
Introduction

Since its beginnings in the early sixties, admissible set theory has become a
major source of interaction between model theory, resursion theory and set
theory. In fact, for the student of admissible sets the old boundaries between
fields disappear as notions merge, techniques complement one another, analogies
become equivalences, and results in one field lead to results in another. This is
the view of admissible sets we hope to share with the reader of this book.

Model theory, recursion theory and set theory all deal, in part, with problems
of definability and set existence. Definability theory is (by definition) that part
of mathematical logic which deals with such problems. The Craig Interpolation
Theorem, Kleene's analysis of Δj sets by means of the hyperarithmetic sets,
GodeΓs universe L of constructible sets and Shoenfΐeld's Absoluteness Lemma
are all major contributions to definability theory. The theory of admissible
sets takes such apparently divergent results and makes them converge in a single
coherent body of thought, one with ramifications for all parts of logic.

This book is written for the student who has taken a good first space year
graduate course in logic. The specific material we presuppose can be summarized
as follows. The student should understand the completeness, compactness and
Lόwenheim-Skolem theorems as well as the notion of elementary submodel.
He should be familiar with the basic properties of recursive functions and re-
cursively enumerable (hereinafter r.e.) sets. The student should have seen the
development of intuitive set theory in some formal theory like ZF (Zermelo-
Fraenkel set theory). His life will be more pleasant if he has some familiarity
with the constructible sets before reading §§ II.5,6 or V.4—8, but our treatment
of constructible sets is self-contained.

A logical presentation of a reasonably advanced part of mathematics (which
this book attempts to be) bears little relation to the historical development of
that subject. This is particularly true of the theory of admissible sets with its
complicated and rather sensitive history. On the other hand, a student is handi-
capped if he has no idea of the forces that figured in the development of his sub-
ject. Since the history of admissible sets is impossible to present here, we com-
promise by discussing how some of the older material fits into the current
theory. We concentrate on those topics that are particularly'relevant to this
book. The prerequisites for understanding the introduction are rather greater
than those for understanding the book itself.
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Recursive ordinals and hyperarithmetic sets. In retrospect, the study of ad-
missible ordinals began with the work of Church and Kleene on notation systems
and recursive ordinals (Church-Kleene [1937], Church [1938], Kleene [1938].)
This study began as a recursive counterpart to the classical theory of ordinals;
the least nonrecursive ordinal ω{ is the recursive analogue of ω l 9 the first un-
countable ordinal. (Similarly for ωc

2 and ω2, etc.) The theory of recursive ordinals
had its most important application when Kleene [1955] used it in his study
of the class of hyperarithmetic sets, the smallest reasonably closed class of sets
of natural numbers which can be considered as given by the structure
,yΓ = <ω, + , x > of natural numbers. Kleene's theorem that

hyperarithmetic = Δ}

provided a construction process for the class of Δ} sets and constituted the first
real breakthrough into (applied) second order logic. One of our aims is to
provide a similar analysis for any structure 501. Given 50Ϊ we construct the smallest
admissible set HYPW above 50ί (in § II.5) and use it in the study of definability
problems over 50ί (in Chapters IV and VI).

The study of hyperarithmetic sets generated a lot of discussion of the analogy
between, on the one hand, the Π} and hyperarithmetic sets, and the r.e. and re-
cursive sets on the other. These analogies became particularly striking when
expressed in terms of representability in ω-logic and first order logic, by Grze-
gorczyk, Mostowski and Ryll-Nardzewski [1959]. The analogy had some defects,
though, as the workers realized at the time. For example, the image of a hyper-
arithmetic function is hyperarithmetic, not just Π} as the analogy would suggest.

Kreisel [1961] analyzed this situation and discovered that the correct an-
alogy is between Π} and hyperarithmetic on the one hand and r.e. and finite
(not recursive) on the other. He went on to develop a recursion theory on the
hyperarithmetic sets via a notation system. (He also proved the Kreisel Com-
pactness Theorem for ω-logic: If a Π} theory T of second order arithmetic is
inconsistent in ω-logic, then some hyperarithmetic subset T0^T is inconsistent
in ω-logic.) This theory was expanded in the metarecursion theory of Kreisel-
Sacks [1965]. Here one sees how to develop, by means of an ordinal notation
system, an attractive recursion theory on ω{ such that for X^ω:

X is Πj iff X is ωί-r.e,

X is Δ} iff X is ωί-finite.

In § IV.3 we generalize this, by means of HYP^, to show that for any countable
structure 501 and any relation R on 501:

R is Π} on 50Ϊ iff R is HYP^-r.e.,

R is Δ} on 50Ϊ iff R is HYP^-finite,

thus providing a construction process for the Δ} relations over any countable
structure 50Ϊ whatsoever. The use of notation systems then allows us to transfer
results from HYP^ to 501 itself (see §§ V.5 and VI.5).
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Constructible sets. The other single most important line of development leading
to admissible sets also goes back to the late thirties. It began with the intro-
duction by Gόdel [1939] of the class L of constructible sets, in order to provide
a model of set theory satisfying the axiom of choice and generalized continuum
hypothesis (GCH).

Takeuti [1960, 1961] discovered that one could develop L by means of a
recursion theory on the class Ord of all ordinals. He showed that GόdeΓs proof
of the GCH in L corresponds to the following recursion theoretic stability:
If K is an uncountable cardinal and if F: Ord -» Ord is ordinal-recursive then
F(β)<κ for all β<κ. In modern terminology, every uncountable cardinal is
stable. Takeuti' s definition of the ordinal-recursive functions was by means of
schemata, Tague [1964] provided an equivalent definition by means of an equa-
tion calculus obtained by adjoining an infinitistic rule to Kleene's equation
calculus for ordinary recursion theory.

Admissible ordinals and admissible sets. The notion of admissible ordinal can be
viewed as a common generalization of metarecursion theory and Takeuti' s re-
cursion theory on Ord. Kripke [1964] introduced admissible ordinals by means
of an equation calculus. Platek [1965] gave an independent equivalent definition
using schemata and another by means of machines as follows. Let α be an or-
dinal. Imagine an idealized computer capable of performing computations
involving less than α steps. A function F computed by such a machine is called
vi-recursiυe. The ordinal α is said to be admissible if, for every α-recursive func-
tion F, whenever β<α and F(β) is defined then F(β)<α, that is, the initial
segment determined by α is closed under F.

The first admissible ordinal is ω. An ordinal like ω + ω cannot be admissible
since, for α > ω, the equation

defines an α-recursive function and F(ω} = ω + ω. The second admissible or-
dinal is, in fact, ω{ and the ω{ -recursion theory of Kripke and Platek agrees
with that from metarecursion theory (see §§IV.3 and V.5). The theorem of
Takeuti mentioned above implies that every uncountable cardinal is admissible.
The important advance made possible by the definition of admissible ordinal
is that it allows one to study recursion theory on important ordinals (like ω\)
which are not cardinals.

Takeuti' s work had shown that recursion theory on Ord amounts to de-
finability theory on L. Analogously, the Kripke- Platek theory on an admissible
ordinal α has a definability version on L(α), the sets constructible before stage α.
It is this second approach which is most useful and is the one followed here.
It leads us to consider admissible sets, sets A which, like L(α) for α admissible,
satisfy closure conditions which insure a reasonable definability theory on A.
These principles are formalized in a first order set theory KP. In order to study
general definability, though, not just definability theory in transitive sets, we
must strengthen the general theory weakening KP to a new theory KPU. But
this is taken up in detail at once in Chapter I.
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Infinίtary Logic. There is just one other idea that needs to be introduced here,
that of infinitary logic. The model theory of Lωω, the usual first order predicate
calculus, consists largely of global results, results which have to do with all models
of some first order theory. These results have little to say about any one partic-
ular structure since only finite structures can be characterized up to isomorphism
by a theory of Lωω. Recursion theory, on the other hand, is a local theory about
the single structure ΛΛ If we are to have a global theory with non-trivial local
consequences, we must extend the model theory of Lωω to stronger logics, logics
which can characterize structures and properties not characterizable in Lωω.
For the study of admissible sets the appropriate logics turn out to be admissible
fragments LA of L^, as developed in Barwise [1967, 1969 a, b]. The countable
case is studied in Chapter III; the uncountable case, in Chapters VII and VIII.

Some material not covered in this book. This book is a perspective on admissible
sets, not a definitive treatment. It is far bigger and contains somewhat less mate-
rial than we foresaw when we began writing. In particular, the following topics,
all highly relevant to definability theory, are either omitted or slighted:

recursion theory in higher types,
Spector classes,
non-monotonic inductive definitions,
relative recursion theory on admissible ordinals,
forcing on admissible sets,
forcing and infinitary compactness arguments.

It is planned that some of these topics will be treated in other books in this series.

A note to the casual reader. There is one bit of notation that might be confusing
to the casual reader of this book. We use 21 for arbitrary models of the theory
KPU or, more generally, for arbitrary structures for the language L* = L(e,...)
in which KPU is formulated. We switch to the notation A when our structure
is well founded. In 99.44% of the uses A will denote an admissible set.




