
1. The Basics

1.1 Preliminaries and Notation

We assume that the reader is familiar with the basic definitions and results
normally found in a first course in mathematical logic. Specifically, we will
freely use the concepts of a first-order language, a structure or model in that
language, and the satisfaction relation between models and formulas. We
also assume that the reader knows the Compactness and Omitting Types
Theorems, and can carry out an elimination of quantifiers argument for a
specific theory such as dense linear orders without endpoints or divisible
abelian groups. In this first section we will review some of these results as a
way of setting our notation and viewpoint and jogging the student's memory.

Notation. (Model Theory)

— A first-order language is denoted by L, V, LQ, etc. The cardinality of a
language L, |L|, is simply the cardinality of the set of nonlogical symbols
of L.

— Formulas are denoted by lower case Greek letters. Writing φ(vo,... ,vn)
indicates that the free variables in φ are in {v0,..., vn}. If to,..., tn are
terms in the language, φ(to,..., tn) is the formula obtained by substituting
U for Vi. A sentence is a formula with no free variables.

— We use Λ4 or λί, decorated with various subscripts and superscripts, to
denote a model or structure in a first-order language. The universe of, e.g.,
Mo, is Mo. Elements of the universe are denoted by lower case letters such
as a, b, c, etc. If X is an element of the language in which ΛΊ is a model
XM denotes the interpretation of X in M..

— Given models M and λί in a language L, a function / : M —> N is an
isomorphism if / is a bijection and for all symbols X G L, f(XM) = X ^.
When there is an isomorphism of M onto λί we write M = λί and say M
and λί are isomorphic. An automorphism of M is an isomorphism of M
onto itself. For M a model, Aut(ΛΊ) denotes the automorphism group of
M.

— A theory in the language L is a consistent set of sentences of L. A set
of sentences need not be complete in order to be called a theory. (A set
of sentences is consistent if it has a model. A theory is complete if all
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models of the theory satisfy exactly the same sentences.) For T a theory,
Mod(T) = {M: M\=T}. A class of models is elementary if it is Mod(T)
for some theory T. The complete theory of a model λΛ is Th(Λ4) = { σ : σ
is a sentence and M \= σ}. Models M and λf are called elementarily
equivalent, written M = λf, if Th(M) = Th(λί). Given a theory T and
n < ω define an equivalence relation ~ n on the formulas in n free variables
by: φ(v) ~ n ^(ΰ) if for all models M of T, M |= Vv{φ(v) <-> ̂ (ϋ)). The
cardinality ofT, denoted |T|, is the supremum over n of the number of
~ n —classes, which is always infinite when T has an infinite model.
If λΛ is a structure in the language L and LQ is a sublanguage of L, then
Λ4 ί LQ is the restriction of λΛ to LQ. This restriction is defined to be the
model in the language LQ with the same universe and the same interpre-
tation for the elements of LQ.

Notation. (Set Theory) The set-theoretic notation used here is quite stan-
dard. Less basic concepts will be defined later when they are needed.

When discussing the "logical" properties of a model there is little dif-
ference between a finite sequence (αi,. . . , an) and the set {a\,..., an}. We
will muddy the difference by writing a C M when o is a finite subset of
M or a finite sequence from M (λd is a model). Given a finite set of ele-
ments {αi,..., an} we may juxtapose the elements and write a\... an for the
sequence (a\,..., an).

If L is a language and X is a set, L(X) denotes the language obtained from
L by adding a new constant symbol for each element of X. We will usually use
a to denote both the element a £ X and the corresponding constant symbol.
Given a structure λΛ for L, if X C M, then λix denotes the expansion of
λΛ to L(X) which interprets the constant a G X Π L{X) by the element α. If
X = {αo,..., an} we may also write (M, αo,..., an) for λ4χ.

The satisfaction relation is defined in most books as a relation on triples
(λd, φ, s), where λΛ and φ are as usual, and s is an assignment; i.e., a func-
tion from variables (including those free in φ) into M. In this book we adopt
an approach, developed by Shoenfield in [Sho67], which is more streamlined
and reflects the way we view elements of a model as parameters which can
be used in formulas of the language. Briefly, for M a model we define sat-
isfaction in λΛM of sentences in L(M) by a standard inductive argument.
For φ(vo,... ,υn) a formula of L and elements ao,...,an £ M, we say that
(αo,..., an) satisfies φ(v0,..., υn) in λΛ, and write M \= φ(ao,..., αn), if
MM \= φ(a>o, 5 o>n) (where φ(ao,..., an) is treated as a sentence in L(M)).

When studying the relations defined on a model by the formulas of the
language it is common to fix a certain set of elements A and study the rela-
tions between A and other elements of the universe. For example, given an
algebraically closed field k and polynomials over A C k, the set A is fixed
throughout the study of the sets defined on k by the polynomials.
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Definition 1.1.1. If M is a model and A C M, we call φ a formula over
A if φ is a formula in L(A). For φ a formula over A we let φ(M) denote
{ά € Mn : Λ4 \= φ(a)}, where φ has n free variables. We call X C Mn

definable over A in M if X = φ(M) for some formula ψ over A having n
free variables. We may say A—definable in M instead of definable over A in
M.

Formulas with parameters from a model will be used frequently, and they
will be introduced without formally changing the language.

All results in this book hold not just for a 1-sorted first-order language,
but also for a many-sorted language (see, e.g., [End72]). To simplify the
notation we will work in the context of a 1-sorted language (until Section 4.1
where we introduce a many-sorted expansion of a theory).

The starting point for model theory is the following result due to Gόdel.

Theorem 1.1.1 (Compactness Theorem). A theory T has a model if
and only if every finite subset of T has a model.

We assume that the reader has seen the Henkin construction of a model which
proves the Compactness Theorem (see, e.g., [Hod93, 6.1.1]). The proof shows
that when every finite subset of T has a model, T has a model of cardinality
< \T\. As a first application of compactness we state

Corollary 1.1.1 (Lδwenheim-Skolem Theorem). A theory T in a lan-
guage L which has an infinite model has a model in each infinite cardinality
λ > |Γ|.

Proof. Let C = {ca : a < X } be a set of λ new distinct constant symbols,
V = L U C. Let T = Γ U {ca φ cβ : a < β < λ}. By the Compactness
Theorem T1 has a model. As a corollary to the proof of the Completeness
Theorem we know that T' has a model M' of cardinality \L'\ + No = λ. The
restriction of Mr to L is the desired model of T.

A similar proof shows that a theory which has arbitrarily large finite mod-
els has an infinite model. Other elementary applications of the Compactness
Theorem are stated in the exercises.

Recall that M is a submodel of a model λί, written M C Λ/*, if

- Me N,
- C

M = c^, for any constant symbol c in L,
- for F e L an π-ary function symbol, FM = FM \ Mn, and
- for R e L an n-ary relation symbol, RM = RN' Γ\Mn.

Definition 1.1.2. Let M and λί be structures in the language L. We say
that M is an elementary submodel of Λί, and write M -<Λί, if M C iV and
for all formulas φ(υo,..., vn) of L, and αo>.. , an e M,

M f= φ(a0,..., On) if and only if Λί \= y>(αo,..., αn)
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(Notice that we could have stated the key condition in the definition as
MM = -Λ/M ) When M -< Λί we will also call Λί an elementary extension
of M. Our first question is: How can a submodel fail to be an elementary
submodel? After doing Exercise 1.1.5 the reader will see that all failures are
in the form: there are αo,..., αn G M and φ(υ, VQ,..., υn) such that Λί (=
3υφ(υ, αo,..., αn) and M ψ 3υφ(υ, αo,..., αn). This gives the elementary
submodel relation the flavor of a closure condition; witnesses to existential
quantifiers must be added to form an elementary submodel. This is exhibited
in the next lemma, whose proof is left to the exercises.

Lemma 1.1.1 (Tarski-Vaught Test). For models M and Λί, M -< Λί if
and only if

— ΛΛ C Λί and
- for all formulas φ(υ, υo,..., υn) and α o , . . . , an G M, if

Λί (= 3vφ(υ, α o , . . . , α n ) , there is a b G M such that Λί (= φ(b, α o , . . . , α n ) .

By the Compactness theorem any infinite model M has elementary ex-
tensions of any cardinality > \M\ + \T\. (Just apply the Lδwenheim-Skolem
Theorem to Γ/I(JMM) ) A natural companion to this is

Theorem 1.1.2 (Downward Lδwenheim-Skolem-Tarski Theorem).
Let T be a theory, λ, K cardinals with λ > K > \T\ and M a model of T
of cardinality λ. Then for any X C M with \X\ < «, M has an elementary
submodel of cardinality K containing X.

Proof. Form a chain of sets X = XQ C X± C X2 C ... such that if
φ(v, VQ, ..., vn) is a formula of the language of T, αo,..., αn G X% and ΛΛ \=
3vφ(v, αo,..., αn), then there is a b G Xi+i such that M \= φ{b, αo,..., αn).
Since there are |Γ| many formulas to consider and \Xi\ + ^0 many tuples
(αo,.. ,αn) from Xι, we may require each Xι to have cardinality K. Let
TV = \Ji<ωXi Considering suitable choices for φ shows that TV is the uni-
verse of a submodel Λί of ΛΛ. Furthermore, since any n—tuple from TV is from
some Xi, the Tarski-Vaught test implies that Λί is an elementary submodel
of M, as desired.

For models M and Λί in the same language, a function / is an elementary
embedding of M into Λί if / is an isomorphism from M onto an elementary
submodel of Λί. We say M is elementarily embeddable into Λί if there is such
an elementary embedding.

Let T be a theory in L. An n—type in v = (^o,.. , vn-i) is a consistent
set of formulas p in the variables ϋ. (Consistency is computed relative to the
ambient theory T.) We may write p(v) for p when it is helpful to exhibit
the variables. Let p be an n—type in the theory T and M f= T. Given
a G M n , we say that a realizes p in M (or satisfies p in M) if M \= φ(a)
for each φ G p. Extending the notation used for formulas, p(M) denotes
{a £ Mn : a realizes p in M }. The model M realizes (or satisfies) p if



1.1 Preliminaries and Notation 5

some tuple from ΛA realizes p; otherwise, Λ4 omits p. As usual, this notion
can be relativized over a set of parameters. Given A C M, an n—type over A
in T = Th(Λ4) is a consistent set of formulas over A (where consistency is
computed with respect to Th(MA)-) Given p a type over a set A, the domain
ofp, denoted dom(p), is the minimal set B C A such that p is a type over B.

The type p(v) is called complete if it is a maximally consistent set of
formulas in v (i.e., there is no formula φ(v) such that both p U {φ} and
p U {->φ} are consistent). We will deal extensively with complete types in
complete theories.

Notation. Fix a model Λ4, A C M and i; an n—tuple of variables. Let
Sn(A) denote the set of complete n—types over A in ϋ. (If p = p(ϋ) and w
is another sequence of n variables we equate p and p{w) in almost all model-
theoretic settings.) Let S(A) = \Jn<ωSn(A). Given an n—tuple a from M
there is a unique p G S(A) realized by α in Λ4, called the fa/pe o/α over A in
M and denoted tpM(a/A). Explicitly,

= { φ : ^ is a formula over A and Λί |= φ(o) }.

We may compress the notation and write, e.g.,

--,an) for

Definition 1.1.3. Lei T be a theory, M \=T, A C M andp, q n—types over
A. We say that p implies q in T, written p (= g, z//or an?/ model Λί >- Λ4,
p(Λ/") C g(.V). We say £/ιa£ p ana1 σ are equivalent in Γ z/ /or ê  ery model
λί >- M, p(M) = q(M)', i.e., p\= q and q\=p.

Let T be a theory and p, g n—types (over 0, for simplicity). The Com-
pactness Theorem gives the equivalent:

- p\= q ii and only if
— for all formulas φ(y) G q there are ψo(v),..., ψn(v) G p such that

(See the exercises). Additionally, p |= q if and only if for every complete
n—type r over A, r D p = > r D g.

Definition 1.1.4. Fix a theory T. A set of formulas p (in n variables) is
said to be isolated by φ if φ is consistent with T and for all ψ G p, T f=
Vΰ(φ(v) —> φ{v)). p is isolated if it is isolated by some formula. If p is not
isolated it is called nonisolated.

Notice that a nonisolated set of formulas need not be consistent. If p is
isolated by φ and M (= T then φ(M) C p(ΛΊ).

As the term "isolated" suggests there is a topology in the background.
For φ{v) a formula in n free variables, Oφ = {p G 5n(0) : φ G p}. (Here, we
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equate the formulas φ(v) and φ(x), where x is another sequence of n variables:
Oφ{y) is, by definition, the same as Oφ{py) The sets of the form Oφ comprise
the basic open sets of a topology on 5n(0), called a Stone space ofT. The
topology is compact (by the Compactness Theorem) and Hausdorff. A type
p G 5n(0) is isolated exactly when it is an isolated point in the Stone space
topology on 5n(0).

Given a model Λ4 and A C M, any p G S(A) is realized in some elemen-
tary extension M of Λ4. (This is a compactness argument, left to the reader
in Exercise 1.1.8.) In general, though, there is no reason to think that p is
realized in Ai. For any formula φ G p (equivalently, any finite conjunction of
formulas in p) the consistency of p requires that M |= 3vφm, i.e., M. (= φ{a)
for some a G Mn. However, there may not be a single a which simultaneously
satisfies all formulas in p. The obvious exception (which is immediate by the
definition) is when p is isolated: If p is an isolated type over A then p is
realized in any model of T1I{M.A)- That this is the single case when a type
is realized in every model of a countable theory is proved in

Theorem 1.1.3 (Omitting Types Theorem). If T is a countable theory
and p is a nonisolated set of formulas in T, then T has a countable model
which omits p.

The proof is to use a Henkin construction to build a model which omits the
nonisolated set of formulas. The restriction to a countable theory is necessary;
there is a theory in which some nonisolated type is realized in every model.
A related point is that there may not be an uncountable model omitting a
nonisolated type even in a countable theory. (The reader is asked to find an
example in the exercises.) The proof of the following slightly more compli-
cated version of the Omitting Types Theorem is assigned as an exercise.

Corollary 1.1.2 (Extended Omitting Types Theorem). Let T be a
countable theory and for each i, let pi be a nonisolated set of formulas in Ui
variables. Then T has a countable model which omits each pi.

The Omitting Types Theorem is very useful when constructing noniso-
morphic models of a theory. It enables us to show that a certain elementary
class is "rich"; i.e., contains models with varying properties. The goal of the
next chapter is to carry further this program of finding a wide variety of
models of fixed theory.

1.1.1 Elimination of Quantifiers

The method of elimination of quantifiers provides model theorists with a pow-
erful tool for understanding the definable subsets of a particular structure.

Definition 1.1.5. Given a language L and a class K of structures in L, we
say that a set Φ of formulas of L is an elimination set for K, if for every
formula φ(v) of L there is a formula φ'(y) such that
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- ψf is a boolean combination of formulas in Φ and
- for every model M G )C, M \= \/ΰ(φ(ϋ) <-» φ'(v)).

When T is a theory and /C is the class of models of T we say elimination set
forΓ.

The elimination of quantifiers program is: find an elimination set for a
given class /C. Of course, the set of all formulas is always an elimination set
for a class, but for many classes there is a simpler set which illuminates the
model-theoretic properties of /C. Take, for example, the theory T in L = {<}
of dense linear orders without endpoints. (This is the theory axiomatized by
the statements: < defines a linear order, there is no least element or greatest
element, and \/xy(x < y —> 3z(x < z < y)). (Q, <) is a model of T.) We leave
it to the exercises to show that Φ = {vι < V2, v\ = V2} is an elimination set
for T. (Again, we do not distinguish between formulas which are obtained by
a change of variables.)

In this example, the elimination set consists of atomic formulas — every
formula is equivalent to a quantifier-free formula, so we really have eliminated
the quantifiers. When the elimination set for T consists of atomic formulas we
say that T has elimination of quantifers, T is quantifier-eliminable, or T is q.e.
The term "elimination of quantifiers" has its origins, however, in the key step
of a proof that Φ is an elimination set. The following is proved by induction
on formulas (see the exercises). For Φ a set of formulas Φ~ = { -up : φ G Φ }.

Lemma 1.1.2. Let K, be a class of structures in L and Φ a set of formulas
of L. Suppose that

(1) every atomic formula of L is in Φ, and
(2) for every formula θ(y) of the form 3w /\i<n ψi(ΰ,w)f where each
ψi G ΦUΦ~, there is a formula θ'{v) which is a boolean combination
of formulas from Φ and is equivalent to θ on every structure in JC.

Then Φ is an elimination set for K,.

The following elimination of quantifier results will be used freely through-
out the book. The reader is referred to [Hod93] for details.

- The class /C of vector spaces over a division ring F has elimination of
quantifiers. (The elements of /C are structures in the language with a binary
operation +, a unary function α for each α G F and a constant symbol 0.)

- The class /C of algebraically closed fields of a fixed characteristic has elim-
ination of quantifiers.

- For /C the class of real-closed fields { 3y(y2 = t(x)) : t{x) a term of L not
containing y } is an elimination set for JC.

- The class of divisible abelian groups has elimination of quantifiers.

Historical Notes. The compactness theorem was proved for countable
theories by Godel in [Go30], for arbitrary propositional theories by Gόdel in
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[Go31] and in general by MaΓtsev [Mal36]. The Lόwenheim-Skolem Theorem
(as stated here) is found in [TV57], where the Tarski-Vaught test is also for-
mulated. The Omitting Types Theorem can be attributed to several sources,
Ehrenfeucht (in [Vauβl]) and Grzegorczyk, Mostowski and Ryll-Nardzewski
in [GMRN61]. The Downward Lόwenheim-Skolem Theorem was proved first
for some special languages in [Lol5] and in another form in [Sko20]. (They
both consider the special case of showing that a countable theory with an
infinite model has a countable one.)

Exercise 1.1.1. Prove that a theory which has arbitrarily large finite models
has an infinite model.

Exercise 1.1.2. An ordered field (F, +, , 0,1, <) is called Archimedean if for
any two positive elements α, b € F there is an n such that na > b. Show that
(R, +, , 0,1, <) has an elementary extension which is not Archimedean.

Exercise 1.1.3. Let σ be a sentence which holds in any algebraically closed
field of characteristic 0. Then there is a p φ 0 such that σ holds in all
algebraically closed fields of characteristic > p.

Exercise 1.1.4. Let T be a theory. Prove that p \= q if and only if for
all formulas φ(v) G q there are ψo{v),..., ψn(v) G p such that T j=

Exercise 1.1.5. Which of the following submodel relations are elementary?
(a)(Q,<)c(R,<).
(b)(2Z,+,0)c(Z,+,0).
( c ) ( Q , + , . , 0 , l ) c ( C , + Γ , 0 , l ) .

Exercise 1.1.6. Use induction on formulas to prove the Tarski-Vaught Test.

Exercise 1.1.7. Prove that M is elementarily embeddable into Λί (both
structures in the same language) if and only if Λί can be expanded to a
model of Th(MM)-

Exercise 1.1.8. Show that if M is a model, A <Z M and p € S(A), then p
is realized in some elementary extension Λί of Λ4. Also show that if p is an
isolated type over A then p is realized in any model of T1I(MA)>

Exercise 1.1.9. Prove the Extended Omitting Types Theorem.

Exercise 1.1.10. Give an example of a countable theory T and a nonisolated
type p which is realized in every uncountable model of T.

Exercise 1.1.11. Let M be a finite model in a language L. Show that

Λί = M =» Λί^M.

Exercise 1.1.12. Prove Lemma 1.1.2.
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Exercise 1.1.13. Prove that the theory of dense linear orders without end-
points has elimination of quantifiers.

Exercise 1.1.14. Let L = {E} where E is a binary relation and let T be
the theory in L saying that E is an equivalence relation with infinitely many
infinite classes and no finite classes. Prove that T has elimination of quanti-
fiers.






