
Chapter II
The Hyperarithmetic Hierarchy

The hyperarithmetic sets are defined by iterating the Turing jump through the
recursive ordinals, and are shown to equal the ΔJ sets. The equality is important for
two reasons. First, it reveals that Δ} is more constructive than it appears to be.
Second, it allows properties of Δ} sets to be proved by induction, since hyper-
arithmetic sets fall into a hierarchy and can be assigned ordinal ranks less than

Hyperarithmetic reducibility, hyperdegrees and the hyperjump are defined.

7. Hyperarithmetic Implies A{

The //-sets are defined after some properties of the Turing jump are reviewed. A set
is defined to be hyperarithmetic if it is recursive in some //-set. Then an effective
transfinite recursion produces an effective method for passing from the index of an
//-set X to a Δ} index for X.

1.1 //-Sets. Let cx be the characteristic function of the set X. Y is said to be
Turing reducible to (or recursive in) Z if

(1) (Ee)[cy = {e}Cz].

{e} is sketched in Chapter I, subsection 1.1. Formula (1) is often rendered as
X<TY.

The Turing jump of X is denoted by X\ and is defined by

W{(e)o}*((e)i) is defined}.

X' can be regarded as the effective disjoint union of all sets recursively enumerable
in JT.

The following elementary facts about Turing reducibility and jump are proved in
Rogers 1967.

(2) X' is not recursive in X.
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(3) X is recursive in X' uniformly. (There is an e0 such that for all X, X = {e0}
x.)

(4) There is a recursive function t such that

X = {e}γ-+X' = {t(e)y
for all X, Y and e.
(5) There is a recursive function θ such that

X = {d}γ & r={e} z -+X = {0(rf,e)}z

for all X, F, Z, d and e.
The H-sets are defined by recursion on < o :

(6) Hx=φ9

(7) H2a = (He)
f

(8) if3.5β = { < x , n > | * G / W «x,π> = 2* 3").

Let if: 0->2ω be the unique function that satisfies (6)-(8). X is an if-set if X = Hb for
some b e O. X is said to be hyperarithmetic if X is recursive in some if-set.

Let HYP be the set of all hyperarithmetic sets. HYP theory is largely the creation
of Kleene, although pioneering work was done by M. Davis, and by A. Mostowski.
Recall that X and Fare said to have the same Turing degree (in symbols X = τ Y) if
X<TY and Y<TX. It will be seen in Section 2 that the Turing degree of Hb is
determined by |b|.

1.2 Lemma (Kleene). There exists a recursive function k such that for all α, b

Proof By effective transfinite recursion on b. Let e0 and θ be as in subsection 1.1, (3)
and (5). Fix a and assume a<ob. The definition of k has three cases.

(i): b = 2a. /c(α, b) = e09 since Hb = H'a.
(ii): b = 2dϊ2a.k(a,b) = θ(k(aj),eo).

(iii): b = 3 5Z. /c(α, fe) is defined thus. Let p be the recursive function of Theorem 3.5
of Chapter I. Simultaneously enumerate Wp{{z)m («>0) until an n is found such
that ae Wp{{z)m. Such an n must exist if a<o 3 5Z. fe(α, b) is

θ(k(a,{z}(n)\h(n)l

where /i is a recursive function such that

for all n and X. Thus {Λ(n)}H' »z is H{z]{n) when 3 5 Z G 0 .
Before the definition of k can be made precise, it is necessary to elaborate

case (iii). A trick is needed to cover the possibility that 3 5Z may not belong to 0. In
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that event there may not be an n such that {z}(ή) is defined and αe Wp{{z){n)). The
trick is to define k(a, 3 5Z) so as to embody the search for n without worrying about
whether such an n exists. Let θ#(e,a,z) be a recursive function with the following
properties. For all e, a, and z, θ^(e, a, z) is the index of a Turing reduction
procedure. {θ^(e, a, z)}x makes sense for all X but may be partial for some X. The
instructions for computing {θ^(e,a,z)}x are: simultaneously enumerate Wp{{z)m

(n>0) until an n is uncovered such that {z} (n) is defined and ae Wp{{z){n)). Let no be
the first such n uncovered. (If no does not exist, then {θ#(e, a, z)}x(v) is undefined for
all v.) Then

{θ*(e, a, z)}x^{θ({e}(a,{z}(no))9 h(no))}x.

The recursive iterater / needed for the definition of k by effective transfinite
recursive is given by:

eo iϊb = 2a,

{I(e)}(a,b)= θ({e}(aj),eo) \ίb = 2dΦ2\

θ*(e9a,z) ifh = 3 5z '

0 otherwise.

Let {c}~{I(c)}. k is {c}. k is total because θ and 0* are. D

1.3 Theorem. Each of the following predicates is Ti{.

(0 xeO & yεHx.
(ii) xeO & yφHx.

Proof (i) Let A(X) be the conjunction of:

(X)i=Φ,

(e) l3 5*eO^(X)3.5e = {(x,n}\xe(X){e}in)}

Recall that (X)m = {n|<m, n}eX} and that <m,n> = 2m 3π. Define X* to be
the set of all <x, y} satisfying predicate 1.3.(i). Then A (X*) holds by induction
on <o.

Suppose A(X) to show X*<=X. If aφO, then (X*)a = φ and so (X*)a^(X)a.
Assume aeO. Then (X*)a = (X)a by induction on <o.

Thus X* is the intersection of all solutions of A(X). By Theorem 1.6.1, X* is Π},
since 0 is Π}.

(ii) Similar to (i). D

1.4 Corollary (Kleene)

(i) If X is hyperarithmetic, then X is A{.
(ii) The predicate, XeHYP, is Π}.
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Proof. Consider the predicate

(1) (Es) (Ez) [Γ(s, e, y, z) & M(s) = z&U(z) = i

By Theorem 1.3, (1) is Π}. Fix x and e, and assume X = {e}Hχ. Then

yeX <->(l) holds with ΐ = l ,

yφX++(l) holds with i = 0.

Hence X is Δ}.

The predicate, X e HYP, is equivalent to

(2) (Ex) (Ee) [xeO & ΛΓ = {β}H-].

The Π}-ness of (1) implies (2) is Π}. D

More information is to be had concerning Corollary 1.4(i). Suppose X is Δ}.
2c 3d is said to be an index for X as a Δ} set (or simply a Δ}-index for X) if c
(d respectively) is a Πj index for X (ω—X respectively). Thus

,y,x) & l/(x)=l] ,

Λ x ) & l/(x) = 0].

1.5 Theorem (Kleene). There exists a recursive function f such that

f(b) is a Δj-index for Hb

for all be0.

Proof By effective transfinite recursion on <o. First a recursive function 7 is
defined such that

m is a Δ}-index for X -•j (m)

is a Δ}-index for X' for all m and X. The definition of X' yields

(1) yeX' ~(Es)[T(s,(y)0,(y)iM(s))

& (i)i<a(s)((s)i
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Let m be a Δj-index for X:

(2) ieX~(f)(Ex)lT(f(x),(m)09 i, x) & l/(x)=l],

(3) ^X^ί/KExJCΓί/ίxλίm)!,*,^ &

Substitute the right side of (2) for i e X, and the right side of (3) for i φ X, in (1). Let c
be the index of the resulting Πj formula after normalization. Thus c is a Π}-index
for X'. In a similar fashion a Π}-index d can be found for ω — Xf. Let j(m) = 2c 3d.

Next a recursive function r is defined so that for all z and all {Yn\n < ω},

if (n) [{z}(n) is a Δ}-index for Γπ],

then r(z) is a Δj-index for

Define

(4) <y,n>eZ«(/)(Ex)[Γ(/(x),{z}(π),y,x) & £/(x) = 1].

(The right side of (4) is false if {z} (n) is undefined.) Let u be the Π}-index for the
right side of (4) after normalization. Similarly a Π}-index v for ω — Z can be found.
Let r(z) = 2" 3y.

Now for the definition of/by transfinite recursion. Let c be a recursive function
such that

{c(e,z)}{n)*{e}({z}{n))

for all n. There exists a recursive / such that

e0 if b = 1

)) if & = 3 5*

0 otherwise.

Choose d so that {d} ^ {/(</)}. Then {d} is the sought-after/ D

Theorem 1.5 yields another proof of Theorem 1.4(i), and some information
concerning persistent A{ definitions. Fix XeA{. Suppose

ysX<r+(Ef)A(f,y) and yφX~(Ef)B(f, y)

for some arithmetic A and B. Clearly

(y)(Ei)lA(f9 y) v B(f, y)l

( v is the exclusive "or".) For each y, choose a.nfy that satisfies the matrix above, and
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let Wbe {fy\y < ω). Then

yeX ~(Ef)f eVA(f,y) and yφX ~(EΪ)feVB(f, y)

whenever 2ω ^ VΏ W. The above state of affairs is described by saying: X has an
upward persistent Δj definition over W. It will be shown in the next section that
each Hb has an upward persistent Δj definition over [Ha\a <ob}.

There is a persistence phenomenon hidden in the proof of Theorem 1.5. Define
b* by: 1* = 1, (3 5e)* = 3 5e, and (2fl)* = 22<β)\ Let Vb be {g\gf <τHb} for each
beO. If/ is the recursive function defined in the proof of Theorem 1.5, then/(ft) is
the index of a Δ} definition of Hb upward persistent over Vb* (Exercise 1.9).

An early persistence result is due to Gόdel: L has a Σ x definition upward
persistent over L. To be more precise, there is a Δo formula P(x, y) of set theory
such that

xeL<->(Ey)yeVP(x, y)
for all models V^L.

1.6 Lemma. IfX has a A\ definition upward persistent over {f\f<τB}, then X'
has a Δ} definition upward persistent over {f\f <TB"}.

Proof. Recall formulas (l)-(3) from the proof of Theorem 1.5. Assume the Δj
definition of X given by (2) and (3) is upward persistent over {/|/< τ B). If the right
side of (2) is substituted for i e X, and the right side of (3) for i φ X, in (1), then y e X'
becomes

(4) (Es) s e S e q (/)[/< TB -> (Ex)Λ(/(x), s, y)]

for some recursive R. Since / is restricted, the quantifier manipulations that
transform (4) into a Δj formula upward persistent over {f\f<τB"} have to be
considered with care, y φ X' is

(5) ( 4 e S e q ( E f ) [ / < r 2 * & ~(EX)Λ(7(X),S,JO] .

In order to move the universal quantifier on s in (5) past the existential quantifier of
/ it is necessary to choose, for each s, an / that satisfies the matrix of (5). Since
f<τB,a choice of/ amounts to a choice of n such that {n}B is total. The set of all
such n is many-one reducible to B". It follows that the set of all n such that {n}B is a
total function/and satisfies ~ (Ex).R(7(x), s, y) is also many-one reducible to B".
Hence (5) is equivalent to

(6) (Ef)[/< r iΓ & (s)seSeq ~ (Ex)K((/)s(x), s, y)\

The/of (6) is such that (f)s = {t(s)}B" for some t < τ B". A similar argument begins
with yφX' and ends with a Σ} formula for yeX' upward persistent over

{f\f<τB"}. •
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1.7-1.9 Exercises

1.7. Recall A(X) from the proof of Theorem 1.3. Is A(X) a closure condition in the
sense of the remarks following the proof of Theorem 1.6.1?

1.8. Obtain Theorem 1.5 as an immediate corollary of Theorem 1.3.

1.9. Let / be the recursive function developed in the proof of Theorem 1.5. Show,
for each beO, f(b) is a Δ}-index for Hb upward persistent over Vb*. 1* = 1,
(3 5 T = 3 5β, and (2a)* = 22^. Vb = {f\f<τB}.

2. A{ Implies Hyperarithmetic

The main result of this section is that every Δ} set is hyperarithmetic. Along the way
some related boundedness, uniformization and selection principles are proved.

For each beO, define

0b = {a\ae0 & |α| < \b\}.

2.1 Lemma. Each of the following predicates isU\.

(i) xeO & yeθx.
(ii) xeO &yφθx.

Proof Similar to that of Theorem 1.3. This time A(X) is the conjunction of

(1) (X)i = Φ,

(e) [3 5eG O ^ (*) 3 . 5 e = U (X){e}in)l and
n

• P 0 2 a = {l} (1)

u{y|(Em)(j; = 2 m & me (*).

3 5* & (n)({e}

The set of all <x, y} satisfying (1) is the intersection of all X satisfying A{X). D

2.2 Uniformization. P(x, y) is said to uniformize Q(x, y) if

(x)(y)lP(x,y)^Q(x,y)land

(x)ί(Ey)Q(x,y)^(Eiy)P(x,y)l

In short Q contains P, and P is the graph of a function whose projection on the x-
axis is the same as that of Q. (The term, "uniformization", was coined by descriptive
set theorists.) Proving a uniformization principle usually amounts to proving a
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selection, or choice, principle. If β(x, y) is recursively enumerable (x, y e ω), then it is
trivial but instructive to uniformize it by a recursively enumerable P as follows. Let
e be such that

Q(x9y)~(Ez)T(e9x9y9z).
Define P(x, y) by

(Ez)[Γ(e, x, y, z) & (w) w < z ~ (Ey)Γ(e, x, y, w)

& (»)„<, ~ Γ ( e , x , ϋ , z ) ] .

P(x, y) is recursively enumerable because T(e, x, 3;, w) implies y < w (a useful
convention satisfied by Kleene's Γ-predicate). Fix x and assume (Ey)Q(x, y). P(x, y)
first minimizes the length z of computation needed to uncover some y that satisfies
<2(x, y), and then singles out the least y associated with the minimum computation.
This selection procedure is adequate for the proof of the next theorem, additional
evidence that a Π j set is some kind of recursively enumerable set.

2.3 Theorem (Kreisel). Π} predicates (of numbers) can be uniformized by Π}
predicates.

Proof. By Theorem 5.4.1, there is a recursive function g such that

for all x, yeω. Let P(x, y) be

g(x,y)eθ & (z)sΦylg(x, g ( y )

& (z)z<y[g(x9z)φθ2«χ.y)'].

P{x, y) is U\ according to Lemma 2.1. Fix x and assume (Ey)Q(x, y). P(x, y) first
minimizes \g(x, y)\ and then singles out the least y that gives rise to the least
ordinal. D

Theorem 2.3 remains true when x and y are set variables, but the proof is more
complicated because there is no effective wellordering of 2ω. Nonetheless the idea of
minimizing certain ordinals is still pertinent, as will be seen below in Section 9 of
Chapter III.

2.4 Theorem (Spector 1955). There exists a recursive function g such that

ob = {g(b)}H>b

for all be0.

Proof By effective transfinite recursion. The most interesting step occurs in the
limit case, since it is that case that requires H2b rather than Hb in the statement of
the theorem.
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Limit case: b = 3 5e. Let k be the recursive function of Lemma 1.2. Define

θ(e, n)byk(2{eHn\ 3 5e).

If 3 5 e e 0 , then for all n9 θ(e9 ή) is defined and

H2lem = {θ(e, n) } H - .

Let c(u, v) be a recursive function such that {c(u, v)}x ~ {u}{v)X for all X. The
predicate

(1) (En)[{*}(π) & {z}(n) are defined

& ye{c({z}(nXθfen))n

is recursive in X'. Hence, for some recursive ί, (1) is equivalent to y e {t(e, z)}x'. t has
the power to extend any {z} that satisfies the theorem below 3 5e to one that
satisfies it at 3 5e. Suppose 3 5e e 0 and for each n, {z}(ή) is defined and

Successor case: b = 2a. Define eeE by (n)[{e}(ή) is defined & {e} (ή)
E ^P({β}(»+D)]» where pis the recursive function of Theorem 3.5.1. If 1 φ aeO, then

(2) ^ = l v ( E m ) m < , [ y = 2m & meOJ

v(Eε)e<yly = 3 5e & eeE & (*)({*} ( n ) e θ β ) ] .

If {s}x' is substituted for Oa in (2), then the resulting predicate is recursive in X'\
since E is recursive in φ", and since

(n)({e}(ή)e{s}x')
can be construed as

(ή)(z) ~ l{e}(ή) is defined

& T(ΪC{z\s,{e}{n\z) & I/(z) = 0].

Hence the result of substituting {s}x> for Oa in (2) is equivalent to ye {j(s)}x ' for
some recursive function j . If a e O and

Oa = {s}H>\ then O2 α = {j(s)}H*2Λ.
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Choose c 0 so that φ = {co}
x for all X. There exists a recursive / such that

c0 if fc = 1

{/«>(*)* ji{z}{a)) U b = r
1 ι m ' ί(e,z) if ί> = 3 5«

0 otherwise.

Let {d} ~ {/(</)}, and g be {</}. D

2.5 Theorem (Kleene). IfXisA\, then X is hyperarithmetic.

Proof. Assume XeA{. Theorem 5.4.1 implies there is a recursive g such that

for all y. Define A by

(1) zEA~(Έy)(yeX & z=

A is Σ j . Spector's boundedness theorem, 5.6.1, yields a ftel^such that A ^ Ob.

Thus

yeX<-+g(y)eOh.

Ob is hyperarithmetic by Theorem 2.4. D

Theorems 1.4(i) and 2.5 combine to produce Δ} = HYP for sets of numbers. The
notion of Δ} is thought to be less clear, or less constructive, than the notion of
HYP. This is a way of drawing attention to the fact that Δ} sets are defined from
above by quantification over ω ω , while hyperarithmetic sets are defined from
below by iterating the Turing jump, or number quantifier, through the recursive
ordinals. It is sometimes said that the HYP sets constitute a predicative analysis of
the Δj sets. A more precise statement of the situation is: the HYP sets provide a
hierarchy for the Δ} sets. It is a general problem of considerable interest to develop
a hierarchy for a family of sets defined en masse. The interest is more than
philosophical, since a hierarchy makes it possible to prove theorems about the
family by transfinite induction. This is the approach taken in the next section to
show each Δ} set is implicitly arithmetically definable, that is the unique solution of
an arithmetic predicate.

There is a uniformity lacking in the proof of Theorem 2.5, which will be supplied
by Corollary 3.5. It consists of recursive functions/and g such that: if e is a ΔJ index
for X, then f{e)eθ and X = {g(e)}Hf^. The only information needed to make the
proof of 2.5 yield/and g is an effective method of passing from a Σ} index of A, the
set defined by 2.5.(1), to the bound b.

2.6 Lemma (Kreisel). Suppose Q(x,y) isH\. Then

(x)(Ey)Q(x9y) /
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Proof. By Theorem 2.3 there is a U\P{x,y) that uniformizes Q(x,y). Define
/(x) = y by P(x,y). f is Δ{ by Proposition 1.7.1, hence hyperarithmetic by
Theorem 2.5. D

It is reasonable, but risky, to view Lemma 2.6 as analogous to the following result
of elementary recursion theory: suppose Q(x,y) is recursively enumerable, then

(x)(Ey)ρ(x,y)^(Ef) [/is recursive & (x)Q(xJ(x))l

(f(x) is the first y such that Q(x,y) is enumerated.) Reasonable because it adds to
the evidence that Πj-ness is akin to recursive enumerability. Risky because it
suggests that hyperarithmeticity is akin to recursiveness. In Part B of this book it
will be seen that the analogy between Πj and recursively enumerable entails an
analogy between hyperarithmetic and finite. This outcome is signaled by Theorem
2.4. If a recursive enumeration of A is cut short, then the result is a finite set.
Analogously, if the natural enumeration of Kleene's O (so termed in the proof of
Theorem 2.2.1) is cut short, then the result is some Ob, a hyperarithmetic set
according to Theorem 2.4.

2.7-2.11 Exercises

2.7. Show each Σ°Q(x,y) can be uniformized by some Σ° P(x,y) (n > 0).

2.8. Show the range of a total hyperarithmetic function is hyperarithmetic.

2.9. Formulate precisely and prove: a hyperarithmetic union of hyperarithmetic
sets is hyperarithmetic.

2.10. Show each hyperarithmetic set is many-one reducible to some if-set.

2.11. Suppose C is a Πj set of hyperarithmetic reals, P{X, Y) is Π}, and
(X) (EY) [ Ye C & P(X, 7)] . Show there exists a hyperarithmetic map h
from 2ω into C such that {X)P(X,h(X)) (Read Section 5 before solving this
problem.)

3. Selection and Reduction

It is useful to extend the domain of || from O to ω by defining |ft|, when b φ 0, to be
oo. oo is greater than every constructive ordinal. Thus \a\ < oo means aeO.

It is helpful to think of b as a code for some sort of infinite computation that
either terminates at some constructive ordinal or fails to terminate. The main result
of this section is a selection principle: there exists a recursive function t such that

(1) aeO v beθ^>t(a,b)eθ

& min(\al\b\)<\t(a,b)l
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t selects in the following sense. If either a or b terminates, then £(α,b) terminates at a
constructive ordinal large enough to serve as a vantage point from which one can
look down and select a terminating element of the pair (α, b). In classical recursion
theory an element can be selected from a nonempty recursively enumerable set A
by simply enumerating all computations until one is found that puts an element
into A.

In the proof of Theorem 2.3 it was seen that an element of a nonempty
Π} set B can be selected in essentially the same manner. Let / be a recursive
function such that

yeB~f(y)eO.

Select the unique y such that

(2) f(y)eθ & (z)2*yU{z)Φ0f(y)l

& (z)M<ylf(z)φ02fwl

The notion of selection in (1) is somewhat more subtle than that in (2). In (1) a
pair of computations is given with an assurance that at least one terminates. In (2) a
set {f(y)\yeB} of computations, all of which terminate is given. The counterpart of
(1) in classical recursion theory is proved by alternating between a and b until one
of them terminates. This is the so-called computing-in-tandem trick. It is needed to
show the disjunction of two recursively enumerable predicates is recursively
enumerable. It plays an important part in the proof of Gandy selection in Part D.

As in subsection 4.2.1, let Re be the e-th binary, recursively enumerable relation,
and let \R\ be the ordinal height of R when R is wellfounded. Define \R\ to be oo
when R is not wellfounded (WF).

3.1. Lemma. There exists a recursive function k such that:

(0 lRce WF v Rde WFl~Rk{c,d)e WF;
(ii) IRCE WF v Rde WF1 ->min( |/U |K,|) < \Rk(c,d)\.

Proof. Rk{c,d) is Rc (x) Rd, a certain kind of product. The field of Rc ® Rd consists
of all numbers that are codes for ordered pairs (r,s}9 where r e field Rc and
sefield Rd.

(r1,sί}Rc(g)Rd(r2,s2) iff r1Rcr2 and sxRds2.

(i) Let Z be a nonempty subset of the field of Rc®Rd. ZRc is
{r|(Es) ((r,s}eZ)}, and ZRd = {s |(Er)«r, s)eZ)}. Z has a minimal element iff
ZRc or ZRd does.

(ii) Suppose either Rc or Rd is wellfounded. By (i) Rc (x) Rd is wellfounded.
\Rc®Rd\ is
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If r e field Rc and the restriction of Rc to {rί\r1Rcr} is wellfounded, then

Otherwise let \r\ be oo. Treat Rd similarly. An induction on min(|r|, \s\) shows

(1) min( | r | , | s | )< |<r , s> |

for all <r,5> e field Rc® Rd, because

(2) min(|r2 |, \s2\) = m3x{πύn(\r1\9\s1\) <r 1 ,s 1 >Λ c (8)Λ < l <r 2 ,s 2 >}.

(1) implies minflKJ, \Rd\) < \RC ® Rd\. (max is strict lub.) D

The proof of Lemma 3.1 centers on the min-max trick of equation (2). It is worth
pondering, because it will reappear in Section l.XII.

3.2 Proposition. There exists a recursive function h such that

(0 φ

(iί) beO-+\b\<\Rh(b)\.

Proof. Since O e Π } , there is a recursive R such that

beO~(f)(Ex)R(f(x\b).

Define SR(b) as in subsection 5.2.1. Let q be the recursive function of Theorem 3.5.1.

bcO^SR(b)eWF, and

beO-tW^eWF & \b\ = \Wm\.

Consequently the effective disjoint union of SR(b) and Wq(h) will serve as Rh{b). The
effective disjoint union of U and V is W\

(2ιι 1 )^(2iι 2 )«(i ι 1 )l/(ι ι 2 λ

(21?! + l)W(2v2 + l)<^(v1)V(v2). D

3.3 Theorem. There exists a recursive function t with the following properties:

(0 asO v bεθ++t{a,b)sθ;

(ii) asO vbeθ^mm(\a\9\b\)<\t(a,b)\.

Proof L e t / be the recursive function of Lemma 4.3.1. t(a,b) is f(k(h(a), h(b))\
where h and k are the recursive functions of Proposition 3.2. and Lemma 3.1. D
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Theorem 3.3. makes it possible to effectivize Spector's boundedness theorem
(Corollary 5.6.1). (There is a substantially different approach based on the "com-
pleteness" and "creativity" of 0; it avoids the use of t)

3.4. Corollary. There exists a recursive function/such that for all c: ifc is a Σ\-index
of A, then

(ί) A ^O++f(c)eO, and
(ii) A^0^A^0m.

Proof According to Theorem 5.4.1, there is a recursive function h such that

(1) (Ef)(x) ~ T(f(xlc,y,x)~h(c9y)φO

for all c and y. Let t be as in Theorem 3.3. Let k be a recursive function such that

Km = {t(Hc,y),y)\y<ω}

Assume c is a Σj index of A. lίA^ 0, then WHc) c 0. Let/(c) be 29{k{c)\ where g is
the bounding function of Lemma 4.1.1.

Suppose A £ O. Then

and s o ^ ς 0 / ( c ) .
Suppose f(c)eθ. By Lemma 4.1(i) of Chapter I, Wk{c) ^ 0; hence by Theorem

3.3(i),

h(c,y)eθ v ysO

for all y. Then (1) implies A c O. D

Corollary 3.4 yields an effective form of Theorem 2.5.

3.5 Corollary. There exist recursive functions f and g such that for all e:ife is a A\-
index for X, then

f(e)eθ and X = {g{e)}Hrv

Proof The only noneffective step in the proof of Theorem 2.5 is the transition
from a Σ} index for A to a bound b for A. But that can now be managed by
Corollary 3.4. D

3.6 Reduction and Separation. Let Z be a set and F a family of subsets of Z.
Reduction is said to hold for F if for each pair A,BGF, there exists a pair Ao, Bo e F
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such that

(i) Ao c A and Bo c B,
(ii) AonBo = φ9 and

(iii) A o u ΰ o = = AKJB.

The notion of reduction originated in descriptive set theory. In this section it is
proved for Π} sets of numbers, and later for Π} sets of reals (Exercise 9.13.III). It is
easily verified for recursively enumerable sets of numbers. Enumerate A and B
simultaneously. If a number comes up in A that has not come up in B at an earlier
stage, then put it in Ao. If a number comes up in B that has not come up in A at the
same or an earlier stage, then put it in Bo.

Separation is said to hold for F if for each pair C, DsF such that C nD = φ9

there exists a pair Cl9 D1eF such that

(iv) C c d and D c Du and
(v) C,=Z-Όγ.

Cx is said to separate C and D.
Let ~ F be {Λ|Z — AeF). Observe that reduction for (~ F) implies separation

for F. Suppose C, DeF and C n D = 0 . Reduce Z - C to Aθ9 and Z - D to Bo.
Then C c Z - i o , D c Z - β o , a n d Z - ^ o = 5 0 .

3.7 Theorem (Kleene). Suppose A9BeΏ\. Then there exist Aθ9 BoeU{ such that
Ao ^A,Bo^B,AonBo = 0 and AouBo = AKJB.

Proof. By Theorem 5.4.1, there are recursive functions h and j such that for all n,

and

LetnεA0<r+neA & |Λ(w)| < \j(n)\9 and
& \j{ή)\ < \h(n)\.

Lemma 2.1 implies Aθ9 BoeTl\. D

It follows from Theorem 3.7 that any two disjoint Σ} sets can be separated by a
Δ} set. By Corollary 3.5 the separating set is a hyperarithmetic set whose index can
be obtained effectively from the indices of the Σj sets.

3.8-3.10 Exercises

3.8. Extend || from O to ω as in the beginning of Section 3. Show \a\ < \b\ is Π}.

3.9. Suppose AeΣ{, BeTl{ and A c B. Find aA}C such that A c C c £.

3.10. Find two disjoint Π} sets which cannot be separated by a Δj set.
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4. Yi°2 Singletons

Suppose (E1X)P(X). Let A be the unique X that satisfies P(X). A is said to be
implicitly defined by P{X). If the form of P(X) is F9 then A is said to be an F
singleton. Thus Theorem I.6.I asserts that each Σ} singleton is Δj. It is immediate
that every Δj set is a Σ{ singleton. It follows from Corollary 1.4(i) that every
hyperarithmetic set is a Σ} singleton. In this section it will be shown that every H-
set is a Π2 singleton. (Later it will be shown by forcing that some hyperarithmetic
set is not an arithmetic singleton, cf. Exercise 3.18.IV.) It follows that the hierarchy
of i/-sets can be construed as a hierarchy for the Π2 singletons. In order to make
the last assertion more precise, Spector's uniqueness theorem will be proved:

l \ \ \ n a τ b
The next proposition suggests that the Π2 singletons can be generated by

iterating the Turing jump.

4.1 Proposition. If A is a Π2 singleton, then so are A', and any B =TA.

Proof. Let A be the unique solution of (M)(EV).R(M, V9 X) for some recursive R.
Choose e0 so that X = {eo}

x> for all X, and so that {eo}
γ is total for all Y. Then A' is

the unique solution of

(1) (u)(Ev)R(u,v,{eo}
γ)

& (n)[ne Y~(Ez)T({eo}
γ(z)9 (n)0, (n)l9z)l

Formula (1) is Π2 because the predicate ze{eo}
γ is recursive. D

4.2 Theorem.
(f) There exists a Π2 predicate H(a, X) such that

{EγX)H{ayX) & H(a9Ha)

for all a e 0.
(ii) There exists a recursive predicate R(a9 y) such that

)()/φ,/(x)) &

for all aeO.

Proof By effective transfinite recursion on a according to <o. Let Π(e, α, X)
denote (u)(Ev) T(X(v)9 e9 a9 u, υ\ the e-th Π^ predicate. The proof of Proposition 4.1
yields a recursive function h such that: if A is the unique solution of Π(β, m, X\ then
A' is the unique solution of Π(h(e), 2m, X).
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Let j be a recursive function such that for all e and d: H(j(e9 d\ 3 5d, X) is:

(n)ί{e}({d} (n)) is defined - U({e}({d}(ή)), {d}{n\

LQtU(eo,UX)be(ή)(nφX).
There exists a recursive / such that

e0 if α = 1

MWW) if a = 2m

j(e,d) if « = 3 5<

0 otherwise.

Let c be a fixed point of /. Then {/(c)} ^ {c}, and #(α, X) is Π({c}(α), α, X).
Note that {c} is total as in 3.3.1.

To prove (ii) let H(a, X) be (x)(Ev)R1(x, v, a, X) for some recursive Ri. Define
Q(a,x,g,X) by

R^s, g{x\ a, X) & g(x) = μυR^s, v, α, X).

Q is recursive and

H(a,X)~(Eg)lg<τX & (x)β(α, x, g, X)l

The normal form theorem for Σ? predicates implies there is a recursive .R such
that

(2) (χ)K(α,/>))-(x)β(α, x, (/) 0 , (/) x)

& (Oi>iM((AW = 0).

If aeO, then (/) 0 < Γ ( / ) ! and (f)1 is the characteristic function of the unique X
that satisfies H(a, X). D

The Π2 predicate H(a, X) is less mysterious if viewed as follows. The Π}
predicate

(3) aeO & X = Ha

has Ha as a unique solution when aeO. (3) can be arithmetically approximated by
dropping the requirement that a represent a wellordering. Instead a represents a
recursive linear ordering that bears a superficial, arithmetic resemblance to
{<M, t ; > | w < o ι ; < o α } . Thus a might be required to represent an ordering of ω such
that each member of b of the field of the ordering has 2b as its immediate successor
save for the last member which is a. In addition the arithmetic approximation of (3)
would refer to a hierarchy of sets attached to the elements of the field in much the
same way that the /ί-sets are attached to the elements of O.
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It turns out that the content of (3) can be expressed by a Π2 formula save for the
clause that requires the recursive linear ordering represented by a to be a well-
ordering. In short (3) has a Π2 approximation equivalent to (3) when aeO.

From the vantage point of model theory there is another view of Theorem 4.2.
Let M be a nonstandard ω-model of a fragment of mathematics strong enough to
develop the theory of hyperarithmetic sets. (An ω-model is one whose integers are
the same as those of the real world.) Take nonstandard to mean there exist non-
wellfounded, recursive linear orderings which are wellfounded as far as M is
concerned; they belong to M, but none of their infinite descending sequences do. It
follows that the hyperarithmetic hierarchy of M is a proper end extension of its
counterpart in the real world.

Let a be a notation for a constructive ordinal in the sense of M but not in the real
world. Thus a represents a recursive linear ordering whose maximal wellfounded
initial segment is of height ω^ κ . Let H^ be the H-set attached to a by M. a and H^
satisfy every reasonable Π2 approximation of (3).

These matters are discussed further in Section 2.III.

4.3 Corollary. Each H-set is a U2 singleton.

4.4 Corollary. For each aeO, Ha has a A\ definition upward persistent over
{Hb\b<oa}.

Proof. Let H(a, X) be the Π^ formula of Theorem 4.2. Clearly

zeH2b^(EX)lH(b,X) & zeX']

<r+(X)lH(b, X) -+zeX'l and

zeH3.5e~(EX)(Ex)(Eή)tH({e}(nlX) & xeX & z = <x,n>]

~(X)(Ex)(En)l(H({e}(n\X)-+xeX) & z = <*,*>]. D

4.5 Theorem (Spector 1955). There exists a recursive function h(a, b) such that

a9be0 & \a\<\b\^Ha = {h(a,b)}Hb

Proof By effective transfinite recursion on O2 wellordered as follows.
{aub1)<{a29b2)if(

\aί\<\a2\v(\a1\ = \a2\ & \bx\<\b2\).

The definition of the recursive iterater I(e, a9 b) has four cases. h{a, b) will be
{c} (a, b\ where c is a fixed point of /; that is /(c, a, b) ~ {c} (a, b).
Case 1: a=\. I(e, a, b) = cx for some cx such that {cx }

x = H1 = φ for all X.
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Case 2: a = 2m & b = 2n. I(e, a, b) is j({e}(m, ή)\ where j is recursive and

{j(d)}x> * ({d}xy.
Case 3: a = 3-5z. Let r and 5 be recursive functions such that

{e}({z}(nlb)^{s(e,z9b)}(n)9 and

{r(z)}x={(x,n)\xe{{z}(n)}x}.
Then

Case 4: a = 2m & b = 3 5d. Let g be as in Theorem 2.4 and k as in Lemma 1.2. If
m, 3 5de 0, and |2m | < |3 5d\9 then there is an n such that |2m | < \{d}(n)\. Such an n
can be computed from H35d because

(1) OWin)

With the above pair of formulas in mind it is straightforward to find an index c2

such that: if m, 3 5de0 and |2m | < |3 5d\9 then

{c2}
H35d(m, d) is an n such that |2m | < |{d}(n)|.

{c2}
x(m, d) is computed as follows. Let X%n be the result of replacing H3 5 d by X in

the right side of (1). Compute the truth-value of 2meX£n for all n simultaneously.
{c2}

x(m,d) is the first n (if there is any) for which the computation of 2meX$n

terminates affirmatively. Then

where n ~ {c2}
x(m, d).

If (α, b) fails to satisfy any of the above four cases, let I(e, α, b) be 0. D

4.6 Corollary. If a, be O, then

(Spector's uniqueness theorem)

It is tempting to think that Corollary 4.6 remains true when Turing degrees are
replaced by many-one degrees. Moschovakis (1966) has shown that such an
improvement is impossible.

For each δ < ω^ κ, let hδ be the Turing degree of Ha for some a such that \a\ = δ.
Spector's uniqueness theorem implies hδ is well defined. {hδ\δeω^κ} is a hierarchy
for the Turing degrees of the if-sets. Its definition is based on constructive ordinal
notations whose principal function was to clarify the notion of effective union
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needed to define hλ when A is a limit ordinal. Sacks 1971 shows

hλ = M{d"\{δ)δ<λ{hδ<d)}.

It is known that hλ is definable in the partial ordering of Turing degrees with jump.
It is likely that hλ is definable in the Turing degrees without jump. For successful
attempts to define hy for γ > ω^κ, see Jockusch and Simpson 1976.

4.7 Hierarchy of Π^ Singletons. Let Π(e, X) be the e-th Π2 formula, namely
(u)(Έv)T(X(v), e, w, v). The set of Π^ formulas is closed under recursive unions. If r
is a recursive function, then the recursive union of Π(r(e), X)(e > 0) is defined by

(1) (J [Π(r(e), Xy\~(e)U(r(e\ (X)e)
e

The right side of (1) is readily put in standard form Π(e*, X) for some e*
computable from a Gόdel number for r.

The proof of Proposition 4.1 yields a recursive h such that: if A is the unique
solution of Π(e, X), then A' is the unique solution of Π(/ι(e), X).

A hierarchy for the Π2 singletons is defined by iteration of the Turing jump
through the constructive ordinals. Let p be a recursive function that satisfies the
following effective transfinite recursion on 0.

Π(p(3 5«), *)«-> U [Π(p({d}(e)), X)].
e

For each £ < ω^κ, let Π^ be the Turing degree of the unique solution of U(p(a), X)
for some αeO such that \a\ = δ. Hδ is well defined thanks to Corollary 4.6 and the
proof of Theorem 4.2.

{Hδ\δ < ω^κ} is aptly termed a hierarchy for the Turing degrees of the Π2
singletons, since each Πί, singleton is Δ}, hence hyperarithmetic, and consequently
one-one reducible to some Π2 singleton in some Π^. (Recall: X <ίX

f;
X < τ Y^> X' < 1 Y') Thus a cofinal subset of the Π2 singletons are generated by
starting with the null set and closing under Turing jump and recursive union.

4.8-4.10 Exercises

4.8. Let H(a, X) be the Π^ predicate of Theorem 4.2. Find b and Y such that
H(b, Y) holds and every H-set is recursive in Y.

4.9. Suppose A is Δ} definable over Δ} (that is, the function quantifiers range over
the Δ} elements of ωω instead of ωω). Show A is Δ}.
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4.10. (Martin Davis). Suppose a,beθ and \a\ = \b\ < ωω. Show Ha and Hb belong
to the same one-one degree.

5. Hyperarithmetic Reducibility

Let Y be an arbitrary subset of ω. All the results of Part A up to now relativize
easily to Y. The relativization is initiated by replacing the recursive predicates of
subsection 1.2.1 by predicates recursive in Y. Note that P(/, x) is recursive in Γiff
there is a recursive predicate R(X, /, x) such that P{f, x) is R{ Γ, f, x). In short a
typical predicate recursive in Y is obtained by substituting the parameter Y for a
free set variable in some recursive predicate. The process of relativization is
straightforward because the presence of Y tends to have little effect on the proofs
given so far in this book. Y simply goes along for the ride.

The consequences of relativization are not trifling. Results about number-
theoretic predicates are lifted to predicates of reals by regarding the parameter Γas
variable. A surprising aspect of relativization is that some recursive functions do
not become recursive in Y. For example, +oκ is recursive rather than recursive
in Y.

5.1 Predicates Analytical in Y. A predicate is Σ,J (or Π,J or Δ*) in Y if it is the
result of substituting Y for a free set variable in some Σ * (or Π * or Δ*) predicate.
Thus p(X, Y) is Σπ

x in Y (with free variable X) if P(X, Y) is Σj (with free variables
X, Y). A predicate is said to be boldface Σ* (or Π* or ΔJ) if it is Σ* (or Π* or Δj) in
some parameter Y. The collection of boldface Σ * predicates is denoted by Σ*. The
predicates of subsection 1.3.1 are said to be lightface.

5.2 Proposition (Shoenfield). For n > 1, the relation, X is Δ^ in Y, is transitive.

Proof. Suppose A is Δ,} in B, BΔ^ in C, and

nεA<r+ P^n, B\neB<r+ Q((n9 C),

where Po, QoeΣl and Pl9 Q^Uj,. Then

neA^(EY)lP0(n9 Y) & Y=B~\

<->(Ey)[P0(n, Y) & (n)(neY^Q0(n,C))

& ( n ) ( n # r - - β 1 ( n , Q ) ] ,

and so A is ΣM

X in C. Similarly A is Π̂ 1 in C. D

It follow from Proposition 5.2 that "v4Δ^ in B and BAj, in A" is an equivalence
relation. Two sets are said to have the same Δ^ degree if each is Δ^ in the other. The
Δj degrees have been studied extensively. In Chapter IV a minimal Δj degree will
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be constructed, that is a degree greater than 0 with nothing between it and 0. (0 is
the degree of the empty set.)

5.3 Ordinals Constructive in Y. The definition of Oγ differs from that of O only in
the limit case. 3 5 e e O γ iff {e}γ is total and

{e}γ(n)<or{e}γ(n+l)

for all n. \a\γ is the ordinal constructive in Yrepresented by a when aeθγ. ω\ is the
least ordinal not constructive in Y. Oγ is Π\ in Y uniformly: x e 0Y is a Π} predicate
whose free variables are x and Y.

The function u + orv is recursive rather than recursive in Y, because the function
h of subsection 3.3(1).I can be replaced by a recursive function h* such that

{h*(e,a9d)}γ(n)^{e}γ(a,{d}γ(n))
for all Y.

The functions p and q of Theorem 3.5.1 remain recursive, but their meanings
change. Wp(b) becomes Wp\b)9 the p(b)-th set of numbers recursively enumerable
in Y.

The function g of Lemma 4.1.1 remains recursive.
As in Theorem 4.4.1, the ordinals recursive in Y equal those constructive in Y.

5.4 Π} Predicates of Reals. Let P(n) be a number-theoretic predicate Π} in Y. The
relativization of Theorem 5.4.1 provides a recursive function k such that for
alln,

(1) P(n)~k(n)eOγ,

uniformly in Y. k does not depend on Y. It is determined by the Π} predicate
Q(n, Z) (n and Z are free) such that P(n) is β(n, Y).

A normal form for P(ή) is

(2) (f)(Ex)R(Yj(x),ή)

for some recursive R. If the free variable n of (2) is suppressed by being set equal to
0, and if the parameter Y is regarded as a free variable, then (2) becomes a typical
Π} predicate N(Y) whose only free variable ranges over 2ω. According to (1)

(3) N(Y)++k(0)eOγ

for all Y. In this manner relativization to Y lifts the ordinal analysis of Π}
predicates of numbers to Π} predicates of reals.

Every Π} predicate Q(Y) of reals can be put in the form

{e}γ is wellfounded,
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where e is such that {e}γ is total and a binary relation between numbers for all Y.
Suppose Q(Y) is (f)(Ex)R(Yj(x\ 0). Then {e}γ is S£(0), the relativization of SR(0),
from Proposition 5.3.1.

Fix n0 and suppose n0e0Y for all Y. Then n0 can be thought of as defining a
function / from 2ω into co1:f(Y) = \n0\γ. The next result states that / obeys a
sharp bounding principle.

5.5 Lemma. Fix n and suppose neOγfor all Y. Then there exists a recursive ordinal
δ such that

\n\γ<δ
for all Y.

Proof. Suppose not. Then 0 is Σ\:

b e O ~ ( E Ϊ ) ( E Y ) ( x ) ( y ) l x , y e S R ( b ) &x>y

SR is defined as in Proposition 5.3.1 so that for all b, beOiS SR(b) is wellfounded.
|/(x)|y is the height (or rank) of x in SR(b). q is the recursive function of
Theorem 3.5.1. D

It follows from Lemma 5.5 that if P{ Y) is Π} and (Y)P{ Y) holds, then the latter
is "seen" to be true by some recursive ordinal.

5.6 Hyperarithmetic Predicates of Reals. The Hy-sets are defined by recursion
onO y .

H\=Y Hγ

m = (Hγ

my.

X is said to be hyperarithmetic in Y (in symbols X <h Y) if X is recursive in some
Hγ-set. As in Corollary 1.4(ii), X <h Y is a Π} predicate (with X and Y as free
variables). The relativization of Spector's uniqueness theorem (Corollary 4.6) to Y
implies that the Turing degree of Hi depends only on \b\γ. Thus it makes sense to
refer to Yiδ\ the 5-th iterate of the Turing jump of Y, when δ < ω\.

A predicate P( Y) is said to be hyperarithmetic if there exist beO and e such that
for all Y

(1) P( Y) «-> {e}Hl(0) is defined.

<fc, e} is said to be a code for P( Y). The set of all codes for hyperarithmetic
predicates is Π}. Inserting a superscript Y in appropriate places in the proof of
Theorem 1.3 (i) shows

beO & neHγ

b

is Π} (with n and Y free). It follows, as in the proof of Corollary 1.4, that P( Y) is A{.
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Suppose Q{Y) is Δj to show it hyperarithmetic. According to formula 5.4(3),
there exist k0 and kί such that for all Z,

The relativization of Theorem 3.3 to Z implies:

for all Z. Let n be 2 ί(ko'kl).Then

(2)

It follows from the relativization of Theorem 2.4 to Z that for some e,

(3) O * = M " f "

for all Z. The function g oil A remains recursive, rather than becoming recursive in
Z, when 2.4 is relativized to Z. neθ& since neθz for all Z. ( 0 is the empty set.)
There is very little difference between O and O 0 , so n can be regarded as a member
of O (cf. Lemma 7.5). Thus (2) and (3) imply Q{Z) is hyperarithmetic.

5.7-5.12 Exercises

5.7. Clarify the assertion concerning O and 0® made at the end of subsection 5.6.

5.8 Verify that X <h Y is Π}.

5.9. Let P(X) be Σ}. Suppose

(X)[P(X) -• {e}x is total and is a wellfounded relation].

Show there is a <5 < ω^κ such that

(X)lP(X)^\{e}x\<δl

5.10. Suppose P(X9 y) is Π} and

(X)(Ey)lyeOx & P(X,y)l

Show there is a <5 < ω^κ such that

(X)(Ey)lyeOx & \y\x<δ & P(X,y)]

5.11. (Kleene separation). Let A, B ̂  ωω be Σ} and disjoint. Find aΔ}C such that
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5.12. Suppose i g β c ω

ω , AeΣ\ and EeΠ}. Find a Δ}C such that A^C^B.

6. Incomparable Hyperdegrees Via Measure

X and Ybelong to the same hyperdegree if X <h Yand Y <hX. <h is transitive
because "Δ} in" is by Proposition 5.2. Thus the hyperdegrees constitute a partition
of 2ω. The hyperdegree of X is denoted by X. X < YiSX <h Y. 0 , the hyperdegree
of the empty set, is the least hyperdegree. X and Y have a least upper bound, the
hyperdegree of

denoted b y l u K
In this section the existence of two incomparable hyperdegrees is established by a

measure-theoretic argument of extraordinary simplicity. In Chapter IV the same
result will be obtained by a forcing argument analogous to the Kleene-Post
construction of incomparable Turing degrees. The approach via measure is swift
once the measurability of Π{ sets is established.

6.1. Measurable Subsets of 2ω. The subbasic open subsets of 2ω are obtained by
fixing single coordinates.

{X\Xe2ω & meX) and {X\Xe2ω & nφX}

are typical subbasic open sets. A basic open set is a finite intersection of subbasic
sets. The measure μ of a basic open set b is 2~\ where i is the number of coordinates
fixed by b. Thus μ(Z>) = 2"* if

&. . . & rπjeX & mj+1φX &. . . & m

and ml9 m2,. . ., m; are distinct. An open set is a union of basic open sets.
Let J be an arbitrary subset of 2ω. An open cover of J is a family K of basic open

sets such that J ^ u K. Define

= Σ{μ(b)\beK}.

The outer measure of J, denoted by μo(J), is

inf{/(X)|X is an open cover of J}.

μi(J), the inner measure of J, is 1 — μo(2ω — J). J is said to be measurable if
μo(J) = μι{J). If J is measurable, then its measure μ(J) is μ o ( Ό

Every open set is measurable. The family of all measurable sets is a σ-algebra,
that is a Boolean algebra closed under countable unions. The operations of meet,
joint and complementation are the set-theoretic operations of intersection, union
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and complementation, μ is countably additive: if {Ji\i<ω} is a sequence of
pairwise disjoint, measurable sets, then

The proof of countable additivity makes essential use of the countable axiom of
choice. In order to find a suitable open set containing [j J f , it is necessary to

i

choose a suitable open set containing Jt for each ί.
A subset of 2ω is Borel if it belongs to the least σ-algebra containing all the open

sets. It follows that every Borel set is measurable, but not that every measurable set
is Borel. A set is measurable iff it differs from a Borel set by a subset of a Borel set of
measure 0. Thus J is measurable iff there exist Borel sets Bo and B1 such that

(B0-J)v(J-B0)^B1 and μ(Bι) = 0.

Each Borel set can be fabricated from open sets in countably many steps. Let Bo

be the family of all subsets of 2ω that are either open or closed. For each countable
ordinal δ, let Bδ + 1 be the result of adding to Bδ all countable intersections of
elements of Bδ9 and the complements of such intersections. Let Bωι be
u {Bδ I δ < ωί}. Bωi is a σ-algebra containing all the open sets, and clearly the least
such. Hence a set is Borel iff it belongs to Bδ for some countable δ.

Each hyperarithmetic set is Borel since it can be fabricated in δ steps for some
δ < ω£κ. According to Exercise 6.4, the Borel sets are the same as the boldface Δj
sets.

6.2 Lemma (Lusin). Π} subsets oflω are measurable.

Proof. Suppose J ^ 2ω is Π}. As in subsection 5.4 there is an integer k such that

XεJ^keO*

for all X. The measurability of J will follow easily from the measurability of Borel
sets once a countable bound is found on the ordinals represented by elements of Ox

as X ranges over J. First it must be checked that: for each integer j and countable
ordinal δ, the set

(1) {X\jeθx & \j\ = δ}

is Δ} in any Y such that Y is a wellordering of ω of height δ. Let Sx(j) be a linear
ordering of a set of sequence numbers, recursive uniformly in X, such that; e Ox iff
Sx(j) is wellfounded, as in Proposition 5.3.1 relativized to X.Xe(l) iff there is an /
that maps Sx(j) in a one-one, orderpreserving fashion onto Y. Xφ(l) iff there is a
one-one, orderpreserving / that maps one of Sx(j) and Y onto a proper initial
segment of the other.
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Since (1) is boldface Δ}, it is Borel by Exercise 6.4, hence measurable. Since
measure is countably additive, there must be a δ^ such that (1) has measure 0 for all
δ when δ > δ^. (Corollary 1.6.IV: δ^ = ω?κ.) Let

J1 = {X\ke0x & | fc |*<<U.

Clearly J1

<^ J. Since Jί is Borel, it remains only to show that J — J x is contained
in a Borel set of measure 0. Observe that

(2) Xφ-JΛ^iEiftjeO* & |jlx = 5.].

The set of all X that satisfy the right side of (2) is Borel and has measure zero thanks
to the choice of δ^ and the countable additivity of measure. D

6.3 Theorem (Spector 1958). There exist X and Y such that X ζhY and YζhX.

Proof. As noted in subsection 5.6, <h is Π}, hence measurable by Lemma 6.2.
According to Fubini's theorem the measure of {(X, Y)\X <h Y) can be computed
by integrating the measure of {X\X <h Y) along the 7-axis. But {X\X <hY} is
countable, hence of measure 0. So {(X, Y)\X <h Y} has measure 0. In the same
manner {(X, Y)\Y<hX} has measure 0. Thus almost every pair satisfies the
conclusion of the theorem. D

One shortcoming of Spector's proof of Theorem 6.3 is the absence of a concrete
pair of incomparables. In Chapter III Kleene's basis theorem will be applied to the
conclusion of 6.3 to produce a pair of incomparables recursive in 0.

In Chapter IV the measure-theoretic approach will be refined to show ω\ = ωfκ

for almost all Y.

6.4-6.7 Exercises

6.4. (Addison). Show a subset of 2ω is Borel iff it is boldface Δ}.

6.5. (Addison). Call a subset of 2ω analytic if it is the projection of a Borel subset of
2ω x 2ω. Show a subset of 2ω is analytic iff it is boldface Σ\.

6.6. Show every analytic subset of 2ω is measurable. (Gόdel has shown the
consistency of ZFC and the existence of an unmeasurable Δ2 set, if ZF is
consistent.)

6.7. Repeat 6.4-6.6 for ωω.

7. The Hyperjump

The hyperjump of X is Ox. According to subsection 5.3, the graph of the hyper-
jump function is Π}. There is an imperfect analogy between the Turing- and hyper-
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jumps. Each is a completion. For the hyperjump this means: Ox is Π} in X, and
every set Π} in X is many-one reducible to Ox (the relativization of
Theorem 5.4.1). However, the partial ordering of hyperdegrees of Πj sets differs
radically from that of the Turing degrees of recursively enumerable sets.

Iteration of the Turing jump generated the hyperarithmetic sets, which turned
out to be a hierarchy for the Turing degrees of the 11° singletons. Iteration of the
hyperjump generates a hierarchy for some, but not all, of the hyperdegrees of the
Π} singletons. To say a set is generated by the hyperjump is to say it is ^-recursive
in the hyperjump function. E-recursion is defined in part D.

The next proposition implies the hyperjump is well defined for hyperdegrees.

7.1 Proposition. A <hB<-+OA <mOB.

Proof. Assume OA <mOB. Since A, ω — A are Π} in A, they are many-one
reducible to OA by the relativization of Theorem 5.4.1 to A. The transitivity of < m

implies A, ω — A <mOB. Thus A, ω — A are Π} in £, and so A is Δ} in B, hence
hyperarithmetic in B by the relativization of Theorem 2.5 to B.

Assume A <h B. Then A is Δ} in B. Since OΛ is U\ in A, it follows that OA is Π}
in B as in the proof of Proposition 5.2. Therefore 0 A < m OB by the completeness of
OB with respect to sets Π} in B. D

The next lemma implies that every Π} set has the same hyperdegree as the null
set or Kleene's 0. It is the first result to suggest that Π} sets are not analogous to
recursively enumerable sets. Friedberg 1955 and Muchik 1955 independently found
a pair of incomparable Turing degrees of recursively enumerable sets. Kreisel alone
resisted the suggestion, on the grounds that Δ} sets were not analogous to recursive
sets, but bore a relation to Πj sets much like that of finite sets to recursively
enumerable sets. His insight led to the creation of metarecursion theory and a
Friedberg-Muchnik-type theorem for the Π} sets, as detailed in Part B.

7.2 Proposition (Spector 1955). IfX, Yell{ and YφHYP, then X <hY.

Proof. It suffices to show 0 is Δ} in Y. By Theorem 5.4.1 there is a recursive / such
that

If there were a beO such that / [ η g O j , then Y<mOb and ΓeHYP by
Theorem 2.4. Thus / [ Y~\ is unbounded in O. Hence

αeO<->(Ex)[xer & f(x)eθ & / w

αφO~(x)lxeY-+(f(x)eO & αφθf(x))l

It follows from Lemma 2.1 that O is A\ in Y. D

Try for a moment to think of the proof of Proposition 7.2 in terms of generalized
computations. If αe O, then this is seen to be so by a computation of height |/(x)|
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for some x e Y. If a φ 0, then a set of computations makes it so. The supremum of
the heights of computations in the set is at most ω^κ. Thus a e O is decided by a
computation of height at most ω^κ. It would be more just to allow only one
computation of height less than ω^ κ to decide aeO, since the computations that
enumerate O all have height less than ω^κ. Allowing a computation of height ω^κ

in the classification of Π} sets is no more fair than allowing a computation of height
ω in the classification of recursively enumerable sets.

7.3 Theorem (Spector 1955). A <hB -»ωA < ωB.

Proof. Suppose A <hB but ωB < ωA. Fix beOA such that \b\A = ωB with the
intent of showing OB is Σ} in B, an impossibility according to the relativization of
Corollary 5.5.1. It suffices to show OB is Σ} in A, since A is Δ} in B.

When Proposition 3.2 is relativized to B, the function h remains recursive. Thus

xeOB<^>RB

{x) is wellfounded,

x)\,xeOB -+\x\B<\RB

i

where RB is the n-th binary relation recursively enumerable in B. As noted in
subsection 5.3, the function q of Theorem 3.5.1 remains recursive when 3.5 is
relativized. Thus

when aeO. The following formula is Σ\ and equivalent t o x e θ β .
(Ef) [/is an orderpreserving map of Rζ(x) into Wf{b)']. Remember that b was

chosen so that | Wfφ)\ = ωB. D

7.4 Corollary (Spector 1955). X e H Y P - ω ί = ω ? .
The converse of Corollary 7.4 is false. In fact the set of all X such that ω\ = ω? κ

has measure 1, as will be proved in Chapter IV.
The next lemma makes it possible to regard OA as an initial segment of OB when

A is recursive in B.

7.5 Lemma. Suppose A is recursive in B. Then there exists a recursive function f such
that

(0 (χ)(y)ίχ <oAy^f(χ) <o°f{y)\
(U)(x)ίxeOA^\x\A = \f(x)\Bl

Proof Let A = {eo}
B. There is a recursive / such that

1
2{c}(m)

o . ch(c,d)

1

if b = 1

if b = 2m

if b = 3 5

otherwise.
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h is a recursive function such that

{h(c,d)}B(n) ~ <>*

Choose e so that {I(e)} ^ {e}, and let / be {e}. f is total by induction on ω. An
induction on <OA establishes (ii) and the left-to-right direction of (i). The other
direction of (i) requires an induction on <oB- Π

7.6 Theorem (Spector 1955)

(0 0A<hB^ωA<ωB

(ii) ωA <ωB & A<hB-+OA <hB.

Proof
(i) Suppose OA <hB. By Theorem 7.3, ω? < ωB, so it need only be shown that

ωA < ω°A. The proof of Lemma 4.3.1 is unchanged by relativization to Y. Let Y be
OA. <OA is a wellfounded relation recursively enumerable in OA, and so | <oA\ is
an ordinal constructive in OA.

(ii) First consider the special case of A <TB. Let / be the recursive function of
Lemma 7.5. Suppose ωA < ωB. Then there is a ceOB such that ωA = \c\B and

Hence OA <hB, by the relativization of Theorem 2.4 to B. Now suppose ,4 <hB.
Then A <TH

B for some fteθβ. Theorem 7.3 implies

By the special case, OA <hH
B. D

7.7 Corollary. ω^κ < ωf ^ 0 <hX.

7.8-7.10 Exercises

7.8. Suppose P(x, y) is Σ} and {<x, y> | P(x, y)} is a wellordering. Show its ordinal
height is less than ωfκ.

7.9. Suppose A < Λ O . Show OA=hO.

7.10. (Platek). Call an ordinal yΠ\ if there is a Π} binary relation P(x, y) such that
P(x, y) is wellfounded and γ = \P(x, y)\. Show that ω? is the least non-Πj
ordinal.




