
Chapter II

Some Admissible Sets

Having gained some feeling for the theory KPU we turn to its intended models,
admissible sets. Admissible sets come in many sizes and shapes. In this chapter
the student is introduced to some of the more attractive ones in a cursory fashion.
We will delve into their structure and properties later.

1. The Definition of Admissible Set
and Admissible Ordinal

It facilitates matters if we fix a largest possible universe of sets over an arbitrary
collection M of urelements once and for all. We define by recursion:

VM(α + l) = Power set of (MuVM(α));
VMW = (Jα<Λ VΛί(α)> if ^ is a limit; and

Fig. 1 A. The universe VM of sets on M
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where the union in the last equation is taken over all ordinals α. (The reason
for letting VM(0) = 0, rather than VM(0) = M, is that VM is to be a collection
of sets on M.) We use eM for the membership relation on YM, dropping the
subscript if there is little room for confusion. If SDt = <M,---> we write Wm

for VM. If M is the empty collection we write V(α) for VM(α) and V for VM.

1.1 Definition. Let L* = L(e,...) and a structure $01 for L be given. An admissible
set over SOΐ is a model 91̂  of KPU of the form

where MuA is transitive in VM, and e is the restriction of eM to M^jA. The
admissible set 91̂  is admissible above $R if Me A, i.e., if Sl^KPU"1". We use
special Roman A, IB, <C to range over admissible sets. When we need to exhibit
the underlying structure 9M we write A^.

Fig. 1B. A typical admissible set over $01

In other words, admissible sets are models of KPU which are transitive hunks
of VM with the intended interpretation eM of the membership symbol. Warning:
While the interpretation of the membership symbol must be the natural one,
Definition 1.1 makes no such demands on the interpretations of any other symbols
in the list ... of L(e, . . .). They must fend for themselves. For example, if L* = L(e, P)
and the admissible set AM = (SOt; A,e,P) is a model of Power, then there is
nothing to guarantee that P(ά) is the real power set of α; it may very well be
only a small subset of the real power set of a.

1.2 Lemma. Suppose 9ίsw = (aK;Λ,eM,...) and 93w = (5R;B,ew,...) and
// MuA is transitive in VM, then ytm—end'&M

Proof. Recall the definition given in 1.8.1. If aeA then aeM=a = a€N since
is transitive in VM. D

This lemma also holds for 33^ = %,, except that V^ is not a proper structure.
This trivial lemma is of real importance. With the results of 1.8 it insures that Δ
predicates and Σ operations of KPU have the same meaning in all admissible
sets that they have in V^.
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1.3 A Comparison. Consider the two operations TC and P (Power set) and an
admissible set A = (9K,,4,e,P) satisfying the Power set axiom. Given aeA the
expressions

TC(α), P(fl)

each have ίwo possible interpretations. For TC there are the sets b0, b± such that

At=TC(α) = b0 and VaRN=TC(α) = fe1,

where A = (9K;/l,e). For P there are the sets c0, cl such that

(α) = c0 and VOT \=P(a) = cί.

Since A^^V^ and TC is a Σ operation, we have Vmt=TC(a) = bQ:, and so
bQ = b^. Thus ί?0 is the real transitive closure of α, so that

^o = Π {^ I ̂  transitive, a^b] .

For P, however, this fails. Since x^y is Δ0 we get cQ^cί but that's all. Typically,
c0 will be a proper subset of the real power set q of a.

1.4 Definitions. A pwre set in VM is a set a with empty support; i. e., one with
TC(α)nM = 0. (For example, ordinals are pure sets.) A pure admissible set is an
admissible set which is a model of KP; i. e., one without urelements. Pure
admissibles can be written A = (,4,e,...). If L* = {e} then we write A for

Fig. 1C. A pure admissible set A

1.5 Theorem. // A^^ΪR; A,ε) is admissible and A0 = {aEA\a is a pure set},
then A0 is a pure admissible set, called the pure part of Am. (See Fig. ID.)

Proof. By 1.2 we have A0^endAm^endWm. By absoluteness, sp(α) has the same
meaning in A^ and V^. Let us check Δ0 Collection leaving the easier axioms
as exercises to help the student master absoluteness arguments. Suppose α, beAQ

and suppose A0 satisfies Vxealy φ(x,y,b), where φ is Δ0. If φ(x,y,b) is true
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Fig. 1 D. The pure part A0 of an admissible set

in A0 it is also true in A^ by absoluteness so A^ satisfies:

Vx e a ly [sp(y) = 0 Λ φ(x, y, b)~] .

Applying Σ collection in AOT, we get a ceA^ such that

(1) Vxef l ίByec [sp(y) = Q Λφ(x,y,b)~], and

(2) Vy 6 c 3x e a [sp(j ) = 0 Λ φ(x, y, b)~\ .

From (2) we get sp(c) = 0, since sp(c) = \J{sp(y)\yec}; so ceA0. But then (1)
is a Δ0 formula with parameters from A0, true in A^, hence true in AQ. D

1.6 Exercise. Verify Pair, Union and Δ0 Separation for the proof of 1.5. Notice
that Extensionality is trivial from the transitivity of A0, and that Foundation is
trivial by the well-foundedness of A^.

1.7 Definitions. The ordinal of an admissible set A^, denoted by ^(A^), is the
least ordinal not in A^; equivalently, it is the order type of the ordinals in AOT.
An ordinal α is admissible if α = o(Aarί) for some SOΪ and some admissible set A^.
An ordinal α is ^-admissible if a = o(A,m) f°r some A^ which is admissible
above 5DΪ (in the sense of 1.1).

1.8 Corollary. The ordinal α is admissible iff oί = o(A) for some pure admissible set.

Proof. If α = o(AOT) and A^ is admissible, then a = o(A0), where A0 is the pure
part of ASR. D

What kinds of ordinals are admissible? In the next section we will see that ω
is admissible. From our development of ordinal arithmetic in Chapter I we see
that if α is admissible then α is closed under ordinal successor, addition, multi-
plication, exponentiation and similar functions of ordinal arithmetic. Thus the
least admissible α > ω is bigger that

ω + ω, ω ω, ωω, ωωω,...,ε0,...,
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where the operations are from ordinal (not cardinal) arithmetic. In 8 3 we will 
prove that every infinite cardinal K is admissible and that for any P < K ,  there 
are K admissible ordinals a between 0 and u. (Thus, u is a limit of admissibles.) 

1.9 Definitions. Let A =A, = (m; A,€, . . .). We often use the following notation 
and terminology. An object x is in A if X E  MuA,  and we write X E A .  A relation 
on A is a relation on MuA.  An n-ary relation S on A is C, on A if there is a 
C, formula cp, possibly having constants y,, . . . , y, from A, such that 

S(x,,. .. , x,) iff Al=q[x,,. .. , x,] 

for all x,,. . . ,x,EA. The relation S is FI, on A if (1) holds for some FI, formula cp, 
and S is A, on A if S is both C, and H, on A.  A function F on A is a function 
with domain a subset of (MuA)" for some n and range a subset of MuA.  We 
say F is C, on A if its graph is C, on A .  

1.10 Proposition. Let A be admissible. 
(i) If ~ E A  then a is A, on A. 

(ii) If' x c A  then {x) is A, on A.  
(iii) The C, relations of A are closed under A ,  v , 3 x ~ a ,  Vxca, 3x. 

Proof. (i) xga  iff A ! = x ~ a ;  so a is A, as a subset of A .  Part (ii) follows from (i). 
Part (iii) is immediate from the fact that every C formula is equivalent, over A, 
to a C, formula and the X formulas are closed under the operations mentioned. O 

1.11 Exercise. Let A =A, be admissible and let G be an operation defined on 
all triples in A, whose restriction to A, is C, definable on A,. Define, in V,, 

by C recursion. Show that XEA, implies F(x)EA,, and that FrA, x A, is 
C, on A,. (This should be easy if the student has understood what has come 
before.) 

2. Hereditarily Finite Sets 

A set acV, is hereditarily finite if TC(a) is finite. IHF, is the set of hereditarily 
finite sets of V,. It can also be defined by: 

HF,w(0) = 0;  

HF,,,(n + 1) =set of all finite subsets of (MuHF,(n)); 

JHFH = U, <, HF,w(n). 
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Fig. 2A.

2.1 Theorem. HF^ is the smallest admissible set over SOΪ. More precisely, let
L* = L(e,...) and let JHFm = (3Λ', HFM,e,...) bean ^-structure.

(i) HFggj is admissible.
(ii) // ASH = (501; A, e,...) is admissible, then

There is a difference between HF^ as a set and as an L*-structure, but it is
usually clear which we have in mind.

Proof of 2.1. (ii) is trivial since A must be closed under pair and union so that
H¥M(n)^A for all π, by induction on n. Let us prove that HF^ is admissible.
Since HF^ is transitive in Wm we get extensionality and foundation for free.
Note that each H¥m(n) is also transitive. If x, yGHFm(n) then {x,y}eHF^n +1)
so we have Pair. If aeHFm(n) then [_)a is a finite subset of H¥m(n) so is an
element of HF^rc + l), and we have Union. If a^beH¥m(n) then αeHF^rc)
since a subset of a finite set is finite, so we have full separation, hence Δ0 Sepa-
ration. Similarly, we have full collection for if αeHF^ has say k elements
yί9...,yk and for each of these yt there is an xt such that φ(xhyί) holds, then
all x l 5...,x f c occur in some H¥m(n)9 hence {x1,...,xk}eHFaR(rc + l). D

2.2 Corollary. The smallest admissible set is

HF = {αeV|β is a pure hereditarily finite set).

The smallst admissible ordinal is ω.

Proof. HF is the pure part of any HF^, and o(HF) = ω. D

HF is really where the study of admissible sets began. It was in attempting
to generalize recursion theory on the integers that admissible sets developed (by
a rather tortuous route) and, as we now show, recursion theory on the integers
amounts to the study of Σ1 and Δ! on HF.

2.3 Theorem. Let S be a relation on natural numbers.
(i) S is r.e. iff S is Σt on HF.

(ii) S is recursive iff S is Δ: on HF.

There are relativized versions of 2.3 that are just as easy to prove. For ex-
ample, S is recursive in f iff S is Δ! on <HF,e,/>, which by 2.1 is admissible.
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For the proof of 2.3 we assume familiarity with the elements of ordinary re-
cursion theory.

Proof of 2.3 (=>). Note that (i) implies (ii) since 5 is recursive iff S and —\S are r.e.
Nevertheless, first we prove the (=>) part of (ii) to help us prove the corresponding
half of (i). It clearly suffices to show that every recursive total function on the
integers / can be extended to a Σl function / on HF by the definition:

for xeω

= 0, for xφω.

To prove this we take a definition of recursive function where one starts
with basic total functions and closes under some operations which take one
from total functions to total functions. We choose the one given in Shoenfield
[1967], though any other will go through just as easily. Thus, the (total) re-
cursive functions are the smallest class containing + , , K< (the characteristic
function of <), F(xl5...,xn) = xί (the projection functions), closed under com-
position and closed under the μ-operation (if G is a recursive function such that
Vπ3w [G(n,w) = 0] and for all π,

F(ή) = μm [G(n, m) = 0] , the least m such that G(π, m) = 0 ,

then F is recursive).
We have already defined Σί operations + and in § 1.6 and the Δ0 relation

α<β in Table 2. The composition of total Σ^ functions is total and Σ^ so we
need only verify that the class of / with Σ1 f are closed unter the μ-operator.
Suppose Vn3w(G(rc,w) = 0), that G is recursive, that G is Σί on HF by the
inductive hypothesis and that F(n) = μw[G(rc,w) = 0].

Then F(x) = y iff

Some xt is not a natural number Λ y = 0; or all xt and y are
natural numbers and G(x,j;) = 0 and Vz<y 3π [n^Q /\G(x,z)=n].

This is Σ (since G is Σx), and hence it is Σl by 1.4.3. Thus every recursive function
and predicate on ω is Δx on HF. But every r.e. predicate S(x) can be written
in the form 3nR(x,n), where R is recursive by a standard result of recursion
theory; so every r.e. predicate is Σi on HF. D

To prove the other half of 2.3 we need the following lemma.

2.4 Lemma. There is a function e:ω-+ HF with the following properties:
(i) e is a bίjection (e is one-one and onto);

(ii) e is Σx on <HF,e>;
(iii) n = e(m) is a recursive relation of m, n; and

(iv) for any Δ0 formula φ(x1?...,xk) the relation <HF,e>l=φ(e(n1),...χnk))
of n1 ?...,n f c is recursive.
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Proof. Let us define:

{0} (1=2°)

e(2nι + 2"2 + + 2"*) = {φj, . . . , φk)} K > n2 >

We are using the binary expansion of integers, so e(ή) is defined for all n by
Σ recursion. Hence e is Σ1 by 1.6.4. and 2.16. An easy induction shows that e
is one-one and onto. To prove (iii), note that if e(k) is an integer n, then
e(fc + 2k) = n + l. To prove (iv), note that e(n)ee(m) iff n is an exponent in the
binary expansion 2kl + + 2kl of m. Other Δ0 formulas follow by induction on
Δ0 formulas using familiar closure properties of the recursive predicates. D

Proof of 2.3 (<=). Now suppose S in Σl on HF, say S(n) iff HF N 3y φ(n, y),
where φ is Δ0, the case where S has more than one argument being similar.
Then S(ri) iff 3fc3m [e(k) = n/\φ(e(k),e(m))~\. The part within brackets is recursive
by 2.4 (iii) and 2.4 (iv), so S is r.e. D

There is another way one might want to consider ordinary recursion theory.
Suppose we think of the natural numbers not as finite ordinals but as primitive
objects (urelements) given to us with some structure, say

where we use 0,1,2,... for these natural numbers, JV = {0,1,2,...}, and (x), ©
for addition and multiplication in 9ϊ.

2.5 Theorem. Let S be a relation on 91 = <N,®,©>. Then
(i) S is r.e. iff S is Σt on HF^;

(ii) S is recursive iff S is Δx on HF^.

The proof is similar to 2.3. For a different proof one can use Theorem VI.4.12.
We include 2.5 because it suggests that one might consider Δx and Σ1 on HF^
as definitions of recursive and r.e. on 501, for an arbitrary structure 9K. This is,
in effect, what Montague suggested in Montague [1968] for the case of what
he calls K0-recursion theory.

Another definition of a recursion theory over an arbitrary structure 9W was
presented in Moschovakis [1969 a], the generalizations of recursive and r.e. being
called search computable and semi-search computable. What Moschovakis did
was this. He started with SDl = <M,R1,...,Rfc>, chose a new object 0<£M and
closed Mu{0} under an ordered pair function, calling the result M*. Then
in M* he introduced, via an inductive definition similar to Kleene's for higher
type recursion theory, the class of search computable functions. Theorem 2.6
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below, due to Gordon [1970] shows that these two approaches coincide. This
result will not be used in this book. The reader unfamiliar with search com-
putability should consider 2.6 as a definition. A proof is sketched in the notes
for those familiar with the notions involved.

2.6 Theorem. Let ΪR = <M,JR1,...,^k>, and let S be a relation on 9JI.
(i) S is semi-search computable on 90Ϊ iff S is Σt on

(ii) S is search computable on 50Ϊ iff S is Δt on

In the context of recursion theory one often works with HF^ as opposed
to 9JI itself since the relations on 9JI which are semi-search computable are not
always definable at all over 9Ή itself. The trouble with your average structure SR
is that it lacks coding ability. This lack is what rests behind the need for the
following class of formulas. We will not use them until Chapters IV and VI.

2.7 Definition. The extended first order formulas of L* = L(e,...) form the
smallest collection containing:

(i) all formulas of L,
(ii) all Δ0 formulas of L*,

and closed under:
(iii) Λ , v , Vuev, Ίuev (u, v any kind of variables), Vp, 3p,
(iv) 3α.

The coextended first order formulas of L* form the smallest collection con-
taining (i) and (ii) and closed under (iii) and under:

(v) Vα.

The extended first order formulas do not allow unbounded universal quan-
tifiers over sets. The coextended formulas form the dual collection. That these
collections are more natural than they seem at first is shown by the next result
and the fact that its converse also holds. The converse is a theorem of Feferman
[1968] and will not be needed here.

2.8 Proposition. Let φ(v1,...,vn) be extended first order. For any structures

%0ί^end®sri> and any *!,..., ̂ e^:
(i) ^NφExi,...,^] implies ®TO ̂ C*!*-- •>*«]•

Proof. The difference between this and Lemma J.8.4 rests in the fact that these
structures have the same urelement base 9W. The proof is a trivial proof by in-
duction. D

2.9 Example. Let L be the language of number theory with 0, 1, (x), 0. In a
model 91 of arithmetic the set of standard finite integers is defined in ΉF^ by
the extended first-order formula ψ(x) shown here:

3α [xeαΛ Vzeα [z^O
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This formula is Σ l5 in fact, so that the set of finite integers is semi-search com-
putable over $1. The sentence Vp ψ(p) is extended first order, and HF^N Vp ψ(p)
iff 91 is the standard model of arithmetic.

The extended and coextended first order formulas of L(e), when interpreted
over HF^, form a very small fragment of so called weak second-order logic.
Weak second-order logic over $R just consists of the language L(e) interpreted
in HF^. At least that is one way of describing it.

2.10—216 Exercises

2.10. Prove that HFOT c V^αί), and that HF^^V^ω) iff SR is finite.

2.11. If A is a pure admissible set, A^HF, then ωeA.

2.12. If A^ is admissible and ^(A^^ω then the pure part of Aw is HF.

2.13. Prove that ΉF is a Δλ subset of any admissible set.

2.14. Let X be Σt on IHF. Prove that X is Σl on every admissible set.

2.15. Prove that VM(ω) is admissible iff M is finite.

2.16. Prove that H(l) = {nί9...,nk}, where l = 2nι + ~ + 2nk, nv>- >nk, is a Σx

operation of /.

2.17 Notes. Theorem 2.3 is a standard result of recursion theory, as is 2.5.
Theorem 2.6 is due to Gordon [1970]. The class of extended first order formulas,
introduced in 2.7, will be quite important in Chapters IV and VI when dealing
with structures without much coding machinery built into them.

We conclude the notes to this section with a sketch of a proof of Theorem 2.6.
The proof uses results from later chapters. We first show that every semi-search
computable relation on 9K is Σί on HF^. The basic relation of the theory is

and it is defined by means of a first order positive Σ inductive definition and so,
by the main result of § VI.2, is Σ1 on MF^.

To prove the other half, it suffices to show that some complete Σt relation
on HR0J is semi-search computable. Let T be the diagram of $R plus the axioms
KPU coded up on M* by means of the pairing function and let S(x) iff "x codes
a sentence provable from T\

It is implicit in Chapter V (and explicit in Chapter VIII) that S is a com-
plete Σ! prediciate. But the relation "p is a proof of x from axioms in T" must
be search computable (if the notion is to make any sense).

Hence the relation 3p ("p is a proof of x from axioms in T') is semi-search
computable, since the semi-search computable relations are closed under 3.
Note that this gives another proof of 2.3 and 2.5.
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3. Sets of Hereditary Cardinality Less Than
a Cardinal K

The next admissible set we come across is a simple generalization of HF^. Let K
be any infinite cardinal and define

H(κ)M = {aeWM\ΊC(a) has cardinality less than K;} .

In particular H(ω)M = IHFΛί. If M is empty then we write H(κ) for H(κ)M. If K
is regular then we can also characterize H(κ)M as follows:

G(0)=0;

G(α + 1 ) = {α £ M u G(α) | card (a) <κ}

) = \JΛ<λ G(a), if λ is a limit ordinal;

For singular K this characterization fails: a bad set sneaks into G(κ + l), if not
before (see Exercise 3.7). We use the axiom of choice in this section.

3.1 Theorem. For all infinite cardinals K, the set H(κ)m = (yjl;H(κ)M,e) is ad-
missible. It is admissible above 9W iff κ>card(M).

The proof of this is not as simple as one might expect in the case when K is
a singular cardinal. For K regular, though, it is a trivial result. We will return
to the proof of 3.1 after Theorem 3.3.

3.2 Theorem. Let K be regular. If (3Jl;H(κ)M,e,...) is a structure for L(e,...),
then it is admissible.

Proof. Just like for the case κ = ω. In fact, we get full separation and full col-
lection. D

The next result, besides giving us a lot of new examples of admissible sets,
also allows us to prove Theorem 3.1 for singular K. By card(L*) we mean the
cardinality of the set of symbols of L*.

3.3 Theorem (A Lowenheim-Skolem Lemma). Let L* = L(e,...) and let
Aan = (9W;>4,e,...) be admissible. Let AQ<^M\jA be transitive and let K be a
cardinal with K ̂  card (L*)u card (A0). There is an admissible set 1BK = (ΪI; B,e,...)
with the following properties:

(i) 9KΪR (91 is an elementary submodel of^Jl);
(ii) c

(iii) A^
(iv) For any φ of L* and any xί,...,xneA0, JR9ί\=φ\_xί9...9xn\ iff

Aawt=φ[x1,...,xπ]; and
(v) In particular, Ag^^B^ (ΞΞ indicates elementary equivalence).
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Proof. (Note that it is not asserted that B^A^I) Think of A^ as a single
sorted structure

91 =

where 9K = <M,— >. Find 9I1<9I with ^0^^ι and card^X* by the usual
Lόwenheim-Skolem-Tarski Theorem. 91 ! has the form:

9IX =<NuXl9 AT,

Since there are no urelements in 4l5 clpseiNu^)^^. Let 5 =
(i. e. B is the set of sets in clpseίTVu^)) and note that the set of urelements in
clpseC/Vu^) is just N. Let f = cNuAl in the notation of 1.7. Since N^>A1 is
extensional, / establishes an isomorphism between 9^ and a structure
S3 = <ΛΓuB;]V,£,e, ---,- 'X by the collapsing lemma. The isomorphism/ is the
identity for xεA0 by Lemma 1.7.1. Let 91 = <JV,— > and B^ = (^;5,e,...), and
all the properties of the theorem are clear. D

Proof of 3.1. It remains to show that if /c is singular then H(κ)yJl = (9Jlι H(κ)M,e)
is admissible over 9K. Let κ+ be the next cardinal >κ. The only axiom which
is not immediate is Δ0 Collection. (H(κ)M still satisfies full separation since
a^beH(κ)M=>aeH(κ)M.) Suppose

(1) Vxea3yφ(x,y,z)

is true in //(K;)^, where zeH(κ)m. Now φ has only a finite number of symbols
of L* in it, so we may ignore the rest of L* in what follows. Thus we assume
card(L*)^K0</c. Let a,zeX, X transitive, card(X)<fc; say X = ΊC({a,z}).
Since (1) is true in H(κ)^ it persists to H(κ+)m, which is admissible by 3.2. Using
3.3 we can get an admissible A^, with ϊl^gjί, so that X^A^, card(A9ί)<κ:
and (1) holds in A^. By Δ0 Collection in A^ there is a feeA^ so that

(2)

holds in A^. But A9lcend//(/c)g[rϊ, so (2) holds in H(κ)m by persistence. D

3.4 Corollary. Every infinite cardinal is an admissible ordinal. For every un-
countable cardinal K and β<κ, there is an admissible α where

Proof. κ = o(H(κ}} proves the first assertion in view of 3.1. The second assertion
follows from 3.3 by setting Am = H(κ), A0 = β + l and τc = card(/?). D

We could have also proved 3.1 by using the following result of Levy [1965]
(proved there for M = 0).

3.5 Theorem. For all uncountable cardinals κ<λ we have H(κ)m-<1 H(λ)m. That
is, any Σx sentence with constants from H(κ)^ true in H(λ)^ is already true in H^)^.



54 II. Some Admissible Sets

Proof. This is really just like the proof of 3.1. Suppose the formula 3y φ(x,y)
holds in H(λ)m, where xe//(κ:)aR. As in 3.1 we find an admissible set A^, with

such that the formula holds in A^ and card(Ayι)<κ. But then
and so tne formula holds in H(κ)m by persistence. D

One of the earliest generalizations of ordinary recursion theory on the in-
tegers goes back to papers of Takeuti where he defines recursive functions on
ordinals less than some cardinal K. When one looks for the analogue of ΉF for
ordinal recursion theory on K, the proper structure turns out to be L(JC), the set
of sets constructible before K, rather than H(κ). The reason is that one needs
to be able to code up the sets by ordinals in some way analogous to Lemma 2.4,
if one is to prove a result like Theorem 2.3. We will study the constructible sets
in § 5 and again in Chapter V.

3.6 — 3.7 Exercises

3.6. Let κ<λ be infinite cardinals and let X be a transitive subset of H(λ) with
card(X) = κ. Prove that there is an admissible set A of cardinality K with X^A
such that A^H(λ}, where ^ is explained in 1.8.10 and 1.8.11. [Iterate 3.2.]

3.7. Let K: be a singular cardinal, let M be a set of urelements of cardinality K
and define G as above. Show that already in G(2) there is a set not in H(κ)M.
[G is defined just before 3.1.]

3.8 Notes. The technique of following an application of the Downward Lowen-
heim-Skolem Theorem with an application of the Collapsing Lemma (as in 3.3)
is extremely important. In some sense, it goes back to GόdeΓs original proof
that the GCH holds in L, the constructible universe. It was later used implicitly
by Takeuti when proving, in our terminology, that uncountable cardinals are
stable. Theorem 3.5 is due to Levy [1965]. Theorem 3.1 is due to Kripke and
Platek.

4. Inner Models: The Method of Interpretations

We assume that the reader understands the notion of an interpretation, say /,
of one theory 7J (formulated in a language LJ in another theory T2 (formulated
in a possibly different language L2). Readable accounts of this can be found in
Enderton [1972] and Shoenfeld [1967]. We use φ1 for the interpretation of φ
given by /. Thus φ is in L1? φ1 is in L2; and if φ is an axiom of 7J, then φ1 is a
theorem of T2. If 501 is a model of T2, then we use SR~7 for the Lrstructure given
by $R and /; W1 is a model of T^ Note that Enderton uses π$R for our 9JT7;
while Shoenfield doesn't make explicit the model theoretic counterpart of the
syntactic transformation /.
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We give a simple example. We can interpret Peano arithmetic in KPU by
having / define

"natural number"

"addition"

"multiplication"

"x < /'

by "finite ordinal",

by "ordinal addition",

by "ordinal multiplication",

by »xεy\

Then every axiom φ of Peano arithmetic (in +, , <) goes over to a theorem φ1

of KPU (formulated in L(e,...)). If 21OTI=KPU then 9Iϋ/ = <W, +,', <> is the
model of Peano arithmetic whose domain ΛΓ is the set of finite ordinals of 21̂ ,
and where +, , < are the restrictions of the corresponding functions and re-
lations of Sί̂  to ΛΓ. Rather than launch into a discussion of just how we use
interpretations to construct admissible sets, we give a straight-forward illustra-
tion. The following result is a generalization of Theorem 1.5.

4.1 Theorem. Let Jk^ = ̂ ΰl', A,ε) be admissible and let 9W0c9Jί be a sub-
structure of yjl whose universe M0 is Σl definable on A^. // JBmo = (9Jl0; £,e) is
defined by B = {aeA\sp(a)^M0}, then BαRo is admissible over 5R0.

|M

Fig. 4 A. B ,̂ the left half of Aa

Proof. B is transitive so extensionality and foundation come for free. Pair, Union
and Δ0 Separation are routine. We prove Δ0 Collection. Suppose IBαίio satisfies
Vxea1yφ(x,y), where a and any other parameters in φ are in B .̂ For fixed

, we find in A^ that Vpεsp(y) θ(p)9 where θ(p) is the Σ! formula defining
in A^. Hence A^ satisfies the formula:

Vxeα 3y \_φ(x,y) Λ Vpesp(y) θ(p)~] .

By Σ Collection in A^, there is a b in A^ so that

(1) Vxεa3yebφ(x,y) and Vyefo Vpesp(^) θ(p).
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But then sp(b)cM0. So beB, and (1) holds in BSEWo by absoluteness. D

Properly viewed, Theorem 4.1 is a trivial application of an interpretation /.
If θ(p) defines 50Ϊ0 then /, in effect, simply redefines:

"x is an urelement" by "x is an urelement Λ 0(x)",

"x is a set" by "x is a set Λ Vpesp(x) θ(pj\

and leaves 6 and the symbols of L unchanged. The proof that every axiom φ
of KPU becomes a theorem φ1 of KPU' is just like the proof of 4.1 (where KPU'
is KPU with axioms asserting θ is closed under any function symbols of L).
Hence, for every model 21̂  of KPU', the structure SÎ 1 is also a model of KPU.
In Theorem 4.1 we have BaRo = Sls^

I

5 In this example we don't gain much by
looking at it from the point of view of interpretation, but we will in more com-
plicated situations.

The interpretation we just used has some important features in common with
most of the interpretations we use. They are what Shoenfield [1967, § 9.5] calls
transitive e-interpretations.

4.2 Definition. Let L* = L(e) and let / be an interpretation of L* into KPU (as
formulated in L*). / is a transitive ^-interpretation if / leaves the symbols of L
and e unchanged and merely "cuts down on the urelements and sets" so that
the following are provable in KPU:

(i) if (x is an urelement)7 then x is an urelement;
(ii) if (x is a set)7, then x is a set and for all yex, (y is an urelement)7 or

(y is a set)7.
If / is a transitive e-interpretation and SI^^KPU then 9Î ,7 is called the

inner submodel of A^ given by /.

Fig. 4 B. A model W.w and an inner submodel

The conditions in 4.2 guarantee that Sla/^end^m Fig. 4B indicates the idea
behind transitive e-interpretations and inner submodels.

The following lemma is useful to keep in mind.
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4.3 Lemma. Let I be a transitive e-interpretation.
(i) KPUh-(Extensionality)J;

(ii) For each instance of foundation φ, we have KPUl-φ1;
(iii) For each Σ formula φ(x):

KPU h- Urelementίx)7 v Set(x)' -> [φ(xY-+φ(x)],

(iv) For each Δ0 formula φ:

KPU h- Urelement(x)7 v Set(x)7 -* [Xx)'«-><p(x)].

Proo/. (i) (Extensionality/ can be written as:

Set7(α) Λ Set7(fc) Λ α^b -* 3x [(SetJ(x) v Urelement^x)) Λ -ι(xeβ<->xe&)] .

This follows immediately from property 4.2 (ii). To prove (ii) let φ be
la\l/(ά)-^3a [^(α)Λ-ι3feeα^(fe)]. Then φ7 states: If 3α [Set'fc) A ψ'fa)'], then
there is an a such that Set'fa) and ^J(α); but there is no b with SetJ(fe) such
that be a and ι/^(b). This follows immediately by applying foundation to the
formula: Se1/(α)Λ ι/^7(α). Part (iii) follows model theoretically by the comment
above about Slsw^end^sw* fc>r all ^MI=KPU. It can also be proved directly
by induction on φ. Part (iv) follows from (iii). D

4.4 Exercise. Verify that the specific / defined on p. 56 is a transitive e-inter-
pretation.

5. Constructible Sets with Urelements;
Defined

In this section we construct most of the more important admissible sets in one
fell swoop by means of GodeΓs .hierarchy of constructive sets. For reasons which
will become apparent, we restrict ourselves to the case where the language L
has only a finite number of nonlogical symbols and where L* = L(e). For sim-
plicity we assume the symbols of L are relation symbols: a simple modification
will extend the results to languages with function and constant symbols.

5.1 Apologia. There are two well known ways of defining the Constructible sets
in a theory without urelements, both developed by Gόdel. The most intuitive is
by iterating definability through the ordinals; the other uses some form of GδdeΓs
J^,..., Jζ. We have always preferred the former method but find ourselves forced
to use the latter here. The reason is simple enough, but is one that doesn't arise
in ZF. Many admissible sets AOT have ordinal 0(AOT) = ω, i.e., are models of
— i Infinity, whereas natural ways of iterating first order definability need ω.
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Even though we give up the iteration of full first order definability, we modify
the usual approach (along lines used by Gandy [1975] and Jensen [1972]) via
the ^s to make it as similar to the definability approach as possible.

5.2 Assumption. For the rest of § 5 we assume that J^,...,^ are Σ1 operations
(of two arguments each) introduced into KPU so that the following hold, where
we define

(i)
(ii)

(iii) KPUh-sp(J*.(x,.y))csp(χ)usp(;μ), for all
(iv) KPUH[Tran(&HTran(0(fe))];
(v) For each Δ0 formula φ(x1,...,xn) with free variables among x l 5...,xπ and

each variable xi9 i^n, there is a term 2F of n arguments built from
J . . , J so that:

There are many ways of fulfilling the assumptions. We will return to give a
specific solution in § 6. Next, with 5.2 firmly in mind, we return to the develop-
ment of set theory in KPU begun in Chapter I. First note that 2 is a Σ operation
since J^,...,^ are. Define, in KPU, a Σ operation L( , •) by recursion over
the second argument:

L(α, α + 1) = ®(y (L(α, α))) = 0 (L(α, α) u {L(α, α)}) ,

L(α,A) = |Jα<λL(α,α) if Lim(λ).

5.3 Definition. An object x is constructive from a, written xeL(α), if
3α[xeL(α,α)]. If x is constructible from 0, we say x is constructible and write
xeL.

5.4 Lemma (of KPU). For all sets a and ordinals α:
(i) 0eL(α,l) if a is transitive;

(ii) L(α,α) is transitive;
(iii) %<β implies L(0,α)cL(α,jβ);
(iv) L(α,α)eL(0,α + l);
(v) x,>;eL(α,α) implies ^.(x,^)eL(α,α-f 1), Ki^JV;

(vi) αeL(α,jβ) /or some β;
(vii) An urelement p is in L(a) iff pesp(α).

Proof, (i), (iii), (iv), (v) follow from the definition of L(α,α) directly. Part (ii) is by
induction on α using Assumption 5.2 (iv). Part (vii) is proved by showing that
peL(α,α) iff pesp(α) by induction on α (using 5.2 (iii)). This leaves (vi) which
is also proved by induction on α. By the induction hypothesis we have
Vy<α3(5 [yeL(α,δ)]. So, by Σ Reflection, there is an ordinal λ such that
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Vy<α3<5<Λ, [yeL(α,<))]. But then by (iii), every y<α is in L(α,A); that is,
α^ L(α,Λ,). Now, applying Assumption 5.2 (v) for the first time, we see that the set
b = {xeL(a,λ)\Ord(x)} is in L(α,Λ/) for some λ"^λ. Since L(a,λ) is transitive,
b is an ordinal β and a^β. Again, since L(α, /Γ) is transitive, αeL(α,/l'), because
either a = β or αeβ. D

We now define a transitive e-interpretation φL(α) by the following:

(x is a urelement)L(a} is (xesp(α)),

(x ί's α set)L(a) is (x is a set ΛxeL(α)),

leaving e and all symbols of the original language L unchanged. (We apologize
for the two L's, but note that one is sanserif.) Note that this is indeed a tran-
sitive e-interpretation in the sense of § 4.

5.5 Theorem. For every axiom φ of KPU + , we have KPU\-φL(a\

Proof. We run through the axioms of KPU + . Extensionality and Foundation
follows from 4.3. Pair and Union follow from 5.2 (i), (ii), and 4.3 (iv). Δ0 sepa-
ration follows from 5.2 (v) and 4.3 (iv).

Δ0 Collection: Suppose that φ(x, y,z) is Δ0. Working in KPU assume
(fl) and Vxea0 3yeL(α) [φ(x,y,z)L(fl)].

We suppress mention of z. Writing out yeL(α) and using 4.3 (iv) on φ(x,y)
we get Vxeα 0 3α [3yeL(α,α) φ(x,y)\. By Σ collection there is a β such that

So, by 5.4 (iii), Vxeα 0 3yeL(α,jβ)φ(x,y). Using 4.3 (iv) again, setting b = L(a,β),
we find:

Thus, the interpretation of Δ0 Collection is provable.
Finally, we need to prove [3b Vx(xeb ^->3p(x = p)Y\ L(fl). By Δ Separation it

suffices to prove [3f? Vp (pe^)]L(fl). Let fc = TC(a) = L(a,0). By definition, feeL(a,l)
and (x is an urelement)L(a) is just xesp(α); but sp(α)^fo. D

5.6 Definition. L(α)sw = (aR;L(M,α)nVAf,e).

L(oί)m is a structure (for the language L* = L(e)) which may or may not be
admissible. We use the intersection with ¥M in 5.6 is just to take out the
urelements in strict accord with our definition of structure for L*.
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5.7 Theorem. // there is an admissible set A^A^ above 2R with
then LίαJjR is the smallest such. In other words L(α)aίl is admissible, L(α)aϊίcAarl,
MeL(α)<m and

Proof. For /?<α, L(M,β) has the same meaning in A^ and Vm by absoluteness.
Thus L(α)m is the inner model of A^ given by the interpretation defined above.
Thus, in particular, I^α^cA^. By Theorem 5.5, L(α)αrι is admissible, and
MeL(α)<m. We see that o(L(a)m) = u from 5.4 (vi). D

If we had the option, the following definition would be printed in red. It
introduces one of the principal objects of our study. Recall that A^ is admissible
above 9K if ATO1=KPU + , the " + " being the part that gives "above".

5.8 Definition (The Next Admissible).
(i) HYPTO = (2»; A,E), where A = f] {B|(2R; B,e) is admissible above 2R}.

(ii)

5.9 Theorem, (i) HYP^ is the smallest admissible set above 9Jt.
(ii) HYP^Lία)^ for α =

Proof. We need only see that HYP^ is admissible over 501, since it is certainly
contained in all other admissibles over $R with M an element. There is an ad-
missible Agjj with MeAgjt by 3.1. Let α be the least ordinal of the form o(Aαϊl),
where A^ is admissible above $R. Apply 5.7 to α and A^. D

We will study the structure of HYP^ off and on in Chapters IV, VI, VII, VIII.
For now we will simply state without proof, for the reader who understands the
notions involved, that if Jf = (N, +,•> is the usual structure of the natural
numbers, then for any relation R on Jf,R is hyper arithmetic iff ReHYP^, and
R is Π\ on N iff R is Σ^ on HYP^. Furthermore, O(Jf ) = ω[ = the least non-
recursive ordinal Proofs will appear later.

For the next result recall that L(α) = L(0,α); so L(α) is a pure set. The proof
is immediate from 1.8 and 5.7 with M = 0.

5.10 Corollary. An ordinal α is admissible iff L(α) is a pure admissible set.

An urelement free version of 5.9 is given below; the proof is similar.

5.11 Theorem. Let a be a pure transitive set, A = f\ {B: B admissible, αeB}. Then
A is admissible; it is of the form L(α,α) for some admissible α; and it is the smallest
admissible set with a as an element.

5.12 Corollary. If a is admissible and αeL(α), then L(α,α) = L(α).

Proof. Both L(α,α) and L(α) are the smallest admissible sets with a an element
and ordinal α. D
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The final results of this section will appear rather technical at present, but
they are extremely important for much that is to follow.

5.13 Definition. Let A^ be admissible. Let φ(v) be a Σx formula with one free
variable but with parameters from some set X^Am.

(i) If Am\=1lvφ(v) and Am\=φ[a], then φ(v) is a Σx definition of a with
parameters from X.

(ii) If, in addition to (i), for every ^Byjι^end^m which is a model of KPU
we have 33̂  μ= 3 ! v φ(v), then φ(v) is a good Σl definition of a with
parameters from X.

5.14 Theorem. Let M = sp(a) where a is transitive and let α be the least ordinal
such that A = ($ft; L(α,α)nVM,e) is admissible. Every xeA has a good Σ^ defi-
nition on A with parameters from a\j{a}.

Proof. Let B be the set of xeA which have good Σ1 definitions on A with
parameters from £f(ά). Note the following:

(1) y(a)^B; and
(2) x,yeB implies ^i(x,y)eB for

For (2) we need the fact that ̂  is Σ1 definable in KPU without parameters,
which was implicit in 5.2.

(3) If b^B, then

This follows from the fact that 9(b) = bv{^(x,y) \x,yeb,lιζi^N} and from (2).
Next since L( , ) is a Σl operation of KPU we find:

(4) // βeB, then L(a,β)eB.

We now prove, by induction on β<a, that βeB and L(a,β)<^B.
Case 1. β=Q. 0 has a good Σx definition and L(a,Q) = a^B by (1).
Case 2. β = γ + i. By induction hypothesis γeB and L(a,γ)^B. But if γeB

so is 7 + 1. L(ά,y)eB by (4). Thus

so L(fl,y + l) = ®(^(L(fl,y)))cβ, by (3).
C«5^ J. jβ is a limit ordinal. By the induction hypothesis we have β^B and

'L(a,β)^B, since j8 = {7|y.<j8} and L(a9β) = \Jv<βL(a9γ). Thus we need only
prove βeB. This, however, is the main point of the proof. By our choice of α
and β<tt we have L(α,j?)aR = (50l; L(α,β)nVM,e) is not admissible so there is
a Δ0 formula φ(x,j;,z) and there are objects z,ί?eL(α,β)aR so that

(5) L(a,β)mϊ=Vx€b3yφ(x,y,z), and

(6) L(a,
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(Since Lim(β) holds, Δ0 Collection is the only way for L(a,β)m to fail to be
admissible by Exercise 5.16). Now b,ze£, so they have good Σt definitions
σ(u\ ^ί(w) with parameters from <f(ά). Consider the following Σ formula θ(β):

Ord(jS) Λ 3b 3z [σ(b) Λ ψ(z) ΛVxeb3yeL(a, β) φ(x, y, z)

Now clearly A\=θ(β) so every end extension 95TON0()8). If SOTI=KPU then
no "ordinal" of 33̂  greater than β can satisfy θ by (5), (6). Similarly, no ordinal
smaller can satisfy θ. Thus θ(β) defines β in every end extension of A^ satisfying
KPU, so βeB. D

5.15 Corollary. Every αelHYP^ has a good Σl definition on ΉYP^ with no
parameters other than M and some pl9...,pkeM.

5.16—5.20 Exercises

5.16. Let Mesp(α) and let λ be a limit ordinal. Show that (9JI; L(α,/ί)n¥M,e)
satisfies all the axioms of KPU except, possibly, Δ0 Collection.

5.17. If K is a cardinal, κ>card(M), then L(κ:)αϊl is admissible above 9JΪ.

5.18. If K, λ are uncountable cardinals, κ<λ then L(/c)aϊl-<1L(/l)an.

5.19. L(/c) is admissible for all cardinals κ^ω.

5.20. Improve 5.4(vi) by proving that αeL(M,α + ω), assuming ω exists.

5.21 Notes. The constructible sets were first used by Godel [1939] in his famous
proof of the consistency of the generalized continuum hypothesis. In this paper,
Godel used iterated first-order definability. In the proof of Godel [1940] the
fundamental operations were introduced and used to generate the constructible
sets. The approach to the constructible sets taken here borrows some ideas from
Jensen [1972], but it is a little more complicated due to the presence of urelements
and relations on them. We shall see that the complications only come up in
fulfilling Assumption 5.2 in the next section.

6. Operations for Generating the Constructible Sets

We now turn to the task of finding J^,...,^ satisfying Assumption 5.2. We
will see that we can get by with especially simple functions (substitutable func-
tions). This will prove useful in understanding the sets constructible in ω steps.
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The real strength of 5.2 resides in the requirement that for each Δ0 formula
φ(xl9...,xn), there is a term ̂  built from the symbols J^,...,^ so that

We take care of this condition first.
We already have by 5.2:

and

From these we obtain by various simple compositions the following:

The function J^ corresponds (in Lemma 6.1) to v in Δ0 formulas. To handle
negations we need to define:

From this we get, by composition,
The need to treat quantifiers leads us to the following more complicated

functions :

(SF'S) ^5(x,y) = dom(x) = { ί s t ( z ) \ z G x , z an ordered pair},

, z an ordered pair},

The functions J^, J^ are annoying. They arise from the peculiar nature of the
ordered n-tuple. We tend to think of (xl,x2,x3,x4) as a rather symmetric
object but it is, in fact, far from it. We can form it from xl and <x 2,X3,X4>
(since it is just <x l5<x2,x3,x4») but we cannot form it from, say x4 and
<Xι,x2,x3> or from x3 and <x l 5x 2,X4> using J^,...,J^. This accounts for the
appearance of J^ and J^.
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It now remains only to add the functions which correspond to atomic formulas :

^u(x,.y) = {zex|zisanurelement},

and for each relation symbol R(x1?...,xn) of L an operation:

In order to prove the desired result we prove something a little more general.
It gives us a better inductive hypothesis in our proof which uses induction on
Δ0 formulas. For technical reasons, we have inverted the order of the variables
in 6.1. For the same reason, there is an inversion taking place in lines (^ 10),

6.1 Lemma. For every Δ0 formula φ(x l5...,xπ) with free variables among xί9...9xn9

there is a term 2Fφ built up from the symbols «^"1,...,«^κ so that

KPU

Proof. We treat L* = L(e) as a single sorted language with symbols U (for urelement)
and S (for set), e, =, R 1 ? ..., R / ? and variables x1,x2,x3, ... . Whenever we write a
formula φ as φ(xl9...9xn) we mean that all the free variables of are among
x !,..., xw, but not all of these variables need actually appear as free variables in φ.
For the purpose of this proof we need two special definitions. We call a formula of
L* an orderly formula if it satisfies the following condition: whenever a quantifier
Ίxj or Vx7 occurs in φ, the index j is the largest index of all the free variables in the
scope of the quantifier. By simply renaming bound variables systematically, we
have:

(a) Every Δ0 formula of L* is logically equivalent to an orderly Δ0 formula with the
same free variables.

We call a formula φ(xl9...9xn) a termed-formula, or t-formula, if there is a
term J^ such that the conclusion of 6.1 holds. Note that there is a possible
ambiguity here since a formula with free variables among x l 5x 2 is also a formula
with free variables among x l 5x 2,x 3 and so could be written as φ(x l 5x2) or as
φ(x lsx2,x3). To be completely precise, we should say that φ with free variables
among x1? ...,xπ is a ί-formula. Line (e) below will show us that we don't have
to be this careful.

Our goal is to prove that every Δ0 formula is a ί-formula. We want to prove
this by induction on Δ0 formulas, but we must dispose of certain logical trivialities
before we can treat even the atomic formulas. These trivialities are handled in
(b)-O') below.
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(b) // KPU h- φ(x1? ..., xn)<-+ψ(xί9 ..., xn) and φ is a t-formula then so is φ.

This last is clear. Combining (a) and (b) allows us to restrict attention to orderly
Δ0 formulas, so Lemma 6.1 follows finally from (z) below.

(c) // φ(xl9...9xn) is ψ(xί9...9xn_ί) and ψ is a t-formula then so is φ.

Define &φ(al9...9an) = anx&r

ψ(aί9...9an-ί). This proves (c).

(d) // φ(xί9 ..., xn) is ι/φc1? ..., xn+ί) and ψ is a t-formula then so is φ.

Note that {0} = {^(aί9aί)}=^ί(^3(aί9aί)9^3(al9aί))9 so we may use {0}
inside terms. Define next :

= rng({<0,xn,...,x1>|x ίeα f and ^(x1,...,

= {<xπ,...,x 1>eαBx xα 1 |φ(x 1,...,xπ)}.
This proves (d).

(e) // φ(xl5 ..., xn) is ι/φc1? ..., xm) and ψ is a t-formula, then so is φ.

For n>m this follows by induction on n using (c). For m>n this follows by
induction on m — n using (d). For m = n there is nothing to prove.

(f) // φ(xί9 ..., xn) is a t-formula, so is —\φ.

Define #ίΊφ(aί9...9aJ = anX' xaί-Fφ(aί9...9an). This proves (f).

(g) // φ(xί9 ..., xn) and ψ(xΐ9...9 rj are t-formulas so is φ^φ.

Define ^φ^(aί9 ..., an) = #r

φ(aί9 ...,αn)n J^(α1? . ..,ΛΠ). This proves (g).

(h) The t-formulas are closed under propositional connectives.

This follows by (b), (e), (f) and (g). In the following we use φ(x/y) to denote the
result of replacing all free occurrences of y by x.

(i) // ψ(xί9...9xn) is a t-formula and φ(x1,...,xn+1) is ^(x1,...,xπ_1,xπ + 1/xπ),
then φ is a t-formula.

If n = l, define ^φ(a1,a2) = ̂ ll/(a2)xaΐ . If n>l, define:

and
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(j) // ^(x l5x2) is a t-formula and φ(x1? ..., xn) is ψ(xn_1/x1,xn/x2), then φ is a
t-formula.

This makes sense only if n^2 and is non-trivial only if n>2. To prove (j) define:

In (k) — (v) we prove that atomic formulas are ί-formulas.

(k) For all n, if φ(xΐ, ...,xπ) is U(xJ then φ is a t-formula.

For (k) define &φ(aί9 ...,flπ) = ̂ "u(flII,αII)x an.γ x ••• x^.

(1) (xj = x2) is α t-formula by (J^IO).

(m) (xn = xn + i) is α t-formula by (1) and (j).

(n) (xπ = xm) is a t-formula for all m>n.

This follows by induction on m using (m) for the base and (i) for the induction step.

(p) (xn

 = χ

m) is a t-formula for all n,m.

For n<m, this is (n). For n = m, take ^φ(aί9 ..., an) = anx ••• x aγ. For n>m,
note that (xπ^xm) iff (xm = xn), so the result follows from (b) and (n).

(q) (x1ex2) is a 't-formula by (2F 11).

(r) (xn + ί 6 xn + 2) is a t-formula by (q) and (j).

(s) // φ(xι, ..., xn) is (Xj eXj), then φ is a t-formula.

Let ψ(xl9...9xn+2)
 be (^i = ̂ +ι)Λ(xj = xπ + 2 )A(x I I + 1 ex I I + 2), so that ψ is a

ί-formula by (p), (r), (e), (q). Hence we define:

We now use J 6̂ to obtain the proof of (s) :

(t) // <P(XI, ...,x f c + m) is R(xk +ι, ...,xk+m), where R is an m-ary relation symbol of
L and /c>l, ί/ien φ is a t-formula.



6. Operations for Generating the Constructible Sets 67

Define J%(αl9 ...,ak+m) = #:

R(ak+mx ••• xα k + 1 ,α k x ••• xαj . This proves (t).

(u) // R is an m-ary relation symbol of L and φ(xl, ..., xπ) is R(x t l, ..., x, J, ί/zβπ φ
is a t-formula.

Let ^(x1?...,xn,xn+1,...,xn+m) be R^+iv .̂  + jΛ^ = XΠ + I ) Λ - Λ(x ί m = xw+m).
Thus ψ is a ί-formula by (t), (p), (e) and (g). Define

where we apply rng w-times. This proves (u).

(v) All atomic formulas are t-formulas.

The only ones not covered by earlier cases are those of the form S(x,), but
S(Xf)<-»"~ιU(xI ) so this follows from (b), (f) and (k). We have not only shown that
every atomic formula is a ί-formula, but also that the ί-formulas are closed under
propositional connectives. We now turn to bounded quantifiers.

(w) // ψ(xί9...9xn+ί) is a t-formula and φ(x1?...,xπ) is 3x l l+1ex</^(x1,...,xn+1),
then φ is a t-formula.

Let Θ(x1? ..., X Λ + I ) be (xw + 1ex7 ) so ψ /\θ is a ί-formula σ(x1? ...,xπ+1). Note
that

,^

So we may define &φ by &φ(al9..., αf l) = rng(^(α1, ..., an,\Jaj)). This proves (w).

(x) If ψ(x 19...9 xk) is a t-formula and φ(xί9...,xn) is 3xkexJ ̂ (x1, ..., xfc), where
k>n, then φ is a t-formula.

The proof of (x) is just like that for (w) except we must apply rng k — n times.

(y) // ^(x1? ..., xj is a t-formula and φ(xl9...9xn) is Vx fcex7-^, where k>n,
then φ(xl9 ..., xπ) is a t-formula.

This follows from (b), (f) and (x) since

(z) All orderly Δ0 formulas are t-formulas by (v), (h), (x) and (y). D

6.2 Corollary. 3?^, ..., &*κ satisfy Assumption 5.2(v).

Proof. Let φ(xί9 ..., xn) be a Δ0 formula. We need a term 2? so that
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But we can form this set from J^({xJ, ..., {*<_ J,α,{xί+1}, ..., {xn}) by using
ZF^ (rng) n — i times and then ^^ (dom). D

It may seem discouraging, but we are not through yet because 2F^...,2FK

do not give us the transitivity condition demanded by 5.2 (iv). Recall that we
want to show that Tran(f?) implies Tran(^(fc)), where:

This reduces to showing that for 1< z < N we have :

(*) b transitive and x,yeb implies TC (̂  (x, y)) c

The only functions among ^, ..., ̂ κ for which condition (*) could fail are those
involving rc-tuples. To satisfy (*) for these functions define, for each n ̂  2, functions
91&Ϊ, and jel9jr2,Jtr3 by:

yt(χ>y)=<χn> ',χι>yy > if χ = <χB,...,χι>
= 0 . , otherwise;

&ϊ(χ,y) = {*πXχ,ι-ι •••*!»)'>}> if χ = <χ π . . -χ ι>
— 0 , otherwise

= 0 , otherwise

^3(x,y) = {W,<y,ι;>} , if X = <M,I;>

= 0 , otherwise.

6.3 Definition. Let J be the largest number of places of a symbol of L The
functions ^...^N use to generate L consist of J^,...,^x together with ,̂̂ ,
for all n^J, plus J^1?^f2,^f3.

6.4 Theorem. The functions ^\,...,J^y satisfy Assumption 5.2.

Proof. We need to see that condition (*) holds for those functions involving
π-tuples. Let us check 2FΊ in some detail.

Suppose x,y are in the transitive set b. Let us list the members of ΎC(^Ί(x,y))
which are not in b, together with the reason they are in @(b). Recall
that Jr

7(x,y) = «w,i;,w>|<w,i;>ex, wey}
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Members ofΎC(έFΊ(x,y)) Excuse for appearing in
<M,I;,W> with <w,ι;>6x,
{u}

Anything else in ΎC(έFΊ(x,y)) is in b, since b is transitive. J^ and the ^R are
similar. The others are simpler. D

6.5 — 6.7 Exercises

6.5. Show that each of J^ + 1, ..., J*^ can be written as a term in J^,...,^.
[Hint: This is fairly easy using 6.1.]

6.6. Define L'(α,/l) using only ^Ί...^. Show that for limit ordinals
λ, L'(a,λ) = L(a,λ). The only point of using J^ + 1, ..., J^y was to make each
L(α,α) transitive.

6.7. Verify condition (*) in the proof of 6.2 for J*8.

6.8 Notes. The proof of 6.1 is one of the few places where the addition of urelements
and relations on them causes extra work. Neither space nor memory permit us to
list all the people who have found gaps in earlier proofs of this lemma.

When used in a class or seminar, section 6 should be supplemented with
coffee (not decaffeinated) and a light refreshment. We suggest Heatherton Rock
'Cakes. (Recipe: Combine 2 cups of self-rising flour with 1 ί. allspice and a pinch
of salt. Use a pastry blender or two cold knives to cut in 6 T butter. Add ^ cup
each of sugar and raisins (or other urelements). Combine this with 1 egg and
enough milk to make a stiff batter (3 or 4 T milk). Divide this into 12 heaps,
sprinkle with sugar, and bake at 400 °F. for 10 — 15 minutes. They taste better
than they sound.)

7. First Order Definability
and Substitutable Functions

The functions J*^,...,^ defined in 6.3 are actually quite simple compared
with some Σ operations we might have used to satisfy Assumption 5.2. We will
exploit this to prove the following theorem; the first corollary is of special im-
portance.
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7.1 Theorem. Let Wl=(M,Rΐ,...,Rιy, let a be transitive in VM with M^a.
Let A = ar\VM and let A9R = (9R;X,ε). Then a relation S on Am is first-order
definable using parameters from a iff

7.2 Corollary. // O(9Jί) = ω, then the relations on 9JI in HYP^ are just the first-
order relations.

Proof. If o(HYPsw) = α then HYP^L^. D

7.3 Corollary. The relations on L(α,α) in L(α,α + ω) are the relations first order
definable over (9K0; L(0,α)nKWo,e), where 9W0

 ίs tne substructure of 9Jί with
domain Sp(α).

Proof. Apply 7.1, reading L(α,α) for a and $R0 for 9JI. D

We begin the proof of 7.1 by studying substitutable functions.

7.4 Definition. A Σ operation symbol F of π-arguments is substitutable if the
Δ0 formulas are closed under substitution by F; that is, if for each Δ0 formula
φ(w,vl9 . . ., vk), there is a Δ0 formula \l/(ul9 ...,un,vl9...,vk) not involving F so that
KPυ\-φ(P(u),ΰ)<-*\l/(u9ΰ).

7.5 Lemma, (i) The substitutable operations are closed under composition.
(ii) // KPU I- Viί(F(w) is a set), then F is substitutable iff for each Δ0 formula φ,

the formula 3xeF(iί)φ(x,i;) is equivalent (in KPU) to a Δ0 formula \l/(ύ,v).
(iii) If F is substitutable, so is G defined by G(x,y) — {F(z,y)|zex} .

Proof: (i) is more or less obvious. For example, if φ(F(w))<-M/φ) and
then φ(F(G(x)))^(G(x))^θ(x).

The necessity in (ii) is a special case of Definition 7.4. To prove the other
half note that

yeF(Jc) iff 3zeF(3c)(y = z) ,

a=F(x) iff Vzefl(zeF(x))ΛVzeF(x)(z6fl),

F(5c)eα iff

p=F(x) iff

.) iff

So all atomic formulas involving F are Δ0. A simple induction on Δ0 formulas,
using the hypothesis of (ii), shows that F is substitutable in each of them.

To prove (iii) note that 3weG(x, y)(p(w)<-»3zex<p(F(z,y)); so G is substitutable
by (ii). D

7.6 Lemma. Each of the operations 2F^ ..., ̂ ^ is substitutable.
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Proof. We run through a few cases, using 7.5 (ii) quite heavily.

V lu e {x, y } <p(w) <-> φ(x) v

2\ 3we(Jx φ(ι/)<->3zex 3w

tfΊ: 3ze<x?<y> φ(z)«-xp({x}) v(/>({x,y}), whichis Δ0 since J^ issubstitutable;

Thus we see that J 4̂ is substitutable, since J 2̂

 and î are> by composition
and 7.5 (iii).

JV 3M6dom(x)φ(M)^->3M,ι;6UUx[<M,t;>6XΛ<jθ(M)], so J 5̂ follows from Jf7^

The other J^ are just as routine. D

For the remainder of the section fix 9W,0 and A^ as in the statement of the
theorem to be proved, Theorem 7.1.

7.7 Lemma. For every element xeL(α,ω) there is a term 3F in the symbols
J^,...,^,^ and yί9...,ymεav{a} such that x = &(yl9...9yj.

Proof. Note that L(α, n) = @^ (&&(. . .(a). . .)) for n repetitions of ^o^ ψ> is a
term in J^, J 2̂ as we saw in § 6) so each L(α,π) is of the appropriate form. We now
show that each xeL(α,π) is of the appropriate form by induction on n. Since
L(α,ω) = \Jn<ωL(a,n) the result follows.

For n = Q we have L(β,0) — α, since a is transitive, so the result is trivial.
If x 6 L(α, n + 1) — L(α, n), then x = L(α, π) or x = J*^(z, y) for some y,ze L(α,«)u {L(α,n)}.
The first case is taken care of by the first part of the proof. If x = #Γ

i(y,z) with
y,zeL(α,π)u (L(α,π)}, then y,z are of the appropriate form. Hence, x is also of the
correct form. D

7.8 Lemma. // φ(xl5 ..., xn,y) is Δ0 without parameters, then the relation

is first-order definable over A^.

Proof. A trivial induction on Δ0 formulas; just replace Vxeα by Vx, etc. D

Proof of Theorem 7.1. Suppose S^cf, SeL(a,ω). Then, by 7.7, there is a term
J* in J^,...,^,^ such that S = ̂ (x1,...,xk,α) for some x1,...,x f ceα. But
then %!,...,>? j iff <3Ί,. . ̂ ^G^X!, ...,xfe,α).

The right hand side is equivalent to a Δ0 formula (p(y1? ...,yπ, x1? ...,x fc,α)
by the substitutability of & (using 7.6 and 7.5 (i)) and < >. The relation
φ(y^ ...,yπ,x !,..., xfc,fl) is definable on A^, and hence S is definable using the
parameters x 1 ?...,x k. The converse is trivial since every definable relation S on
ASH is ΔO on L(α,l) and so is in L(α,ω) by, say, Exercise 5.16. D
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7.9—7.10 Exercises

7.9. F is effectively substitutable if the ψ of 7.4 can be found effectively from φ.
Show that each J^,..., J^,^ is effectively substitutable. [Use Church's Thesis.]

7.10. Verify that the effective version of 7.8 holds.

7.11 Notes. It seems to be an open problem whether the converse of 7.2 is true in
general. The study of substitutable functions goes back to Levy [1965]. He
called them "admissible terms", terminology clearly inadmissible in our context.
They were used by Gandy [1975] and Jensen [1972] (written later than Gandy
[1975]) to prove the urelementless version of Corollary 7.3. Gandy called them
"substitutable", Jensen called them "simple".

8. The Truncation Lemma

Recall (from 1.9.5) that a binary relation £ on a set X is well founded iff for all
nonempty Y^X there is an x e Y such that for all ye Y we have —\(yEx).
The notion is what we have tried to capture in the axiom of foundation, but of
course we fail since it is just not expressible in the first-order language of set theory.
A nonstandard model of KPU is one of the form 21̂  = (ΪR; A, E, . . .), where E is not
well founded; the other models are the standard, or intended models since, by the
next result, they are isomorphic to admissible sets. The proof is essentially the
same as that of 1.9.6.

8.1 Proposition. // ^Xaκ = (9W;>l, £,...) is a well-founded model of extensionality
then, it is isomorphic to a structure of the form ]BM = (SOt;.B,e, ...) with
transtitive. Both B^ and the isomorphism f are unique, and f satisfies

P, far

f ( a ) = { f ( b ) \ b E a } 9 for aεA.

Now let M<m = (Wl;A,E) be any structure and let if = {®OT£ end^anl^oR
is well founded}. Assume if^Q9 which is the case iff 91̂  N 3x Vx (yφx).

8.2 Lemma. There is a largest %$mEif (one which is an end extension of all
other members of if) .

Proof. Let 33̂  be the union of all structures in if. It is easy to check that
®aR^e«ΛR and (£^^93^ for all G^eTT. To see that SOT is well founded, let
X be a non empty subset of Mu£. We must find an xεX such that yεX
implies —\yEx. Since 93^ is the union of if, there is a Hmeif such that
X' = Xπ(MuC) is nonempty. Since (t̂  is well founded there is an xeX' such
that yeX' implies —lyEx. But yEx implies jeMuC for all yeMvA (by
^an — end^αn)? so we have ~ΊyEx for all yzX. D
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8.3 Definition. The largest well-founded 93OT such that Ssw^end^sw is called
the well-founded part of 21̂  and is denoted by

Note that this makes sense whether or not $1̂  is not well founded. If $1̂
is well founded, then i^/(tyίm) = 91̂  . If Wm is a model of extensionality, so is
WYCΆml since /^7(2iari)^end^an- In this case we often identity i^/(^) with the
Unique transitive structure isomorphic to it, as given by 8.1. We make this identifi-
cation in the next result, for example, which is an example of one way in which
(CPU is better behaved than stronger theories like ZF. It gives us a new method of
Constructing admissible sets, which accounts for its occurrence in this chapter.

8.4 Truncation Lemma. Let 9IOT = (SDl;^,£,...) and BOT = (2Fl;B,e, ...) be L*-
ktructures with SI^KPU and JBm^end<Άm, where (W;£,eH^(9Jt;,4,£).
Then Ban is admissible over 9JΪ.

Proof. We need to show that the hypotheses of Lemma 1.8.9 are satisfied, for then
we get all the axioms of KPU except Foundation true in B .̂ But B^ is well
founded, so it certainly satisfies Foundation. First note:

(1) If aeA and aE^B, then aeB.

This follows from the maximality of B^eY/^.

(2) If aεB and Mm N rk(α) = α, then aeB.

This follows by e induction on a, using (1), since SIaRt=α = sup{rk(x) +

(3) If ae£ and <&&*= rk(ά) = a, then

This follows by induction on α using (1). Thus we see that if 2Xaίϊl=rk(α) = α,
then αeJ5 iff

(4) There is no sup in 21̂  for the ordinals of ]Bm.

This follows from (1). Thus, we have what we need to apply 1.8.9. D

We have worded 8.4 in a roundabout way because of the functions which
might appear in the list.... The universe of i^/(3R;A9E) might not be closed
under them. Perhaps it is worth stating a special case of 8.4, the one we usually
apply. It follows at once from 8.4.

8.5 Corollary. // 91OT = (2R;>4,E) is a model of KPU then its wellfounded part is an
admissible set over 501.

ί j

8.6 Theorem. Let Wi = (M,Rl ....,#,>. The admissible set MYPm is the inter section
of all models 21̂ , well-founded or not, of KPU + . More accurately, given any model
%CT of KPU+, there is a unique embedding of ΉΎPm onto an initial substructure of
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Proof: By 8.5, ( )  is admissible above 'JJZ and hence 
IHYP,s W/('U,)c,,,'U,, the first inclusion being correct up to the unique 
embedding discussed above. O 

Recall that O(%n) is, by definition, o(IHYP,). Structures %n such that O(YJl) = w 
are going to play an interesting role in our study of admissible sets and structures. 
We call such structures recursively suturuted. This terminology will be justified in 
Chapter IV (cf. Definition IV.5.1 and Theorem IV.5.3). In the next theorem we use 
the truncation lemma to prove that there are lots of recursively saturated structures; 
that is, structures YJl with O(YJl) = o. 

8.7 Theorem. For every structure YJ2= (M,R,, . .., R,) there is u recursively 
saturated elen~entary extension % of %I of the same cardinality. 

Proof: Consider IHYP, as a single-sorted structure of the form: 

and let B = (NUB, N, B, R',, . . ., R;, E) be an elementary extension with non- 
standard natural numbers. This exists by the ordinary Compactness Theorem. 
Let %=(N,R;, ..., R;), and let %,=(%;B,E), which is a model of KPU'. 
The well-founded part of 23, is an admissible set IB; with N E %', since rk(N) = 1. 
Also o(IB;)=o, since 23, has non-standard integers. Thus o(IHYP,) =w by 
Theorem 5.9. The cardinality considerations are routine. 0 

This shows that we cannot expect YJl<% and O(%)=w together to imply 
O(YJl)= w. 

Finally, we use 8.5 to get a rather technical looking results. The real content 
of 8.8 will emerge gradually throughout the book. 

8.8. Proposition. Let S be an n-ary relation on a structure YJl= (M, R,, . . ., R,). 
If S is C, on IHYP, then there is a C, formula cp(x,, . . ., x,, p,, . . ., p,, YJl), with only 
constants p,, . . ., p , ~  M such that for all q,, . . ., q , ~  M the following are equivalent: 

6) S(q1, ..., q"); 

(ii) HYP, I= cp(G, $2 MI; 

(iii) For all models of KPU' of the form 'U, = ())32; A,E) we have 
'U, cp(G,fi> MI. 

ProoJ: By 6.4 every ~EIHYP, can be defined by a C, formula with constants 
from M u  .( MI. Thus we may replace any of these a's by its definition to get a 9 
of the appropriate kind such that ( i ) o ( i i ) .  Since IHYP,k KPU', we see that 
(iii)*(ii). To see that (ii)*(iii) note that any such 21, is (isomorphic to) an end 
extension of IHYP,, by 8.6. Hence if cp(q,p,M) holds in IHYP,, it holds in a,, 
since it is &.Of course, we need to know that the isomorphism is the identity on 
M u j M ) ,  but thisfollowsfrom8.1. 0 
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8.9—8.15 Exercises

8.9. Let aR = <M,R1,...,R l> be such that 2RX5R, and card (2R) = card (51)
implies SR^Ή (equivalently, Th(9W) is card(9JΪ)-categorical). Show that
o(HYPsw) = ίo, and hence the relations S on 9JΪ in HYP^ are just the ones first-
order definable over 9JΪ.

8.10. Let 9K - <M, = > be infinite. Show that a subset X ^M is in HYPOT iff X or
M — X is finite.

8.11. (F. Ville) Suppose α is not admissible and <L(α),e>^end<A,£>, where
<^,£>I=KP. Show that, up to a unique isomorphism, <L(/?),e>^end<,4?£>?

where jS is the least admissible ordinal greater than α.

8.12. Use the notation of 8.11. Let S be a relation on L(α), 5 Σ! on L(β). Find a
Σ! formula <p(xls ...,xπ,0) with αeL(α) and no other constants such that the
following are equivalent :

(i) S(x);

(ii) L(β)\=φ(X9a)'9

(in) For all models 21 = <v4,E> of KP if <L(α),e> c end9I, then 21 N <p(x,3).

[Hint: Find a good Σx definition of α to get rid of L(α) in φ.]

8.13. If 9ISM = (M;A,£,P) is a model for KPU -f Power and
(an;β,6) = ̂ 7(ϊR;v4,£), then BαR = (ϊR,JB,e,Pίβ) is admissible and a model of
Power.

8.14. Show that the well-founded part of a model Sί̂  of KPU + Beta need not
satisfy Beta. (Not for the beginner.) The well-founded part of a model <^4,£>
of all of ZF need not satisfy Beta.

8.15. (For those familiar with Π}.) Let 91 = <7V, +,•> and let S be a relation on 91.
Show that if S is Σ! on HYP^, then S is Π}.

8.16 Notes. The history of the Truncation Lemma is more complicated than the
lemma itself. Starting from the fact that every ω-model of second-order arithmetic
contains all hyperarithmetic sets of natural numbers, Mile. F. Ville generalized
this by proving Exercise 8.11. This was in 1966 and her proof remains unpublished.
Barwise [1969] generalized this to obtain a V = L or V = L(x) version of the
Truncation Lemma. It is not clear to the present author who first thought of the
trick (used back in Lemma 1.8.9) that allows the full result to go through.
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9. The Levy Absoluteness Principle

We have been rather free wheeling with our metatheory, for example in § 1 and § 3
of this chapter. We used the power set axiom, results on cardinal numbers and
even the axiom of choice (in the guise of the Downward Lowenheim-Skolem
theorem) in § 3. It should be clear, though, that everything we have done could be
formalized within ZFC, Zermelo-Fraenkel set theory with choice. (Given a
structure 9Jί = <M, ...> for example, with MeV, we can define V^ as a class in V
without difficulty as long as we remember that eM is distinct from e.) Weaker
theories would suffice; but, because it is familiar to almost everyone, we fix ZFC
as our metatheory for this book, unless some other theory like KPU is specified
the way it was in Chapter I.

The following version of the Lowenheim-Skolem Theorem, implicit in 3.4,
will be of considerable use to us in what follows, though we usually use the simple
parameter-free version given in 9.2.

9.1 Theorem. Let φ(xι, ..., xn, JΊ, ..., ym) be a Π formula in the language of ZFC
(with only e and = ) with the free variables only as shown. The following sentence
is a theorem of ZFC:

9.2 Corollary. Let φ(x) be a Π formula in the language of ZFC with only the one
free variable x. Then ZFC I— Vxe/f (KJ φ(x) -> Vx φ(x).

Proof of 9.1. Since KP^ZFC we may assume φ(x,y) is Hί9 that is, of the form
Vzι^(x, y,z), where ψ is Δ0 by 1.4.3. We work within ZFC and prove the sentence in
question by contraposition. Let yl9 ..., y^H^^ and suppose there are x l9...,xn,
such that —\φ(x9y)9 i.e. there is a z such that —]φ(x9y9z). Pick /C^K! so large
that xl9...9xn9zεH(κ). Then, since —\ψ is Δ0 we have <//(/c),e> t= ~ \ψ(x,y,z)
by absoluteness. By 3.4, ^H(^l\ey^il <//(κ),e>, so we find

i), e> \= 3x1,...,xnz—i^(x,j),z). Pick xί9...,xn€H(ttί) so that
e>N3z-ιι//(x,y,z). Then by Lemma 1.4.2, 3z~ \ψ(x9y9z) is true, which

means that — \φ(x,y). Since x1,...,xπeH(K1), this proves our result. D

We conclude this section with a simple example of the use of the Absoluteness
Principle.

9.3 Proposition. Let 9M = <M> be a structure with no relations. If X^M is
constructible from 9JΪ, XeL(9!Ji), then X or M-X is finite.

Proof. The statement to be proved has the form:

)-+X is finite v M-X is finite'].
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In ZF, or even in KPU + Infinity, this is a Π statement (by use of Pω from 1.9)
so it suffices to prove it for countable M and α. We may assume M is infinite since
otherwise the result is trivial.

Let σ be any one-one map of M onto M. We can extend σ to an automorphism
jσ of ¥M onto VM by recursion on e :

(a) = {σ(x)\xea} .

Note that σ(J^(x,j;)) = J^(σ(x),σ(y)), whenever l^ίX^Γ, by inspection. A
simple proof by induction shows that σ(L(M, α)) = L(M,α) for all α.

Now suppose that M and α are countable but that there is an JfeL(M,α) with
X^M such that X and M-X are both infinite. Then, for any Y^M with Y
and M — Y infinite, there is a one-one map σ mapping X onto Y so that σ(X) = Y.
But then XeL(M,oc) implies σ(L(M,α)); so YeL(M,α). But there are 2X° such X,
whereas L(M,α) is countable. D

9.4—9.7 Exercises

9.4. Let ZFU+ be KPU+ plus full separation, full collection, Power and Infinity.
Prove that for each φeZFU + , we have ZFU h- φL(M).

9.5. Show that if M is as in 9.3 then L(M) is a model of ZFU+ plus "all subsets of
M are finite or cofinite". This shows that choice fails very badly in this particular
L(M).

9.6. Let $ft = <M, #!,..., #j> and let σ be an automorphism of $R. Extend σ
to a σ Ψ^^ Ψ^ as in 9.3. Show that σ: L(α)ari-^L(α)aίl, one-one and onto,
for all α.

9.7 Notes. The Levy Absoluteness Principle was first proved by Levy [1965]. See
the notes from § 3 for more details on the general argument. One of the main
features of this book (at least from our point of view) is the systematic use of the
Levy Absoluteness Principle to simplify results by reducing them to the countable
case. This is particularly true of Part B of the book.

We will see, as a by product of § V.8, that the axiom of choice is not needed
in the proof of 9.1. See the proof of V.8.10, in particular.




