
Chapter XV

Topological Model Theory

by M. ZIEGLER

1. Topological Structures

A (one-sorted) topological structure 2Ϊ = (21, α) with vocabulary τ consists of a
τ-structure 21 and a topology α on A. Familiar examples are topological spaces
(τ = 0 ) , and topological groups and fields. Note that in general we do not assume
that the relations and operations of 2Ϊ are compatible with α. This in contrast to
Robinson [1974].

A logic for topological structures is a pair (jSf, |=), where JS?[τ] is a class (of
"J^-sentences") for each vocabulary τ and (= is a relation between topological
structures and j£?-sentences. We will now assume that the axioms of a regular logic
hold for topological structures (see Examples 1.1.1 and Discussion 1.2). The
relativization axiom is, of course, an exception to this general assumption. The
reader should consult Section 2 for a description of the many-sorted case.

7.7. Three Logics for Topological Structures

We first consider quantification over oc and the logic Ĵ ίnon We say that an ^ ^ [ T ] -

formula is built up from atomic if ωω[τ]-formulas and atomic formulas

teX,

where t is a τ-term and X a "set variable" (which ranges over α), using ~Ί, Λ , v,
Vx, 3x, MX, 3X. The semantics are self-explanatory. A logic (for τ = 0) equivalent
to ifJnon was introduced in Grzegorczyk [1951] and Henson et al. [1977].

1.1.1 Examples, (i) (A, α) N VX VY(3x 3y(x ε X A y e Y) -> 3x((x e X A X e Y)
v (-ixeX A -ixeY))) or, more briefly, (A, α) t= VX, Y(X φ 0 A
YΦ0-+{XCΛYΦ0\/X\JYΦ universe)) which holds iff (A, α) is
connected,

(ii) (A, F , α ) μ V I ] 7 7 = / " \ X ) iff F: A -> A is continuous with respect
to α.

(iii) 04, £, α) N 3X Vx(P(x) <-* x e X) iff B is open, i.e., B ε α.
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The next idea is that of restricted quantification over α and the logic J ^ ω
We say that the formulas of 5£x

ωω are those i f ̂ -formulas in which quantification
over set variables is allowed only in the form

3X(ί G X A φ) (more briefly, 3X 3 tφ\

where X (that is, any atomic formula s e X) occurs only negatively in φ, and dually
in the form

VX(ί e X -• φ) (more briefly, VX 3 tφ\

where X occurs only positively in φ. ̂ ωω was introduced by McKee [1975], [1976]
and developed in Garavaglia [1978a] and Flum-Ziegler [1980]. Indeed, most of
the material in the present chapter is explored in greater detail in Flum-Ziegler
[1980a].

1.1.2 Examples, (i) {A, F, α) μ Vx V7 3f(x) 3X 3 x Ίz(z e X ->/(z) e Y) iff F is
continuous.

(ii) (A, B, α) \= \fx(P(x) -> 3X 3 x \/y(y e X -+ P(y))) iff B is open,
(iii) (A, α) 1= Vx VX 3 x 37 3 x Vy(y e X v 3Z 9 y Λ Z n 7 = 0 ) or, more

shortly, iff (A, α) is regular—regular meaning simply that every point has
a base of closed neighborhoods.

Finally, we consider the interior operator and the logic JS?ωω(/π) for n > 1. We
pass from jSf ω ω to 5£ωω(Γ\ adding the formation rule that if φ is a formula and
* ! xn are distinct variables, then

Γxι ...xnφ

is a formula the free variables of which are xx . . . xn and the free variables of φ. The
semantics is given by

®^Γx1...xΛφ9y)[a1...aH,b] iff
a is in the interior of {c e A" \ 91 μ= φ(c, b)}.

^ωωUΊ was investigated in Sgro [1980a] and Makowsky-Ziegler [1981].

1.1.3 Examples, (i) (A, B, α) 1= Vx(P(χ) - / ^ ( x ) ) iff B is open.
(ii) (A, α) N Vx, y(x = y v I2xy ~i x = y) iff (A, α) is a Hausdorff space.

7.2. Discussion

From the preceding developments, we clearly have that ^ωω < ̂ mon. Also,
^ ω ω ( / n ) < ££x

ωω, since Fxί . . . xnφ can be expressed by
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We will now prove that

Cf (jn\ ^ Cft ^ eft

the first inequality following from

1.2.1 Lemma. Regularity is not expressible in ifω ω(/").

Proof. By an easy induction on φ, we show that for every i f ω ω(/w)[0]-formula φ
there is an quantifier-free if ω ω [0]-formula which is equivalent to φ in any
Hausdorff space having no isolated points. Whence, all such spaces are i f ω ω(/")-
equivalent. But there are regular and non-regular examples of such spaces. D

Remarks, (a) J?ωω(Γ) < ^ωMn+1l
(b) Continuity is not expressible in <£ωω(F\
(c) Sgro [1977a] initiated the study of topological model theory by proving a

completeness theorem for £?ωω(Q\ where ^ωω(Q) is obtained from
J£ωω by adding the quantifier Qx φ whose meaning is " {x | φ(x)} is open."
^ωω(Q) i s weaker than <£ωω(lι\ and does not have the interpolation
property even though S£ωω{Γ) does.

To see that ^ι

mon *s strictly stronger that t£ι

ωω, we first observe that ifr

mon is
not K0-compact and does not have the Lόwenheim-Skolem property down to
Ko. (We say that (21, α) is countable if 21 is countable and α has a countable base.)
Moreover, i f ι

mon is not recursively axiomatizable. To see these facts, we will let α
be the natural topology on U. Then (R, 0, 1, + , —, , <, α) is characterized by
the i f ' - s e n t e n c e

mon

θ = "ordered field with connected order topology."

This proves the first two assertions. For the third, we observe that for discrete α
i P m o n reduces to monadic second-order language, which we can use to char-
acterize (N9 + , •)• On the other hand we have:

1.2.2 Theorem. The logic i ^ ω

(i) is compact;
(ii) has the Lόwenheim-Skolem property down to Ko, and

(iii) is recursively axiomatizable.

We use the notion of a weak structure to prove this result, such a structure
being a pair (21, β\ where β is a set of subsets of A. If we consider i f ίnon a s a l°gic

for weak structures, we have—by first-order model theory—compactness, the
Lowenheim-Skolem property, and recursive axiomatizability. But the sentences
of JZ*ωω are just designed to be basis-invariant:

1.2.3 Lemma. Ifφ e JS?Lω> (2ί> α ) i s a topological structure and β is a base of on, then

(2I,α)N</> iff (91,/QNφ.



560 XV. Topological Model Theory

This is a fact familiar from ε - ^-calculus. The proof follows immediately
from an easy induction on φ.

Finally, consider the 5£^-sentence

φhas = Vχ3X3χ A VxVX'sxVYsxlZsx Z c X nY.

Clearly, we have that (A, β) \= φ b a s iff β is a base of a topology.

1.2.4 Corollary. T a <gι

ωω has a topological model iff T u {φbas} has a weak
model.

Remark. This can be rephrased as T \=t φ iff T u {φhas} \= φ. (" \= " for weak
models).

Theorem 1.2.2 thus follows immediately from Corollary 1.2.4.
In the next section we will prove that for topological structures S£ι

ω<o is a
maximal logic for which is compact and has the Lόwenheim-Skolem property.
We thus can regard ^ωω as the logic which is to topological structure as JSfωω

is to ordinary structures. Interestingly enough, Robinson [1973] asked for just
such a logic.

The weaker logic JS?ωω(/") is important because, in some respects at least, it
is better behaved than ^t

ωω\ There is an omitting types theorem—a theorem
which is false for ^ ω , as was shown by Flum-Ziegler [1980, Chapter I, Section
9]—and there is a useful notion of elementary extension.

In subsequent sections we will present results on interpolation, preservation,
and definability. That done, we will treat S£x

ωω, and, in Section 5, examine the
model theory of some special <£^-theories. A series of examples will be given at
the end of the chapter, a series that will illustrate how to obtain logics for structures
that are similar to topological structures—for example, for uniform structures or
for proximity structures. We refer the reader to Flum-Ziegler for more detailed
information on these notions.

2. The Interpolation Theorem

We discuss the notion of partially isomorphic topological structures and its finite
approximations. The methods of Chapter II yield the interpolation theorem and a
Lindstrόm theorem for 3?ι

ωω. We will use the interpolation theorem to show that
basis-invariant <^f^n-sentences are equivalent to ^ r

ωω-sentences. Finally, we will
prove that two topological structures are i f ^-equivalent iff they have isomorphic
ultrapowers. The results stem from Garavaglia [1978a] and Flum-Ziegler [1980].

A many-sorted topological structure is a many-sorted structure with a family
of topologies on every sort. Thus, a many-sorted vocabulary for topological
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structures consists of sort symbols, relation symbols, function symbols, constants,
and topology-sort symbols, which are equipped with sort symbols for the universe
on which the topology is defined. Thus, we see that the set variables are themselves
sorted.

We will often give definitions, theorems, or proofs for only the one-sorted case.
However, this is only for the sake of notational simplicity.

2.1. Partial Isomorphisms

We begin our discussion with the notions contained in

2.1.1 Definition. Let (91, α) and (95, β) be topological structures.

(i) A partial isomorphism between (91, α) and (33, β) is a triple π = (π 0 , π l 5 π2),
where
(a) π 0 <= A x B is a partial isomorphism between 91 and 33
(b) π1 c α x β satisfies aπob,U πιV and a e U imply beV;
(c) π 2 <= α x β satisfies aπ0b,Uπ2V and beV imply aeU;

(ii) (91, α) and (23, β) are rc-isomorphic (^p), if there is a sequence Io . . . /„ of
non-empty sets of partial isomorphisms such that for all ρeli+ί (i < ή)
the following holds
(a) For all b e B there is an extension π e /f of p that is, πf 3 pt, for i = 0,1,2

such that ί? e Rng π 0

(b) For allaεA there is an extension πeIt of p such that ae Dom π 0 .
Furthermore, for all (α, b)e p0, we have
(c) For all neighborhoods V of fr, there is an extension π e It of p and a

pair (U,V)e πx such that aeU and beV cz V.
(d) For all neighborhoods (7' of α, there is an extension π e /, of p and a

pair (£/, K ) G π 2 such that foG V and aεU a V.
(iii) (9ϊ, α) and ( S , jδ) are partially isomorphic ( ~ p ) , if they are 1-isomorphic

with / 0 = Iv

2.1.2 Proposition. Isomorphic topological structures are partially isomorphic. The
converse is true for countable topological structures.

Proof. If/: 91 ^ © is an isomorphism, set / = {(/, π, π)}, where

Then 9Ϊ ~p © via /.
If, conversely, 9Ϊ and S are countable and partially isomorphic via /, we

construct an ascending sequence π' (i e ω) of elements of / such that 9Ϊ ~p © via
{π*|/£ω}. (Note that in Definition 2.1.1((ii)(c), (d)) it is enough to let U' and V
range over a countable base of α and β.) But now (J {π'o\ieώ) is an isomorphism
of 9Ϊ and ©. D
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2.1.3 Proposition. Suppose τ is finite. Then for every n and every topological τ-
structure © there is an ^^[τl-sentence ψ£ such that

®~"p© iff ®|=ι/$.

Proo/.Let© = (93, β). We define for b0 ... bk.ί eBand Vo . . . V^^VΌ . . . V^-i ej8
the formula

Ψίr,V;V'(XO ' ' Xk-l' > ^0 ^ ( - l i ^0 Xn-ί)

as the conjunction of all reduced basic θ(x), where S N 9(S), - ix^eZj , where

bf $ Vj, and Xf e Yj9 where bf e F}.

Using induction, we define

to be the conjunction of the following four formulas which correspond to Definition

beB

beB

/\mb{\JXB:

and

ΛVYBX \/
/ \ V 1 Z? Λ,j Y

Note that we can prove by induction that all conjunctions and disjunctions are in
fact finite and that the X} (Y,) occur only negatively (positively) in ψι.... We set

If 9Ϊ ^p © via / 0 . . . / „ , then we show by induction on i that

whenever a} π 0 b j ? U} πγ V} and (7} π 2 7}, for some π e
For the converse, for U = (91, α) define

9Ϊ |= lAk;V;K'(«, U, U'\ Uj
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Then, S ~n

p © via / 0 . . . / „ , to see that /„ is not empty we notice that S |= φ#
implies ( 0 , 0 , 0 ) G / Π . D

Remark. In fact, 91 =#t © iff 31 ~£ © for all n.

22. The Interpolation Theorem

2.2.1 Theorem. J?^ has the interpolation property.

To prove this result we need the following

2.2.2 Lemma (See Chapter II, Section 5.5). For finite τ ~p is an RFC-relation with
definable approximations ~n

p. This, in effect, means that there is an extension τ* of τ
containing a new copy of τ and a new relation symbol < and there is Σ G ^ ω [ τ * ]
such that for all topological τ-structures S, ©:

(i) 5Ϊ ~ p 33 iff the pair (91, 3?) can be expanded to a model ofΣ, where < defines
a non-well-ordering.

(ii) 91 ~n

p 93 iff the pair (9ί, 95) can be expanded to a model ofΣ, where < defines

a linear ordering of its field with more than n elements.

We leave the proof to the reader.
To prove Theorem 2.2.1 we let κγ and κ2 be two disjoint RPC-classes in

JSfωωM Let the ψ% be as in Proposition 2.1.3. For every n, we have

Thus, by compactness κx |= χn for a finite disjunction χn of the ψ£ (©
We want to show that κ2 \= ~Ί χ", for some n. If not, then there is 9tn e κ2,

<BΠ G * ! such that 9ίrt 1= ψ%n. Whence, SΆn ̂  J 95Π, for every n. By Lemma 2.2.2,
compactness and the Lόwenheim-Skolem property, there are countable 9Ϊ e τc2,
© G jq such that 9Ϊ ^ p ©. But then 9Ϊ = © and /q and /c2 are not disjoint—a
contradiction. D

2.2.3 Corollary (Flum-Ziegler [1980]). 5£ι

ωω is a maximal logic for (many-sorted)
topological structures which is compact and has the Lόwenheim-Skolem property
down to Ko.

(See Chapter II) Proof Let i f be a compact extension of J ^ ω , with the Lόwenheim-
Skolem property. The above proof shows how to separate disjoint EC^-classes by
an EC φt -class. D

2.2.4 Corollary. The basis-invariant sentences of ^ r

m o n are equivalent to <£ι

ωω-

sentences.
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Proof. This follows directly from Corollary 2.2.3, since invariant sentences form a
compact logic with the Lόwenheim-Skolem property. Instead of proceeding on the
basis of Corollary 2.2.3 we give a derivation which stems from Theorem 2.2.1.

Let (2ί, α) be a topological structure and let βl9 β2 be two bases of α. We code
βγ and β2 in the structure

(%0L9Bl9B29El9E2)

u s i n g t w o n e w s o r t s B l 5 B2 a n d t w o r e l a t i o n s £ f c i x Bt s u c h t h a t

where Etb = {a\aEib}. If φ is an if {^-sentence, let φi denote the ifωω-sentence
obtained by replacing the set variables X, Y,... in φ by x\ y\ ... of sort i and the
atomic sentences t e X by ίEfX*, where Ef is the symbol for Et.

If φ is basis-invariant (in the vocabulary of S), then we have

\=t (Ex codes a base Λ φx) -• (E2 codes a base -» φ2)

By Theorem 2.2.1, we find an interpolant φ in S£ι

ωω. B u t then \=t(p<-n//. D

The final result in this section makes use of the notion of the ultrapowers, in
particular the ultrapower (31, OL)L{T of (31, α) is (31^/ γ), where y is the topology
with b a s e ^ :

2.2.5 Corollary. Two topological structures are ^^-equίvalent iff they have iso-
morphic ultrapowers.

Proof. Since if ^-sentences are basis-invariant, a topological structure is ^t

ωω-
equivalent to its ultrapower. This proves one direction.

Suppose (3115 αx) ^ ^ ω (3I2, α2). Expand the vocabulary τ by two new sorts
and two new relation symbols as in the proof of Corollary 2.2.4. Code a base of αf

in (£,. = (3tf, Bf, £f). By assumption and Theorem 2.1.1 the if ^-theory

T = Th i f ω ω(£ 1) u Th^ω ω(£2) u {Ej codes a base} u {E2 codes a base}

is consistent. Whence there is a model (31, α, B'l5 B
;

2, E'u E'2) of Γ. Moreover, by
the Keisler-Shelah theorem (see Chang-Keisler [1977]) there is an ultrafilter U
such that

But this implies that

( 3 1 ^ ) ^ ^ ( 3 1 , 0 0 %• Q

Remark. It is easy to construct compact logics for topological models having the
Lowenheim-Skolem property and which extend if ω ω but are not contained in
<£%

ωω. However, these examples are not natural.
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3. Preservation and Definability

In Section 3.1 we give some examples which will show how to extend preservation
theorems from j£?ωω to JSf̂ ω Here the classical theorem characterizing the J^ω ω-
sentences which are preserved under substructures as the sentences equivalent to
universal formulas splits into two.Thus, in this discussion we will use two notions of
topological substructure: the just "substructure" (with the subspace topology)
appearing in Theorem 3.1.1 and the "open substructure" in Theorem 3.1.2.

In Section 3.2 we prove the topological Feferman-Vaught theorem by an
adaptation of the classical proof. This result asserts, in effect, that Y[ieI Sj and
Y[ieI $, are i f [^-equivalent if, for all i e /, % and ®f are i f ^-equivalent. Interest-
ingly enough, a new feature comes into the picture in the case of Beth's theorem.
For, according to Definition 2.1.1 an i f ^ω-theory defines a new relation symbol
explicitly (by an i f ^-formula), if it defines the relation implicitly. But we can now
ask what happens if T defines a topology implicitly. If there is no other topology in
the vocabulary, then T defines the topology by an ifωω-formula (see Theorem
3.3.2). If not, then no such theorem exists (see Remark 3.3.4)

3.1. Substructures

(2ϊ, α) is a substructure^"(SB, β) if 91 is a substructure of 93 and α is the restriction of
β to A. If A e β, then $5 is called an open substructure of 93.

An i f ^-formula in negational normal form (that is, built up from atomic and
negated atomic formulas using Λ , v , V, 3) is universal if it contains no existential
individual quantifier. An example of this is the sentence "regular" in Section 1.1.)

3.1.1 Theorem (Flum-Ziegler [1980], Garavaglia [1978a]). An g^-sentence is
preserved under substructures iff it is equivalent to an universal sentence.

Proof. Let 9Ϊ an

p © mean that there is a family 70 /„ of non-empty sets of partial
isomorphisms between $t and © such that for all peli+1 (i < ή) assertions
(b), (c), (d) of Definition 2.1.1(ii) hold. If the above holds for J o = Il9 we write

The following facts can be shown as Propositions 2.1.2 and 2.1.3 and Lemma

2.2.2:

(a) If 21 is a substructure of ©, then 2t ap ©.
(b) If S and © are countable and if $t <=p ©, then 3Ϊ is isomorphic to a sub-

structure of ©.
(c) For every n and every ©, there is an universal i f ^-sentence φ© such that

&J= φn* iff 9Ϊ an

p ©, where τ is finite.
(d) " S ap ©" is an RPC-relation with definable approximations cn

p9 where
τ is finite.

Suppose now that φ is preserved under substructures, or—even more generally
—that φ holds in all substructures of models of φ. Set κί = Mod φ and κ2 =
Mod ~iφ. Now the proof of Theorem 2.2.1 shows that there is a universal χ
(equal to a finite disjunction of some φ£, © e κx) such that κγ \=t χ, κ2 \=t~^X- D
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We next treat open substructures. The J£^ω-sentences that are preserved here
are the Π-sentences: In negation normal form the existential individual quantifier
can only occur in bounded form: 3x(xeX A φ). The next theorem is related to
the Feferman-Kreisel theorem on end extensions (See Section 6) and clarifies
the idea of a "local" property.

3.1.2 Theorem (Flum-Ziegler [1980]). An J^^-sentence is preserved under open
substructures iff it is equivalent to a Π-sentence.

Proof. As the proof of Theorem 3.1.1, we need the proper definition o/" ap

n (open)".
Thus, we use in conditions (b), (c), and (d) of part (ii) of Definition along with

(a') For all ([/, V) e p2 and all bsV, there is an extension n e Jt of p such that
b G Rng π 0 . D

Remark. The if ^-sentences preserved under continuous images are the positive
sentences without existential set quantification.

3.2. The Feferman-Vaught Theorem

Let Sj = (SΆh ad, for i e I be a family of topological structures. The product

π*.
i e/

is (fife/ SϊiJ α)> where α is the product topology. Furthermore, let σ be the vocabu-
lary of the structure (^(/), n, u, Fin), where Fin is the set of finite subsets of/, we
can now consider

Theorem (Flum-Ziegler [1980]). For every !£x

ωω-sentence φ there are y?1^-
sentences 9ί ... Sn and an 5£ωω[_σ]-formula χ such that for all families (^i)ieI

Yl % |= φ iff (β>(\\ n > u ? Fin)
iel

Proof Suppose that the Xt only occur negatively in φ(x, X ,Ϋ+) and the Yt only

positively. J Ί i e n we can show by induction on φ that there are 9 x (x, X~, Ϋ+),...,

9n(x, X~, Y+) and χ ( ) Ί , . . . , y Λ ) such that χ is monotone in all variables and

a, U, V) iff
ie/

for all α e ( Π ί e f A$ and for all U,Ve ak. D
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33. Definability

First of all, we note that interpolation implies the Beth definability theorem:

3.3.1 Theorem. Let τ c τ* be vocabularies, T c i f ^ τ * ] , and Reτ*. If in all
models 9Ϊ o/T the interpretation ofR is determined by 91 \ τ, then there is an ^ ω [ τ ] -
formula φ(x) such that T \=t V3c(φ(5c) <

We will now try to define the topology explicitly. Let (91, α) be a topological
structure. A formula φ(x, y) defines α, if

{{aeA\M\= φ(a,b)}\bGA}

is a base of α. If, for example, α is the order topology of (A, < f f l), then α is defined
by yι < x Λ x < y2. In general, however, a topology is not definable. But we
have:

3.3.2 Theorem (Flum-Ziegler [1980]). Let T be an g^-theory, then the following
are equivalent:

(a) T defines the topology implicitly; that is, (9Ϊ, αf) 1= T implies <xί = α 2 .
(b) There is an <£ωω-formula which defines the topology in all models of T.

Proof. The reader should consult Flum-Ziegler [1980] for a more detailed proof
of this result. The assertion that (b) implies (a) is clear. To prove the other implica-
tion, we assume that (a) is true. The interpolation theorem implies:

Claim 1. Every i f ^-formula is equivalent (modulo T) to an JSfωω-formula.

Now we will further suppose that (b) does not hold and thus derive a contradic-
tion. To this end, we assert

Claim 2. There is a countable model (91, α) of T, an element a0 of A and an
open neighborhood P oίa0 which contains no J^ωω-definable neighborhood of a0.

Otherwise, there are i f ωω-formulas S1(x, >;),..., $n(x, y) such that in every
model (91, α) of T every aoe A has a base of neighborhoods of the form

We can thus code the 9f in one formula and so assume that n = 1. But then

φ'(x, y) = J'xS^x, y)

defines the topology in all models of T. By Claim 1 φ' is equivalent to an ifωω-
formula φ(x, y). Whence (b) must hold. Contradiction. We now make

Claim 3. There is a topological structure (91*, P*9 α*) such that (91*, α*) |= T,

(91, P) < (91*, P*) and P* is not a neighborhood of a0.
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This is a contradiction of Claim 1, because "S is a neighborhood of α" is an
if ^-expression, and so the theorem will follow.

Proceeding with the argument we add a new sort C and a relation E c A x C
such that (v4, C, £) codes a countable base of α. We need, however,

Claim 4. Let £ c = {a: 911= αEc}, for c e C, be a neighborhood of α0. Then
there is an extension (9Γ, P', C, F) of (91, P, C, £) such that (91, P) -< (91', P'),
(91, C, £) -< (91', C, F ) and Fc <£ P'.

Otherwise,

Th(9ί, P, α)f l6y4 u Th(9I, C, £, a, d)aeAtdeC h- Vx(xEc - P(x)).

By interpolation, there is an if ωω-formula 3(x, a) (a e A) such that (91, C, E) \=
Vx(xEc -* θ(χ, 3)) and (91, P) |= Vx(θ(x, a) -> P(x)). But then θ(x, a) defines a
neighborhood of a0, which is contained in P. This contradicts Claim 2.

We can now continue the proof of Claim 3. Starting with (91, P, C, £), we can
iterate the construction of Claim 4 so as to construct an ascending sequence of
countable structures with union (91*, P*, C*, £*) such that (91, P) -< (91*, P*),
(91, C, £) -< (9ί*, C*, £*) and £*c ^ P*, whenever c e C*, αo^*^ Let α* be the
topology generated by {£*c | c e C*}.

3.3.3 Remark. Theorem 3.3.2 can be generalized to a Chang-Makkai type
theorem: that is, for an if ^-theory Γthe following are equivalent:

(a) For all countable 91, {α|(9ί, α).N T} is countable.
(b) For all countable models (91, α) of T,

(c) There is an if ωω-formula θ(x, J, z) such that in every model (91, α) of T
there are a e A for which #(x, 3), α) defines a base of α.

3.3.4 Remark. In concluding this section, we point out two interesting facts
about the notions we have discussed. First, we note that there is no Chang-
Makkai version of Theorem 3.3.1 and, second, if T is an if Joω-theory of structures
with two topologies on it, and if we know that (91, α, βt) N= T implies that β1 = β2,
then in general we cannot conclude that B is definable in (91, α). The reader should
consult Flum-Ziegler [1980] for a more detailed examination of this material.

4. The Logic &[

Much of the theory of <&ωιω and <£ι

ωω can be transferred to ^£ι

ω^ω, the latter being
equal to ifωω with countable conjunctions and disjunction. For example, the
i^ωω-sentences are (up to equivalence) the basis-invariant J^?ί

monωiω-sentences,
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where J^m θ n ω i ω is JSfJnOn with countable disjunctions and conjunctions. Moreover,
the interpolation theorem, the preservation theorems, and the definability theorem
of Section 3, where α is defined by a sequence of formulas, are all true for «S?£,iω. In
the present discussion, we will present the covering theorem (see Chapter X), a
theorem which immediately implies the interpolation theorem.

4.1 Theorem. Let τ c τ* be countable vocabularies, and let φ be a sentence of
^Liω[ τ *] Then there is a sequence θα (α < ω x) o/J^^iω[τ]-sentences such that

( ) ^ r α ;
(ii) for all countable τ-structures 51: i/5l N A«<ωi θα, then 51 is f/ie reduct of a

model of φ\
(iii) z/τ+ nτ* = τ,φe ^?t

ωιωlτ+^\ and φ \=t φ, then 5α \=t φjor some oc < ωv

Before undertaking the proof of the theorem, we will consider

4.2 Example. Let τ be empty, τ* = {P}, P a unary predicate, and φ = "P is
perfect." Then, for 5α we can take the sentence which says that the α-th Cantor-
Bendixson derivative is non-empty.

Proof We will indicate the proof of the special case in which τ is one-sorted,

τ * = τ u {P}, and φ ε &ι

ωω. It is easy to supply the details a proof of the general
result (see Chapter VIII).

First, we observe that φ can be put in the form

3Y, 9 y i Vx2,..., 3Yn 3 yn

V (πk(χuxt,...,yH9 Y;) Λ ΛP(tβ>y)) Λ Λ - « ^ > ^ y ) ) )
k<m \ j<rk J'<r'k /

We now associate to φ a game sentence. First, we choose a 1-1 enumeration

(5i)ί<ω °f Uo</<« i ( O s u c h ^ a t 5ί <= 5 ; implies i < j . Set

Γ = Viι0 Vl/O9tto3!?o37o9i;o V Vul9...,f\Φ,
ko<m

where Φ is the union of

{ π ^ K , l/ f l, , VJlSi, £ si2 s S 5ίn}

and of

{ί/x^,..., yin) φ fr(xiϊ9. ., yVn) \sh £ £ siπ,
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Now it is easy to see that φ \=t Γ and that every countable model (91, α) of Γ
can be expanded to a model of φ. For the #α, we take the approximations of Γ:

= f\ { φ e Φ | φ contains only fc0,..., fcj_i, MO> •••> ^ί-

ki<m β<<x

Finally, one shows that Γ N t / \ α < ω i 5α N/Γ and that Γ\=tφ implies &Λϊ=tφ,
for some α < ω 1 ? where \=t' means N, for countable models. D

5. Some Applications

In the following discussions we will give four examples of the expressive power of
JS?ωω. I

n Section 5.1 we show that the theory of T2-spaces is undecidable while the
theory of T3-spaces is decidable. We will also give invariants that determine the
elementary type of Γ3-spaces. In Section 5.2 we will show that the theory of torsion
free locally pure abelian groups is decidable, although the theory of all topological
groups is not. In Section 5.3 we present a complete axiomatization of the theory
of the topological field of complex numbers. And finally, in Section 5.4, we show
that all infinite dimensional, locally bounded real topological vector spaces are
if'-equivalent: They are, in fact, models of an explicitly given complete theory.
The results given in Section 5.1 are explored in Flum-Ziegler [1980].

5.7. Topological Spaces

Let T2 be the theory of Hausdorff spaces; that is, the set

VχVy(χφy-+3X3χlY3y X n Y = 0),

then we can consider

5.1.1 Theorem. T2 is hereditarily undecidable.

Proof. Let φ(x, y) be the formula -i(3Xsx3Y3y XnΫ = 0\ then, for
Hausdorff spaces % we can make

where U = {ae A\$l t= 3y Φ aφ(a, y)} is isomorphic to any graph without
isolated points. But the theory of these graphs is known to be hereditarily un-
decidable. Thus, the assertion in the theorem is established. D
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Remark. We recall that totally disconnected spaces are spaces in which any two
points can be separated by a clopen set. Let Tω be the theory of all totally discon-
nected spaces (that is, Tω is the set of all £f"ωω sentences true in all these spaces),
then every finite subtheory of Tω is hereditarily undecidable (for example, the
T2 5 separation axiom). However, relative to Γω, every formula is equivalent to a
boolean combination of formulas x = y and of formulas having only one free
variable. Whether Tω is decidable, remains an open question.

Let T3 be the theory of regular Hausdorff spaces, then we have

5.1.2 Theorem. T3 is decidable.

Proof. Every T3-space is i f ^-equivalent to a countable T3-space. But the countable
T3-spaces are just the topological spaces which come from a countable linear order.
Therefore, our result follows from the decidability of the elementary theory of
linear orders.

Remark. Tω is a subtheory of T3, since in countable regular spaces disjoint closed
sets can be separated by clopen sets.

In order to define elementary invariants of a Γ3-space $t we divide A into sets
As of all points of "type s", where s is an element of

S = (J {SnIn e N}, where S° = {*} and Sn+ί = 0>(Sn).

We set A* = A and, for s e Sn+ \ we set

As = {a G AI a is an accumulation point of Ar iff r e s, for all reSn}.

5.1.3 Theorem. Two T3-spaces S and © are ^^-equίvalent iff \AS\ = \BS\

(mod N0)/or all seS.

Example. All ^-spaces without isolated points are JS?^ω-equivalent. For then
As = A, if s is of the form *, {*}, {{*}}, ...,andAs = 0 otherwise.

Proof. One direction follows from the observation that the As are S^ωω- definable
in S. For the converse, we can assume that 9Ϊ and S have bases α and β of clopen
sets such that (A, α) and (B, β) are K0-saturated. It is then easily proved that
(9Ϊ, As)seS and (©, Bs)seS are partially isomorphic via the system I which consists
of all finite partial isomorphisms (π 0 , πl9 π2\whereπ1 = π 2 = {(Ui9 Vt)\i < rc},the
Ui e α (respectively the Vt e β) form a clopen partition of A (respectively B), and
\Us

i\ = \Vs

i\ (mod No) for all i < n. D
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5.2. Topological Abelian Groups

We will now consider Hausdorff topological abelian groups. Noting first that this is
an i f ^-elementary class, we proceed to examine several interesting results, the
first of which is

5.2.1 Theorem (Cherlin-Schmitt [1981]). The theory of Hausdorff abelian groups

is undecidable.

Proof. Let p be a prime and q = p9. Baur [1976] has proven that the theory of all
abelian groups (no topology) A of exponent q with a distinguished subgroup B
is undecidable. But such a pair can be interpreted in a suitable topological group
(£ by letting

A = C/qC and B = qC/qC. Π

Call a group locally pure, if (partial) division by n is continous at 0. That is, a
group is locally pure if the following i f ^-sentence holds for every n

VX 3 0 37 s 0 Vx(nx e Y - 3y e X ny = nx).

Cherlin-Schmitt [1981] also proved that the theory of all locally pure groups is
hereditarily undecidable. Furthermore, we have

5.2.2 Theorem (Cherlin-Schmitt [1980]). The theory of all torsion free, locally
pure groups is decidable.

Proof. Since the theory of all (discrete) torsion free groups is decidable and the
theory of all non-trivial ordered abelian groups is decidable (see Gurevic [1964]),
the theorem follows from

5.2.3 Lemma. A topological abelian group is torsion free, locally pure, and non-
discrete iff it is J^ωω-equivalent to a non-trivial group with the order topology.

Proof. One direction is easy to establish. For the converse suppose that 9t is torsion
free, locally pure and non-discrete. We choose an if^-equivalent group (9I l 5 αx)
where αx has a basis β1 such that (9115 β^) is Xj -saturated. Then, as can be easily
shown, αx is closed under countable intersections. Starting with an arbitrary
Uo, we construct a sequence (Ui)i<ω of open neighbourhoods of 0 such that for
all / = 0, 1, 2, . . .

Ui+ί — Ui+! c Ut and nx e Ui + x -» 3y e Ui ny = nx.

Then the intersection of the Ut is an open pure subgroup of 9IX. Thus, $ί1 has a
base γ! of neighborhoods of 0 consisting of pure subgroups. Choose a countable
(912, y2) that is elementarily equivalent to (9I1? y^. Then {a + U\aeA2, Ue y2}
is a base of a topology α2 on A2 such that 91 and (9l2, α2) are ^ω ω-equivalent.
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From γ2 we now choose a descending base for the neighborhood filter of 0, writing
U = Uo => JJγ =>•••. We then fix an ordering <t of the torsion free group
Ui/Ui+ί (ί e N). If we define x < y iff x, ysUi,x + Ui+ί < f y + t / ί + 1 5 for some i,
we then obtain an ordering of 9I2 which generates α 2 .

5.3. Topological Fields

Theorem (Prestel-Ziegler [1978]). The ^ι

ωω-theory of the topological field of
complex numbers is axiomatized by the sentences asserting

(a) "algebraically closed field of characteristic 0";
(b) "non-discrete Hausdorff topological ring"\
(c) " V-topology"\ that is, in symbols, we have

VX3θ3Y3θVx,y(xyeY^xeX v yeX)

Proof Let S be a model of the axioms. Choose (95, β) <£^-equivalent of S, where
β is closed under countable intersections. Choose a sequence (Ui)i<ω of neighbor-
hoods of 0 such that (i + l)φUi9 Ui+1Ui+ι cr Ui9 Ui+1 - Ui + 1 <= Ut and
x,yeUi+1 -> x e Ui^ or y e U ι-,. Then the intersection U of the l/f is a neighborhood
of 0 and has the following properties:

(1) NnU = {0}.
(2) UU c [/.
( 3 ) l / - l / c l / .
(4) x jG[/=>xe[/oryG[/.

Set
(5) î  = {beB\bU <= U}.

Because of Property (3), R is a subring of B. In fact, we prove that R is a valuation
ring of B. That is, we can prove that for all beB, either beR or b'1 eR. For,
otherwise there are ut e U such that buγ $ U and b~ ίu2 φ U. But by (4) this implies
that uίu2 = bu1b~ίu2 φ U—2L contradiction to (2).

By (3) U is an ideal of R and is is proper by (1) and prime by (4). But then (5)
can hold only if U is the maximal ideal of the valuation ring R. Since U φ 0, we
must have that R Φ B. Furthermore, (1) implies that R/U has characteristic zero.

By Robinson [1956b], all (53, R) are elementarily equivalent, where 33 is alge-
braically closed and R is a proper valuation ring of 95 with residue class of char-
acteristic 0. Therefore, in order to show the completeness of our axioms, it remains
to show that β is the valuation topology of (95, R); that is, that {rU \ r e R\{0}} is
a base for the neighborhoods of 0.

To that end, we now assume that V is a neighborhood of 0 and choose another
neighborhood- Wof 0 such that x, y φ V n U => xyφW. Then rU <= K, for any reW.
For uεU implies u'1 φU by (1) and (2). Therefore, ruφV would imply that
r = ruu'ιφW. D

The methods used in the above proof can be used to prove the following result,
a theorem due to Stone [1969].
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Approximation Theorem. Let α l 9 . . . , αn be different V-topologίes of the field K.

Then the intersection of any sequence of non-empty open sets Ui e αf is non-empty.

Proof The theorem claims that (K, α l 5 . . . , απ) has a certain 5£^-property. But we
have seen that (K, α l 5 . . . ) is i^'-equivalent to a structure (L, βί9.. .), where the /^
are defined by valuations. In this case, the theorem is well known from valuation
theory. D

5.4. Topological Vector Spaces

We look at topological vector spaces as two sorted topological structures (R, V, α),
where R is an ordered field, V is an K-vector space with a compatible non-discrete
Hausdorff topology α. We let x, y range over Fand ξ range over R.

Theorem (Sperschneider [1979]). The <£ι

ωω-theory of locally bounded real vector
spaces of infinite dimension is complete and can be axiomatized by sentences as-
serting :

"infinite dimensional topological vector space over an ordered real closed field";

"locally bounded": 3X30 V 7 9 0 3ξ X c ξY;

"the Riesz Lemma": For all n, VZ sθ 3Y BO such that for all subspaces F of
dimension < n and all xφF 3y yeF + <x> Λ y eX A y φ(F + Y).

Proof It is easy to see that locally bounded real vector spaces satisfy our axioms.
(If V is normed, the last axioms follow directly from the Riesz lemma.) Since all
infinite dimensional vector spaces over a real closed field with a distinguished
Euclidean bilinear form are elementarily equivalent, it is enough to show that
every model (R, V, α) of our axioms is i f ^-equivalent to a topological vector
space whose topology is defined by an Euclidean norm.

We can suppose that α is closed under countable intersections. Then, taking
the intersection of a suitable descending chain, we find a bounded neighborhood
U of 0; (that is, {r(7|reK\{0}} is a basis for the neighborhoods of 0) and an
infinitesimal r > 0 such that U — 1/ c= 17, [—1, l]l/ c= 1/ and for all finite
dimensional F and x φ F, there is y e F + <x> such that y e U and y φ (F + rU).
Finally, we choose a neighborhood V of 0 that is contained in all rnU (n < N).

Now (proceed to an elementarily equivalent situation) we drop the assump-
tion that α is closed under countable intersections, and instead assume that V
is countable. We can then construct a basis (Xi)ί<ω of V such that x f e U and
*i Φ ((^Oί * I J 5 *i-1) + rU). Define an Euclidean bilinear form on V such that
(χi)i<ω becomes an orthonormal basis. Now set B = {xe V\(x, x) < 1}. We will
complete the proof by showing that V a B a U.

If r o x o + rίx1 + + rnxne V a rn + 2U, we can conclude that \rn\ < rn+1

a n d r o x o H h rn_ιxn_1er"+1U, etc. Whence, we have that \rt\ <ri+1 < r, for all
i = 0, 1, — It now follows that r o x o + + rnxn e B. This again implies that
Ir,-1 < 1, for all i. Whence, ηx^ e U and roxo + + rnxn e U. D
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6. Other Structures

As a logic for topological structures, £fn

ωω was constructed in the following three
steps

(1) The second-order notion of a topology was replaced by the first-order
notion of a base of topology.

(2) An appropriate logic (ifίnon) f° r the "weak structures" (91, β) was chosen,
where β is a base of a topology.

(3) That the if^-sentences are (up to equivalence) just the base-invariant
sentences of i f mOn

 w a s shown.

There are many other cases in which this philosophy is successful. In the following
examples, all of the general theorems given in Sections 1, 2, 3.3, and 4 hold true.

6.1. Quasίtopologies

A set of subsets of A is a quasitopology on A, if it is closed under arbitrary unions.
Every set β of subsets of A is the base of a quasi-topology α on A since it is possible
to set α = {(J s\s a /?}. Thus, a weak structure (21, β) consists of a structure 21
and a set of subsets of A. The appropriate logic for weak structures is «£?„<>„. The
sentences of i f mOn

 a r e basis-invariant are also, up to equivalence, the sentences of
<£ι

ωω. Thus, jSf̂ ω c a n a ls° serve as a natural logic for quasi-topological structures.
Topological structures form an elementary class of quasi-topological structures.
It is now clear why φ b a s (see Corollary 1.2.4) was taken as an JS?^-sentence.

6.2. Monotone Systems

Let n be a non-zero natural number. An π-monotone system on A is a system of
subsets of A" which is closed under supersets. A set β of subsets of An is the base
of the n-monotone system

{C a An\B a C for some B e β}.

Thus, a weak structure (21, β) is a structure 2ϊ with a set β of subset of An. The logic
i f for these weak structures adds set variables X, Y, ... and atomic formulas

Now, up to equivalence, the base invariant if-sentences are the sentences in
which set quantification 3X φ (respectively VX φ) is allowed only if X occurs only
negatively (respectively positively in φ).

We use these sentences as a logic if* for rc-monotone structures. We observe in
passing that the same can be done for antitone systems.
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Example, v is a uniformity on A iff (A, v) is a 2-monotone structure which satisfies
the following if *-axioms:

3X(true), (that is, v is non-empty;

VX V7 3Z Vx Vy(x, y)eZ-+ ((x, y) e X Λ (X, y) e 7);

VX 37 Vx Vy Vz((x, ^ 7 Λ (X, z) G 7) ^ (y, z) ε X).

It is easy to prove that v is an uniformity on A iff (A, v) is if *-equivalent to a 2-
monotone structure (B, μ) where μ is closed under finite intersections and has a base
of equivalence relations.

6.3. Point Monotone Systems

A point monotone system μ on A assigns to every as A an 1-monotone system
μ(a) on A. The function β:A^> ^(A) is a base of the point monotone system
(monotone system with base β(a)\ae A).

Precisely what constitutes a logic for these structures? Letting S£ denote the
logic for such structures, we use sentences that are built-up like if ωω-sentences
along with set variables X, 7, . . . , atomic formulas t e X, and quantification
3X(t)φ and VX(ί)φ as the constituents of if. The interpretation of these last two
formulas is X ε β(t) such that φ and for all X e β{t\ φ. Now, the quantification
3X(t)φ (respectively, VX(ί)φ) is only allowed in if *-sentences if X occurs only
negatively (respectively, positively) in φ. These are, up to equivalence, the base
invariant if-sentences. Thus, we can use 5£^ as a logic for point monotone struc-
tures.

Example. We can interpret a topology on A as a point monotone structure (A, μ),
where μ(a) is the neighborhood filter of a. Moreover, we can formulate HausdorfΓs
axioms in ^ as follows: A point monotone structure (A, μ) is a topological space
iff the following if *-axioms are satisfied:

Vx3X(x)(true);

VxVX(x)xeX;

Vx VX(x) V7(x) 3Z(x) My y e Z -> (yeX A yeY);

Vx VX(x) 37(x) Vy(y ε 7 -> 3Z(y) Vz zeZ^zeX).

The resulting logic for topological structures is, of course, equivalent to 5£ι

ωω.
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Remark. Call the point monotone structure (91, μ) an open substructure of the
point monotone structure (95, v), if 91 is an substructure of 23 and every μ(a) is a
base of v(a). Then, up to equivalence, the S£*-sentences preserved under open
substructures are the Π-sentences (which are similarly defined as in Theorem 3.1.2).
This result generalizes both Theorem 3.1.2 and the Feferman-Kreisel theorem on
end extensions.

6.4. Antitone Systems of Pairs of Sets

A set δ of pairs of subsets of A is antitone—and, for the sake of brevity, we write
ASPS on A—if (Bu B2) e δ, C1 c Bu C2 <= B2 implies (C 1 ? C2) e δ. Every set of
pairs of subsets of A is a base of an ASPS in the obvious way. This notion clear,
we can arrive at the logic JSf * for ASPS-structures (91, δ) as follows: We extend
<gωω by set variables X, 7 , . . . (for pairs of sets) and new atomic sentences t eί X,
t e2 X whose meaning is that t is in the first (respectively, the second) component
of X, and we allow quantification 3Xφ (respectively, ^Xφ) only if X occurs only
positively (respectively, negatively) in φ.

Example. A proximity space is an ASPS-structure (A, δ) with the following prop-
erties :

(a) ifβ<SC, thenC(5B;
(b) iίB1δC and B2 δ C, then B2 u Bγ δ C;
(c) for no a e A {a} δ {a}
(d)0δA;
(e) if B δ C, then there are B\ C such that B c F , C c C , B' nC = 0 ,

B δ (A\Bf\ and (A\C)δC.

Each of the properties can be formulated in if*. Thus, for example, property (e)
reads

VX 3 7 3Z(Vx(xE2Y v xs2Z) A Vx(xex X -> xex 7)

Λ Vx(xe 2X ^xe1 Z))

Finally, in concluding this discussion, we briefly note that we write B δ C, for
(B, C) G δ to mean that Band C are not proximate.






