 be as in (10) above. A
change in the value of m(σ, ε) occurs at stage σ> σ0 only if {p~ 1ε}%<σ is defined on
a longer initial segment than it was at any previous stage after σ0. All such initial
segments are bounded by ε + 1 . Thus the set of stages after σ 0 at which m(σ, ε)
increases for some ε < ε0 is correlated with an α-recursively enumerable subset of
(ε0 +1) 2 . That set is α-finite, since ε o <α*.
Case 2: α* is a regular α-cardinal. If ε < ε 0 and σ > σ 0 , then changes in m(σ, ε) at
stage σ occur as in case 1 save that n(σ9 ε) is now bounded by α* + 1 instead of ε + 1 .
Let

Z = {ε | ε<ε 0 & limn(σ, ε) = α*}.
σ

Z is α-recursively enumerable because α*<α. Hence Z is α-finite, since ε o <α*.
Choose σί>σ0 so that

σ9 ε) .

Then m(σu ε) = limm(σ, ε) for all ε e Z .
σ

For each ε e ε 0 —Z, let Kε be the set of stages after σ0 at which m(σ, ε) increases.
Kε is α-finite and has α-cardinality less than α*. It follows from Lemma 2.3 that

u{X ε | εG(ε 0 -Z)}

is α-finite, hence bounded by some σ2. Then m(σ2, ε) = limm(σ, ε) for all
σ

εe(ε 0 — Z). D

Exercises 5.6 and 5.7 are intended to clarify the proof of Theorem 5.3, particu-
larly the nature of the bounds on m and r obtained in the proof of Lemma 5.5.
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These matters are discussed further in Chapter VIII. For now note that some of the
functions developed in the course of a priority argument are Σa

2, for example,
λε I r(ε) in the proof of Lemma 5.5. Bounds on these Σa

2 functions have to be derived
somehow from the Σ x admissibility of L(α). For Theorem 5.5 the job was done by
α* and by Lemma 2.3 (cf. Exercise 2.12).

5.6-5.9 Exercises

5.6. α is said to be Σ 2 admissible if for a

(y)y<«[/Γy isα-finite].

Show α is Σ 2 admissible iff every α-recursively enumerable set is hyperregular.

5.7. Let m(σ, ε) be the α-recursive function defined in the construction of Theorem

5.5. Let m(ε) = limm(σ, ε). Show λε\m(ε) is Σa

2. Show that (λε\m(ε))[ε0 is
σ

α-finite when ε o < α * .

5.8. Suppose A is regular and hyperregular. Show

(B)[B < WΛA~B<aA~Be^Λl

Show <L[v4, α], ε, A} is Σ x admissible.

5.9. Assume V = L. Let α be ωω and A be α — {ωn\n<ω}. Verify that A is α-
recursively enumerable and regular, but not hyperregular. Show A is complete,
that is, B <aA for every α-recursively enumerable B. Show C is hyperregular iff
A ^ αC, for every C ̂  a.




