
V. α-Properness and
Not Adding Reals

§0. Introduction

Next to not collapsing NI, not adding reals seems the most natural requirement

on a forcing notion. There are many works deducing various assertions from

CH and many others which do it from diamond of HI. If we want to show that

the use of diamond is necessary, we usually have to build a model of ZFC in

which CH holds but the assertion fails, by iterating a suitable forcing. A crucial

part in such a proof is showing that the forcing notions do not add reals even

when we iterate them. So we want a reasonable condition on Qi (in VPί) which

ensures that forcing with Pa does not add reals when (Pi,Qi : i < α) is a

CS iterated forcing system. Another representation of the problem is "find a

parallel of MA consistent with G.C.H.".

The specific question which drew my attention to the above was whether

there may be a non-free Whitehead group of power KI (from [Sh:44] we know

that there is no such group if V = L or even if Os holds for every stationary

S C ωι, and that there is such a group if MA +2^° > N! holds). This is

essentially equivalent to: "Is there a stationary 5 C ωi, and for each δ E 5

an unbounded subset AS of order-type ω, such that A = (A$ : δ E S) has the

uniformization property" (see II 4.1, i.e. if h = (h$ : δ E S), hg a function

from Aδ to 2 = {0,1} then for some h : (J AS —> 2 for every 5, hg C* h i.e.
δ£S

{a E AS ' hs(a) ^ h(a)} is finite). It is easy to see that Os implies (Ai : i G 5}
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does not have the uniformization property (and in II 4.3, we proved, from ZFC

+ MA -f2^° > HI, that A has the uniformization property).

The solution was surprising. By Devlin and Shelah [DvSh:65] (see AP §1

here), there is a weak form Φ^ of 0^ which follows from CH; in fact is equiv-

alent to 2H° < 2N l. This statement implies many consequences of the diamond

(see on it in Appendix §1; see [Sh:87a], [Sh:87b], [Sh:88] and a systematic de-

velopment in Abraham and Shelah [AbSh:114] and [Sh:192] and lately [Sh:576],

[Sh:600]). In particular (A$ : δ G S) does not have the uniformization property

when S G Ί)ωι i.e. S contains a closed unbounded subset of ω\. This still leaves

open the question for 5 a stationary costationary subset of ω\. Now for such

sets it was proved in [Sh:64] that the uniformization property may hold for a

fixed stationary costationary subset S of ωi, i.e. for all (A§ : δ G 5), AS C δ

unbounded of order type ω. However Ou>ι\s (and even 0^\ 5) may still hold.

On the situation for λ > HI see [Sh:186], Mekler and Shelah [MkSh:274] and

[Sh:587]. More information on the connection between unifomization and group

theoretic questions see [Sh:98] or see the book [EM] and lately Eklof, Mekler,

Shelah [EMSh:441], [EMSh:442], Eklof, Shelah [EkSh:505].

We also deal with "when does a CS iteration of proper forcing add no new

reals?" For this we need two properties. One is D-completeness (see §5) which

is a way to exclude the impossible cases, and another is α-proper for α < ωi,

where we replace a countable elementary submodel by tower of height a of

such models (in §3, and in §2 for more general case). The iteration theorem

is proved in §7, but to apply it to the classical problem of SH we need "good

forcing notion", this is done in §6; Jensen's original proof use a different forcing.

Lastly, in §8 we deal with KH giving a proof in our context to results of Silver

and Devlin. We also start investigating preservation of additional property: in

§4 we deal with ^-bounding.

Notation. In this chapter λ,μ will stand for uncountable cardinals, if not

explicitly stated otherwise.
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§1. ^-Completeness - a Sufficient Condition for
Not Adding Reals

1.1 Definition. Let 8 be a family of subsets of <Sκ0(μ) (we assume always

Sκo(μ) G £, so μ is reconstructible from 8 but using specific 8 we may forget to

write SNO(M))- In an abuse of notation, instead of a singleton {£}, E C <Sκ0(μ),

we write E. When 8 = {a G Sχ0(μ) : a Π ω\ G 5} we write {5} or 5 (here

S £ S^oί^i) or just 5 a subset of ωi), similarly if 5 C 5κ0(μι), we may interpret

it as {α G <Sκ0(μ) : αΠμi G 5}. Remember £>κ0(A) is the filter {A C Sχ0(A) : A

include some club of <Sκ0(A)} (see Definition III 1.4), it is Ni-complete, fine (i.e.

x G A = > { α : z G α } G £>κ0(A)) and normal (i.e. Ax G Ί>κQ(A) for x G A implies

(1) We say that 8 is nontrivial if for every λ large enough, there is a countable

N -< (if (λ), G) such that 8 G N and AT Π μ G A for every A G £ Π TV. We

say in such cases that AT is suitable for 8.

(2) We say, for a nontrivial £, that a forcing notion P is ^-complete if for every

λ large enough, and N -< (if (λ), G) countable, suitable for £, to which P

belongs, the pair (N,P) is complete (see below).

(3) The pair (TV, P) is complete if every generic sequence (pn : n < ω) for

(TV, P) has an upper bound in P, where:

(4) (pn :n< ω) is a generic sequence for (N, P) if pn G PnTV, P t= pn < pn+ι,

and for every dense open subset I of P which belongs to AT, Jn {pn : n <

1.2 Claim.

1) If E is nontrivial and 8 G #(λ), Λen the set of suitable TV's is unbounded

in S*0(H(\)). Moreover 8 is nontrivial C P(S*0(μ)) iff the fine normal

filter on Sχ0(μ) it generates is a proper filter. So if 8 = {E}, we can add

"iff E is a stationary subset of <Sκ0(μ)".

2) In the definition, in (1) we get the same answer for all λ for which 8 G if (λ);

if we replace "£ G N X (ίf(λ), G)" by "TV X (ff(λ), G,£)" we get the same



§1. £-Completeness-a Sufficient Condition for Not Adding Reals 197

answer for all λ for which <Sκ0(μ) G if(λ), so we may replace the universal

quantifier on λ by an existential.

3) If 8 is nontrivial, it has the finite (in fact, countable) intersection property.

4) If S C ωι is stationary, then 8 — {S} is nontrivial (for μ = ω\).

5) If P is ^-complete for some nontrivial £, then P does not add reals.

6) If N -< (-ff(λ), G) is suitable for 8, P G N a forcing notion, q G P is generic

for (TV,P), then q \\-P

 UN[GP] is suitable for S" .

7) If S C 7>(<SHo(μ)), μi = |£|+μ, 5 = {Xi : t < |£ 1} and £* - {α G S^(μι):

if i G α and i < |£| then α Π μ G Xi], then: S is nontrivial iff {E*}

is nontrivial; also for any forcing notion P, P is ^-complete iff P is E*-

complete.

8) If P, Q are ^-complete, then P x Q is £ -complete.

9) If N X (if (λ), G) and μ, E G AT and E C S<κ0(μ) then: AT is suitable for

{E} i

Proof. 1) Fix λ and a countable α G if(λ). We want to find a suitable TV such

that α G TV (then also α C TV). Assume

(*) there is no suitable TV -< (if (λ), G), α G TV.

T/ien for some λi > λ we have (if(λι),G) |= "(3α € #(λ))[(*)Γ an^ ίf(λ) G

H(\ι) of course, and λi is as required in Definition 1.1(1). Let NI -< (/f(λι), G)

be suitable for £ . Then for some α G Λ^ Π ίf(λ), TVi |= "(*)". Now consider

TV = NI Π -ff (λ) and get a contradiction. The other two sentences are easy too;

on the normal fine filter on <Sκ0(μ) which S generates see 1.4.

2) Easy, by an argument similar to III 2.2.

3)-9): Easy, (for (6) see 1.3(1)). Dχ.2

1.2 A Explanation of 1.1(4). λ is large enough to ensure everything about P,

forcing, etc., is expressible in ίf(λ), now as TV is an elementary submodel, it is

legitimate to ask what goes on when you force with P starting in TV, of course

a generic sequence is not far from being a generic subset, so what (4) says is

that for any generic extension N[G\, there is p G P which knows everything

about it (so G C P n TV is generic over TV).
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1.3 Theorem.

(1) If P is £-complete (so £ nontrivial in V), then Ihp "£ is nontrivial".

(2) If Q = (Pi,Qi : i < α) is a countable support iteration, Ihp. "Q^ is £

-complete", then Pa — limQ is ^-complete.

1.3 A Remark. So in (2) it is enough to assume £ is not trivial in V and Ihp. "

if ε is not trivial then Qi is ^-complete."

Proof.

(1) Note: Sχ0(μ)v = SχQ(μ)v . Let λ be large enough and p G P. Let N X

(ff(λ),€) be suitable for £, P G N, p G W, hence (7V,P) is complete (see

Definition 1.1(2)). Choose (pn : n < ω), a generic sequence for (AT, P), p0 = p

and choose p* > pn for all n < ω. Since p* is (TV, P)-generic by Corollary III

2.13 (see clauses (a), (f)) we have, p* Ih "(TV[G],G) X (#(λ)vlGl, G); £ G N[G\

and TV[G] Π μ = N Π μ and H(X)V nN = H(X)V Π JV[G]" and as £ E V also

N[G\ Π £ = N Π £, hence 5^0(μ) Π AT = <SNo(μ) Π N[G\ (as forcing by P adds

no new countable subsets of μ) hence

A= A
A^ε

AeN[G)

So p* > p forces AΓ[G] to exemplify that £ is not trivial.

(2) Let λ be large enough, N -< (H(X),e) suitable for £. Let (pn : n < ω)

be a generic sequence for (AT, Pα), (note pn G AT, Dom(pn) countable hence

Dom(pn) C N). Define p* G Pα : its domain is TVΠα, and for i G Λ/ΊΊα, p*(i) is

a member of Qi which is an upper bound for {pn(i) : n < ω and i G Dom(pn)}

if there is such upper bound (in Qi, say first such upper bound in some well

ordering <i of Qi (a P^-name)). We now prove by induction on i G N Π α

that p* \i > pn \i for every n (note i G Dom(pn) for every n large enough as

{p G Pα : ^ G Dom(p)} is a dense open subset of Pα which belongs to TV). There

are no special problems.

Πl.3
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1.4 Claim.

(1) The minimal normal fine filter on Sχ0(μ) which includes 8 is T> = T>(8)

which is defined by:

A G V if and only if there is C G £>N0(/-0 and Λ G £ U {Sκ0(μ)} for i < μ,

such that {α G C : (Vi G α)α G AJ C A

(2) 8 is nontrivial if and only if 0 £ £>(£).

(3) P is £ -complete if and only if P is D(£)-complete.

Proof. Easy. Πι.4

1.5 Lemma. Assume 2K° = NI. If 0 = (Pi, Qi : i < α) is a countable support

iteration, Ihp. α|Qi| = NI", £ a family of subsets of <Sκ0(μ) which is nontrivial,

and each Qi is 8 -complete. Then Pα = Lim Q satisfies the N2-chain condition.

Proof. Let {pi G Pα : i < ^2} be given. We shall find two compatible conditions

among them. Pick λ regular large enough, foj every i < N2, let Ni -< (-ff(λ), G)

be countable such that {Q,p;,z,£} C Ni and AΓ^ is suitable for £.

1.5 A Fact. We can find i < j < ω^ and an isomorphism h : Ni — > JVj (onto

A^ ) such that h(pi) = PJ and h\(Ni Π A^ ) = i

Proo/ o/ ίΛe Fαcί. Denote 5̂  = {7 < ^2 : cf (7) = KI}, clearly it is a stationary

set; define 7(7) = Um{β : A^7 Π (Uί<77Vi) - 7V7 Π (Ui<βNi)}. Since ||AΓ7 | | = K0

and [7 G Sj =Φ cf(7) = KI] clearly / is a regressive function on Sj, hence by

Fodor's lemma there exists 5 C 5j stationary and /? < ^2 such that /[5] = {/?}.

The number of countable subsets of Ui<βNi is

therefore we may choose Γ C S of cardinality ^2 and a set 5* such that

(V7 G Γ)[7V7 Π (Ui<βNi) = B*]. For every 7 G Γ define ̂  - (NΊ,pΊ,c)ceB*.

The number of isomorphism types is < 2^° = NI hence we may choose S^ C T,

|5t| = K2 such that i ^ j e S ^> N^ NJ. Pick such i, j from St. Let
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h : Ni — > Nj be the isomorphism. As each c G 5* is an individual constant, h is

an isomorphism over J5* (i.e., it is the identity on JB*) and similarly /i(p^) = PJ.

This is the isomorphism we promised in the Fact so we have proved the fact.

Continuation of the proof of 1.5: Let i < j and h be as in Fact 1.5 A. Now

choose {pf e Pa Π Ni : n < ω} such that pi = p® < pi < p\ < and

for every dense subset I G Ni of Pa there exists n such that pf £ T and let

{p™ G PQ; Π NJ : n < ω} be defined by p™ = h(pf). Define a condition r as

follows: Dom(r) = (α Π A^) U (α Π A^ ), for ξ G α Π Ni \ Λ^ , r(f) will be a

Pξ-name of an upper bound of {&?(£) : n < ω} if there is such a bound, and

otherwise 0 = 0pξ. For ξ e α Π Nj, r ( ξ ) will be a name of an upper bound of

{PJ (0 : n < ω} if there is such an element, and otherwise 0 = 0pξ. It suffices

to prove that for every n < ω we have pf < r and p™ < r. We shall prove by

induction on 7 < α that for every n < ω, pf ί7,p^ f7 < r\j. This suffices as for

7 = α we get that r is a common upper bound of pi \a — pi and PJ \a = PJ (in

Pa). For 7 = 0 this is trivial.

For 7 limit, it follows from the induction hypothesis (and the definition of the

order).

For 7 = £ + 1, notice that Dom(p^) C N^ Π α, Dom(pp C Nj Π α, and divide

to 4 cases:

1. ζ φ Ni and ξ ^ Nj] trivial.

2. ξ €. Ni\Nj, it suffices to prove

(*)r rξ lh P ξ "p?(0<r(0"

If {pf(ζ) '. n < ω} has an upper bound in Qξ then this is true by construction

(i.e. the choice of r ( ξ ) ) .

By the choice of (pf : n < ω) as Pξ <£ Pα clearly (pJ1 fξ : n < ω) is a generic

sequence for (Λ^, Pξ), hence by the induction hypothesis r fξ is ( ,̂ Pξ)-generic.

So by 1.2(6) and the definition of the order of Pα we have r\ξ H-P£ "Ni[Gξ] is
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^-suitable and (pf(ξ) : n < ω) is a generic sequence for (Ni[Gξ],Qζ)" . Hence

r\ξ \\-pζ "(p?(ξ) : n < ω) has an upper bound in Qξ" , so we finish.

3. ξ G NJ \ JVi, symmetric proof to 2 (using the choice of h).

4. ζ e NiΓ\ Nj\ remember that w.l.o.g. Qξ (set of elements) is ωι and as above

by the induction hypothesis r\ξ is (Λ^P^-generic and (Λ^P^-generic. Since

NiΠωi and NJ Γ\ω\ are initial segments of ω\ and Ni = NJ (and ω\ G NiΓiNj)

clearly TV Πu i = NJ Πωi. Also r\ξ determines Gpς ΠTV^ and Gp^ ΓiNj hence for

every ra there is an n G ω, and αm G A^Πα i, such that pj1 fξ lhp£ "^(0 = αm" .

To this relation in Ni we can apply h, which yields p!?f£ lhPί "p™(£) = αm"

(since αm G Ni Π A^ ) Hence r\ξ lhp£

 (χm(0 = p^(0" for all m < ω. Now

continue as in the previous case 2.

Πl.5

1.6 Theorem. Suppose that CH holds in F, and 8 is a nontrivial family of

subsets of «SNO(//), χ**1 — χ = cf(χ). Then V has a generic extension V\ by

proper forcing in which:

(*) (a) CH holds, 8 is not trivial, 2Kl = χ, and

(b) If P is an ^-complete proper forcing notion, |P| = KI and Xi C P is

dense for z < i$ < cf(χ), then there is a directed G C P such that

^ ^ 0 for i < i0.

1.6 A Remark.

(1) Properness is not essential in the proof of the theorem (except for having

it in the conclusion), its use will appear in 1.7.

(2) Also the reader should be aware of the fact that ^-completeness and

properness is more than properness alone, otherwise 1.6 would say:

& CH,
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which is of course impossible.

Proof. We use countable support iterated forcing systems (Pi,Qi : i < α) such

that

(*) a < χ+ and lhp i "\Qi\ — #ι,Qi is proper and is ^-complete".

For any such system Q, LimQ is an £-complete forcing notion which satisfies

the ^2-chain condition (by 1.3(2) and 1.5 respectively). Also by III §3 LimQ is

proper.

By usual bookkeeping it is enough to prove the subfact below (note that

for R—{f: for some α < ωi, / : a —> {0,1}} ordered by inclusion, always (a)

of (iii) below holds).

1.6B Subfact. If Q1 satisfies (*), Pl = LimQ1 and R is a P1-name of a forcing

notion, then there is a Q2 such that:

(i) Q2 satisfies (*).

(ii) Q1 is an initial segment of Q2.

(iii) for some maximal antichain J of P2, for every p G T (where P2 — LimQ2):

either (a) p lhP2 " there is a directed subset of R, generic over VPl" (in fact, it

is the generic subset of some Qβ, β G fe(Q1),^g(Q2)]),

or (b) for no Q> and q do we have: Q satisfies (*) and Q2 is as initial segment

of Q and p < q G LimQ, and q H-LimQ "•? *s a proper ^-complete

forcing with universe ω\".

Proof. Immediate. Πι.6B,i 6

1.6C Remark. 1) This is different from the situation of II 3.4, where we had

"c.c.c." instead of "^'-complete for some suitable £"'.

2) So the Schemma of the proof of 1.6 is more general than the one in II 3.4.

3) Assume that P, R are forcing notions in V, 8 C <S<κ0(μ) is nontrivial:

(a) if R is not proper in V, P is proper, then R is not proper in Vp (use

the equivalent definition in III 1.10(1) and for simplicity the set of

members of Q is an ordinal): similarly for 8-proper (see Definition

2.2(5) below). The proof is included in in the proof of III 4.2.
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b) If R is not ^-complete in V, P is e.g. ^-complete, then R is not £-

complete in Vp .

c) Without "P is proper", clause (a) is not necessarily true.

4) By (3)(a) (of the Remark 1.6C), as \β < a =» Pβ/Pa is proper], we can

use in the proof of 1.6 the older Schemma.

5) We can omit χ = cf(χ) in 1.6 and replace i < IQ < cf(χ) by i < χι where

Xi < X is regular. (And use iterated forcing of length δ < χ+, cf(ί) — χ\.

Instead χ+ we can use an inaccessible.)

1.7 Conclusion. In the model from 1.6, if S = {ω\ \ S}, S C ωi, stationary

costationary the following holds:

a) for any (Aj : δ G S), such that A§ C δ unbounded of order type ω for

δ G S, we have: ((A$ : δ G S), NO) has the uniformization property.

b) S is still stationary (after the forcing, by properness).

Remark. Remember, we say a family P = {Aa : a G S} of sets has the K-

uniformization property (or (P, K) has the uniformization property) if for every

family {/α : a G 5}, /α a function from Aα to «, there is / : Uαes Aa —> K such

that Λα/α =αe /f^*, where / =αe 9 if |{α : /(«) 7^ ^(«),« 6 Dom(/)}| <

|Dom(/)| (note: this is symmetric and transitive only if we demand Dom(/) =

Dom(p)).

Proof. Let (As : δ € 5) be as above, f§ : A§ —> α;, and Q = = { / : / a function

from some α < ωi to ω, such that for every limit δ < α, δ G 5 we have

f\Aδ =ae /s}, ordered by C.

We have to check the following four facts:

Fact A. If p G Q, Dom(p) < a < ω\ then, there is q, p < q G Q, Dom(ς') = a.

Fact B. Q is 5-complete.

Fact C. If p G Q, 1̂ C ω\ \ Dom(p) is finite, / a function from A to ω, ί/ien

there is g, p < ςf G Q, / C g.

. Q is proper.
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Proof of Fact A. Let {δi : i < j < ω} be a list of all limit ordinals δ G 5, such

that Dom(p) < δ < a. As Aδl has order type ω, and Sup(A5J = δ^ clearly

AS£ Π Agm is finite for m < i, hence we can define by induction on £ < ω,

βι < δi such that βι > Dom(p) and βι > Max(A^ Π A^) for m < I. Now

define ς, a function from a to ω:

ί
p(ϊ) i G Dom(p)
fδi(i) ie(Aδί\βt)
0 otherwise (but i < a)

Now q is well defined as the βι were defined such that the Aδί \ βι are pairwise

disjoint and disjoint to Dom(p). It is trivial to check p < q G Q.

Proof of Fact B. Trivial. (Note that if (pn : n < ω) is an increasing sequence

of members of Q, then (J pn satisfies almost all the requirements, the prob-
n<ω

lematic one is: if δ G 5 is (J Dom(pn) (i.e. the supremum of the domain)
n<ω

then ( U pn} \Aδ =ae fδ- But by Fact A the set \Jn<ω Dom(pn) is N Π ωλ if
n<ω

(pn : n < ω) is a generaic sequence for (AT, Q), so if ΛΓίΊu i G ω\ \S the sequence

has an upper bound, and this holds for N suitable for 5.)

Proof of Fact C. Let A = {aι : i < m} increasing with i and we define by

induction pt <E Q (for t < 2m), pQ = p, Dom(p2m) = «*> Dom(p2^+2) = α/H-1,

(<Xί) — ffa^iPi ^ ί^+i Now the existence of ί̂ +i follows by Fact A, and

belongs to Q as for every limit 5, [δ < Dom(p2€+ι) <=> 5 < Dom(p2^+2)]

Now q — P2m is as required.

Proof of Fact D. Let λ be large enough, μ > (2λ)+, <* a well ordering of if (μ),

for which λ is the first element and let <*χ=<*μ \H(\). It suffices to prove that

for any given countable N -x (H (μ), €, <*), Q € N, pe N Γ]Q there is q G P

which is (N, Q)-generic, p < q. So let δ d= N Π ωι and choose αn < 5, such

that αn < αn+ι, ί = Un<u;αn. Let {̂  : £ < α;} be a list of all members of

N Π ff(λ) and Nk be the Skolem hull of {Q,p} U {b£ : £ < k} U {i : i < ak}

in the model N* d= N\H(X) X (Jf(λ),€,<J). So clearly Nk e N (as λ is

definable in (if (μ), G, <J), being the first, hence (if (λ), G, <J) belongs to N).
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It is also clear that U f c < ωJVfc = JV t, so every pre-dense I C Q,X G N belongs

to N^ hence to some AΓfc. Now, define by induction on n,pn such that:

a) Pθ = P>Pn< Pn+l

b) PU G Nn n Q
c) if 5 G 5, then pn, /$ agree on A5 Π 7Vn \ Dom(p0)

d) if £ < n, 6^ an open dense subset of Q then pn G 6^

e) an G Dom(pn+ι)

For n = 0,po — P satisfies all the requirements.

If pn is defined and satisfies the requirements, first note that AS Π Nn+ι is

finite as: AΓn+1 G AT, Sup(iVn+ι Πωi) G TV hence Sup(JVn+1 Π u i) < 5, whereas

^ has order type ω with Sup(A$) = δ. By Fact C there is p^ > pn, p^ G Q,

p|» 2 Λ r(^n+ι nAd\Dom(pn)) and by Fact A w.l.o.g. an C Dom(^) (if δ i 5,

we use only fact A). As AΓn+1 -« (ff(λ), €, <J), {pn,Q,αn,/5ί(AΓn+1 Π A)} G

AΓn+1, we can find such p^n G AΓn+1. Now p^n satisfies all the requirements on

pn_ι_ι (for c) use the induction hypothesis) except maybe d) for I — n. So if bn

is an open dense subset of Q, we choose pn+ι € &n? Pn+i ^ Pn'Pn-fi € Nn+ij

and if 6n is not an open dense subset of Q, we choose pn+\ = p^n.

So, we have completed the definition by induction of the pn's. Now q =

Un<ωPn is a member of Q because: by a)(and b)), q is a function from an

ordinal to ω; by b) we have Dom(pn) C ί, and by e) we have αn C Dom(pn)

hence Dom(^) = 5; for δι < δ we have q\A§1 =ae fδl as q\A§1 C pn G Q for

some n and if 5 G 5 then <?fA<$ =αe /« by c). Also q belongs to every 6^ which

is an open dense subset of Q (by d) as pt+ι < q). But, every open dense subset

of Q which belongs to TV, belongs to if (λ) (as λ is large enough) hence to N^

hence is bt for some £, so q is (N, Q)-generic. DI 7

* * *

We can easily get similarly (more exactly, combining 1.7 and [Sh:44], [Sh:64]):

1.8 Conclusion. In the model from 1.6, if £ = {ωι \ 5}, S C tϋi stationary

costationary, the following holds: If G is an abelian group, G = Ui<ωιGi, Gi
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increasing, countable, free, and Gi/Gj is free when j £ 5, j < i, then G is a

Whitehead group. DI.S

Also note that if 8 is a normal filter on α i, it is well know that by £-

complete forcings we can "shoot" through all A e 8 closed unbounded subsets

of ω\. We can in 1.7 (hence 1.8) replace {ωι \ 5}, by a normal nontrivial ideal

on ωι] which we can assume is dense in the sense that every stationary S C ω\

contains a subset in the ideal.

The reason for 1.8 is

1.8A Fact. For G = (Gi : i < α i), S C ω\ as in 1.8, H an abelian group,

h a homomorphism from H onto G with kernel Z, letting Hi = h~l(Gi),

the following forcing notion is proper and (ωι \ 5)-complete: P — {g : g a

homomorphism from Gi into Hi such that (h\Hi) o g = id^}. ΠI.SA

Note

1.9 Claim. If P is {Sj-complete, S a stationary subset of ω\ and in V we have

Os then in Vp we also have Os

Proof. Straightforward (as in IV, we use Os to given the isomorphism type of

a countable elementary submodel and a name of a subset of ωi). D1-9

§2. Generalizations of Properness

We shall repeat most of this section in the next one, with more details and less

generality.

2.1 Definition. For an uncountable cardinal λ, countable ordinal α and ί < ω:

(1) Let SQS^(X) be the set of sequences (Ni : i < a) such that:

a) Ni a countable submodel of (-ff(λ), G).
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b) i G Ni and (Nj : j < i) G Ni+ι+t or, at least, (Nj : j < i) is definable in

c) If φ is first order, α G TV; and (#(λ),G) t= "Ξb φ(x,ά)n, then for some

6 G TV^, (tf(λ), e) N φ(b,ά) (so for limit ί < α, TV5 -« (ff(λ), G)).

d) TVi (i < α) is increasing and continuous.

(2) A forcing notion P is (α,£)-proper, if (for λ large enough): for every

TV = (Ni : i < a) G SQS%(λ) (the zero is intended), such that P G TV0,

and for every p e TV0, p G P, there is an r G P,r > p which is (TV, P,^)-

generic (or (P, -Q-generic for N, or ^-generic for TV), which means: for every

i, r ihp uNi[GP] Π V C Ni+ιn, where:

(3) If P G TV C ff(λ), G C P generic, Λen A^[G] - {r[G] : τ a P-name first

order definable from parameters from TV}. We define N[G] similarly, for

N= (Ni :i<a).

2.1 A Remark.

1) Note that for I = 0, Ni X (ίf(λ), G).

2) Note that by Lemma 2.5 it follows that (£, α, £)-properness is equivalent

to (£,α, fc)-properness for k,£> 0. See 2.5A(0).

2.2 Definition.

(1) <S^o(μ) = {{α^ : z < α) : α^ G S#Q(μ) and the sequence is increasing

continuous}.

(2) We call 8 C U^<α7
:>(<S^o (//)), (α, £)-nontrivial, if for every large enough

λ, SQS£(λ,£) ^ 0, where 5Q5^(λ,5) is the set of TV - (TV; : i < α) G

SQS*a(X) such that: £ G TV0 (and μ G TV0) and </ A G £ Π TV0 Π P(<S^o(μ))

and 7 < α, ί/ien (TV^ Π μ : i < 7) G A. In such a case, we call TV suitable

for ε.

(3) P is (^,α,^)-proper means: if λ is large enough, and TV G SQS^(X^ε),

β < 7 < α, 7 a limit ordinal, P G TV/3 and p G P Π Nβ, then there is g,

p <q € P such that <? is (TVf[β, 7], P, £)-generic.

(4) In Definition 2.1, 2.2 we may suppress I when it is zero.
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(5) A forcing notion which is (£, 0, 0)-proper will be called ^-proper.

(6) A forcing notion will be called (α, £)-proper if it is ({Sχ0 (μ)}, α, £)-proper.

2.3 Theorem. Assume 8 is (α, ̂ )-nontrivial. Countable support iteration pre-

serves (£,α,£)-properness, provided that ί — 0 or a is a limit ordinal.

Before proving we show 2.4, 2.5 below.

2.3A Remark. There are examples that the notions are distinct, proper is

({5Ho(μ)},0,0)-proper.

2.4 Claim.

1) If P G N -< ( H ( X ) , e , < * χ ) , N countable, G C P generic over V, then

N[G] = [τ[G] : r G N a P-name}.

2) If TV G SQS%(X),P G TV0,G C P is generic, then Vp 1= «N[G\ G

3) If TV G SQS%(\), Q = (Pι,Qt : £ < n) £ N0 is iterated forcing, re a

P^-name of a member of Q£, is (N\G^,Qt, fc)-generic (Gι C P^ the generic

set), thenr= (ro,rι, . . . ,rn_ι) is (TV, Pn,nA:)-generic.

4) If P is (α, Improper and a = ωβ, then P is (/?, 0)-proper.

5) If P is (αι,£ι)-proper, QI > α2, ^i < ^2, then P is (α2, ̂ -proper. Also P

is (0, 0)-proper iff P is proper.

Proof. 1) Straightforward.

2) like 1.3(1).

3) Left to the reader.

4), 5) Check. Q2 4

2.5 Lemma. Consider the following properties of a forcing notion P, p G P,

countable limit ordinal α, λ regular large enough and <^ a well ordering of

-ff(λ), 7 is an α-sequence of ordinals, strictly increasing, 7(1) < i + α;, k an

α-sequence of natural numbers, k(i) > 3, are equivalent:
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(1) There is a function F, Rang(F) C S<^(P(P)), Dom(F) = S

such that (but for I C P, A C P(P) we let I Π A = {p G I : {p} G

for every increasing continuous sequence of countable subsets of P(P),

Ai(i < a) satisfying: F((Aj : j < i)) C AΪ+I, p G P Π AQ there is a q e P,

q > p, such that for every ί < α and J G ̂  a maximal antichain of P,

JΠ F({Aj : j < i)) is pre-dense above q.

(2) For every Ni C (tf (λ), G, <^) for i < α satisfying (a), (b), (c) listed below

and p G NQ Π P there is a <? G P, g > p such that

(*) for every i < α and P-name β of an ordinal, /? G 7V;, we have

where

(a) (Nj : j < i) G A^+i, A^ continuously increasing, Ni is countable and

P G AΓ0, α G AΓ0.

(b) For every (first-order) formula </?(x, ά), α G A^, i < α, (J^(λ), G, <^) |=

(3x)(/?(x,ά) implies (#(λ),E,<^) N (5x € Wί+ι) φ(x,α)

(c) In b) we can allow α C 7V^ U {{̂  : j < ί ) } .

(3);γ The same as (2) omitting (c), replacing JVi+1 by JV7^)+3 in (*).

(4)^ The same as in (2), replacing TV^+i by Ni+k^ in (*), omitting (c).

(5) Like (4) for k constantly 3.

2. 5 A Remark. (0) The point of this lemma is to show that some natural

variants of Definition 2.1(2) are equivalent.

(1) Note that clause (2) is just a case of (α, l)-properness.

(2) "λ large enough" just means P(P) G #(λ); we can replace P(P) by the

family of maximal antichains of P.

(3) As (1) of 2. 5 does not depend on λ, we get the equivalence of the others

for all suitable λ, similarly concerning 7 and k.

(4) We can replace α G NO by "i + 1 C JVy .

Proof. (1) => (5): We can assume that the F exemplifying (1) is definable

in (jfJ(λ), G, <λ) (by a formula with the parameters P and α only); just
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take the <λ-first F satisfying (1). Moreover we can assume there is an

/ = (/0,/j, . . .)n<ω G H(X) similarly definable such that F((Aj : j < i)) C

{ f n ( ( A j : j < i)) : n < ω}. Clearly for every i < α, n < ω and (Aj : j < i)

we can find some first order φn(x,P,p,(Aj : j < i)) such that the unique

x G H(X) satisfying it in (if (λ), G, <J> is fn((Aj : j < i)). Hence, if Ni(i < α)

are as in (4)^, then for every i < α, n < ω, fn((N2j Π P(P) : j < i))

is definable with parameters from Λ^+i, hence is an element of N H+Z. So

F((N<2j Π P(P) : j < i)) C JV2i+2. So, if q exemplifies the satisfaction of (1) for

(N2jΓ\P(P) : j < α), then it exemplifies the satisfaction of (4)^ for (Nj : j < a)

where k^ — 3.

(1) =» (2): Similar proof, but we use F((Nj Π P(P) : j < i», made possible by

use of (c) from (2).

(2)=» (1): To define F((Aά : j < i)), we define a sequence (Nζ((Aj : j < i)) :

C < 2i + 2) as follows: Nζ = |J7<C A^7 for limit C, and Nζ = Nζ((Aj : j < i)) =

the Skolem hull of {(NΊ : 7 < β) : β < ζ] U {Aj : 2j < ζ} in the model

(f f(λ),€,<*) for a successor C and ζ = 0. Note that Nζ((Aj : j < i0)) =

Nζ((Aj : j < ύ}), if C < 2z0+2, C < 2^+2. Let F((A, : j < i)) = P(P)ΠAΓ2i+2.

If (Ai \ i < a) obeys F, let Nζ = Nζ((Aj : j < i)) for some (or all) i such that

C < 1i + 2. Then (Nζ : ζ < α) satisfies (a), (b),(c). For p G A0 = P(P) Π N0,

find ς' as guaranteed in (2). Let I G A^ Then J G 7V2ί+ 1, so, by (2), IΓ\ ΛΓ2;+2

is pre-dense above g and it includes X Π ^({Aj : j < i)), just as required.

(5) => for some fc, (4)^: Trivial.

(4)fe => for some Ί (3)^: (i.e. 7 depends on fc): Given k define 7(0) = fc(0),

7(1) - U^iTU) + k(Uj<iΊ(j)) + 8.

(1): Similar to the proof of (2) => (1), only we define Nζ((Aj : j < i))

for C < 7(0 + 8 x (7(0 + 1 - sup{£ : ί limit < 7(0 })• Note that as {P, α} G Nδ

7 belongs to P or at least some.

Putting together all the implications, we have finished. D2.5
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Proof of 2.3. We seperate the proof to the two natural cases. Let (Pζ, Qξ : ζ <

ζ*,ζ < C) De a countable support iteration and let λ be large enough.

Case A: I = 0.

We prove by induction on ζ < ζ* and then by induction on 7 < a the

following

(*)C,7 tft <ζ,N£ SQS°a(\,ε),Q G TVo, β < Ί < <*, {CO e Nβ and q G Pξ

is (N\[β, 7],P^)-generic and p G Pζ Π Nβ satisfies: p\ξ < g, or just p is a

P^-name, \\-pζ "p G Λ^ n Pζ, p\ξ G Gpξ", ώen there is r G P^ such that: r

is (N\\β, 7], Pc])-generic, r \ξ = q and p < q and Dom(r) \ ξ = NΊ Π ζ \ ξ.

As case B is more involved we do it in more details.

Case B:t=l

Note that by 2.4, each Qi is proper. We prove by induction on ζ < ζ* and

then by induction on 7 < a and ζ < ζ* the following:

(*)c,τ tfξ<ζ< C*> N ^ SQS2(λ,£), Q G A^o, /^ < 7 < α, 7 a limit ordinal and

/? is a non limit ordinal, {£, £} G Nβ and <? G Pξ and ^ Ihp^ "if β < β\ < 7

then Λ^JGpJ Π V C 7V/5l+n for some n < ω" and p e Pζ Π Nβ satisfies

pίί < Q' or just p is a P^-name of a member of PζΓ\Nβ such that pf£ G Gp^

and Dom(<7) = NΊ Π ξ and u C [/?, 7) is a finite set of non limit ordinals

then there is r G Pζ such that

(a) r lhPζ " if / ? < / ? ! < 7 then TV^ [GPς] Π F C A^/31+n for some n < ω"

(b) r lhPζ "if A G u so /?</? !< 7, then Nβl [GPζ] Π Fp^ - Nβ(GP^

(c) p <r

(d)r\ζ = q.

Note that when ξ = ζ the assertion is trivial.

case 1: ζ = 0. There is nothing to prove.

case 2: ζ = ζι + l.

So ξ < Ci, so by the induction hypothesis (and the form of what we are

trying to prove) w.l.o.g. ξ = Ci and β G u and (Vβ')[βf + l G u & / ? ' > / ? - >

β' G u], and /? G u. Let u = {β0, βl + 1,... ,^9n - 1}, β = A) < Λ < - - < βn-ι

and let βn = 7. Let g G Gξ C P^, Gξ generic over V and let JV/ =
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for i G [/3,7], so (Nl'.ie [/?,7]> G 5Q5(°τ_^Hl(λ,£) in V[Gξ]. If 7 = a let

Λ£+ι -< ( H ( χ ) [ G ξ ] , e ) be countable such that {N,Gξ,p,q,Q,ξ,ζ} G

Clearly p(0[Gξ] G Qξ[Gξ]nΛ^o, so there is p0 G ΛΓ£o+1 which is (ΛΓ£

generic (because as noted above, lhpξ "Q^[Gξ] is a proper forcing").

We now choose by induction on <£, p^ G JV££+ι such that:

(*)ι Vtβ<j< βι, j is a limit ordinal ίΛen p^ Ih A^[GQJ Π F[Gξ] = AΓj

(*)2 ifβ<j<βι then pt Ih <Wj[GQJ Π V[G€] C ΛΓ^.^^j for some

n<ω".

(*)3 Qξ[Ge]Np(0[Gξ]<p€<pm

For ί = 0 this was done above, for ^ — n this complete the proof for the

present case so let us choose p^+i assuming we have already chosen p^.

Now if βi+\ = βt + 1 we just use \\-pζ "Qξ is proper", so assume βι+ι >

βi -f 1, so by a demand on u we know that βt+ι is a limit ordinal. So first

choose P£ G Qξ[Gξ] Π N^i+2 which is above p^ and is (JV/3£+ι,Qξ[Gξ])-generic

(using again properness) and then choose pι+ι G Qξ[Gξ] Π Nβl+1+ι above p^

and satisfying (*)ι 4- (*)2, which is possible by the induction hypothesis on 7

(and βι+\ being a limit ordinal), so we have finished the induction step on ί

hence the present case.

case 3: ζ a limit ordinal.

First as in the proof of the previous case, w.l.o.g. u — 0. Now use diago-

nalization as usual. D2.3

§3. α-Properness and
(£, α)-Properness Revisited

In §1 we gave some solution to "which forcings do not add reals". What occurs is

that we may have a small stationary subset of ω\, on which e.g. uniformization

properties hold. But we want e.g. to be able to prove the consistency of CH +

SH, which is impossible by §Γs method, because it is possible that the model

Vι from Theorem 1.6 satisfies also Oωu and even 0^ \ g (see 1.9 or [Sh:64]).
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Here we make an investment for this goal by developing α-properness (and

(£, α)-properness) which is a generalization of properness, when the genericity

is obtained for some tower of models simultaneously. In almost all cases the

proof that properness holds gives α-properness. The point is that for some

properties X, for "X + α-properness" it is easier to prove preservation by CS

iteration.

To a large degree we redo here §2, with more explanation and, for nota-

tional simplicity, only for t = 0.

3.1 Definition. For a < ω\ the forcing notion P is said to be a-proper if for

every sufficiently large λ and for every sequence (Ni : i < a) such that Ni is

a countable set, Ni -< (ff(λ),e), if the sequence (Ni : i < a.) is continuously

increasing, i G JV<, (Nj : j < i) G ΛΓi+1, P G N0 and p G P Π 7V0, then there is a

#5 P < Q € P which is (N^ P)-generic for every i < a.

3.2 Remarks.

(1) Obviously, a forcing notion P is 0-proper if and only if it is proper.

(2) It is also obvious that if β < a and P is α-proper then P is also /3-proper

(every sequence (Ni : i < β) which satisfies the above conditions can be

extended to a sequence (Ni : i < a) which satisfies these conditions and,

since P is α-proper there is a p < q G P which is (Ni, P)-generic for every

i < α). Therefore, in particular, every α-proper P is proper.

(3) If P is α-proper it is also (α + 1 4- α)-proper. To see this let (Ni : i <

a + 1 + α), p be as required. Since P is α-proper there is a <?o> P < (7o € -P

which is (Ni, P)-generic for every i < α. Since Na+ι -< (H(X), G) and p, P,

(Ni : i < α) G Na+ι there is such a go G Na+ι. Since P is α-proper there

is qi, QQ < Qi G P which is (7Vα-fi+^,P)-generic for every i < α. Since

Qi > <7o5 <7o is also (A^, P)-generic for every z < α 4-1 + α.

(4) Note that if α is limit, (Ni : i < α) increasing and continuous, p is

(A^,P)-generic for z < α (and P G JVo), then p is (N, P)-generic where

N = Ui<aNi. As a consequence of this and (3), if P is proper it is n-proper

for all n < ω and if P is ω-proper it is α-proper for all ω < a < ω2. And:
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P is 7o-proper iff P is 7ι-proper when 700; = 71 ω. Hence it is enough to

deal with additively indecomposable 7 (i.e. (V/? < 7) (/? + /?< 7)).

(5) For (Ni : i < a) as in 3.1, α additively indecomposable, as α G Λfα, for

some β < α, a G Nβ\ now α = β + α, so with easy manipulations this

definition is equivalent to the one with α G NQ.

3.3 Definition. <S£o(A) = 5°̂  (A) = {(α* : * < « > : a< ^ 5«0(A) for all

i < a and (ai : i < a) is continuously increasing}. Let F be a function from

U0<β ̂ (A) into 5<Kl(A) and let G(F) - {(α, : i < α) G 5°Nl(A) : (Vt < α)

(V finite 6 C oi+ι) F({a, : j < i),6) C α i +ι)Λ(V finite 6 C α0) F(6) C α0} where

we write F(6) instead F ( ( b ) ) and F(α,6) instead F(αΛ{6)). Let Fn, n < ω,

be functions into <S<H!(A) and let F be given by F(x) = Un<Ct;Fn(x), then

G(F) C Γ\n<ωG(Fn), hence the set of all G(F)'s generates an Ni-complete

filter -D^(A) on S^(A).

3.4 Theorem. The forcing notion P is α-proper if and only if it preserves the

property of being a stationary subset of <S^Kι (A) (i.e. being a set of positive

measure) with respect to the filter P"Nι(A) for every uncountable A.

Proof. Similar to the proof of the corresponding fact for proper forcing. Da.4

3.5 Theorem. For each a < ω\, α-properness is preserved by countable

support iterations.

Proof. Again the proof is similar to the one on properness, or see 2.3(1). DS.S

Now we add 8 as a parameter, where 8 is similar to what we did in §1.

3.6 Definition. A family S of subsets of U7<α;ι ^KO(^) *s α-riontrivial if: For

every λ large enough, there is a continuous sequence N = (N^ : i < a) of

countable elementary submodels of (if(λ),e), (Nj : j < i) G Afi+i, S G NQ

such that: (Ni Π μ : i < a) belongs to ΠiX : ̂  G f Π NQ}. In this case we call

N suitable for B and for (B, a). Let Pα(£) = {5 C <S£0(μ) : B U {<S£o(μ) \ 5} is

α-trivial}.
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3.6A Remark. 1) If α < ωi, SβίΊ C P(S%~0(μ)) for β < 7 < α, β not limit,

then we can find S C P(5go(2^)) such that: if λ > 2", (̂  : i < a) € SQS*(\)

and μ G AΓ0, tfoen (a)φ>(b) where:

(a) (TVi Π μ : β < i < 7) G £/3,7 when EβιΊ is defined.

(b) (JVί Π2» :i<a) eε.

2) We also use in this section the following stronger demand than 3.6:

if β < α, then (Nβ+Ί Π μ : 7 < α - / 3 ) e {Y : Y G 8 Π

3) The point of 3.6A(1) (and its parallel for 3.6A(2)) is the variation in Defi-

nition 3.6 do not give a really new notion.

3.7 Definition. A forcing notion P is (£,α)-proper (£ as above, α-nontrivial)

iffoτ every TV which is suitable for (£, α) and p € TVo, P £ NQ Π P there is q > p

(in P) such that q is (JV^, P)-generic for every i < a.

The following repeats 2.3.

3.8 Theorem. Suppose 8 is α-nontrivial, 8 C U7<ωιP(5^o(μ)).

(1) If P is (£,α)-proper, then Ihp u€ is α-nontrivial" .

(2) If Q = (Pi,Qi '. i < β) is a countable support iteration, Ihp. "ζ^ is (£,α)-

proper", P^ = LimQ, then Pβ is (£,α)-proper.

(3) If P G A^o, AT is ^-suitable, p G P is (Ni9 P)-generic for every i < ίg(N),

thenp\\-P

 α]V[G] is ^-suitable" .

3.8A Remark. So in (2) (by (1)) it suffices to assume Ihp. "if 8 is α-nontrivial

(in VPi) then Qi is (£,α)-proper".

Proof. No new point. D;13.8

3.9 Theorem. If P is (£,α)-proper and Q is not (£,α)-proper, then Ihp "Q is

not (£,α)-proper".
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Proof. Easy. ^3.9

§4. Preservation of u -Properness
+ the ^α -Bounding Property

4.1 Definition. A forcing notion P has the ^α -bounding property if: for any

/ G (ωω)vW (G C P generic) there is g G (ωω)v such that f < g (i.e.

4.2 Discussion. Clearly the ^u -bounding property can be considered as an

approximation to the property "not adding reals". Also this property, and

similar properties play crucial parts in many independence proofs. That is,

many times we want on one hand to add many reals, but on the other hand to

preserve something, e.g. to preserve: the set of old (or construct ible) reals is of

the second category or does not have measure zero, or every new real belongs

to an old Borel set of special kinds, etc. In the next chapter we shall deal with

various such properties. But here we choose to deal with ωu;-bounding, as it is

very natural, and as the proof of its preservation is a prototype for many other

such proofs. To be more exact we do not prove that it is preserved, only that

together with ω-properness it is preserved. (This will be eliminated in the next

chapter). The proof also serve as introduction to the proof of preservation of

"no new reals" in §7 and to VI. Of course VI §2 gives an alternative proof of

the theorem 4.3.

4.3 Theorem. The property "ω-properness + the ωu;-bounding property" is

preserved by countable support iteration.

Proof. Let (P^ Qi : i < a.) be a CS iterated forcing system. We prove that it has

the ωω-bounding property by induction on α (the preservation of ω-properness

follows from Theorem 3.5). For α = 0 there is nothing to prove. For α + 1 we

have VPa+l = (VP<*)Q<*. If / G Vp"+1 - (VPa)Qa, then there is a function
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g G Vp° such that g > f (since Qa has the ωu;-bounding property) and, by the

induction hypothesis, there is an h G (ωω)v such that h > g, so h > f.

If a is a limit ordinal and cf (α) > NO, then every / G VPa already appears

in some VPi, i < α (by III 4.1B(2)), so we can apply the induction hypothesis.

So we are left with the case α is a limit ordinal of cofinality N0.

The following lemma is the main point.

4.4 Lemma. Suppose

a) P a proper forcing notion, Q a P-name of a proper forcing notion, (p, q) G

P * Q and P, Q have the ^α -bounding property, λ large enough, 7V0 -<

NI X N2 -< Cff(λ), G), and P, Q, P * Q and (p, g) belong to N0.

b) Λf0 G Nι,Nι G 7V2, and each A^ is countable.

c) r G P is (Λfc, P)-generic for i = 0,1,2 and r > p.

d) (2^ : <£ < cj) is a list of all maximal antichains of P which belong to Λ/o,

2^ C Ϊ£ Π Λ^o is finite, ϊ^ pre-dense above r and (It : £ < ω) £ NI,

(XI :t<ω}£Nl.

e) {Ji : £ < cϋ) G A/i is a list of the maximal antichains of P * Q which belong

to W0.

Then there is a qι G Q Π A/2, J7/ C Ji n ΛΓ0 finite for -ί < ω, such

that: (r,gi) > (p,#), and each JT^* is pre-dense above (r,#1) (hence (r,q\) is

(AΓ0, P * Q). generic) and (Jf : ί < ω) G N2.

4.4A Remarks.

(1) Instead of a maximal antichain, we can look at a name of an ordinal, or

dense subsets.

(2) The situation for P, A^o, A^i, r in the assumption is similar to the situation

of P * Q, NO, AΓ2, (r, q1) in the conclusion when q1 > qι is (JV2, Q) generic.

So we preserve the situation while not increasing the condition in P. So,

every time we advance one step in the iteration, we lose genericity for one

of the models (Nι). This will give us the induction step in the proof of 4.3

for cf(α) = NO-
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Proof of Lemma 4-4- For helping us in understanding let G = Gp C P be

generic over V, and we shall work sometimes in V[G], sometimes in V. Note

that if r G G (which is the interesting case for us) then for ί = 0,1,2 we

have Nι[G\ Π H(X)V = Nέ and Ne[G] -< (#(λ)[G], G) and even (Λ^[G], 7V>,G

) x (ff(λ)[G],#(λ),G) and Λ//[G] G A^+it^]- Alternatively, we could rewrite

statements of the form V[G] \= ... as r Ih . . .

First try:

As JO is a maximal antichain in P*<5, the set {<?°[G] : (p°, #°) G JTΌ? P° € G} is

a maximal antichain of Q[G]. Hence q[G] is compatible with some such q°[G].

Let p°,q° be P-names such that:

Ihp "p° G Gp,(p°,g°) G Jb and, ς,g° are compatible in <2". Let 2J - {pη :

η G TO}, where TO C xμ for some μ codes a maximal antichain in P deciding

which element of J0, (p°,?°)[G] will be, i.e, p,, Ih "(p°,ςr°) - (p°,ςβ)", where

(p°,?°) G Jb iff r/ G T0. Then pη Ih "p° G G", so without loss of generality

pη >Pη, and Pη Ih "g and ̂  are compatible in Q".

Similarly for each η G TO; if pη G Gp and there are pl > pη, and

( p i i Q i ) £ Jι SUCΓ1 tnat Pi ^ P1? P1 ^ Gp and p1 Ihp "g,q^,qι are compatible".

So, there is a TI, T\ C 2μ for some μ, 77 G T\ =Φ> 77 f l G TO and for every ry0 G T0

for some η\ G TI, 770 = 771 f l , and jj = {p^ : η G TI} is a maximal antichain of

P, Pη > Pη\l, Pη > Pη, (PηiQη) ^ Jl and Pη "~ UQ^Qη\l^Qη ^Γβ Compatible Πl Q" .

So, we can easily define inductively on n, Tn, ^^(77 G Tn), J^ and (p^, ̂ ) G

Jn (for η G Tn).

Looking at the way we have defined this, clearly we can assume Tn,

(pη : η G Tn) G 7V"0 (i.e. Tn and the function r? »-> p^ in AΓ0) and ((p^,^) : r? G

Tn) G ΛΓ0, BU^ as {̂ n '• n < ω) does not necessarily belong to Λf0 (in fact it

cannot), we do not try to claim (Tn : n < ω) G NO, etc., but we can assume

that <{Tn, (p^ : η G Tn), {(pj}, ςβ) : ry G Tn)) : 0 < n < ω) belongs to JVi.

Now as each ZJ G NQ is a maximal antichain of P, for some n(^) < ω,

ZJ = Zn(£), hence Z\^ C Zn(£) Π NQ = ZJ Π A/o is pre-dense above r and is

finite. Let T/ = {77 G T£ : p^ G I*w} So, it is natural to look for g^ G Q[G]
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(where r G G) such that for each I < u;, {̂ [G] : η G T/} is pre-dense above q\.

This will be sufficient - it implies (in V[G]) that q\ is (7Vo[G],<3[G])-generic,

q\ > #[G], and in V, for some P-name <?ι we have JΓ/ = {(pη,Qη) '> η G T/}

is a finite subset of Ji Π 7V0 pre-dense above (r, #ι); moreover clearly we can

choose #ι G 7V2, in fact <?ι G 7Vι.

Unfortunately, there is no reason to asssume q\ exists. Look at the extreme

case T^ = {ηn} (e.g. when P is Ni-complete and r determines Gp Π NQ). So

in V[G] we know #, ^£(^ < α;) and we know {q, q^t : I < ί0} is compatible for

every £Q < ω; this is not a good reason to assume {q, qηι : ί < ω} is compatible,

except when Q is Ni-complete and any two compatible members have a least

upper bound.

Second Try:

Let JtΠNo = {(z4,ς£j : m < ω} (Ji from (e) of 4.4) and as N0 e N^

(Ji : ί < ω) e NI, we can assume that (((p^q^) : m < ω) : £ < ω) G Nλ.

Let 5̂  = {m < ω : p^ G Gp}. This is a P-name, 5̂  G A^i and even

(Si : I < ω) e NI. If AΓ0[G] Π V = N0 then in F[G] there is a function

/ : ω — > ω such that

ϊ ι= ? [G]Λ/\ V 1̂°]
£<α; m<f(t)

is consistent (because Q nas the ^α -bounding property and Nβ[G] Γ\ V C NQ) .

More formally, this means that in Q[G] there is a q\ > q[G] such that for every

ί < ω, {<tfn[G] ' m < f(f) and m G ^[G]} is pre-dense above q\ in Q[G].

And also, equivalently, there is q\ G Q[G\ such that q\ \\~Q\G\ "<1 ^ GQ and for

every i < ω for some m < f(£) we have p^ G G, ς^JG] G GQ" (anyhow, the

expression qι has intuitive meaning, formally see later in this section).

But as P has the ^α -bounding property, we can assume that / G V. Also

as Nι[G\ -< (ff(λ)[G],G), and the parameters appearing in the requirements

on / belong to A^ι[G], we can assume / G V Π Nι[G] = NI.
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Now in V we have a P-name of it , / G NI such that \\-P

 UAΓ0 [GP] Π V = ΛO

implies that / is as above; also in any case / G (ωω)v"; so in particular r

forces / to be as above. As r is (Λ/ι,P)-generic we have just countably many

candidates for / G (ωω)v Π NI i.e. for /[G]; and clearly there is in V a function

/* G ωω such that for every g G NI Π ωω we have, g <ae /* (i.e. {n < ω : not

g(n) < /*(n)} is finite) and /* G ΛΓ2. So it is reasonable to try

qι=q(G]Λ/\ V ίSJG],

(i.e. it is consistent; see in the beginning of the second try or end of the

section concerning an exact definition.) The (NQ,P * Q)-genericity of (r,q\)

and (ι7/ : t < ω) G 7V2 should be clear. So the question is whether

r ll-p "q[Gp] Λ /\ \/ <?™[Gp] is consistent in Q[GP]
n.

t m<f*(l)

(If so we can use a suitable P-name for qι\ let q\ G AΓ2 be the above expression

(or just a condition forcing it) if it exists and q otherwise).

Unfortunately, though /* is a very plausible candidate, the fact is that if

G C P is generic over V, r G G, the relation /[G](n) < /*(n) may fail for some

n, though necessarily only for finitely many n's.

T/wrd try:

The second try almost succeeded, except that the function /* did not work

on a finite set. So we try to take care of all finite sets that could occur, using

the first try. Remember T\ = Xn(£)> an<3 %n(i) is a ^nite subset of In^ n AΓ0

(pre-dense above r). Let 1^ = {pη : η G Γ/}, T/ a finite subset of 2> and so

for some k(ί) < ω, for every η G Γ/ we have (p^qty G {(p^,^) : m < k(ΐ)}

when (pmiQm) were chosen in the second try.

Clearly (k(ΐ) : ^ < ω) G A/i, (as it can be computed from (n(^) : i < ω)

and (X* : n < ω) and {(p^,,^) : m < ω) : £ < ω) all of which belong to

and so in the second try w.l.o.g. k(t) < f*(f) for every i < ω.
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Now return to the beginning of the argument in the second try. We know

that for every g1" € Q[G\ Π NQ[G] there is a / <G (ωω)v[G] such that

V &[β\

is consistent (i.e., as said above, some member of Q fores all those pieces of

information). In particular for every η — (mo, . . . , mn-ι)(πii < ω) there is

an / = /„ e ("ω)vM such that: if {q[G\, &,(€!}, &M - .C^JG]} is

compatible (in Q[G]) then

(*)„ qWt^^q^G]?, /\ V &[G}
t<n n<ί<ω m<f(l)

m€Sι[G]

is consistent (i.e. some member of Q[G] force this). Without loss of generality

fη e (ωω)v . Let, for i < ω, /+(i) = Max{/7?(z) : η = (ra0, . . . ,mn_ι), n < i

and mo < fc(0), . . . , mn-ι < k(n — 1)}. The maximum is taken over a finite set,

hence, it is a well defined natural number, so /+ G (ωω)v^. So there is in V

a function /f e (ωα;)y such that /+ < / f.

Now we work in V. For each η £ ω>ω there is a P-name fη of a function

from ω to α; which belongs to V, such that if /^ as above exists, then fη is such a

function; w.l.o.g. ( f η : 77 € ω>α;} G JVi, and remember that {&(<£) : £ <ω) € NI.

Hence /+ (which is defined from them as above) belongs to NI; as well as /t.

Note that r Ih "the fη's and /+, /f are as above". Let /* € N2 be as in the

second try be such that kι < /*(£), so we know /t <ae /*.

Now we shall prove that

r Ihp "q Λ /\ Y ^ is consistent (in
t<ω m<Γ(i)

As remarked in the end of the second try this suffices. So let G C P be a

subset of P generic over V, r G G. So /f - /f[G] G NI Π (ωω)v (C F) hence
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/t <ae /*• So in V[G] for some i < ω, for every j, i < j < ω => f\j) < /*(j).

Also there is a unique ω-sequence η of ordinals such that η\i G T^, j/ ̂  G (2 for

1 < £ < α; (from the first try; remember {p^ : η G T/} is a maximal antichain

of P and p^ < p^). So, (p^,ς£r*) - (Pm£><?mJ for some ™* < ω. BY the

definition of fc(£), and m^ we have mi < k(£) < /*(-£).

Let η = (mo, . . . ,mi-ι) (where i was chosen above). Then by (*)r?,

V

is consistent, so the result follows, since / > i => f η ( ί ) < f+(£) < f*(£) < f * ( ί ) .

Π4.4

Continuation of the proof of the Theorem 4-3:

We were proving by induction on a that if Ihp. "Q^ is α -proper and has the ωω-

bounding property", Q = (Pi, Qi : i < α) is a CS iteration then Pa = LimQ is

ω-proper and has the ωα;-bounding property. The ω-properness follows by 3.5,

and for the ωα;-bounding property only the case of cf (α) = N0 was left. Now

by III 3.3 w.l.o.g. a = ω. Let / be a PQ-name, p G Pα, p Ih "/ G ωωn, and we

have to find g £ (ωω)v and q satisfying p < q G Pa such that q Ih "/ < ̂ ". We

can assume w.l.o.g. that

(*) f(n) is a Pn-name

(this follows from the proof that Pω is proper, see III 3.2).

Let NI -< (H(\), G) (λ large enough) be an increasing chain such that, p,

(Pn,Qn n < ω) G NQ,N£ G NI+I each NI countable (Note that NI X NI+I

follows from NI G Λ^+i, NI countable, and N^Nt+i -< (ίf(λ), G)).

We want to find q G Pω, g > p, ςf lhFω "/ < #" for some ^ G (ωω)v. For

this we now define by induction on n a sequence (qn : n G ω), where each qn is

in Pn such that the following will hold:

1) qn+ι\n = qn, P\n < qn
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2) qn is (JVfc, Pn)-generic for k = 0, and n 4-1 < k < ω

3) there is a function Fn G ΛΓn+ι, whose domain is the set of maximal

antichains of Pn which belong to TVo, and for every I G Dom(Fn),Fn(T)

is a finite subset of T Π JVo pre-dense above qn.

Clearly, if we succeed then q = Un<ωqn G Pω is as required as then we can

define g(n) as the minimal g(τi), qn IH uf(n) < ff(n)", #(n) exists by 3) and (*).

For n — 0 use the ω-properness of ζ>o> and for n 4-1 we use first the lemma

4.4 and then u -properness. U4.3

4.5 Definition. 1) For a forcing notion Q, let Q+ be the following forcing

notion, first defining Q£:

(a) the set of members of QQ is the closure of Q under the operation p Λ #,

P V g, - p, /\n<ωpn, Vn<ωPn (assuming no accidental equality)

(b) GQ is the P-name of the following subset of Q£:

for r <=<9, r G Gj iffreGq

for r = p Λ ς, r G G^ ^p G Gj and ςf G GJ

for r - p V g , r G G+ t f fp G G+ or g G Gj

for r = -.p, r G Gg iff p ^ GQ

for r = f\n<ωPn, r G GJ ij^pn G Gj for every n < α;

for r = \Jn<ωpn, r G Gj iff pn G Gj for some n < α;

(c) for n,r2 G Qj, we define n <Q+ r2 z f f l h g "if r2 G G^ then n G Gj"

(d) Q+ - {q G Q+ : for some r G Q,r Ih "ςf G G^"}.

4.6 Fact. 1) lhQ"Gj is a generic subset of Q+ (or V) and G^ Π Q = GQ"

2) Q is a dense subset of Q+

3) essentially Q - Q+\Q i.e. for p,g G Q, Q+ μ "p < q & -»(3r)(r G Q&p <

r & [ς, r incompatible])". Π4 6

4.6A Remark. We can continue and do iteration in this context, see X §1.
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§5. Which Forcings Can We Iterate Without
Adding Reals

In Sect. 1 we have proved that we can iterate forcing notions of special kind

(^-complete) without adding reals. As a result we get a parallel of MA for such

forcings and get the consistency of some uniformization property (see more

in Chapters VII, VIII). However this axiom, quite strong in some respects,

is consistent with diamond on HI: (see [Sh:64], [Sh:98] or 1.9 here). On some

stationary subsets of ω\ it can say much, but on others nothing.

So we shall try here to find another property of forcing notions, so that

forcing with LimQ,0 — (P%,Qi : £ < α) a CS iteration of such forcing, does

not add reals.

5.1 Example. Assume 2H° = NI (or even 2N° < 2*1 suffices).

Let AS C δ be unbounded of order type ω, for δ < ω\ limit, so by [DvSh:65]

(or see AP §1), (As : δ < ωι) does not have the uniformization property, hence

there are f§ '. A§ —> {0,1} such that for no / : ω\ —> {0,1}, is f\A& =ae fδ

for every δ. Let / = (f$ : δ < α>ι), Pj — {/ : Dom(/) is an ordinal a < ωi,

δ <a =^ [ f \ A s =ae f δ } } , ordered by inclusion. Consider the dense sets.

Ii = {f:i< Dom(/) and / G Pf}

So clearly there is no directed G C Pj such that G Π Xi / 0 for every i < ω\.

5.1 A Remark. Previously Jensen (see Devlin and Johnsbraten [DeJo])

showed, that though forcing with Souslin trees does not add reals, starting

with V = L (at least with V \= 0*0 there is a CS iteration of such forcing of

length ω, such that forcing by the limit adds reals. This, however, does not ex-

clude a suitable MA for the example above, because MA for this forcing implies

-.CH.
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Now, Pf is a very nice forcing - e.g. it is α-proper for every a < ωι, but

our desired property should exclude it. The following is a try to exclude this

case by a reasonable condition.

We shall return to this subject in VIII, §4 (going deeper but also having

presentational variations of the definitions).

5.2 Definition.

(1) We call D a completeness system if for some μ, B is a function defined

on the set of triples (TV,P,p), p G TV Π P, P G TV, TV X (ίf(μ),e), TV

countable such that (P is meant here as a predicate on TV, i.e., P Π TV):

B(JV,P,P) — B(TV, P,p) is a filter, or even a family of nonempty subsets of

Gen(TV, P) = {G : G C TV Π P, G directed and G Π I ^ 0 for any dense

subset X of P which belongs to TV} such that if G G Gen(TV, P) belongs to

any member of B(JV,P,P)> then p G G.

(2) We call D a λ-completeness (λ may also be finite or NO or NI) system if each

family D(jv,p,p) has the property that the intersection of any i elements is

nonempty for ί < 1 -f λ (so for λ > NO, B{JV,P,P} generates a filter). Now,

such D can be naturally extended to include TV -< (if(μt),G), μ G TV,

μ < μf by D(TV, P,p) = D(TV Π if (μ), P,p). We do not distinguish strictly.

(3) We say D is on μ. We not always distinguish strictly between D and its

definition.

5.3 Definition.

(1) Suppose P is a forcing notion, 8 a nontrivial family of subsets of <S^0(μ)

and B a completeness system on μ.

We say P is (£,B)-complete if for every large enough λ, if P, £,B G TV,

p e P Π TV, TV X (if (λ), G), TV countable, , 4 e £ n T V = > T V n μ e A , then

the following set contains some member of B{;v,p,p) (i e > D{wnH(μ),p,p)):

Gen+(TV, P) = {G G Gen(TV, P) : p G G and there is

an upper bound for G in P}

(2) If 8 — {<SNO(AO} we write just B-complete.
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5.4 Remark.

(1) We can think of D(ΛΓ,P,P) as a filter on the family of directed subsets G of

PΠ TV generic over TV, to which p belongs. The demand "(£,B)-complete"

means that (for £>(£)-majority of such TV's) the "majority" of such G's

have an upper bound in P hence the name (£,D)-completeness.

(2) In some sense the definitions above are trivial: if P is £-proper and does not

add reals, then there is a ^-completeness system D such that P is (£,B)-

complete for all K simultaneously. Because, given (TV, P, p), we extend p to

q G P which is (TV, P)-generic. If {In : n < ω] is a list of the dense subsets

of P which belong to TV, Jn Π N — {pnjk 0 < k < u;}, we can define a

P-name x:

x — {(n, k) : n < ω and k is minimal such that pn^ G Gp}

Clearly q Ihp "x G ωω", and since P does not add reals there is an x* G

(ωω)v, and r, q < r G P, r lhP "x* = x". Let Gr = {pt G P Π N : pt < r}.

Clearly Gr G Gen(AΓ, P) and let

D(ΛΓfP,p> = {{Gr}}

So what is the point of such a definition? We shall use almost always

completeness systems restricted in some sense: O(JV,P,P) is defined in a

reasonably simple way. The point is that usually when we want to decide

whether some G G Gen(TV, P) has an upper bound, we do not need to

know the whole P, but rather some subset of AT, e.g. a function / from

Λf to itself. Check the example we discussed before: if δ = N Π α i, then

we just need to know f\δ. But two f\δ's may give incompatible demands,

so for it the system is only a 1-completeness system. So if we deal with

No-completeness system, we exclude it (in fact later we shall discuss even

2-completeness system).

An explication of "defined in a reasonably simple way" is:
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5.5 Definition.

(1) A completeness system D is called simple if there is a first order formula

ψ such that:

B(7V, P,p) — {Ax :x a finitary relation on TV,

i.e. x C Nk, for some k G ω]

where

Ax = {Ge Gen(7V,P) : (7VU P(N), G,p,P,ΛO 1= φ[G,x}}

(2) A completeness system D is called almost simple over Vb (Vb a class, usually

a subuni verse) if there is a first order formula ψ such that:

D(7V, P,p) = {AXtZ : x a relation on N, z G Vb}

where

where eΛ= {(x, y) : x G A, y G A, x G y}.

(3) If in (2) we omit z we call D simple over VQ.

5.6 Claim.

(1) A λ-completeness system (see Definition 5.2(2)) is a λ*-completeness sys-

tem for every λ* < λ.

(2) P is (£,D)-complete for some D if and only if P is £ -proper and (forcing

with P) does not add new reals.

Proof. (1) Trivial.

(2) The direction 4= (i.e. "if") was proved in Remark 5.4(2) above. So, let

us prove the "only if" part. So P is (5, Incomplete.

Suppose TV -< (ff(λ),e), p G P and {p,P,£,D,μ} e N, N countable and

TV Π μ G Π A So £ = {G G Gen(ΛΓ, P) : G has an upper bound and
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p G G} G D(Λr,p,p), hence B ^ 0 (by Definition 5.2) and let G G B. So G has

an upper bound q (by the definition of (£,O)-completeness), G G Gen(7V, P),

and by Definition 5.3, p G G. So <? > p is (AT, P)-generic. If p lhP "/ G "ω",

/ G N, then for every n, Jn = {r G P : r Ih "/(™) = fc" for some /c < ω} is a

dense subset of P which belongs to AT, hence Jn Π G ^ 0. Hence g determines

the value of /(n). So g determines /(n) for every n. Hence it determines /, i.e.

/ is not a new real. Now if there were a new real, some p would without loss of

generality force / is such a real. Choosing N as above we get a contradiction.

Π5.6

5.7 Example. Forcing with a Souslin tree T is not D-complete for any simple

2-completeness system B.

Let N -X (iΓ(λ), G) be countable, T G N, δ = NΠωi. Note that Gen(N, P)

consists of all branches of T Π N, and Gen+(ΛΓ, P) consists of the branches of

T Π N which have an upper bound, i.e. Ax = {y G T : y < x], where x G T$ =

the 5-th level of T. Now N "does not know" what is the set of such branches

of T Π TV, and two disjoint sets are possible.

The above is an argument, not a proof. To be exact, we can, assuming

diamond of NI, build a Souslin tree, such that no first order formula Ψ defines

a simple 2-completeness system for which T is D-complete.

§6. Specializing an Aronszajn Tree Without
Adding Reals

The traditional test for generalizing MA has been Souslin Hypothesis. Jensen

has proved the consistency of the Souslin Hypothesis with G.C.H. (see Devlin

and Johnsbraten [DeJo]). He iterates forcing notions of Souslin trees, in limit

points of cofinality NO he uses diamond to refine the inverse limit of the trees,

in limit points of cofinality NI he uses the square on ^2 (and preparatory

measures in previous steps). In successor stages he specializes a specific tree,
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by first forcing a closed unbounded set and then building a Souslin tree using

OS (more precisely he adds N2 closed unbounded subsets in the beginning).

We shall prove that there is a D-complete forcing notion PT specializing

an Aronszajn tree T, for D a simple HI-completeness system. The proof is close

to Jensen's successor stage. We feel that the ideas of the proof are applicable

to related problems, see [AbSh:114], [AbSh:403], [DjSh:604].

Notation. For an Ni-tree T, T; is the i-th level, T\i = U^T}, and for x G T/j,

OL < β, x\θί is the unique y G Tα, y < x.

6.1 Theorem. There is a simple NI-completeness system D, such that for every

Aronszajn tree T, there is a D-complete forcing notion PT, specializing it, i.e.

lhpτ "T is a special Aronszajn tree", also PT is α-proper for every countable

ordinal a.

Proof.

First Approximation:

Let

PT — {/ : / a function from Tf(α + 1) to Q (set of rational numbers)

such that a <ωι,x <y=> f ( x ) < f(y)}.

The order is inclusion. If / G P£, Dom(/) = T\(a +1) we say / has height α,

ht(/)=α.

Clearly P% specializes Γ, but we have to prove that it is proper and does

not add reals and more. Let N -< (-ff(λ), G) with Γ, P% G N and N Π ω\ = ί,

(JV countable). Let (the 5-th level of Γ be) !> = {xn : n < ω}. It is trivial that

we can extend any condition to a condition of arbitrarily large height. So we

have to define an increasing sequence of conditions pn G P$ Π TV, which will

be generic for TV (hence their heights converge to δ) and has an upper bound.

Now in order that {pn : n < ω} has an upper bound, it is necessary that for

each I < ω, the sequence (of rationale) {pn(a*Γht(pn)) : n < ω) is bounded. So

a natural condition to ensure it is e.g.
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(*) for £ < n we have pn(xι\ht (pn)) + l/2n > pn+ι(xt\ht (pn+ι))

This is not difficult by itself, but we have also to ensure the genericity of

(pn : n < ω). So it clearly suffices to prove, for each n

(**)n if p G Pγ Γϊ TV, n < α;, J an open dense subset of P£ which belongs to TV,

#0, - , #n-ι € T/vnωi and £ > 0 (a rational or real), ften there is a # G P£ Π TV,

p < </, ς G J and

p(x^ t ht (p)) + ε > q(xι \ ht (ς)) for i < n

Unfortunately we see no reason for (**)n to hold.

In fact, it is false, and for every natural number n, Zn = {p G P^ : for every

x G ht (p), we have p(x) > n} is dense.

Second Approximation:

We can remedy this by using Pf = {/ : / G P£, and: i//3 < ht(/),x G 2>

and ε > 0 and T is a Souslin tree, then for some y we have x < y G T1^/) and

Now for n = 1, (**)n is true; more generally for any n < ω, (**)n is true if:

(* * *)n {(2/0, ,3/n-ι) : Λ*<n2fe € T&jfc < z*} is generic for G/V,Tn)}.

(Tn - the n-th power of T i.e. the set of elements is in [Jϊ<u;ι n(^)> and ^ < V

Why? Though it is not used we shall explain. For a given p and rational ε let

R = Rp,τ,ε = {(yo, - - , yn-i) : for some a < δ, a > ht (p) & yι G Tα, and for

some ς G Pj1,^ < q G J, ht (ς) = α, q(yt) < q(xi \ ht (p)) 4- ε}. Now # is a dense

subset of {(2/0, 2/n-ι) : for some 7, for each ^,z^f ht (p) < yι G T7}. [Why?

as given (y0, , 2/n-ι) € n(Γ7) we can find r, p < r G Pτ, ht (r) = 7, r(yt) <

r(yt\ht(p)) + ε (by a density argument), let εi = Min{r(y/) - r(y/ίht(p)) :

I < n}, and let us choose q, r < q G J, without loss of generality q e N.

Now by the definition of Pf we can find y'^ yι < y'e G Γht(ς) such that
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q(y'ί) < (l(yt) + ει Clearly q exemplifies (yf

£ : I < n) G R as required]. Hence

there is a (y0, - - ϊ/n-i) £ R, f\i yt < xi

However, there may be Souslin trees which do not satisfy (* * *)n for n > 1.

6.1A Explanation. So we shall change P£ somewhat by adding "promises"

such that if (the parallel to) (**) fails, then we can add one more promise to

p guaranteeing that p has no extension in I, a contradiction to J being open

and dense.

The Actual Proof.

6.2 Definition. We call Γ a promise (more exactly a T-promise) if there

are a closed unbounded subset C of ω\ and n < ω (denoted by C(Γ), n(Γ)

respectively) such that:

a) the members of Γ are n-tuples (XQ? ?#n-ι) of distinct elements from

Ta where α G C. We say (x0, - ,xn-i) < (i/o» »2/n-ι) if ^o <

2/o,...,xn-ι <2/n-ι,

b) if α < β are in C, x G Γ Π n(Tα), ίften there are infinitely many ?/'s,

x < y G Γ Π n(Tβ) which are pairwise disjoint (i.e. the ranges of the

sequences are disjoint),

c) Γ Π n(TminC(Γ)) is not empty.

6.3 Definition. We let PI = {(/, C) : C is a characteristic function of a

closed subset of some successor ordinal a + 1 < ωi, with the last element

a — £t(C), and / is a monotonically increasing function from \J Ti to Q}. Let
i€C

(/i, <?i) < (/2, ̂ 2) if and only if CΊ C C2 (equivalently Ci - C2 Γ(Λ(CΊ) + 1))

and /i C /2.

6.4 Definition. We say that (/, C) € PI fulfills or satisfies a promise Γ if:

ίt(C) e C(Γ) and C(Γ) D C \ MinC(Γ) and for every a< βin C(Γ) Π C and

x G Γ Π n(Tα) (where n = n(Γ)) the following holds:
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Θ for every ε > 0 there are infinitely many pairwise disjoint y G Γ Π n ( T β ) such

that f ( x i ) < f ( y t ) < f ( x i ) + ε for t < n and x < y.

6.5 The Main Definition. P = Pτ = {(/,C,Φ) : (/,C) G PI, and Φ is a

countable set of promises which (/, C) fulfills }

(/ι,Cι,Φι)<(/ 2,C 2,Φ 2)if:

(/i, CΊ) < (/2, C2) (in PI) and Φi C Φ2 and: α G C2\Cι implies α G f)

(actually follows).

6.5A Notation. If p = (/,C,Φ) we write / = /p, C = CP,Ψ = Φp, #p =

6.6 Fact. If p G P, β < ωι, then

(1) there is a q G P, q > p, and itq > /?,

(2) moreover, if β G f| C(Γ) and β > ίtp, then we can have ^ίg = β,
re^p

(3) moreover, if m < u;, j/o» ϊ2/m-ι ^ ^/35 ε > 0 we can in addition to (2)

demand /p(y< fftp) < /g(i/i) < /p(2/< ί^p) 4- ε for i < m.

Proof. (1) Clearly f] C(Γ) is a closed unbounded subset of ω\ (as Φ is
Γ6ΦP

countable and each C(Γ) is a closed unbounded subset of α i). Hence there

is an ordinal /?t, β\ > ^,/?t > #p and /jt e η c(Γ), and apply (2).
reφp

(2) Let a = tip. We define Cq = CP\J {β}, Φς = Φp, so we still have to

define /9, but as we want to have /p C /ς, we have to define just fq\Tβ. We

have two demands on it, in order that <j G P:

(i) monotonicity: /p(xΓα) = /9(xΓα) < fq(x) G Q for x G Tβ

(ii) Θ from Definition 6.4 for aι < α2 in Cq \ Min(C(Γ)) (hence in C(Γ),

Γ G Φp - Φ9, x G ΓΠn(Γ)(Tαι) when α2 = /3 (for α2 < /? usep G P)).

If we succeed to define fq\Tβ such that it satisfies (i) and (ii), then q is

well defined, and trivially belongs to P and is > p.
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Now, (ii) consists of count ably many demands on the existence of infinitely

many£G n CZ».

Let {(Γm,7m,xm) : m < ω] be a list of the triples (Γ,7,z), Γ G Ψp,x G

Γ Π n(Γ)(Tγ), 7 < /?, 7 G Cp Π C(Γ), each appearing infinitely often (if this

family is empty, we have no work at all).

We now define by induction on m, a function /m such that:

a) fm is a function from a finite subset of Tβ to Q such that fp(x\a) <

fm(x) for x G Dom(/m).

b) fm C /m+l

c) There is a ym C Dom(/m+ι) \ Dom(/m), ym G Γm, xm < y™ and

for every t < n(Γm) (which is the length of xm) f p ( x f ) < fm(ym) <

fp(xm) 4 1/m.

This will be enough, as any triple appears infinitely often and the ym's are

pairwise disjoint and 1/m converges to zero, so any completion of Um/m to a

function from Tβ to Q satisfying (i) is as required.

We let /o be arbitrary satisfying (a), e.g. the empty function.

If /m is defined, consider Γ = Γm. Let n = n(Γ), if 7m — α we know that Γ

is a promise, 7™ G C(Γ), (part of requirements of (Γm,7m,xm)) and β G C(Γ)

(by the hypothesis of Fact 6.6(2)). Hence (by the definition of a promise) there

are infinitely many pairwise disjoint y's, xm < y, y G ΓΠn(Γ^). As the domain

of fm is finite there is such a y disjoint from Dom(/m). So we let:

Dom(/m+ι) = Dom(/m) U {y0, . . . , t/n_ι}

If 7m < α, we use the fact that (fp,Cp) G PI, satisfies the promise Γ,

7m G C(Γ) and α G C(Γ) (by Definition 6.4 C(Γ) D Cp \ MinC(Γ) and

α G Cp,α > 7m > MinC(Γ)). So there is a z G Γ n n(Tα) such that xm < z,

and /p(^) < fp(xm) 4- l/3m. Now we apply the argument above, replacing xm

by f .

(3) The same proof as that of (2), using our freedom to choose /0.

So we finish the proof of Fact 6.6. De.e
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Now we shall prove the crux of the matter: the parallel of (**).

6.7 Fact.

(1) If N -< (fΓ(λ),e) (λ large enough) P,p G N, p G P, N countable,

N Π ω\ = 5, ε > 0 and XQ, . ?^n-ι € T§ (are distinct) and X e N is

an open dense subset of P, Λen there is a q G Z Π TV, q > p, £tq = δ and

fq(xi\ttq)<fp(xi\ttp)+e.

(2) In (1), we can instead of XQ, - - , #n-ι have £?o, . . . , £n_ι, 5-branches of

Tδ Π N (i.e. J5^ = {xf : i < 5}, xf G Ti} xf < x^ for i < j). Define

B£\O. as the unique x G -B^ Π Tα, and replace the conclusion of (1) by

fg(B£\ttq)<fp(Bt\etp)+ε.

Proof. (1) By (2), using B£ = {yeT:y< x£}.

(2) Suppose p, TV, ε, β0? 5 #n-ι form a counterexample, for simplicity ε

rational and let a = ltp and x^ = jE^ fα, x = (XQ, . . . , xn-ι) Let

Γi = {y : y G n(Γ^) for some /3 > α, x < ^, and there is no (g, 7, z) such that:

^ < y, 7 > α,^ € n(T7),<? >p,ίtq=Ί,q£l and V£ < n[/ς(z*) < /g(x/) +e]}.

So Γi is, in a sense, the set of "bad" τ/'s; the places to which we cannot

extend p suitably. More explicitly:

6.7A. Subfact. If β G f| C(Γ) \ (ttp + I),β< δ, then

Otherwise, for some α < 7 < /? there exists a (9,7, z) witnessing

But then ς exemplifies p, JV, ε, .Bo, - , ̂ n-i do not form a counterexample,

except that maybe q φ N .

Clearly Γi is definable in H(\) using parameters which are in TV, hence

Γi G N. Now, the requirements on q are also first order with parameters in A/",

so w.l.o.g. q G N. So subfact 6.7A holds. Πβ.7Λ
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Let Ci = ΓlreΨp C(Γ) \ etP' so aSain CΊ G N- βy the subfact β 7A> N N " for

every 7 G Ci there is a y G Γi Π n(T7)" but AT X (-ff(λ), G), hence also the

universe V satisfies the statement.

Our plan is to get a promise Γ C Γi in ΛΓ, and show that r = (/p, Cp, ΨPU

{Γ}) G P, jp < r, and above r there is no member of J, thus getting a

contradiction to " J is an open dense subset of P" .

Let Γ2 = {y G Γi: there are uncountably many z € Γι,y < z}. By the

above, x G Γ2. We shall prove later:

6.7B. Subfact. There is a closed unbounded C* C ωi, α = MinC*, C* C d,

such that Γ = {y G Γ2: for some i G C*, ?/ G n(Tί)} is a promise.

Let us show that this will be enough to prove 6.7, hence Theorem 6.1

except checking simplicity.

As before, we can assume C* G N; and as MinC(Γ) = MinC* = a = ίtp,

clearly pt = (/p, Cp, Φp U {Γ}) e PΓ\N and p < pt. As J is an open and dense

subset of P there is a # > p^ in J. As q G P, (/g, Cg) satisfies the promise Γ,

- so as α G C(Γ) Π Cq, also /? = ίtq G C(Γ) Π Cg. Hence by the definition of

"fulfilling a promise" and as x G Γ (see above), there is a y G n(T/3) Π Γ such

that x < y and fq(yι) < fp(xt)+ε for each ί < n. So by IYs definition, y φ Γi

(as ς G J) but y G Γ C Γ2 C Γi. We arrive at a contradiction thus proving

Fact 6.7, except that we need:

Proof of Subfact 6. 7B. Note that

a) if z G U n(Ti), z < y G Γi, then z G Γu so clearly Γ2 has this
i>a

property too.

Next note that

b) for any y G Γ2 the set {z G Γ2 : y < z} is uncountable.

(Why? If not, for some 7 such that δ < 7 < ω\ there is no z G Γ2,

y < z, z Φ U n(ϊl). But there are distinct z* G Γi, z < z1 for i < K x , so
i<7

w.l.o.g. zl G n(Γ7(i)), 7(1) > i. Now, there are just countably many possible

{*δΓ7» ι*n-ιΓ7) (for 7 < ί < wi), (as TΊ is countable), hence for some
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z G n(Tj) the set {i : 7 < i < ωι,2Jf7 = zt for I < n} is uncountable, hence

z G Γ2).

c) for any y G Γ2 Π
 n(T;), i < j < ω\ there is a z G n(T7 ) Π Γ2, y < z.

This is just a combination of a) and b).

d) for any y G Γ2 Π
 n(Ti) there is a j such that i < j < ω\ and disjoint

Otherwise for i < j < ωι, let zj G Γ2 Π
 n(Γ7 ), z < zj (by c)). So for

i < ξ < C < ωi, for some ί and fc, z| < z£ (otherwise use (c) on z^ with ξ,£

here standing for z, j there to get a contradiction). This contradicts T being

Aronszajn by the proof of Theorem III 5.4.

e) for any y G Γ2 Π
n(Ti) and m < ω there are j < ωi, j > i and pairwise

disjoint z1, . . . , zm G Γ2 Π
 n(TJ ) j/ < ̂  for f = 1, . . . , m.

Just by induction on n, using d) and c).

Now we prove the subfact itself. For any y G Γ2 there are (by (e)) jm(y)

(m < ω) such that there are m pairwise disjoint members of Γ2 Π
 n(Tjm^)

which are > y. By c) this holds for any j > jm(y). Now, if j > \J jm(y), then
m<ω

we can find for every ra, m pairwise disjoint members of Γ2 U
 n(Tj) which are

> y. Let {z1 : i < i0} be a maximal subset of {z G Γ2 Π
 n(Tj) : y < z, j G ωι}

whose members are pairwise disjoint. If IQ < ω, choose another such set {y1 :

I < niQ + 1} (exists as j > \Jjm(y))' Now, at least one y* should be disjoint
m

from all zz's, a contradiction to the maximality of {z1 : i < i0}- Hence IQ is

infinite. Let C* = {i : i is α or i > α, i G C\ and y G Γ2 U \J n(Tj] implies
j<i

that i > U jm(y)}
m<ω

It is easy to check C* is as required in 6.7B. So we finish the proof of 6.7.

ΠΘ.TB,-?

Continuation of the Proof of 6.1. The only point left is to prove the existence of

the appropriate simple NI -completeness system D. This is trivial. (It is easy to

see that if x : TΠAΓ — > ω codes the branches of TΓ\N (use x which is eventually

constant on each 5-branch of T Π N where δ = N Π ωi), then Gen+(AΓ, P) can

be written as Ax with some suitable ^ as in 5.5. The point is that f}i<ω AX£ / 0

because we prove not only 6.7(1) but also 6.7(2).) D6.ι
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§7. Iteration of (£, D)-Complete
Forcing Notions

The discussion in the two previous sections lacked the crucial point that we can

iterate such forcing notions without adding reals. In order to get a reasonable

form of MA we need to iterate up to some regular K > KI and have the κ-c.c.

For K — K2, Lemma 1.5 does not suffice as \Pτ\ = #2 (Pr from the proof of

Theorem 6.2; not to speak of the lack of 8-completeness) but meanwhile K

strongly inaccessible will suffice (see VII §1, or VIII §2 for eliminating this).

An aesthetic drawback of the proof is that we do not prove that the forcing we

get by the iteration enjoys the same property we require from the individual

forcing notions but see VIΠ§4, which contains more detailed proofs of stronger

theorems.

7.1 Theorem. Let Q = (Pi,Qi : i < a) be a countable support iteration,

Pa — LimQ; 8 a nontrivial family of subsets of S#0(μ).

(1) If each Qi is /3-proper for every β < ω\, and (£,D^)-complete for some

simple NI-completeness system D^ (so D^ is a P^-name), then Pa does not

add reals.

(2) We can replace in (1) "simple" by "almost simple over V" (note: V and

not VPί).

Combining the ideas of the proofs of 7.1 and of 4.3 we can prove

7.2 Theorem. In Theorem 7.1 we can weaken "Ni-completeness system" to

"Ho-completeness system".

However we shall not prove it now (see VIII §4 for more).

Proof of Theorem 7.1. Note: D is a function with domain α, BΪ is a Pi-name (of

an HI-completeness system or more acurately a definition of such a system).

For clarity of presentation we first deal with the case α = ω (for α < ω there

is nothing to prove).
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Let Ni -< (H(X), G) be countable (for i < ω),D, Q G 7V"o, Ni G Ni+ι (hence

Ni -< AΓi+1) each Ni is suitable for 8 (remember Definition 1.1(1), really just

Λ/o suitable suffice) and p G Pω Π 7VΌ, and / G AΓ0 be a P^-name of a real.

Now we shall define by induction on n < ω conditions rn,pn such that:

(A) (1) rn G Pn, rn =rn + 1fn

(2) rn is (]Vi, Pn)-generic for i = 0 and n-}~\ <i < ω.

(B) (1) There is a G* G Gen(7Vo, Pn) which is bounded by rn and belongs to

ΛUi

(2) pn < pn+ι, pn G Pω Π AΓ0, p0 = P and pn\n < rn (equivalently,

PnΓneσ;).

(3) Let {Jn : n < ω} be a list of the open dense subsets of Pω which

belong to AΓ0; then pn+ι G Jn.

Finally, let r be such that Vn[rfn = rn]. Then r > pn, so r decides all

values of f ( k ) (as for each k for some n we have Zn = {q G P^ : q force a value

to /(fc)}.

Let us carry out the induction.

n = 0: Trivial (Note P0 = {0}).

n + 1: We shall first define Pn+ι> then C*+1, and finally rn+ι.

5ίep. We want to find pn+ι G Pω Π AΓ0, pn+ι > pn, pn-ι-ιN ^ G* and

Pn+i G Jn. As Jn C Pω is dense and Jn G NO? above every q G PU> Π 7V0

there is r G PO, Π AΓ0 Π Jn, r > <?. Let J7n = {r G Pn: there is an r* G Pω,

r* > Pn, ^** ^ ^n, ^*f^ — 7*}, clearly it is dense above pn\n (in Pn). But

pnίn G G* G Gen(A^0,Pn), and Jn G 7V0, hence there is r G G* Π Jn, and so

there is an r* G Pω, r* > pn, r* G Jn, r* fn = r. So, clearly, r* can be chosen

as pn+ι we need.

Second step. Let Gn C Pn be generic over V, rn G Gn (hence G£ C Gn). We

shall try to see what are the demands on G£+1. Really we want in V[Gn], to

find a member of Gen(A/r

0[Gn],Qn[Gn]) which has an upper bound in Q[Gn]

and pn(n) belongs to it.
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Note that Dn is a Pn-name which belongs to 7V0. So there is also a Pn-

name ψn for the formula ψ appearing in the definition of simplicity (or almost

simplicity), and it belongs to NQ. As we "know" Gn Π NQ = G£, we "know"

Ψn — Ψn[Gn], i e some member of G* force ψn = ψn. So we know that for

some AXjy (x a relation on TVo, y G V, see Definition 5.5) every G G AXιV has

an upper bound (in Qn[Gn]), where

AI>y = {Ge Gen(N0(Gn},Qn[Gn}) : (V U N0(Gn]

ey, €N0[G,]^(N0[GΛ])t pn+1(n)[Gn},Qn[Gn],V,N0[Gn}) N ψ[G,x,y}}.

So we have Pn-names x,y for x and ?/. Now x, 2; are quite unlikely to be

in N0 (as their definitions used 7V0 as a parameter) but they can be chosen in

Nn+ι[Gn] (remember Nn+l[Gn] -< (fΓ(λ)[Gn], G) as rn G Gn, rn is (7Vn+1,Pn)-

generic, and 7V0[Gn] G JVn+ι[Gn]).

Moreover, though we need to know Gn to be able to find their exact

values, we know that they are in V (remember P(N[Gn}) G V and Pn does not

add reals and even α -seqeunces of a member of V); well formally Nn+ι[Gn]

cannot be in V as it has members like Gn, but the isomorphism type of

(Nn+ι[Gn],Nn+ι,Gn,c)C£Nn+l does, and so does the isomorphism type of the

model appearing in the definition of AXty. If you are still confused see VIII §4,

where essentially we make the set of members of Qn[Gn] and Nn[Gn] to be a

set of ordinals.

So as rn is (7Vn+ι,Pn)-generic rn Ih "x, y G Λfn+ι", so we have just

countably many possible pairs (those in Nn+ι). Now Nn+ι "thinks" there

are uncountably many possibilities, but as -/Vn+ι G Afn+2> ^n+2 ^ "Nn+i is

countable", in Nn+2 we "know" that Π{^z,2/ : x >2/ ^ ^n+i} is nonempty

(remember G* G 7Vn+ι hence A^0[G*] G Nn+ι). So, in Λ/n+2 there is a Gn C

Qn [Gn] Π NQ [G^] which belongs to the intersection. So though we do not know

exactly what x and y will be, we know (as long as rn G Gn)) that Gn G Ax^y.

From Gn, G; we can easily compute G*+1 G Gen+^o, Pn+ι), G*+1ΠPn = G* ,

Gn+ι = { (90,91,.- ,?n> (9o,9ι,-..,9n-ι> ^ G*, ^n € N0 and^n[Gn] G Gn}.
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Third step. We now have to define rn+ι G Pn+ι, so as we require rn+ι \n — rn,

we just have to define rn_(_ι(n). What are the requirements on it? Looking at

the induction demand, just:

fn \\~pn "rn+ι(ri) is above each q(n)[Gn] for members q of G*+1 and is

(Ni[GPn],Qn[Gpn])- generic f o r n + 2 < i < ω",

and there is no problem in this. We have finished the proof of 7.1 for α = u;.

Now we have to turn to the general case i.e. with no restriction on α.

Let p, Q G NQ -< (#(λ),G),ΛΓ0 countable, NQ suitable for 8 and p G Pa.

Let NQ Π (α + 1) = {A : i < Ί], i < j => ft < /fy (so AΓ0 Π (α + 1) has

order type 7 + 1). Now we can find Ni -< (-ff(λ), G) for i < 7, Ni countable,

(Ni : j < ί) G Ni+i (just define by induction on i) and let Λfo = (Ji<δNi for

limit J < 7.

As AΓ0 G NI, 7 + 1 C NI, hence i G A^.

7.3 Definition.

A pair (r, G*) is called an (i, ζ)-th approximation if (i < ζ < 7 and) :

a) r G Pβi and r is (Λ^ , P/j.) generic for j = 0 and i -f 1 < j < C

b) G* G Gen(AΓ0,P/3ί), and G* is bounded by r and G* G N<+I.

Now it suffices to prove

7.4 Claim. I f O < i < j < ζ < 7 and (r, G*) in an (ΐ,£)-th approximation,

p G P .̂ Π 7V0, pf/?i G G*, ί/ien there is a (j,ζ)-th approximation (r^,G^) such

that p e G f, rf r/3i = r and Gf Π P^ = G* (actually Gf depends just on G*

and (Nβ : β < 7), but not on r).

Why is the claim sufficient? Just use i — 0, j — ζ = 7 (so βΊ = α), and we

get what we need.

Proof of 7.4. Now, the proof of the claim is by induction on j (for all i,ζ).

Then for successor this is just like the induction step for a = α;, and for limit

j we diagonalize using the induction hypothesis (also taking care of clause (a)

of Definition 7.3). Π7.4>7.ι
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§8. The Consistency of SH + CH + There Are
No Kurepa Trees

We wish now to give yet another application of the technique of not adding

reals in iterations.

8.1 Definition. For any regular ft, a ft-Kurepa tree is a ft-tree such that the

number of its /^-branches is > ft. Let the ft-Kurepa Hypothesis (in short ft—KH)

be the statement "there exists ft-Kurepa tree". We may write "KH" instead of

α i-KH. (Be careful: KH says "there are Kurepa trees", but SH says "there are

no Souslin trees"!)

Solovay proved that Kurepa trees exist if V = L, more generally Jensen

[Jn] proved the existence of ft-Kurepa's trees follows from Jensen's 0+, which

holds in L for every regular uncountable ft which is not "too large". But - KH

is consistent with of ZFC -f GCH, which was first shown by Silver in [Si67],

starting from a strongly inaccessible ft. The method of his proof is as follows:

collapse every λ, ω\ < X < ft using Levy's collapse Levy(Kι, < ft) = {p : \p\ <

NI & p is a function with Dom(p) C ft x ω\ Λ V{α,ξ) G Dom(p)(p(α,ξ) G α)}.

Now Levy(Nι,< ft) can be viewed as an iteration of length ft, and satisfied

the ft-c.c. on the one hand, and NI-completeness on the other hand. Therefore

NI does not get collapsed, as well as any cardinal Kα > ft. Suppose now that

T £ Vp is an ωi-tree. So it has appeared already at an earlier stage along the

iteration, say T G Vp , where Vp is obtained from Vp> by an Ni-complete

forcing. In Vp' the tree T has at most 2**1 branches, and this is less than ft.

Note that by 6.1(2) the tree T can have no new ωi-branches in Vp. So T is

not a Kurepa tree in Vp.

Devlin in [Del] and [De2] has shown, starting from a strongly inaccessible,

the consistency of GCH -f- SH + -iKH. For a proof by iteration see Baumgartner

[B3].

8.1 A Remark. In both proofs the inaccessible cardinal is necessary, for -«KH

implies that ^2 is an inaccessible cardinal of L.
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8.2 Definition. Suppose T is an ωi-tree, and that Q is a forcing notion. We

say that Q is good for T if for every p G Q and a countable elementary submodel

N -< (-ff(χ), G), for χ large enough such that T, Q, p e AT, there is an (AT, Q)-

generic condition q > p such that for every name r G N of a branch of T, either

? lhQ "τ[Qθ\ € N and is an old cofinal branch of T" or q \\-Q "τ[G] Π T(δ(N))

is not 6(α) = {x £ T(δ(N)) : s < a} for any α G

8.2A Fact. A forcing notion Q is good for an ωi-tree T iff Q is proper and in

V® there are no new cofinal branches of T.

Proof. =>: Suppose Q is good for T. The properness of Q follows trivially.

Let p \\-Q "τ is a new branch of T", and we shall derive a contradiction; let

{T,p, Q} G N -< (H(χ), G), x large enough and AT countable. So let q > p be

as in the definition of good.

If τ[G] is an old branch — we are done. If not, τ[G] Π T<<$N ^ Bx — {y :

y <τ %} for all x € T^. But this implies that τ[G] being linearly ordered by

<τ has no member of level > SN, so it cannot be a ωi-branch of Γ.

Conversely, suppose that Q is proper and does not add a new ωi -branch to

Γ. Let r,p G AT be as in the definition, and pick q > p which is (Af, Q)-generic,

and a generic subset G of P over V with ςr G G. So τ[G] G AΓ[G] -« H(χ, G)[G],

and r[G] is either an old α i-branch, or is not an α i-branch at all. In the first

case we are done. Now if τ[G] is not an cji-branch, then either (3a)τ[G]Γ}Ta = 0

or 3x,y G τ[G] such that x,y are not comparable in T. By elementarily of

N[G], such an a or such x, y exist also in N[G]. So g forces what is required by

the definition. D8.4

8.3 Lemma. If Q is an Ki-complete forcing notion and Γ is an α i-tree, then

Q adds no new cofinal branches to T.

Proof. It is enough to show that Q is good for Γ. Suppose that N -< (ίf(χ), G)

is a countable elementary submodel and that T, Q G AT. Let (Xn : n < ω) be

a list of all dense open subsets of Q which belong to TV. Let p G Q Π AT. Let
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{(^m In) : n < ω) be a list of all pairs (xn, τn) such that xn G Tg(N) and τn G TV

is a Q-iiame of a branch in of T.

By induction on n we construct a sequence of conditions pn such that:

(1) Po = P

(2) Pn<Pn+l G g n T V n J n .

(3) pn+ι Ihg "rn is an old cofinal branch of Γ" or there is some x G T Π TV

such that x ^τ xn and pn+ι \\-Q "x G T".

Suppose first that the construction is carried out. Let q € Q extend

all pn (q exists by Ni-completeness). Clearly, q is (N, Q)-generic. For every

T G N, a <2-name of a branch of T, either <? Ih "r is an old branch of Γ",

of <? Ih (Vn)[r Π Γ Π AT φ {x : x <τ χn}]. In the first case, as q is generic,

g Ih T G TV". In the second, clearly <? forces that r is not a cofinal branch of Γ.

Therefore Q is good for T.

We still have to show that the construction can be carried out. Suppose

pn is picked. First find an extention p' > pn that decides whether rn is an

old branch or a new branch. If p' Ih "r is old", define pn+\ = p" for some

p' < p" eInΠN. Else, p1 Ih "r is new". Let B = {x € T : 3p" > p',p" Ih "x <E

r"}. Clearly, J5 is downward closed, and B G A^. If B were a cofinal branch,

this would contradict p' Ih "r is new". Therefore there are two incomparable

elements in B. By elementarity, there are two such elements in TV. Therefore

we can pick in N a condition pn+ι > Pn such that pn+ι Ih "r Π T$ = x" for

some x such that x ^T #n ^8.3

8.4 Theorem. Suppose T is an ωi-tree, (P^ Qi : i < a) is a countable support

iteration, and no Qi adds new cofinal branches to T, then also Pα does not add

cofinal branches to T.

Proof. By induction on a. If a — 0 or a is a successor ordinal, there is not much

to prove. Suppose that a is limit. Let TV be a countable elementary submodel

as usual and suppose that p G Pa Π TV. Pick a sequence (a : n < ω) of ordinals

such that αn G TV Π α, αn+ι > an and \J an = sup(α Π TV).
n<ω
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Let (In : n < ω) be an enumerations of all dense open subsets of P which

belong to N. Let ((xn, τn) : n < ω) be a enumeration of T$(#) x {r G N : τ is

a Pα-name of a branch of T}.

By induction on n we pick pn, qn as in the proof of preservation of

properness under countable support iteration in III, §3. In addition to the

conditions there we demand:

(*) qn II- "Pn+i If- (3α)rtα ^ {x 6 Γ(α) Λ x <τ xn}" or

We show how to pick pn+ι- let G C POLn be generic such that q G G. Then

there is a p G Xn Π N such that pfαn G G. There is some extention p' > p which

decides whether rn is old or new. The rest is as in the proof of the previous

Lemma. Dg.4

We shall utilize now the preservation Theorem we just proved to reprove

Devlin's result:

8.5 Theorem. If CON(ZFC + « is inaccessible) then CON(ZFC + GCH +SH

+ --KH).

Proof. Let K be strongly inaccessible, we define a countable support iteration

of lengh K of proper forcing notions, (Pi,Qj : i < «, j < K). When i is odd,

Qi = Levy(Nι,N2)
V[Pίl When i is even, Qi = Q(Ti) is the forcing notion

defined in §6 which specializes some given tree T^ (a Pi-name) without adding

reals and every such names appear.

8.6 Claim.

(a) Pκ has the K2-cc.

(b) Pκ does not add reals.

(c) Vp* N SH.

(d) Vp* 1= -.KH.

Proof. Clause (a) is easy by III 4.1. For (b) see §6 and §7. Clause (c) is clear, as

every ωi-tree gets specialized along the way by suitable bookkeeping. Suppose

now that T is some ωi-tree in VPκ. There is some intermediate stage Pi for



§8. The Consistency of SH + CH 4- There Are No Kurepa Trees 245

i<κ such that Γ G VPi . In VPi the tree T has at most 2*1 (of VPi) branches.

As ft is inaccessible in FPί, the number of branches of T is < K. So there is

some j < K such that in VFj the tree T has at most NI o/d branches. What is

left to see is that the rest of the forcing does not introduce new branches to T.

By theorem 8.4 it is enough to show that no Qj adds branches (for j > ϊ). In

case Qj is Levy(Hι,H2), this is known from Lemma 8.3, because the collapse

is Ni-complete. The remaining case is that Qi = Q(Ti) is the forcing notion

defined in §6 for specializing a given Aronszajn tree 2V So our proof is finished

once we know that this forcing notion does not add branches to an ωi-tree T.

8.7 Claim. Suppose T is an Ni-Aronszajn tree, and T* is any Ni-tree. Then

Q = Q(T) is good for T, where Q(T) is the forcing for specializing T defined

in §6.

Proof. Suppose that TV -< (£Γ(χ), €) is a countable elementary submodel such

that Q, T, T* G N and p e Q Π AT. We shall find a condition q > p such that

q is (Q, TV) -generic and such that for every Q-name r G TV of a branch of T*,

q Ih "r is an old branch of T* or r Π Γ* Π TV .φ b(a) for all α e Ϊ?(ΛΓ)">

In the proof we shall follow the proof of Theorem 6.1, in which the proper-

ness of Q was shown.

8.8 Definition. Suppose that p € Q and δ > it(p). For x = (x0, ,#n-ι) €
n(T$) and ε > 0 we say that q > p with ίt(q) < δ respects x by ε iff

< fp(xι \lt(p)) -h ε for all I < n.

The main point is the following claim which is the parallel of 6.7.

8.9 Claim. Suppose that TV -< (H(χ), €) is as usual, and p 6 TV is a condition

and r € TV is a Q-name of an α i-branch of T*. Let δ = TV Π ω\, x € n(T$ ),

α G T^ and ε > 0. TΛen there is a condition q £ N, q>p and <? respects x by

ε and such that:

(i) q Ih "τ\δ φ b(a) = {y : y <τ* a£} or

(ii) q Ih "r is an old branch of T".
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Proof. Suppose there is no q > p in N as required and which satisfies (i).

We shall see that there is one which satisfies (ii). Define the set of "bad" y as

follows: Γi is the collection of all y G n(Tβ) such that β > a and

(a) For every 7 < β and z G rn(Tβ), ra < u;, there are 7' G [7,/3) and an

extension of p of height 7' < β which respects (zt \^' : I < £gx) by ε and

which determines the value of r f7,

(b) There are no two extensions, q$ and #ι, of p such that q& respects y by ε

(for k = 1,2) and <?ι and go force contradictory information about r.

Let -B(Γι) be the set of levels β for which there is y G Γi of height β.

Observe that x G IV Why? Clause (a) follows from 6.7; if (b) does not hold

then there is a condition q such that q !h "r is not 6(α)", contrary to our

assumptions, remembering α is constant in 8.9. Observe also that by 6.7, there

is a club E of ω\ such that if z G Γi and y < z is of height β G £", then y G Γi.

W.l.o.g. E G N. As x G Γi, δ G J5(Γι) Π£7. Therefore B(Γι) n£ is unbounded,

and clearly it is closed.

Let Γ2 = {y G Γi: there are uncountably many z G Γi such that y < z}.

For each y G Γ2 of height /?, define t(y) to be the set of nodes t G T such that

some extension of p of height /3, which respects y by ε forces that £ G r. Then

ί(y) is linearly ordered and contains in fact a branch of height β. If y\ and 2/2

are any n-tuples in Γ2, then t(y\) and t(y2) are compatible. (Why? By clause

(b).) Thus the function t defines a cofinal branch of T and the intersection of

this branch with Γ5* is just 6(α). Since Γ2 is definable in N, this branch is an

old branch in N. Now, as before, we get a promise Γ out of Γ2 and we add this

promise to p in order to obtain the desired q. It follows now that q Ih "r is this

old branch".

Πδ.9,8.6,8.5




