
2. Constructing Models with Special
Properties

Much of the richness of model theory is attributable to the weakness of first-
order logic. In the last chapter it was proved that a first-order theory cannot
express, for example, that every model has cardinality ttO In fact, by the
Lόwenheim-Skolem Theorems an elementary class (in a countable language)
containing an infinite model contains models in every infinite cardinality.
Thus, a basic property expressible in first-order logic and true in an infinite
model is true in a great variety of models. Besides the Lδwenheim-Skolem
Theorems, the Omitting Types Theorem is an example of such a result. Given
a nonisolated type p in a countable theory there is a countable model M
realizing p and a countable model λί omitting p. The theme of this chapter
is to continue this program of constructing models of a given theory with
widely varying properties. In the first two sections we define several kinds
of models (of complete theories having infinite models) distinguished by the
elementary embeddings they admit and the types they realize or omit.

2.1 Prime and Atomic Models

The first special kind of model to be considered is one which is, intuitively,
the "smallest" model of the theory.

Definition 2.1.1. Given a theory T, we call M \=T a prime model ofT if,
for any N \=T, M can be elementarily embedded into λί.

For example, if T is the theory of algebraically closed fields of charac-
teristic 0, the algebraic closure of the rationals, Q, forms a prime model of
T. (Since T has quantifier elimination, any model of T contains a copy of Q
as an elementary submodel.) While the definition of a prime model makes
sense for any theory only a complete theory can have a prime model (see
the exercises). We will see, moreover, that the uniqueness of prime models
and a useful condition sufficient for their existence can only be proved for
countable complete theories. As a first observation, if M is a prime model
of the countable theory T and p e 5n(0) is realized in M then p must be
isolated. (Suppose to the contrary that p is nonisolated and realized in Λ4 by
the n—tuple a. By the Omitting Types Theorem, T has a countable model
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λί omitting p. Since M is prime there is an elementary embedding f of M
into ΛΛ The type of any tuple b in M is the same as the type of f(b) in λί
(since / is elementary) hence, the type of f(a) in λί is p, contradicting the
fact that λί omits p.) This observation suggests the following definition.

Definition 2.1,2. Let T be a complete theory. Given a model M ofT,Ac
M is called atomic if for each tuple a from A, tpM{o) is isolated. We call M
an atomic model if M is an atomic set.

It was proved above that a prime model of a countable theory is neces-
sarily atomic. That a countable atomic model is a prime model of its the-
ory and elementarily equivalent countable atomic models are isomorphic are
proved in the next proposition. If M and λί are models and A C M, a
function / : A —• N is called an elementary map if for all αo,..., αn G A,
tPM(ao,..., αn) = tpjsf(f(ao),..., /(αn)) (An elementary embedding is sim-
ply an elementary map whose domain is a model.)

Proposition 2.1.1. Let T be a countable complete theory.
(i) A countable model λΛofT is prime if and only if λΛ is atomic,
(ii) If λΛ and λί are both countable atomic models of T, then λΛ = λί.

Proof. If T has a finite model then all models of T are isomorphic (by Ex-
ercise 1.1.11) and every complete type is isolated, making both (i) and (ii)
trivially true. Thus, we can assume T to have only infinite models.

(i) It only remains to show that a countable atomic model λΛ is prime.
Let λί be an arbitrary model of T and { α* : i < ω } an enumeration of M.

Claim. There is a sequence {bi : i < ω} C N such that for each i < ω,

The elements bi are found by recursion on i. Suppose that &o? ?&z-i
with the desired property have been selected and let φ(υo,... ,Vi) be a for-
mula which isolates p = the type of (ao,...,a;) in λΛ. When i = 0 the
completeness of T yields a bo e N such that λί \= φ(bo). In general the
existence of a bi £ N such that λί f= φ(bo,..., bi) is guaranteed by the in-
ductive hypothesis: tpM^o^ > CL%-I) = tpλί(bo, - - -, &i-i). Being complete,
the theory T expresses the fact that φ isolates a complete type; i.e., for any
formula ψ € p, Γ (= Vϋ(φ(v) —• ψ(v)). Thus, for all formulas t/^o, . . . , Vi),
M \= ̂ (ao> j CL%) <=> λί \= ψ(bo,..., bi), proving the claim.

Let / be the map from M into N defined by: /(a») = 6f, for each i < ω.
The reader can verify that / is an elementary map of M onto {bi : i < ω}
and { bi : i < ω } is the universe of an elementary submodel of λί. This proves
that M is a prime model of T.

(ii) The manner in which the isomorphism between M and λί is con-
structed is similar to the construction of the embedding in (i). Simply by
quoting (i) we know that M can be elementarily embedded in Λ/", and vice-
versa. The construction needs to be altered slightly to obtain an elementary
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embedding of Λ4 into λί which is surjective. This is our first example of
a back and forth construction of a map. This frequently used technique is
a generalization of the standard uniqueness proof of countable dense linear
orderings without endpoints (see the Historical Notes).

Well-order the universes M and N with order type ω. Let αo be the first
element of M and φ(vo) the formula which isolates the type of αo in M. As Λί
is also a model of T there is a 60 satisfying φ(x) in ΛΛ Now, let 61 be the first
element of N \ {bo} and find an a\ G M such that tpM(a>o, «i) = tptf(bo, &i),
as in the proof of (i). Let α2 be the first element of M \ {αo,αi} and find
62 € AT with tpM(θΌ, OΊ > ^2) = tptf(bo, &i,62) . Going back and forth ω times
gives enumerations { α* : i < ω } and { bi : i < ω } of M and A/", respectively,
such that for each n, ίp.M(αo> > &n) = tPλί(bo,..., 6n) The map taking aι
to &i (for i < ω) then defines an isomorphism from M onto Λί.

One question we need answered is: Does every complete theory have a
prime model, or can we find a meaningful characterization of those which
do? The previous proposition reduces the problem of finding a prime model
of a countable complete theory to showing that an atomic model exists. The
next example shows is not always possible.

Example 2.1.1. (A countable complete theory with no atomic model) Let
L = {Pi : i < ω}, where each Pi is a unary relation symbol. Let X be the
set of finite sequences of O's and l's. Each s G X is viewed as a function
from {0, ...,ra} (for some m) into {0,1}, and the length of s = lh(s) is
defined to be m + 1. The theory T will be defined so that for any model
M of T and s G X, the intersection of the family of sets {Pi(M) : s(i) =
0} U { M \ Pi(M) : s(i) = 1} is nonempty. Let Ff (υ) denote the formula
Pi(υ), and Pl(v) the formula -^(v) . For s G X let <£s(v) be the formula
/\i<ih(s)pϊ{ί)(v)> σs = 3vφs(υ) and T = {σs : 5 £ X}. The reader can
verify that T is a complete quantifier-eliminable theory. Thus, if M \= T and
a G M, the type of α in M is implied by {Pf(v) : M \= P/(α), i < ω,
and jf = 0, 1}. We claim that every complete 1—type in T is nonisolated.
If, to the contrary, p is an isolated 1—type, then by the characterization of
types just mentioned p is isolated by some φs G p. However, if j = lh(s),
both 3υ(φs(v)ΛPj(υ)) and 3υ(φs(υ) A~^Pj(v)) are in T, proving that φs does
not isolate a complete type in T. Since T has no isolated 1—types over 0, no
model of T can be atomic.

A more mathematically common example of a theory without a prime
model is the theory of the model (Z,+), although this property is more
difficult to verify for T/ι(Z, +) than the theory in the example. A complete
description of the countable models of this theory is found in [BBGK73].

For a theory to have an atomic model it must satisfy the next condition,
which we will also show is sufficient for countable theories in the subsequent
proposition.
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Definition 2.1.3. For T a complete theory we say that the isolated types of
T are dense if every formula φ inn variables consistent with T is contained
in an isolated complete n—type over 0.

Such theories are called atomic in [CK73]. Our terminology is a literal descrip-
tion of the topological property which holds for such theories: The isolated
types of T are dense when every basic open set in the topology on 5n(0)
contains an isolated point, for each n.

Proposition 2.1.2. Let T be a countable complete theory. Then, T has a
countable atomic model if and only if the isolated types of T are dense.

Proof. For the left-to-right direction let M |= T be atomic, φ a formula
consistent with T and a a tuple from M satisfying φ. Then tpM(&) is an
isolated type extending φ. (Note that this easy direction of the proposition
does not require the theory or the atomic model to be countable.)

Now suppose that the isolated types of T are dense. For n < ω let Γn =
{ -*ψ(υo,..., υn~ι) : ψ{vo,..., fn-i) isolates a complete n—types in T }. If
φ is a formula in n variables consistent with T, there is a formula φ which
isolates a complete type in T such that φΛψ is consistent with Γ, hence Γn is
nonisolated. By Corollary 1.1.2 (the Extended Omitting Types Theorem) T
has a countable model M omitting each Γn. Then each tuple in M satisfies
a formula isolating a complete type in T; i.e., M is atomic.

The next obvious question is: For which theories are the isolated types of
T dense? The isolated types are dense for the theory of dense linear orders
without endpoints and algebraically closed fields of a fixed characteristic, but
not for the theory in Example 2.1.1. As these examples suggest, there is some
connection between the density of the isolated types, and the size of 5(0).
Specifically, we prove

Lemma 2.1.1. If T is a complete theory with |5(0)| < 2K° then the isolated
types ofT are dense.

Proof. This lemma is a special case of a stronger result (Proposition 2.2.6)
proved in the next section using Cantor-Bendixson rank. A different proof is
included here to improve our picture of atomic models.

Assume that the isolated types of T are not dense. Then there is some n
for which { φ : φ is a formula in n variables which is consistent with T and not
contained in an isolated type} = Φ is nonempty. The fact that any formula
in n variables which implies an element of Φ is also in Φ is used to construct
continuum many complete types with the following recursion. Let X be the
set of finite sequences of O's and l's and let φ$ be any formula in Φ. Assuming
that s e X and φs £ Φ has been defined (for s e X) choose a formula ψ such
that φs Λ φ = φs~o and φs Λ -*φ = </vi are consistent with T. Since φs~0 and
φs~ι are both in Φ the recursion can continue. Let Y be the set of sequences
of O's and l's of length ω, and for / G Y let pf = { φs : s is an initial segment
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of / }. By construction, each pf is consistent and / φ g eY = > pf \jpg is
inconsistent. Extending each pf to a complete type shows that |5(0)| = 2K°,
completing the proof of the lemma.

Thus, for a countable complete theory, having fewer than continuum many
complete types is sufficient to guarantee the existence of a prime model. To see
that this condition is not necessary consider, for example, the theory T of the
model (Z, +, 1), where we have added to the cyclic group mentioned earlier a
constant symbol for the generator. The reader will show in the exercises that
|5i(0)| = 2^°. However, since every element of the model (Z, +, 1) interprets
a term of the language, it is an elementary submodel of any model of Γ;
i.e., (Z, +,1) is the prime model. This example exhibits a cheap way to find
theories with prime models: Given an arbitrary model M let M! = MM-
Then T = Th(Mf) has M! as its prime model. A slightly more general result
can be obtained vis-a-vis the following notion.

Definition 2.1.4. Let T be a theory.
(i) A formula φ(v) is called algebraic in T if φ is consistent with T and

for all M \= T, φ{M) is finite.
(ii) A type is called algebraic in T if it implies an algebraic formula.

Remark 2.1.1. (i) For T a complete theory the algebraicity of φ can be tested
with any model since if φ defines a finite set in one model then it defines a
finite set in every model.

(ii) An algebraic formula is contained in only finitely many complete types
in T, each of which is isolated (and algebraic).

(iii) The reader should be cautioned that a theory T may have a model
M. and a complete type p such that p(ΛΛ) is finite, but p is not algebraic (see
the exercises).

(iv) A model realizing only algebraic types is atomic, in fact such a model
is prime regardless of the cardinality of the language (see the exercises).

Following our conventions for working with parameters, if M is a model
and A C M, Λ4 is called a prime model over A if M. A is a prime model of
TJI(MA) Referring strictly to models of T, M is prime over A if whenever
Λf = M and / : A —• N is an elementary map, there is an elementary em-
bedding of M into λί extending f.lϊT = Th{M) is countable and has fewer
than continuum many complete types and A C M is finite then TH(MA)

also has fewer than continuum many complete types (see Exercise 2.2.3 and
Lemma 2.2.4). Thus, a countable theory with fewer than continuum many
complete types has a prime model over any finite subset of a model. There
are few positive results concerning prime and atomic models which hold on
the set of all countable theories. For instance, a countable theory may have
a prime model over the empty set but not over some other finite set, and
vice-versa (as we saw with T7ι(Z, +) which does not have a prime model, but
does have a prime model over 1).
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For uncountable theories the existence and uniqueness of prime and
atomic models are all more complicated. The density of the isolated types
does not, in general, guarantee the existence of an atomic model. (Remem-
ber that our proof in the countable case used the Omitting Types Theorem.)
Harrington showed (unpublished) that a prime model of a theory need not be
atomic (see Example 5.5.1), and there may be nonisomorphic prime models
of a theory. Many of these issues are discussed in [Kni78]. We will see that
within the stable theories sharper results are often possible (see Section 5.5).

A model M is minimal ifλί^M = > λί = M. In many of the examples
given above the prime model of a theory is also minimal. For example, ΛΊ is
minimal and prime if it realizes only algebraic types (Exercise 2.1.8). To find
a prime model which is not minimal we need look no further than (Q, <).
It is easy to see that if a complete theory has a minimal model and a prime
model then they must be isomorphic, however it is possible for a theory to
have a minimal model which is not prime; in fact, T7ι(Z, +) has continuum
many nonisomorphic minimal models (see [BBGK73]).

Historical Notes. The notions of prime and atomic models and the basic
properties proved here are due to Vaught [Vauβl]. Cantor proved the unique-
ness of dense linear orders without endpoints in [Can95], but back-and-forth
arguments were first isolated by Huntington in [HunO4] (as pointed out by
Jack Plotkin).

Exercise 2.1.1. Show that a theory with a prime model is complete.

Exercise 2.1.2. Let T be a complete theory and φ a formula in n variables
which is contained in only finitely many complete n—types of T. Show that
every complete n—type containing φ is isolated.

Exercise 2.1.3. Suppose that a and b are sequences from a model M which
have the same complete type in λί and φ(υ, a) isolates a complete type over
a (where φ(υ,x) is a formula over 0). Show that φ(υ,b) isolates a complete
type over b.

Exercise 2.1.4. Let a and b be finite sequences from the universe of the
model λί. Prove that tpM(ΰb) is isolated if and only if ίpχ(ά/6) and tpMΦ)
are both isolated. Using this fact show that when λί is an atomic model and
α is a finite sequence from M, then λί is atomic over α. Conversely, if λί is
atomic over α and tpM(p) is isolated, then M is atomic.

Exercise 2.1.5. Show that the complete type realized by 1 in (Z, +) is non-
isolated. (HINT: Use the preceding exercise).

Exercise 2.1.6. Show that ΓΛ(Z, +) has continuum many complete 1-types
over 0.
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Exercise 2.1.7. The definition of an algebraic type is that it implies an
algebraic formula, not that it has finitely many realizations in some model.
Give an example of a model Λ4 containing an element a which is the only
realization of tpM{o) in M, although this type is not even isolated. (HINT:
There is an example in the language with infinitely many constant symbols.)

Exercise 2.1.8. Let M be a model such that the type in M of each tuple
from M is algebraic. Prove that M is a prime and minimal model of its
theory.

2.2 Saturated and Homogeneous Models

Prime and atomic models are intuitively "small" models of a theory; they are
embedded in every model and realize a restricted set of types. In this section
we consider "large" models; i.e., those which realize many types and have
many models as elementary submodels. Before discussing these properties in
full generality we consider their restrictions to the class of countable models,
where the results are easier to understand and prove.

Definition 2.2.1. Let T be a countable complete theory and M. a countable
model.

(i) M is saturated if for all finite A C M, M. realizes every element of
Si(A).

(ii) M. is homogeneous if for all finite A C M, a € M and elementary
maps f : A —• M, there is an elementary map g : AU {a} —• M extending
/ .

(in) M is universal if every countable model of T can be elementarily
embedded into M.

The reader can verify that, in fact, if the countable model M is saturated
then for all finite A C M, M realizes every type in S(A) (see Exercise 2.2.7).

Example 2.2.1. (Theories having a saturated countable model)
(i) Let T be the theory in the empty language expressing that the universe

is infinite. Then T has a unique countable model (up to isomorphism) and
this model is saturated. Similarly, the theory X" of dense linear orders without
endpoints has a unique countable model which is also saturated.

(ii) In the language having constant symbols Q, i < ω, let T = { Q φ
Cj : i < j < ω }. A saturated countable model (if one exists) must realize
the n-type pn — {vi φ Vj : i < j < n} U {v< φ Cj : i < n, j < ω}, which
expresses that t>o,... ,i>n-i are distinct elements, none of which interprets
a constant. Thus, a saturated countable model must contain infinitely many
elements which do not interpret a constant. Using the quantifier-eliminability
of the theory the reader can see that the countable model which contains
infinitely many nonconstants is indeed saturated.
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(iii) Let T be the theory in the language with unary relations Po? -PL>
and constants Qj, i,j < ω, axiomatized by the statements: -^3x(Pi(x) Λ
Pj(x)) for i φ j ; Pi(cij) for ij < ω; and c^ φ cik for j < k. This theory is
complete and has elimination of quantifiers. For each i there is an n—type say-
ing that vo,..., vn-\ are distinct elements satisfying Pi and none of the v^s
interpret a constant. There is also an n—type expressing that ^o,.. . , vn-i are
distinct elements not satisfying any of the P^s. Thus, for M to be a countable
saturated model it must at least have the properties that each Pi(M) has
infinitely many nonconstant elements and there are infinitely many elements
of M not satisfying any Pi. Using the elimination of quantifiers the reader
can verify that, in fact, any countable model satisfying these conditions is
saturated.

(iv) Let T be the theory of algebraically closed fields of characteristic 0.
For each n there is an n—type expressing that VQ, . . . , Vn-i are algebraically
independent transcendental elements. So, for a model to have any hope of
being saturated it must have infinite transcendence degree over the rationals.
The quantifier-eliminability of the theory implies that every complete type is
determined by the equations and inequalities it contains. Using this we see
that a countable model with transcendence degree No over the rationals is
saturated.

As a first result we offer

Lemma 2.2.1. A saturated countable model Λ4 is homogeneous.

Proof. Let a = (αχ,...,αn) be a tuple from M, / : α —• M an elemen-
tary map, (/(αi),... ,/(αn)) = (&χ,...,i>n) = b and c an element of M.
Enumerate q = tpM(c, «i, ,Q>n) as {ψj(v, υi,..., vn) : j < ω } and let
P — {ψj(υibi,... ,bn) : j < ω}. Since α and b realize the same complete
type over 0, p is a complete 1—type over 6. There is a d G M realizing p since
M is saturated. Then (d, 6χ,... ,bn) realizes ς, equivalently, the map from
(c, α 1 ? . . . , on) to (d, 6χ,..., bn) which extends / and takes c to d is elemen-
tary. This proves that M is homogeneous.

(Later it is proved in the context of potentially uncountable models that a
model is saturated if and only if it is homogeneous and universal.)

We turn now to question: When does a countable complete theory have
a saturated countable model?

Definition 2.2.2. A countable complete theory is called small if 5(0) is
countable.

Remark 2.2.1. A countable model can only realize countably many complete
types, hence only a small theory can have a countable saturated model.

In fact, we will show that smallness is sufficient for the existence of a
saturated countable model. The proof of this fact requires a new concept.
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Following, is a natural way to construct the saturated countable alge-
braically closed field of characteristic 0. Let ΛΊo = Q, the algebraic num-
bers. Let αo be a transcendental element and ΛΊi the algebraic closure of
Mo U {αo} Let a\ be an element transcendental over M\ and M<ι the al-
gebraic closure of M\ U {αi}. Continuing in this manner results in a chain
Mo C ... C Mi C . . . , for i < ω, of algebraically closed fields whose union
has transcendence degree No (and hence is a saturated countable model).
Our general construction of saturated countable models (and, subsequently,
models with other properties) will use a generalization of this notion of the
union of a chain of fields.

Definition 2.2.3. A chain of models is an increasing sequence of models

Mo C Mi C ... C Mβ C . . . , β < α,

whose length is an ordinal a.
The union of the chain is the model M = [jβ<a Mβ defined as follows:

- The universe of M is M = \Jβ<a Mβ.
- If R is a relation or function symbol then the interpretation of R on M is

{Jβ<aR
Me,and

- for c a constant symbol, cM = cMβ for any (all) β < a.

Remark 2.2.2. The union of the chain { Mβ : β < a } is the minimal model
λί such that Mβ C λί, for all β < a.

An important special case is obtained by replacing the submodel relation
by the elementary submodel relation.

Definition 2.2.4. An elementary chain of models is an increasing sequence
of models

Mo -< Mi -<...< Mβ -<..., β < a,

whose length is an ordinal a.

Lemma 2.2.2. Let Mβ, β < a, be an elementary chain of models and M =
[Jβ<a Mβ. Then Mβ -< ΛΊ, for all β < a, and M is the minimal such model
in the sense that whenever Mβ -< λί, for all β < α, M -< λί.

Proof. We prove by induction on formulas:

for all φ(vι,..., υn), all β < a and all ax,..., an £ Mβ,

Mβ \= φ{μι,..., an) 4=> M H φ(ai,..., an).

This is clear when φ is atomic since Mβ C ΛΊ. The only case in the induction
requiring any work is φ = 3vψ(υ, Vι,..., vn). Suppose that α i , . . . , αn E Mβ
and Mβ \= φ(au... ,α n ). Then there is a b e Mβ such that Mβ f=

i , . . . , α n ) , hence M f= ^ ( M i , . . . , α n ) a n d -^ H <£(αi> >αn) (by
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induction). On the other hand, suppose that M \= φ(aι,... , α n ) . Then,
for some 7 > β and b G M 7 , Λ4 |= ̂ ( M i j >αn). By induction, MΊ f=
ψ(b,aι,... , α n ) , hence ΛΊ 7 (= 3v^( ι ; ,αi , . . . ,o n ) . Because Λ4/3 -< Λ47,
ΛΊ/3 |= < (̂αi> 5 α n) Thus, Λ4/3 -<: M for all β < a.

That Λ4 is the minimal such extension of the Mβ's is left as an exercise.

Returning to the study of saturated countable models we prove:

Proposition 2.2.1. A countable complete theory T has a saturated countable
model if and only if it is small.

Proof. If T has a saturated countable model M then |5(0)| = No, since
each complete type over the empty set is realized by one of the countably
many finite tuples from M. Now assume T to be small. The converse will be
established by constructing a saturated countable model as the union of an
elementary chain of length ω defined as follows. Let ΛΛQ be any countable
model of T, i < ω, and suppose ΛΛi has been defined. Since T is small, for any
M\=T and finite Ac M, \Sι(A)\ < No (see Exercise 2.2.3). Thus, there is a
countable elementary extension ΛΊi+i of Λίi such that for all finite A C Mi,
every element of Sι(A) is realized in Mi+i. The union M = Uz<u; -M* is the
desired countable saturated model.

The saturated countable model, when it exists, is unique:

Proposition 2.2.2. Elementarily equivalent saturated countable models are
isomorphic.

Proof. The proof of this result is similar to the uniqueness proof for count-
able atomic models (Proposition 2.1.1(ii)). In fact, these two propositions are
special cases of the same result about homogeneous models (Corollary 2.2.2).

Let λΛ and λί be saturated countable models of the same complete theory.
Well-order the universes M and N with order type ω. Letting αo be the
first element of M there is (by the saturation of λί) a 60 £ N such that
tpM(ao) = tpj\f(bo). Now let b\ be the first element of N \ {bo} and find an
ai £ M such that tpM(ao,a>i) = tptf{bo,bi) (see the proof of Lemma 2.2.1
for a similar use of saturation). Let a<ι be the first element of M \ {αo,αχ}
and find 62 € N such that tpM (^0^1,^2) = fywi&cb&i^)- Going back and
forth ω times we find enumerations { α̂  : i < ω } and { bi : i < ω } of M and
N, respectively, such that for each n, tpM(ao, > fln) = tp/sf(bo, , bn). The
map taking α* to bi (for i < ω) then defines an isomorphism from M onto
ΛΛ

Homogeneity can be viewed as trading some of the strengths of saturation
for less stringent requirements for the existence of models with the property
(as the next lemma illustrates).

Proposition 2.2.3. A countable complete theory has a homogeneous count-
able model.
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Proof. A homogeneous countable model M is constructed as the union of
an elementary chain of models Mu i < ω, defined as follows. Let Mo be
any countable model. Assuming Mi to be defined let Mi+\ be a countable
elementary extension of Mi such that

if a and b are finite sequences from Mi realizing the same complete
type in Mi, then for all c G Mi there is a d G M^+i such that
tpMifac) = tpMi+1(b,d).

(A countable such Mi+ι exists because there are countably many finite se-
quences from Mi.) The reader can verify that the model M = \Ji<ω Mi is a
homogeneous countable model of T.

Saturation is only achieved when a countable model realizes all types
over finite subsets, however homogeneity can occur when enough types are
omitted:

Proposition 2.2.4. A countable atomic model M is homogeneous.

Proof. Suppose that a and b are finite sequences realizing the same complete
types in M, and c G M. Let φ{yx) G tpM(a>c) = Q be a formula isolating q.
Since b and α realize the same complete type in M, there is a d G M such that
.Λ/f (= φ(bd). Since the formula y? isolates a complete type tpM^c) — tpM(pd),
proving the homogeneity of M.

Homogeneous countable models of the same complete theory are not nec-
essarily isomorphic, indeed, many of the above examples have a countable
saturated model and a prime model which are not isomorphic. There is, how-
ever, a relative uniqueness result:

Proposition 2.2.5. If M and Λί are countable homogeneous models in the
same language which realize the same elements of 5(0), then M =λf.

This proposition is a special case of Corollary 2.2.2, to be proved later, so
we omit the proof for the sake of brevity. We recommend, however, that the
reader construct an independent proof by adapting the argument used in
Proposition 2.2.2.

Let T be a countable complete theory. We proved that T has a countable
atomic model when |5(0)| < 2**° and T has a countable saturated model when
5(0) is countable. It is natural to ask if there is a countable complete theory
with 15(0)I strictly between No and 2K° (in some model of set theory). The
Cantor-Bendixson Theorem from point-set topology quickly gives a negative
answer: 5n(0) is countable or has cardinality 2K°. We will reproduce the proof
of this theorem in the terminology of formulas and types, rather than open
sets and points, not just for the sake of completeness but also to introduce
Cantor-Bendixson rank which will have further applications. (Recall from
Section 1.1 the definition of p implies φ, denoted p \= φ, where p is a type
and φ is a formula.)
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Definition 2.2.5. Let T be a complete theory. The relation CB(φ) = α, for
φ a formula in n variables and a an ordinal or —1 is defined by the following
recursion.

(1) CB(φ) = —1 if φ is inconsistent;
(2) LetΨa = {ψ: CB(<ψ) = β for some β < a}.
CB(φ) = a if {p e Sn(0) : φ G p and -*ψ € p for all ψ e Ψa} is
nonempty and finite.

For p any n—type, CB(p) is defined to be

mf{CB(φ) : ψ a formula implied by p}.

(For complete types CB(p) is then inf {CB(ψ) : φ ep}.) When CB(p) =
a we say that the Cantor-Bendixson rank of p is a. If there is no a with
CB(p) = a we write CB(p) = oo and say that the Cantor-Bendixson rank of
p does not exist.

Extend the scope of < so that — 1 < a < oo for all ordinals a. Then,
CB(p) > a is a quick way to express that CB(p) Φ β for all β < a. Using
these conventions (2) in the definition can be restated as: CB(φ) = a if
{p G 5n(0) : φ G p and CB(p) > a} is finite and nonempty. The term
Cantor-Bendixson rank is usually shortened to CB-rank. It is clear from the
definition that the CB relation defines a function.

The theme in the next basic lemma is the relationship between the CB-
ranks of types and the CB-ranks of formulas implied by these types.

Lemma 2.2.3. Let T be a complete theory, p an n—type and a an ordinal.
(i) If p is complete then CB(p) = 0 if and only if p is isolated.
(ii) CB(p) = a if and only if there is a formula φ implied by p such that

{q G 5n(0) : φ G q and CB(q) = a} is finite and nonempty. Moreover,
when CB(p) = a we can find a φ implied by φ such that { ς G 5n(0) : φ G
q and CB{q) = a} = {qe 5n(0) p C g a n d CB{q) = a}.

(Hi) If CB(p) = a there is a q G 5n(0) such that q D p and CB(q) = a.
(iv) If p is complete and CB(p) = a there is a φ G p such that p is the

only element of {q G 5n(0) : φ G q and CB(q) > a}.
(v) CB(p) > a if and only if, for all β < a and all φ implied by p,

{ q G 5n(0) : φ G q and CB(q) > β} is infinite.
(vi)

CB(φ) is the least ordinal a such that (2.1)

{p G 5n(0) : φ G p and CB(jρ) > a } is finite.

Proof, (i) If p is isolated by the formula φ then CB{φ) = 0, hence CB(p) =
0. Assuming, conversely, that p has CB-rank 0, there is a φ G p which is
contained in only finitely many complete types, say qo,...,qk, with qo = p.
Let φ be a formula in p implying φ and not in any of </i,..., φ~. Then ψ
isolates p. (In fact, every completion of φ is isolated.)
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(ii) Let Φ be the set of formulas implied by p which have CB-rank a
and Θ = {-># : θ is a formula in n variables with CB(Θ) < a}. Then
Φ € Φ => X<ψ = { q G Sn(0) : φ £ q and <? D β } is finite and nonempty.
Furthermore, if φ, φ' G Φ and φ implies φ', Xψ C Xψ. Thus, there is a ψ G Φ
such that Xφ = Xψ for all φ G Φ which imply φ. Since p is implied by Φ each
element of Xφ contains p; i.e., Xφ = {q G 5n(0) : p C qr and CB(ςf) = α}.
Since JΓ^ is finite and nonempty the proof of this part is complete.

(iii) This is just a repeat of part of (ii) but having an explicit reference is
helpful.

(iv) This follows immediately from (ii). The details are left to the reader
in Exercise 2.2.1.

(v) (<=) First notice that CB(p) > a if and only if

for all φ implied by p, { q G 5n(0) : φ G q and CB{q) > a } is nonempty,

which in turn is equivalent to

for all φ implied by p, {φ} U{-*ψ : CB(ψ) < a} is consistent.

Suppose that φ is implied by p and {φ} U { ->ψ : CB(φ) < a } is inconsistent.
This inconsistency yields formulas ψo,..., φn of CB-rank < a such that any
complete type over 0 containing φ also contains one of the ^ ' s . Since each
of the φi& has CB-rank < α, β = max {CB(φ0),..., CB(φn)} is also < a.
For each i < n, X< = {q G 5n(0) : Vi € g and CS(ςf) > β} is finite (simply
because CB(φi) < /?), hence Xo U ... U Xn = {q G 5n(0) : φ G g and
CB{q) > β} is finite. Since β < a the right-hand-side of (v) fails, proving
this direction.

(=>) Suppose the right-hand-side of (v) to fail; i.e., there is a β < a and
a y? implied by p such that X = {q G 5n(0) : φ G # and CB(q) > β} is
finite. If X is empty then CB(φ) < β (by (ii)), while if it is nonempty the
definition of CB-rank yields CB(φ) = β. We conclude that CB(φ), hence
CB(p) is not > α, completing the proof.

(vi) This follows immediately from (v).

Occasionally, (2.1) is used as the definition of Cantor-Bendixson rank.
Our definition is handy for proving properties of CB-rank, however (2.1) can
be helpful in understanding CB-rank in particular examples (such as the ones
given below).

When p is a complete type of CB-rank a and φ G p is such that p is the
only completion of φ of CB-rank > a (see Lemma 2.2.3(iv)) we say that "φ
isolates p relative to the types of CB-rank > α."

Before applying Cantor-Bendixson rank to the problem of determining
the possible cardinalities of 5(0) we give some illustrative examples.

Example 2.2.2. Let L\ = {E1}, where E is a binary relation. The theory T\
in L\ expressing that E is an equivalence relation with two classes, each
infinite, is quantifier-eliminable. Let M be a model of XΊ and T =
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(So, by our conventions on parameters 5(0) in T is the same as S(M) in T\.)
What does 5i(0) in T look like? The isolated elements of SΊ(0), hence the
elements of CB-rank 0, are exactly those containing x — a for some a G M.
Let p be a complete 1—type containing {x φ b : b G M}. In any model of
T the only E—classes are the two classes represented in M, so E(x, a) G p
for some a G M. If 6 G M, then £•(#, 6) G p if and only if M \= E(a, b). By
the quantifier-eliminability of T, p is the only element of 5i(0) containing
{E(x, a)}U{xφb: beM} = {E(x, a)} U {-τφ(x) : CB(<ψ(x)) = 0 }, hence
C5(E(x,o)) = CB(p) = 1 (by (2.1)). Summarizing, SΊ(0) contains infinitely
many isolated types and two types of CB-rank 1. (Notice that even though
there is not a unique complete type of CB-rank > 1, CB(x = x) = 1.)

Example 2.2.3. In the same language L\ let T<ι be the theory saying that E
is an equivalence relation with infinitely many infinite classes and no finite
classes. Let M be a model of T2, T = TH(MM) and notice that T is also
quantifier-eliminable. As in the previous example an element of SΊ (0) is iso-
lated if and only if it contains x = b for some b G M. Also, for any a G M, the
formula E(x, a) isolates a complete type qa relative to the nonisolated types,
hence CB(E(x,a)) = CB(qa) = 1. Now consider any p G 5i(0) containing
{x φb : b e M}U { -iE(x, a) : α G M }, which exists by compactness. For
any φ G p there are infinitely many a G M with φ £ qa, so CB(p) > 2 by
Lemma 2.2.3(v). Since p is the only complete 1—type which is nonisolated
and not one of the ςα's (by quantifier elimination), CB(x = x) = CB(p) = 2

by (i).

Example 2.2.4- Here it is shown that for any ordinal a there is a theory
with a type of CB-rank α. The theory is formulated as a chain of refining
equivalence relations. Let a be an ordinal, and for 1 < β < α, let Eβ be a
binary relation. Let TΊ be the theory saying that each Eβ is an equivalence
relation with only infinite classes and for 1 < β < 7 < α, Eβ refines EΊ and
each EΊ—class contains infinitely many ^—classes. These two properties are
guaranteed with the axioms:

\/xy(Eβ(x,y) -> EΊ(x,y)) and, for all n < ω,

2/n( /\ E^x.y^A

For M \= Tι let T = TII(MM)> AS usual, T has elimination of quantifiers.
Let Eo(x,y) denote x = y.

Claim. For β < a and aeM, CB(Eβ(x, a)) = β.

This is proved by induction on /?, with the case β = 0 being trivial. Let
β > 0 and fix 7 < β. There is an infinite set B C M such that E7(x, b) implies
Eβ{x,a) and 6 Φ b' = > -^EΊ(b,b') for all 6, 6; G £. By induction, £70z,6)
has CB-rank 7, for each b e B, and extends to a complete 1—type of CB-
rank 7 by Lemma 2.2.3(iii). Since B is infinite this proves that {q G SΊ(0) :
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Eβ(x, a) eq and CB{q) > 7 } is infinite. By Lemma 2.2.3(v), CB(Eβ(x, a)) >
β. Furthermore, X = {q G SΊ(0) : Eβ(x,a) G q and CB(q) > β} C {q G
5i(0) : Eβ(x,a) G q and -π£7(:r,&) G g, for 7 < β and 6 G M } = F, X is
nonempty (by Lemma 2.2.3(iii)) and F contains a unique type by quantifier
elimination. We conclude from Lemma 2.2.3(vi) that CB(Eβ(x,a)) = /?, as
claimed.

Prom the axioms for the theory and the claim we conclude that T contains
a complete type of CB-rank β for each β < a.

While we restricted our attention to 1—types in these examples, similar
arguments show that every element of 5(0) has CB-rank in each of these
examples.

Example 2.2.5. In this final example a theory is specified (also involving
equivalence relations) in which no nonalgebraic element of 5i(0) has CB-
rank. For i < ω, let Ei be a binary relation. Let TΊ say that each E% is an
equivalence relation with infinitely many infinite classes and no finite classes
and Ei+ι refines Ei. Furthermore, each Ei—class is partitioned into infinitely
many Ei+\— classes. Let M (= T\ and T = TJI(MM)- An easy induction
shows that for all nonalgebraic p G Si(0) and ordinals α, CB(p) > a.

In this section Cantor-Bendixson rank is applied to countable theories,
however no assumption of countability is made in the definition or in the
above examples.

The connection with the number of types in a countable theory is found
in

Lemma 2.2.4. For T a countable complete theory, the following are equiv-
alent for each n.

(1) |
(2) |5n(0)| < 2«°.
(3) Every p G ̂ ( 0 ) has CB-rank equal to some a < ω\.

Proof. Trivially, (1) implies (2). To prove that (3) implies (1), let Φ = {φ :
ψ is a formula in n variables having a unique completion p with CB(p) —
CB(φ) }. For each φ G Φ let pφ denote the completion of φ with the same CB-
rank. By Lemma 2.2.3(iv) and the assumption that (3) holds, each element
of 5n(0) is pφ for some φ G Φ. The countability of the theory then forces
5n(0) to be countable; i.e., (1) holds.

To complete the proof we assume (3) to fail and prove that |5n(0)| = 2^°.
Let Φ be the set of formulas in n variables which have CB-rank < ω\, and
let OLCB = sup {CB{ψ) : φ G Φ}. Since we have assumed (3) to fail there is
a formula not in Φ.

Claim. For any formula φ in n variables not in Φ there is a formula ψ in n
variables such that ψ A φ and φ Λ ->φ are both not in Φ.
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Since CB(φ) > ωi, for each a < ω\ there is a formula φa such that
CB{φ Λ ψa) > a and CB(y? Λ -iφa) > a (by Lemma 2.2.3(v)). Since there
are countably many formulas there is a single formula φ which is φa for
arbitrarily large a < ω\. Thus, φ Λ φ and φ Λ-*φ are both not in Φ.

Let X be the set of finite sequences of O's and l's.

Claim. There is a family of formulas φs, for s e X, with the properties: (a)
φs φ Φ, (b) if t is an initial segment of s then φs implies φ% and (c) if t is
not an initial segment of 5 and s is not an initial segment of £, then φs Λ ψt
is inconsistent with T.

The collection of φs's is defined by recursion. Given φs there is a φ such
that φs A φ and φ3 Λ -"V a r e both not in Φ (by the first claim). Let φs~(ϋ) =
φs /\φ and φs~{\) = ^ Λ -^φ. Properties (a), (b) and (c) are easy to verify.

Let Y denote the set of sequences of O's and l's of length ω and for / G Y
let pf = { φs : 5 is an initial segment of / }. Each pf is consistent (by (b))
and for distinct / and g in Y, pf U pg is inconsistent (by (c)). Consistent
completions of the p/'s form 2H° many elements of 5n(0), completing the
proof.

In Lemma 2.1.1 it was proved that a small theory has a countable atomic
model. The next proposition generalizes this result to potentially uncountable
theories.

Proposition 2.2.6. Let T be a complete theory in which each p G 5(0) has
CB-rank. Then the isolated types are dense in T.

Proof. Let φ(v) be a formula consistent with T and Oψ the set of com-
plete types in v containing φ. Let p G Oφ have minimal CB-rank among
the elements of Oφ and let φ G p be a formula isolating p relative to the
types of CB-rank > CB{p) = a. Without loss of generality, φ implies φ,
equivalently, Oψ C Oφ. The following implications show that φ isolates p:
qeOφ => qβθφ => CB(q) >a =» q = p.

A subset X of a topological space is perfect if it is closed and contains no
isolated points, while X is scattered if every nonempty subset of X contains
an isolated point. In topological terms the proof of Proposition 2.2.6 can
be extended slightly to show that 5n(0) is scattered when each complete
n-type has CB-rank. Thus, by Lemma 2.2.4, a countable complete theory is
small if and only if 5n(0) is scattered, for each n < ω. More generally, the
set of complete n—types in a countable complete theory is the union of two
disjoint sets, one scattered and one which is empty or perfect. The scattered
set, which is countable, is the set of complete types having CB-rank, while
the set of complete types without CB-rank, if nonempty, is perfect and of
cardinality 2*°. (The reader is asked to prove this fact in Exercise 2.2.6.)
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The remainder of this section is devoted to a complete treatment of sat-
urated, homogeneous and universal models of potentially uncountable cardi-
nalities.

Definition 2.2.6. Let K, be an infinite cardinal and Λ4 a model.
(i) We call M K—saturated if for all A c M of cardinality < K, M

realizes every type in S\{A).
(ii) Λ4 is Ac—homogeneous if for all A C M with \A\ < K, a G M and

elementary maps f : A —> M, there is an elementary map g : Al){α} —> M
extending f.

(in) ΛA is K—universal if every model λί = M. of cardinality < K can be
elementarily embedded into Λ4.

If M is \M\—saturated, \M\—homogeneous or \M\+ —universal we call M
saturated, homogeneous or universal, respectively.

As with countable saturated models, if Λ4 is K—saturated then for all
A C M oϊ cardinality < K, M realizes every type in S(A) (see Exercise 2.2.7).

Example 2.2.6. (Uncountable saturated models)
Let F be a countable field and T the theory of infinite dimensional vector

spaces over F (which is complete and quantifier-eliminable). We will show
that every uncountable model of T is saturated using the following.

Claim. If M f= T and Ac M there is a unique nonalgebraic type in S\(A).

Let p, q G Sι(A) be nonalgebraic. Taking an elementary extension of M
if necessary we can assume that p and q are realized by elements α, b G M,
respectively. Since a and b are not in the subspace generated by A there is
an automorphism of Λd fixing A and mapping a to b. Since automorphisms
preserve types p = q.

Now let Λ4 be a model of T of cardinality K > No and let A C M have
cardinality < n. Any algebraic type over A is realized in Λ4, so it suffices to
consider the unique nonalgebraic p G Sι(A). Since \A\ < K and the field is
countable the subspace generated by A has cardinality < K. (The quantifier-
eliminability of Γ implies that tp(a/A) is algebraic if and only if α is in the
subspace generated by A.) Thus, there is an a G M such that tp(a/A) is p.
Thus, M. is saturated.

Not every countable complete theory has an Ho—saturated model in every
infinite power. For example, if the theory has continuum many complete types
over 0 then every No—saturated model has cardinality > 2**° (since continuum
many tuples from a model are needed to realize all of the types). There
are similar (and often more complicated) restrictions on the cardinalities of
λ—saturated models of arbitrary theories when λ is an uncountable cardinal.
Consider, for instance, the following theory.
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Example 2.2.7. The language L consist of two unary relations, P and Q, and
a binary relation R. Let X be a set of cardinality No> Y the power set of X
and E C X x Y the relation which is satisfied by (x,y) exactly when x is
an element of y. Let M be the model in this language with universe X UY
where X is the interpretation of P, Y interprets Q and E interprets R. Let
T = Th(M). Then, for ft an infinite cardinal, any ft+ —saturated model λί
of T must have cardinality > 2K. (Let A be a subset of P(λί) of cardinality
ft. For any B C A the set of formulas pB = { J?(6, v) : 6 G B } U { ->iϊ(α, v) :
α G A \ B } is consistent and realized in λί, since λί is ft+—saturated. The
realizations of the types ps, as B ranges over the subsets of A, form a subset
of Q(λί) of cardinality 2K.) Thus, given λ an infinite cardinal, if a saturated
model of cardinality λ exists, then λ > Σμ<\ 2μ

In conclusion, the existence of a saturated model of cardinality ft may
require ft to satisfy a relation of cardinal arithmetic which could fail in some
model of set theory.

Recall that a cardinal λ is regular if λ is infinite and has cofinality λ. For
all infinite cardinals ft, ft+ is regular.

For an arbitrary theory the most general statement that can be made
about the existence of models with some amount of saturation is

Lemma 2.2.5. Let T be a complete theory and ft an infinite cardinal > \T\.
Then T has a κ+—saturated model of cardinality 2K.

Proof. The targeted model will be constructed as the union of an elemen-
tary chain of models. At successor stages in the recursive definition of the
elementary chain we will use

Claim. Let λΛ be a model of T of cardinality 2K. Then there is an elementary
extension λί of M of cardinality 2K such that for every A C M oί cardinality
ft, λί realizes every element of Sι(A).

First, let's count the number of types involved. If \A\ = ft, then the number
of formulas over A is |^1| + |T| = ft, hence |5i(^4)| < 2K. The number of subsets
of cardinality ft of a set X is \X\K (or 0), so if \X\ = 2K there are (2K)K = 2K

many such subsets. Thus, P = |J{SΊ(A) : A C M with \A\ = ft} has
cardinality 2K. Enumerate P as {pi : i < 2K } and add to the language new
constants a, i < 2K. Consider the theory V = Th(MM)^Aj{lPi{ci) :i <2K}.
(By Pi(ci) we mean { φ(ci) : φ G Pi}>) Compactness implies the consistency
of T', hence it has a model of cardinality 2K. The restriction of this model to
the original language is the model λί required to prove the claim.

An elementary chain Mβ for β < ft+ is constructed as follows by recur-
sion. Let Mo be any model of T of cardinality 2K. Assuming that MΊ has
been defined let λ4Ί+ι be an elementary extension of λΛΊ of cardinality 2K

such that for every subset A C MΊ of cardinality ft, Λ47+i realizes every ele-
ment of Sι(A) (the claim guarantees the existence of such a model). If δ is a
limit ordinal let Ms — \JΊ<6 MΊ. Now let M be the union of the elementary
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chain, Mβ, β < ft+. To verify that M is ft+ — saturated, let A be a subset of
M of cardinality ft and p an element of Sχ(A). The elementary chain of Λί7 's
has length ft+. Since ft+ is regular there is a β < ft+ such that A c Mβ,
hence p is realized in Mβ+\ (by construction). Since ΛΊ/3+1 -< Λ4, the same
element realizes p in M, proving the lemma.

As we will see later, saturated models are more useful than ft—saturated
models where ft is less than the cardinality of the model (since they are
homogeneous). The last lemma only guarantees the existence of a saturated
model when κ+ = 2*, a condition which is independent of the axioms of set
theory, for many ft. A natural question is: What properties must a theory T
and a cardinal λ possess in order for an adaptation of the above argument to
yield a saturated model of T of cardinality λ? The special properties of ft+

and 2K that were used to produce a ft+ — saturated model are: |5i(A)| < 2K

when \A\ = ft, and the cofinality of ft4" is > ft. Thus, for the same argument
to yield a saturated model of cardinality λ, λ must satisfy the conditions:
\A\ < λ => |SΊ(J4) | < λ, and the cofinality of λ is λ. (This condition on
cofinality is used to guarantee that when Mβ, β < λ, is an elementary chain
(λ a cardinal) and A C U/3<λ Mβ has cardinality < λ there is a single Mβ
containing A.)

The reasoning in the previous paragraph leads to

Lemma 2.2.6. Let T be a complete theory and ft > \T\ a regular cardinal
such that for all models M of T and A C M, |A| < K = Φ |SΊ(A)| < K.
Then T has a saturated model of cardinality K.

Proof. The proof is a rather straight-forward adaptation of the proof of the
previous lemma. Arguing as in the claim a model M of cardinality < K has
an elementary extension λί of cardinality < K which realizes every element
of Sι(M). Now define an elementary chain Mβ, β < K, such that

— every element of S\(Mβ) is realized in .M/3+1, and |Mβ_|_i| < ft, for all
β < ft, and

- Me = U7<<5 Λ̂ 7> w n e n δ < ft is a limit ordinal.

Let M be the union of the chain, Mβ, β < ft and notice that \M\ = ft. To
verify that M is saturated let A be a subset of M of cardinality < ft. Since K
is regular there is some β < ft with A C Mβ. Every element of Sι(A) extends
to an element of S\(Mβ), which is realized in Mβ+\, hence in M. (In the
exercises the reader is asked to write out a complete proof of this lemma
without referring to Lemma 2.2.5.)

A cardinal ft is called strongly inaccessible if ft is regular, uncountable and
2 λ < ft whenever λ < ft. It cannot be proved in ZFC that strongly inaccessible
cardinals exist, however if λ is strongly inaccessible the last lemma shows that
every theory of cardinality < λ (with an infinite model) has a saturated model
of cardinality λ.
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We proved previously that every countable complete theory has a count-
able homogeneous model. Unfortunately, if we try to construct a homoge-
neous model of uncountable cardinality, say Hi, set-theoretic problems arise
similar to those which limit the existence of saturated models. For example,
let's try generalizing the elementary chain argument used in the proof of
Proposition 2.2.3. For Mα a model of cardinality Hi and A C Mα countable,
there are at most Hi many 1—types over A realized in A^α, however there are
2H° many countable subsets of Mα to consider as sets of parameters. Thus,
for a model Mα of cardinality Hi there may not be an elementary extension
Mα+i of cardinality Hi (without assuming the continuum hypothesis) such
that for all elementary maps g : A —• M α , where A C Mα is countable, and
α G M α , there is an elementary / : A U {α} —• Mα+ι extending g.

Definition 2.2.7. For M. α model, the type diagram of Λ4, denoted D(ΛΊ),
is {p G 5(0) : p is realized in M }.

Notice that for M Ho—saturated D(M) = 5(0). The relative uniqueness
of homogeneous models, and other results, will follow quickly from the next
two lemmas.

L e m m a 2.2.7. Let M. to be α K—homogeneous model, J\f α model elemen-
tarily equivalent to M containing sets A C B such that \A\ < \B\ < K and
{tpj\f(b) : b is a finite sequence from B } C D(M). Then for any elementary
map f : A —> M there is an elementary map g : B —• M which extends f.

Proof. This is proved by induction on \B\. Enumerate B\A as {ba : a < λ } ,
where λ = |£\-A|. The desired extension g of f will be constructed by defining
it (recursively) on ba for successively larger a < λ. Given δ < λ, assume that
the elementary map g extending / has been defined on ba for all a < 6.
Because Bs = AU{ba : a < δ} has cardinality < |JB| there is an elementary
map h : Bs —• M extending /. Since gh~ι is an elementary map on M
taking A U { h(ba) : a < δ} to A U {g(ba) : a < δ}, the κ;—homogeneity
of M yields a b such that gh~ι U {(h(bs),b)} is an elementary map. Define
gibs) to be b.

L e m m a 2.2.8. Suppose that λΛ andλί are homogeneous models of the same
cardinality, D(M) = D(λί), A C M with \A\ < |M| , and f is an elementary
map of A into N. Then, f can be extended to an isomorphism from M onto
λf.

Proof. The isomorphism is constructed with a back and forth argument using
the previous lemma. More precisely, a chain of elementary maps, / α , a < |M| ,
is constructed such that /o = /, every element of M is in the domain of
some / α , and every element of N is in the range of some fa. Well-order the
sets M \ A and N \ f(A) and suppose that fΊ has been defined for each
7 < δ. If δ is a limit ordinal let fδ = U7<<5 /γ Suppose that δ = 7 + 2n,
where 7 is a limit ordinal and n G ω is > 0. Let a be the least element of
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M \ (domfΊ+2n-ι) in the well-ordering of M \ A. By Lemma 2.2.7 there is
an elementary map fs extending /7+2n-i whose domain contains a. Finally,
suppose δ = 7 + 2n -1-1, for 7 a limit ordinal and n e ω, and let b be the least
element of N \ (range/7+2n) By the previous lemma there is an elementary
map g extending the inverse of /7+2n whose domain contains b. Let fs = g~λ.
It is clear that Uα<|M| Λ* ^s t n e desired isomorphism from M onto ΛΛ

Corollary 2.2.1 (Extendibility of elementary maps). If M is a homo-
geneous model, A C M with \A\ < \M\ and f is an elementary map from A
into M, then f can be extended to an automorphism of λΛ.

Corollary 2.2.2 (Relative uniqueness of homogeneous models). Let
λΛ and λί be homogeneous models of the same cardinality with D(λΛ) =
D(λί). ThenM 9*λί.

Since D(λΛ) = 5(0) for any saturated model ΛΊ,

Corollary 2.2.3 (Uniqueness of saturated models). // M and λί are
saturated models of the same cardinality and the same complete theory, then

Corollary 2.2.4 (Relative universality of homogeneous models). Let
Λ4 be K—homogeneous and λί a model of cardinality < n such that D(Λί) C
D(λΛ). ThenM is elementarily embeddable into Λ4.

Corollary 2.2.5 (Saturated=homogeneous+universal). A model M
which is K—saturated is K,—homogeneous and κ+—universal. As a partial con-
verse, if λΛ is K—homogeneous and D(ΛΛ) = 5(0), then Λ4 is K—saturated.

Proof The tt+— universality of a κ;—saturated model is by the previous corol-
lary while its K—homogeneity is clear from the definition. Now let Λ4 be
ft—homogeneous with D(M) = 5(0), A C M of cardinality < K and
p £ Sι(A). By the consistency of p there is a model λί containing A such
that MA = λίA and p is realized in λί by some element a. By Lemma 2.2.7
there is an elementary map of {a} U A into M which is the identity on A.
The image of a under this map is the desired realization of p.

Corollary 2.2.6. A homogeneous model which realizes every element o/5(0)
is saturated.

Example 2.2.8. (A countable universal model which is not saturated) Let T
be the theory of the order (ω, <). The reader can show that T is quantifier-
eliminable. Every model of T can be obtained in the following manner: Let
M = (A, <) be any linear order. Form the model λί of T by adding one copy
of the ordering (Z, <) to the end of (ω, <) for each element of A, respecting
the order induced by M. More precisely,

(a) iV = wU(AxZ),
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(b) < is the standard ordering on ω,
(c) n < (α, m) for all n 6 ω and (α, m) E (A x Z),
(d) (α, m) < (6, n) if and only if a < b or a = b and m < n, for all

(α,ra), (6,n) € (A x Z).

It is not difficult to see that the model M obtained by letting (A, <) = (Q, <)
in this algorithm, is a countable saturated model (hence a universal model).
Regardless of the theory, any countable elementary extension of a countable
saturated model is also universal. This observation quickly leads to a count-
able universal model which is not saturated: Let N be the model obtained
by adding one copy of (Z, <) to the end of M. (λί cannot be saturated since
it is not homogeneous.)

One of the conditions holding in a ft—saturated model M of cardinality
ft, and perhaps failing in a ft—saturated model of cardinality > ft is: any
elementary map / : A —• M, where A C M and \A\ < ft, extends to an
automorphism of M. In some uses of saturated models they can be replaced
by models which only satisfy this extendibility condition, which is given a
name in the following definition.

Definition 2.2.8. For ft an infinite cardinal, the model M is called strongly
ft—homogeneous if for all elementary maps f : A —» M, where A C M and
\A\ < «, / extends to an automorphism of Λ4.

Widespread existence of these models is proved through

L e m m a 2.2.9. Let ΛΊ be an infinite model, A C M, and f : A —• M an ele-
mentary map. Then there is anAί^ΛΛ having an automorphism g extending
f with \N\ = \M\.

Proof. The model λί will be constructed in two stages. First we prove

Claim. Let No be an infinite model, B C iV0, and / : B —• No an elementary
map. Then there is an N\ >• No with \N\\ = \NQ\ and an elementary map
g : Nι —> Nι which extends /.

Let λAo = No- We define, by recursion, an elementary chain of models
Mi, i < ω, and elementary maps gι : Mi —> Mi+\ such that / C go C . . . C
gi C To begin, let K, = |Mo| and let λΛ'γ be a «+— saturated elementary
extension. By Lemma 2.2.7 there is an elementary map go D f taking M o into
M[. Let λΛ\ be an elementary submodel of λ4[ of cardinality K containing
both Mo and go(Mo). In general, let Λ^^+1 >- ΛΛi be a ft+—saturated model,
gi+ι : Mi —> Λf/+1 an elementary map extending g^ and Mi+\ an elementary
submodel of λΛ'iΛ_λ containing both Mi and g%{Mi). It is easily verified that
N\ = \Ji<ω Mi and g = [Jgi satisfy the requirements of the claim.

The model N and automorphism g will be obtained as the limit of ω
applications of the claim. Let K = |M|, No = M and go = /. To begin,
the claim yields a model N\ >- No of cardinality ft and an elementary map
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9\ : Nι —• Nι extending g0. Now apply the claim to Λ/Ί and g^1 to obtain
an Λ/*2 >- λίi of cardinality K with an elementary map g2 N2 —• N2 which
extends g^1. Continuing in this manner results in an elementary chain:

•λίo -< λίi -< λί2 -< . . . -< Λίi -< . . .

and a chain of elementary maps go C gι C g2

x C gs C ... such that if i is
odd the domain of gι is λίi and if i is even (and > 0) the range of g~ι is λί%.
Then λί = \Ji<ω λίi is an elementary extension of M of cardinality /ς and
g = Uz<α; #2ΐ+i is an automorphism of Λ/" which extends /.

Proposition 2.2.7. For K an infinite cardinal and T a theory of cardinality
< /c there is a strongly K—homogeneous model of cardinality < 2K.

Proof. Given a model λί of cardinality < 2K let Φ = { f : for some A C
N of cardinality < «;, / : A —• N is elementary }. Generalizing the proof
of the previous lemma shows that there is an elementary extension λί' of λί
of cardinality < 2K such that every element of Φ extends to an automorphism
of λίf. Using this fact the reader can construct an elementary chain whose
union is the desired model.

Corollary 2.2.7. Every model M has a strongly #0—homogeneous elemen-
tary extension of the same cardinality.

Proof. Left to the reader.

Historical Notes. Cantor-Bendixson rank was introduced into model the-
ory by Morley in [Mor65]. The notions of K—saturated and saturated models
go back to the ηa— sets of HausdorfΓ. (These are basically saturated models
of the theory of dense linear orders without endpoints.) Their importance
in model theory was not exploited until the late c50's. Universal and homo-
geneous models were developed by Fraϊse and Jόnsson. Most of the results
relating universal, saturated and homogeneous models are proved by Mor-
ley and Vaught in [MV62], However, the relative uniqueness of homogeneous
models, Corollary 2.2.2, was proved by Keisler and Morley in [KM67].

Exercise 2.2.1. Write out a proof of Lemma 2.2.3(iv).

Exercise 2.2.2. Write out the details in Example 2.2.5.

Exercise 2.2.3. Suppose that T is a complete theory in a countable lan-
guage L which is not small and T' D T is a complete theory in a language
U D L. Show that X" is also not small. On the other hand, if T is small,
M (= T and A C M is finite, then V = Th(MA) is small.
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Exercise 2.2.4. Prove that the union of an elementary chain of atomic mod-
els is atomic. Use this fact to show that a countable complete theory having a
prime model which is not minimal has an uncountable atomic model. (HINT:
A prime model which is not minimal is isomorphic to a proper elementary
extension of itself.)

Exercise 2.2.5. Show that a countable complete theory which is not small
has 2H° many nonisomorphic countable homogeneous models.

Exercise 2.2.6. Let T be a countable complete theory. Prove that 5n(0) is
the union of a scattered set and a set which is perfect or empty.

Exercise 2.2.7. Prove that if M is n—saturated and A is a subset of M of
cardinality < /c, then M realizes every complete n—type over A, for all n.
(HINT: Use induction on n.)

Exercise 2.2.8. Let K be an infinite cardinal, M a K—saturated model and
A C M a set of cardinality < ft. Show that MA is also ^-saturated.

Exercise 2.2.9. Let ΛA be an HQ—saturated model and p a complete 1—type
in Th{M) such that p(Λ4) is finite. Prove that p is algebraic.

Exercise 2.2.10. Prove that a countable model M is saturated if and only
if it is universal over every finite subset of M.

Exercise 2.2.11. Prove that the union of an elementary chain of ^—homo-
geneous models is Ho—homogeneous.

Exercise 2.2.12. Show that every reduct of a saturated model to a sublan-
guage is saturated. (The corresponding result about homogeneous models is
false. What do you think goes wrong in the proof?)

Exercise 2.2.13. Prove that if M is n—saturated, A is a subset of M of
cardinality < K and p E S(A), then the cardinality of the set of realizations
of p in M is finite or > K.

Exercise 2.2.14. Write out a complete proof of Lemma 2.2.6 which does
not refer to the proof of Lemma 2.2.5.

Exercise 2.2.15. Suppose that K and λ are infinite cardinals and the cofi-
nality of λ is > K. Prove that the union of an elementary chain Ma, & < λ,
of K—saturated models is K—saturated.

Exercise 2.2.16. Find a union of an elementary chain of Hi —saturated mod-
els which is not Hi-saturated. (HINT: See the last example concerning CB-
rank.)

Exercise 2.2.17. Write out the details in the proof of Proposition 2.2.7.

Exercise 2.2.18. Prove Corollary 2.2.7.
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Exercise 2.2.19. Prove that if M is strongly No—homogeneous and a and b
are sequences from M. realizing the same type, then for all formulas φ(x,y),

2.3 Countable Models of Complete Theories

In the preceding section we studied models of complete theories which have
special properties with respect to the types they realize and automorphisms
they admit. The sharpest existence and uniqueness theorems were obtained
for the countable models of complete theories. In this section we apply these
results to study the following two problems about countable complete theo-
ries:

1. Characterize the countable complete theories which have a unique count-
able model, up to isomorphism.

2. For T a countable complete theory let n(T) denote the number of count-
able models of T up to isomorphism. Determine the possible values of
n(T), as T ranges over the countable complete theories.

Definition 2.3.1. For K an infinite cardinal, a theory T is K—categorical
(or categorical in K) if T has a unique model of cardinality «, up to isomor-
phism.

Later extensive attention will be given to countable theories which are
categorical in some uncountable cardinality. Problem 1 asks for a character-
ization of NQ—categorical theories. Here are some examples of such theories:

- Let T be the theory in a language with no nonlogical symbols express-
ing that there are infinitely many elements. The countable models of this
theory are sets of cardinality No, hence are all isomorphic.

- The theory of dense linear orders without endpoints is No —categorical.
- All vector spaces of dimension No over a fixed field F are isomorphic. In the

natural language of vector spaces over F there is no set of sentences which
express that the dimension is No for an arbitrary field. However, assuming
that F is a finite field any countable model of the theory T of infinite vector
spaces over F must have dimension No- Thus, T is categorical in No.

- The theory of an equivalence relation with infinitely many infinite classes
and no finite classes is No—categorical.

Remark 2.3.1. Let T be a countable theory with an infinite model which is
categorical in some infinite cardinal. Then T is complete. This is a classical
result called the Los-Vaught Test (for completeness of a theory). (The proof
is left to the reader in Exercise 2.3.1.)

The class of countable theories which are categorical in No admits the
following characterization.
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Theorem 2.3.1 (Ryll-Nardzewski, Engeler, Svenonius). For a count-
able complete theory T the following are equivalent:

(1) T is No~ categorical.
(2) For each n, 5n(0) is finite.
(3) For each n, there are finitely many formulas in n free variables, up

to equivalence in T.

Proof. First we establish a couple of preliminary claims about countable com-
plete theories which are of interest in their own right.

Claim. Let T' be a countable complete theory with an infinite model such
that every complete n—type in T is isolated. Then there are finitely many
complete n—types.

Assuming every complete n—type to be isolated let JΓ = { -*φ : φ is a
formula in n variables which isolates a complete type in V }. Since JΓ is not
contained in a complete type it is inconsistent. By compactness there are
formulas φo,...,φm which isolate distinct complete types in V such that
Tr f= Vϋ(φo(v) V ... V φm(v)). Thus, each element p of 5n(0) contains one of
the ψi% and for each i only one element of 5n(0) contains ψι. We conclude
that |5n(0)| = m -f-1, proving the claim.

Claim. Let T" be a countable complete theory such that 5n(0) is finite. Then
there are finitely many formulas in n free variables up to equivalence with
respect to X".

For φ a formula in n variables, Oφ denotes the set of complete n—types
in X" which contain φ. There are only finitely many subsets of 5n(0) which
can be Όφ for some formula φ in n variables. Since Oφ = Oψ if and only if
Tf |= \/ϋ(φ <-• ψ), there are finitely many formulas in n variables in X".

Turning to the main body of the proof, let T be No—categorical. A count-
able theory which is not small has continuum many countable models, hence
T is small and has a countable atomic model and a countable saturated
model. Thus, the unique countable model Λ4 of T is both atomic and satu-
rated. Since every element of 5n(0) is realized in M, every complete n—type
is isolated. By the first claim, 5n(0) is finite, proving that (1) = > (2).

That (2) ==> (3) is proved in the second claim, so assume (3) to hold.
The No— categoricity of T will follow from the uniqueness of prime models
(Proposition 2.1.1) once we show that every model of T is atomic. Let M
be a model of T and a a finite tuple from M, and let <£>χ,..., φm be a list of
the finitely many formulas, up to equivalence in T, which are satisfied by a
in M. Then ψ\ Λ ... Λ φm isolates tpM(p)> Thus, M is atomic, completing
the proof of the theorem.

In the remainder of the section we discuss the progress to date on the
second question stated above, namely:
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ForT a countable complete theory what are the possibilities for n(T),
the number of countable models of T up to isomorphism.

Simply for set-theoretic reasons we know that n(T) < 2N°. A theory with
continuum many complete types has 2N° many countable models up to iso-
morphism (since every complete type is realized in some countable model).
Thus, n(T) = 2**° is one possibility. (In the previous section we gave an exam-
ple of a theory which is not small.) We have also seen examples of countable
complete theories in which n(T) = 1; i.e., Ho—categorical theories. We con-
tinue by giving examples which delineate less trivial possibilities.

For the remainder of this section an arbitrary theory is assumed
to be countable, complete and have infinite models.

Example 2.3.1. (Of a theory with Ho many countable models) Let T be the
theory of algebraically closed fields of characteristic 0. By quantifier elimi-
nation the isomorphism type of a model is determined by the transcendence
degree of the model over the prime field. There are Ho many possibilities for
countable transcendence degree.

Example 2.3.2. (Of a simpler theory with Ho many countable models) Con-
sider the theory in a language with constant symbols Q, i < ω, which says
that the constants are distinct. This theory has elimination of quantifiers and
is complete. For each n < ω there is a model of T with exactly n elements
which are not the interpretation of some constant. Furthermore, the isomor-
phism type of any model is determined by the number of such nonconstant
elements. Thus, there are Ho many countable models.

Example 2.3.3. (Of a small theory with 2̂ ° many countable models) Exam-
ple 2.2.1(iii) is an example of such a theory. The fact that the theory has a
countable saturated model is equivalent to it being small. For any X C ω
there is a countable model Mx of T such that Pi(Mχ) contains a non-
constant if and only if i e X. Thus, T has continuum many nonisomorphic
countable models.

Example 2.3.4- (Of a theory with 3 countable models) This is a classical ex-
ample due to Ehrenfeucht. Let T be the theory in the language with a binary
relation < and constants, Q, i < ω, saying that < is a dense linear order
without endpoints and cn < cn+i, for n < ω. An elimination of quantifiers
argument shows that T is complete and has the following 3 countable mod-
els. M\ is the model in which every element is < some cn. M2 is the model
which contains elements > every cn and there is a least such. Lastly, M.% is
the model which contains elements greater than every cn and s\xpn<ωcn does
not exist in the model. Notice that M.\ is the prime model of T and Ai% is
the countable saturated model of the theory.

Closer examination of the last example reveals some interesting interplay
between saturation, universality and atomicity over a finite set. Since this
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theory T contains the axioms for dense linear orders without endpoints, if
there is an element in a model which is greater than all of the Q'S, then
there is a copy of the rationale greater than all of the Q'S in this model. In
fact, there is an isomorphic embedding of M.% ιτ&° M2 (viewing M.\ as a
submodel of each of these, embed the remaining elements of M3 into the
elements of M2 \ (Mi U {supn < α,cn}) in an order-preserving way). Since T
has elimination of quantifiers, if M and M are models of T and M C M,
then M -< M. Thus, ΛΊ3 is elementarily embedded into M.2- Since Ms is
saturated, we conclude that M2 is universal. Since M.2 is n ° t saturated, ΛΊ2
must fail to be homogeneous (by Corollary 2.2.5) which is verified as follows.
Let a be the element of M 2 which is the supremum of the Q'S. All elements
of M 2 which are greater than all of the c '̂s realize the same complete type
in M>2> However, any automorphism of M2 leaves a fixed.

As a final remark on the properties of the Λίi's notice that M2 is prime
over a. (A model M is prime over a if whenever Λ4 (= T and / is an elementary
map of a into Λί, / can be extended to an elementary embedding of λί into
Λί. Since Λίi does not realize tp(ά) there is no elementary map taking a into
Λίi . Since .M3 is saturated any elementary / : {a} —• ΛI3 extends to an
elementary embedding of ΛI2 into ΛΊ3 (by Lemma 2.2.7). Thus, ΛΪ2 is prime
over a.)

By adding n — 2 unary relations to the language it is possible to adapt
the previous example to obtain a theory having exactly n countable models
for each n > 3 (see the exercises). All such theories have a model behaving
much like the model ΛΛ2 in the Ehrenfeucht example, with the only difference
being that the universality must be weakened.

Lemma 2.3.1. Let T be a countable complete theory having finitely many
but more than one countable model. Then T has a countable model which is
prime over some finite set, is not saturated, and realizes every element of
5(0).

Proof. Let M be a countable saturated model of T (which exists since the
theory is small). Let po, Pi? be an enumeration of 5(0). For i < ω, let α*
be a finite sequence from M such that j < i = > pj is realized by some
subsequence of α .̂ Since T is small it has a model Mi which is prime over α .̂
We claim that Mi is not saturated, for all i < ω. Assuming to the contrary
that Mi = Λί, M is prime over some finite sequence c in M. Since (Λί,c)
is also a saturated model (see Exercise 2.2.8), we conclude that Th(M,c) is
No—categorical. However, since T is not Ko—categorical, there are infinitely
many distinct complete n—types for some n. Distinct complete n-types in T
extend to distinct complete n-types in Th(M,c), hence there are infinitely
many complete n—types in T/ι(Λί,c), in contradiction to Theorem 2.3.1.
Thus, none of the Λ/ί's are saturated. Since T has finitely many countable
models there is an infinite X Cω such that Mi = Mj for all i, j G X. By the
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conditions on the a*'s, each λίj, for j 6 X, must realize every complete type
of T. Since Λ/} is not saturated we have proved the lemma.

The above examples raise the question: Is it possible for a countable com-
plete theory to have exactly two countable models? Vaught, in the seminal
paper [Vauβl] proved that this is impossible. The bulk of his argument ap-
pears in the proof of the preceding lemma.

Proposition 2.3.1. No complete countable theory has exactly two countable
models, up to isomorphism.

Proof. Suppose Γ to be a counterexample to the theorem. Since T is not
No—categorical it has a nonisolated complete type p. Since T is small it has a
countable saturated model M and a prime model Λf, which is not isomorphic
to M (since there is a nonisolated complete type). By the preceding lemma T
also has a model Λf1 which is not saturated but realizes every complete type
of T. Since p is realized in Λf\ Λf' cannot be atomic, hence is not isomorphic
to Λf. Thus, the existence of Λf' contradicts that T has exactly two countable
models, proving the proposition.

Turning to the other end of the spectrum, in each of our examples of
a theory having uncountably many countable models we show without ap-
pealing to the continuum hypothesis that T has 2 °̂ many countable models.
Vaught hypothesized in [Vauβl] that this is always the case:

Conjecture 2.3.1 (Vaught's Conjecture). If T is a countable complete theory
with fewer than 2 °̂ many countable models, up to isomorphism, then T has
countably many countable models.

To date, this conjecture is open. Morley [Mor70] succeeded in showing that
n(T) (for T a countable complete theory) is always countable, Ki or 2^°.
Researchers have approached Vaught's Conjecture by trying to prove it for
classes of theories satisfying additional hypotheses. With respect to the sta-
bility heirarchy (see later chapters for the relevant definitions), Bouscaren
and Lascar proved Vaught's Conjecture for ω—stable theories of finite Mor-
ley rank ([Bou83] and [BL83]), with Shelah handling all ω—stable theories in
[SHM84]. Several years later a proof was obtained (by Newelski [New90] and
Buechler [Bue87]) for properly superstable theories of oo—rank 1 using sig-
nificant results from geometrical stability theory. Buechler proved Vaught's
conjecture for superstable theories of finite oo—rank in [Bue93]. An infor-
mative discussion of Vaught's conjecture and isomorphism invariants can be
found in [Las85].

While calculating n(T) (or the number of models in an uncountable car-
dinal) is not today a central concern of stability theory, it was through work
on these so-called spectrum problems that much of model theory (especially
stability theory) was developed. Furthermore, progress on a problem like
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Vaught's Conjecture often requires significant new tools which could see use
elsewhere.

Historical Notes. Theorem 2.3.1 is due independently to the three re-
searchers mentioned in the statement. See [RN59], [Eng59] and [Sve59].
Lemma 2.3.1 was extracted from Vaught's proof of Proposition 2.3.1 by J.
Rosenstein.

Exercise 2.3.1. Prove Remark 2.3.1.

Exercise 2.3.2. Modify Ehrenfeucht's example to find a theory with exactly
n countable models for each n > 3.

Exercise 2.3.3. Suppose that T is not Ho—categorical and every countable
model of T is homogeneous. Show that T has infinitely many countable mod-
els.

Exercise 2.3.4. Suppose that every countable model of T is homogeneous
and T has uncountably many countable models. Show that T has 2**° many
countable models.

Exercise 2.3.5. Suppose that M and λί are countable models, M can be
elementarily embedded into λί and λί can be elementarily embedded into
M. Does it follow that M and λί are isomorphic?

2.4 Indiscernible Sequences

In the next section we confront the problem of constructing potentially
uncountable models with special properties using Skolem functions. Indis-
cernibles are introduced here because they play a part in most applications
of Skolem functions. However, indiscernibles have applications in the context
of stable theories (developed later) which far out distance their uses in con-
junction with Skolem functions. In this section we only touch on the most
basic properties.

Definition 2.4.1. Let M be a model in the language L, and X C Mm (for
some m) a subset on which there is a linear order < . (This order need not
be in L.) We call (X, <) an indiscernible sequence in M if for all n and
all sequences x\ < . . . < xn and y\ < ... < yn from X, tpM(χi<> ? #π) =

ii J 2/n) X is called an indiscernible set in M if tpM{χι^ > %n) =
i, - , ί/n) for any (xu . . . , xn), (yu ...,yn) G Xn such that a?< φ Xj

and yi φ yj, for all 1 < i < j < n. (In other words, X is an indiscernible set
in λλ if (X, <) is an indiscernible sequence in λΛ for any linear ordering <
ofX.)
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It is important to bear in mind that the ordering of X in the definition
may or may not be in the language. When working with specific examples
the following lemma (whose proof is assigned in the exercises) is a useful
sufficient condition for indiscernibility. Note: If M is a model, x is the n—tuple
( # ! , . . . , xn) from M and / is an elementary map whose domain contains the
Xi% then f(x) denotes (/(xi),..., f{xn))

Lemma 2.4.1. Let ΛΛ be a model and (X, <) a linearly ordered set with
X C Mm such that for each pair of sequences x\ < ... < xn and y\ < . . . <
yn there is an automorphism f of M with f(xi) = yι for 1 < i < n. Then
(X, <) is an indiscernible sequence in M.

Example 2.4-1- Let M = (Q, <) be the ordering on the rationale. We claim
that (Q, <) is an indiscernible sequence in M. Let x\ < . . . < xn and y\ <
... < yn be sequences of rationale. Since the theory of dense linear orders
without endpoints has elimination of quantifiers the type of any sequence
is determined by the order relations within the sequence, hence (#i , . . . , xn)
and (2/1,..., yn) have the same type in M.

Example 2.4.2. Let M be any model of the theory of algebraically closed
fields of characteristic 0. Let X be an algebraically independent set in M;
i.e., a set of elements in ΛΛ such that x G X = > x is transcendental over
X \ {x}. For (#i , . . . , xn) and (yi,..., yn) two n—tuples of distinct elements
from X there is an automorphism of ΛΛ taking (#1, . . . , xn) to (yi,..., yn).
Thus, by the last lemma, X is an indiscernible set.

Example 2.4-3. Let V be a vector space over a field F and B a linearly
independent set in V. Arguing as in the last example shows that B is a set
of indiscernibles in V.

In our last example we specify two indiscernible sets A and B in the same
model in which the type of an n—tuple from A is different from the type of
an n—tuple from B.

Example 2.4-4- Let T be the theory in a language with a binary relation E
saying that E is an equivalence relation with infinitely many infinite classes
and no finite classes. Let M be any model of T. Let A be the set of elements
of M comprising a single E—class, and let B = { bi : i < ω } be a set of
representatives from different classes; i.e., for i φ j , M \= ->E(bi, bj). Since T
is quantifier eliminable it is easy to verify that both A and B are indiscernible
sets.

The last three examples suggest a connection between the indiscernibility
of a set and independence with respect to a dependence relation. This is the
manner in which indiscernibles usually arise in the context of stable theories.
In general, though, the following theorem is required to get an indiscernible
sequence.
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Theorem 2.4.1. Let T be a theory with infinite models and (X, <) any lin-
early ordered set. Then there is a model M. of T with X C M such that
(X, <) is an indiscernible sequence in M.

To prove the theorem a result from combinatorics is needed, whose proof
can be found elsewhere. (See, for example [Hod93, 11.1.3].) Given a set A let
[A]n denote the set of subsets of A with exactly n elements. Notice that if
A is linearly ordered by <, there is a one-to-one correspondence between the
elements of [A]n and increasing sequences of n elements from A.

Lemma 2.4.2 (Ramsey's Theorem). Let I be an infinite set and n <ω.
If ~ is an equivalence relation on [I]n with finitely many classes, then there
is an infinite subset J C I such that [J]n is contained in a single ~ —class.

Proof of Theorem 2.4-1: First expand the language L of T to L(X), where
there is a constant symbol for each element of X. Let V be the result of adding
to T all sentences of L(X) of the form φ(xι,..., xn)

 <—• φ(yi, ? 2/n)» where
φ(y\,..., vn) is a formula of L and x\ < ... < xn, yι < ... < yn are from X.
The restriction of any model of T' to the original language will be the desired
model having (X, <) as an indiscernible sequence. The consistency of X" will
follow (by compactness) from the consistency of T U {φ(xι,... ,xn) <—•
ψ(yu , 2/n) : ψ € *, and xλ < ... < xn, yι < ... < yn from Xo }, where
Φ is an arbitrary finite set of formulas of L and XQ a finite subset of X. We
may assume that all formulas in Φ have exactly n free variables. Let λί be
any model of Γ, A an infinite subset of N and < some linear ordering of
A. For increasing n—tuples a\ < . . . < αn, b\ < ... < bn from A we define
{αi,...,αn} ~ {6i,...,δn} to hold if Λf [= (φ(au ..., an) <—> <p(6χ,... ,6n))
for every φ G Φ. Since Φ is a finite set ~ is an equivalence relation on [A]n with
finitely many classes. By Ramsey's Theorem there is an infinite subset AQ of
A such that all increasing n—tuples from AQ belong to the same ~ —class.
Thus, if we interpret the elements of Xo by an appropriate number of elements
of Ao, listed in increasing order, we get a model of T U { φ(xi,..., xn) <—>
φ(yι,..., yn) : φ G Φ, and xλ < ... < xn, yι < ... < yn from Xo }. This
proves the consistency of X", hence the theorem.

Notice that for an indiscernible sequence (X, <) in Λί, there is a unique
complete type which is the type in M of an increasing n—tuple from X. The
type diagram of X, denoted D(X), is the set {pn : n < ω and pn is the
complete type realized by increasing n—tuples from X }. Making a specific
choice for the set A in the proof yields the following. Notice that while the
notation in the proof fixed A a s a subset of N it works equally well when
A is a subset of Nk for some k. Thus, X need not be a subset of M in this
corollary.

Corollary 2.4.1. Let (X, <) be an infinite sequence of indiscernibles in a
model M and (Y,<) any infinite linear ordering. Then there is some model
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J\f = Λd such that (Y, <) is an indiscernible sequence in Λί and D(Y) =
D(X).

Historical Notes. Except for Ramsey's theorem (which was proved in
[Ram30]) the results in this section are due to Ehrenfeucht and Mostowski
[EM56]. The main results in that paper are covered in the next section.

Exercise 2.4.1. Give a proof of Lemma 2.4.1.

Exercise 2.4.2. Let X be an infinite indiscernible set in a model Λ4 and
n < ω. Let X' be a collection of n—tuples from X which are pairwise disjoint.
Show that X' is also a set of indiscernibles.

Exercise 2.4.3. Let K be an infinite cardinal and Λ4 a K—saturated model.
Show that for any nonalgebraic formula φ over M there is a countably infinite
indiscernible sequence (X, <) contained in φ(M). Furthermore, for any such
(X, <) there is an indiscernible sequence (Y, <') of size K, such that Y D X
and <f extends < .

Exercise 2.4.4. Give an example of a model ΛΊ containing an infinite set
X such that any pair of distinct elements from X realize the same com-
plete 2—type in ΛΊ, but there are two triples from X with different 3—types.
(HINT: A projective plane)

2.5 Skolem Functions

Skolem functions, used in conjunction with indiscernibles, provide a way to
construct uncountable models with various special properties. These theo-
rems differ from those which yield, e.g., a K—saturated model (for some K)
in that they may result in uncountable models which omit specified types.

In algebra it is common to speak of the object (e.g., the group or vector
space) generated by a subset. Following is our formal definition of the notion
of a "submodel generated by a set".

Definition 2.5.1. Let M be a model in the language L and X C M.
(i) The hull of X, denoted H(X), is the subset of M obtained by closing

X U { a e M : a interprets a constant of L} under FM, for every function
F ofL.

(ii) H{X) is the submodel of M with universe H{X) (when H(X) ^ Φ).
We also call H(X) the hull of X.

For any model M and X C M, if X ^ 0 or the language contains a constant
symbol, then H(X) is the submodel generated by X in the sense that, X C
H(X), H(X) C M and H{X) C λff for every λί' C M containing X.



44 2. Constructing Models with Special Properties

In general, however, there is no well-defined notion of "elementary sub-
model generated by a set". Consider, for example, M = (Q, <) and X a finite
nonempty subset of Q. Then (X, < \ X) is the submodel generated by X but
it is certainly not an elementary submodel (for one thing, it is finite). In fact,
if λί is any elementary submodel of M containing X there is λί' containing
X which is a proper elementary submodel of λί. Here, we will show how to
expand a theory T to a theory T* in a larger language so that whenever
M \= T* and λί C M, λί -< M. The specific goal is

Theorem 2.5.1 (Skolem). Let T be a theory in a language L. Then there
is a theory T* in a language L* such that:

(1) L c L * , Γ c Γ and \T*\ = |Γ|;
(2) every model ofT can be expanded to a model o/T*, and
(3) ifM* \= T* andλί* C M* thenλί* -< M*.

Proof. The language L* and theory T* will be the unions of chains which
approximate (3) with increasing precision. The inductive step in the con-
struction of the chain is handled by

Claim. Let Γ be a theory in a language L. Then there is a theory X" in a
language L' such that:

(a) L C L', T c T' and \T'\ = |Γ|;
(b) every model of T can be expanded to a model of T', and
(c) if M' \= V and λί' C Mf then λί1 \ L ̂  Mf \ L.

We define V D L to be the language which adds to L a new constant
symbol csxφ for every sentence 3xφ of L, and a new n—ary function symbol
F3xφ for every formula 3xφ(x, v\,..., vn). Let X" be the union of T and the set
of all sentences of V of the form: 3xφ(x) —• φ(c3xφ) or Vϋi... vn[3xφ —•
φ(F3xφ(vi, , vn),vi,..., i>n)]) fc>r all appropriate formulas 3x<̂  of L. That
(a) holds is clear, and it is easy to interpret the new functions and constants
on a model of T to ensure (b). The Tarski-Vaught Test guarantees that (c)
holds.

Turning to the proof of the theorem define: Lo = L, To = T, Ln+i = (Ln)\
Tn+1 = (Tny, L* = \Jn<ω Ln and T* = |Jn<u, τn The verification of (l)-(3)
is now easy using the claim and the fact that any formula of L* is a formula
of some Ln.

The functions and constants added to L to obtain L* are called the Skolem
functions for L and Γ = T* \ T is the set of Skolem axioms for L. Notice
that Γ depends only on the language; i.e., if T and To are two theories in L,
then T* = T U Γ and To* = To U Γ satisfy (l)-(3) of the theorem. A theory
T having the property that whenever M (= T and λί C M then Λ/* -< .Λ/f is
said to /ιαve Skolem functions. This terminology is used even when T is not
constructed from some other theory using the theorem.
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If M is a model of a theory having Skolem functions then for any I c M ,
H(X) -< M, and we call H{X) the Skolem hull of X. As the elements of
H{X) interpret terms of the language applied to the elements of X, X C
Y <ZM =$> H(X) -< H(Y). A model which is the Skolem hull of a sequence
of indiscernibles is often called an Ehrenfeucht-Mostowski model, after the
researchers who developed indiscernibles.

In theories with Skolem functions the Skolem hulls of indiscernible se-
quences have properties which are rigidly tied to the indiscernibles. This is
made explicit in

Lemma 2.5.1. Let T be a complete theory with Skolem functions. Let M
and Λί be models of T and (X, <), (Y, <) infinite indiscernible sequences in
M, λί, respectively, with D(X) = D(Y).

(i) H(X) and H(Y) have the same type diagrams.
(ii) If h is an order-preserving map of X into Y then h extends uniquely

to an elementary embedding h* of H{X) into H{Y). In fact, h*(H{X)) =
H(h(X)).

(Hi) If h is an order-preserving map of X onto itself then h extends
uniquely to an automorphism ofH(X).

Proof. Recalling the definition of the hull of X an arbitrary element of H(X)
is of the form tM(xχ,..., xn) where t is some term of L and x\ < . . . < xn in
X. Thus, if H(X) realizes a 1—type p there is some such tM(xι,... ,xn)
such that M \= φ{t(x\,... ,xn)), for every φ G p. This is to say that
φ(t(vι,... ,υn)) belongs to the type satisfied by increasing n—tuples from
X. Since D{Y) = D(X), it follows that ^(j/i, . . . , yn) realizes p in H(Y) for
any y\ < . . . < yn in Y. The proof for types in n variables is just notationally
more complicated, so we have proved (i).

Continuing the notation of the previous paragraph, the extension h*
needed to obtain (ii) is seen to be the map defined by:

h*{tM{xu ..., xn)) = ̂ (Λfri),..., h(xn)),

for x\ < ... < xn in X and terms t. Part (iii) follows immediately from (ii).

Corollary 2.5.1 (Ehrenfeucht-Mostowski). Let T be a complete theory
with an infinite model and (X, <) some linearly ordered set. Then there is
a model M of T in which (X, <) is an indiscernible sequence and every
automorphism of this linear order extends to an automorphism of Λ4.

Proof. Let Tf be an expansion of T to a complete theory with Skolem func-
tions. Let M! be a model of V in which (X, <) is an indiscernible sequence.
We may choose Mf to be H(X). By Lemma 2.5.1(iii) every automorphism
of (X, <) extends to an automorphism of M!. Such an automorphism is, a
fortiori, an automorphism of M = M! \ L, proving the corollary.

Our next application of the lemma illustrates how Skolem functions and
indiscernibles can be used to find very special uncountable models.
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Theorem 2.5.2. Let T be a countable complete theory in L having an in-
finite model. Then T has a countable model M such that for all cardinals
K > Ho there is a model M of cardinality K with D(M) = D(M).

Proof. First, let V be an expansion of T to a complete theory with Skolem
functions. By Theorem 2.4.1 V has a countable model Mo containing an
infinite indiscernible sequence X. Let M* = H(X) and M = M* \ L. Given
an infinite cardinal K, let (Y, <) be any linear order of cardinality K. By
Corollary 2.4.1 V has a model Λ/"o in which (Y, <) is an indiscernible sequence
with Ό[X) = D(Y). Let ΛT* = W(Y), the hull of Y in Λ/Ό, and λί = N* \ L.
By Lemma 2.5.1(i) D(M*) = D(ΛΓ*). Restricting to the original language,
D(M) = D(Af), as desired.

Further results can be obtained by varying the properties of the linear
order (Y, <) used in the proof of the theorem. For example, if K > No there is
a dense linear order without endpoints (Y, <) with 2K many automorphisms.
By (iii) of the lemma each of these extends to an automorphism of the Skolem
hull of the indiscernible sequence (Y, <). A result which will see important
duty in the next chapter is

Lemma 2.5.2 (Morley). Let T be a countable complete theory with infinite
models. Then for every infinite cardinal K, T has a model M of cardinality
K such that for every A C M, Λ4 realizes at most \A\ + KQ many complete
types over A.

Proof. Let T* be an expansion of T to a theory with Skolem functions, L
the language of T and L* the language of Γ*. Let (X, <) be a well-ordering
of order type κ;, considered as a sequence of indiscernibles in some model
of T*. Let M* be the Skolem hull of X and M = M* \ L. To verify that
ΛΛ satisfies the requirements, let A be a subset of M. For the purposes of
this lemma we may as well require that A = H(Y), for some Y C X. (For
any A there is a Y such that A C H(Y) and \Y\ < \A\ + Ho.) We call two
sequences x\ < . . . < xni yλ < . . . < yn from X equivalent over Y if for
1 < k < n and all z € Y, Xk = z if and only if y^ = z and Xk < z if and
only if yk < z. (That is, the x^s and ^ 's satisfy the same order relations
with the elements of Y.) Because X is an indiscernible sequence, whenever
x\ < . . . < xn and yi < . . . < yn are equivalent over Y they have the same
complete type over Y in M. In fact, for any term t(vι,..., υn) of L*(Y) the
two elements t(xχ,..., xn) and t(yι,..., yn) realize the same complete type
over A. Similarly for n—tuples from M. Thus, to complete the proof it suffices
to show that the equivalence relation of being equivalent over Y has at most
\Y\ + Ho many classes. To see this we define x', for x E X \ Y, by

- x' = oo if there is no z €. Y with x < z, and
— x' — the least z G Y such that x < z, if there is such a z G Y.
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Then, xι < ... < xn and y\ < ... < yn are equivalent over Y if and only if
x[ — y[,... ,x'n = y'n. Hence there are < \Y\ + No many equivalence classes
of n—tuples, as required.

Historical Notes. Skolem functions date back to Skolem's 1920 paper
[Sko20]. Morley proved Lemma 2.5.2 in [Mor65]. The other results in the
section were proved by Ehrenfeucht and Mostowski in [EM56],

Exercise 2.5.1. Let M and N be models, X and Y nonempty subsets of
M and iV, respectively, and / an elementary bijection from X onto Y. Show
that / extends to an isomorphism between the submodels generated by X
and Y.

Exercise 2.5.2. Let M = (ω,<),T = Th(M) and Γ* the Skolem expansion
of T. Show that M has two expansions to a model of T* which are not
elementarily equivalent. (Thus, Γ* is not complete.)

Exercise 2.5.3. Let T be a complete theory with Skolem functions, (X, <)
an indiscernible sequence in H(X) \= T. Show that there is an embedding of
the automorphism group of (X, <) into the automorphism group of H(X).
Also, if both X and < are definable this embedding is an isomorphism.

Exercise 2.5.4. Elements x and y of a model Λ4 are said to have the same
automorphism type if there exists an automorphism / of ΛΊ such that f(x) =
y. Show that if T is a countable complete theory with infinite models, then T
has a model in each cardinality which has only countably many automorphism
types.

Exercise 2.5.5. Suppose that X is an infinite set of indiscernibles, M is a
Skolem hull of X and the language of M is countable. How many automor-
phisms are there of ΛΛΊ






