
Chapter XIII
Monadic Second-Order Theories

by Y. Gurevich

In the present chapter we will make a case for the monadic second-order logic
(that is to say, for the extension of first-order logic allowing quantification over
monadic predicates) as a good source of theories that are both expressive and
manageable. We will illustrate two powerful decidability techniques here—the
one makes use of automata and games while the other uses generalized products
a la Feferman-Vaught. The latter is, of course, particularly relevant, since monadic
logic definitely appears to be the proper framework for examining generalized
products.

Undecidability proofs must be thought out anew in this area; for, whereas
true first-order arithmetic is reducible to the monadic theory of the real line R,
it is nevertheless not interpretable in the monadic theory of R. Thus, the examina-
tion of a quite unusual undecidability method is another subject that will be
explained in this chapter. In the last section we will briefly review the history of
the methods thus far developed and give a description of some further results.

1. Monadic Quantification

Monadic (second-order) logic is the extension of the first-order logic that allows
quantification over monadic (unary) predicates. Thus, although binary, ternary,
and other predicates, as well as functions, may appear in monadic (second-order)
languages, they may nevertheless not be quantified over.

LL Formal Languages for Mathematical Theories

We are interested less in monadic (second-order) logic itself than in the applica-
tions of this logic to mathematical theories. We are interested in the monadic
formalization of the language of a mathematical theory and in monadic theories
of corresponding mathematical objects. Before we explore this line of thought in
more detail, let us argue that formalizing a mathematical language—not necessarily
in monadic logic, but rather in first-order logic or in any other formal logic for
that matter—can be useful.
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We begin by observing that the first-order Zermelo-Fraenkel set theory
stands as a very important case in point, since it provides the most popular way
to avoid known paradoxes in set theory. Another excellent example is related to
the Lefschetz principle in algebraic geometry. This principle asserts that any
algebraic statement that is true for the field of complex numbers is also true for any
algebraically closed field of characteristic 0. Tarski proved a meaningful exact
versioruof the Lefschetz principle, namely, that all algebraically closed fields of
characteristic 0 are elementarily equivalent.

The task of classifying all mathematical structures of a kind up to isomorphism
(or homeomorphism, etc.) may be impossible. For example, nobody can classify
all abelian groups up to isomorphism. Formalizing (a portion of) the language
may allow classification by properties that are expressible in the formal language.
Szmielew [1955] did, in fact, classify all abelian groups up to elementary equiv-
alence. The classification of structures up to indistinguishability in a formal
language may indeed be a reasonable alternative to the original classification
problem provided, of course, that the formal language expresses enough of the
relevant mathematics.

Another impossible task is that of learning everything about a specific structure.
For example, nobody can learn all about the binary tree of words in a two-letter
alphabet. Formalizing (a portion of) the language may enable us to learn all
about the structure that is capable of being expressed in the formal language. It is,
of course, a reasonable approach if the formal language is sufficiently rich. Indeed,
Rabin [1969] has constructed an algorithm which is capable of recognizing the
true statements in the very expressive monadic (second-order) language of the
binary tree with two successor functions.

The study of mathematical structures in a formal language may, of course,
degenerate to a mere logic exercise if the language is not sufficiently expressive.
For example, imagine studying first-order properties of dense linear orders. On
the other hand, the study itself may become intractable if the language is over-
expressive. For instance, imagine studying second-order properties of dense
linear orders. A good formal language has to meet two conflicting demands. It
must express an interesting portion of the relevant mathematics, and it must also
provide a manageable theory. One of the main aims of this chapter is to demonstrate
that the monadic (second-order) logic is a good source of expressive and manage-
able theories.

1.2. Ordered Abelian Groups and Restricted Monadic
Quantification

I began to think in terms of monadic logic while I was working on ordered abelian
groups. The original problem I faced was the decision problem for the elementary
theory of such groups—a question of Tarski. It appeared, however, that monadic
logic gives a better formalization of the informal theory of o.a. groups. The story
was an important lesson for me and I will briefly relate it to you.
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An o.a. group is a group and a chain, the two structures being connected by
the law

Here is a particular example: the additive group of complex numbers ordered
thus:

a + bi < c + di iff b < d, or b = d and a < c.

The subgroups of an ordered abelian group that form intervals are called convex
subgroups. For example, the real numbers form a convex subgroup in the o.a.
group of complex numbers just described. It is easy to verify that the convex
subgroups of any o.a. group are linearly ordered by inclusion. Before proceeding,
we should point out that throughout this chapter the terms chain and linear ordering
will be used interchangeably.

The elementary first-order theory of o.a. groups was shown to be decidable in
Gurevich [1964], there was proven that two o.a. groups are elementarily equivalent
iff their chains of definable convex subgroups with some definable weights are
elementarily equivalent. Of course, in that study most of the informal theory of
o.a. groups was left aside, such theory tending as it does to deal with convex
subgroups. In particular, we note that the o.a. group of complex numbers described
above is elementarily equivalent to the naturally ordered additive group of real
numbers, although only one of these o.a. groups has a non-trivial convex subgroup.

The elementary language of o.a. groups was expanded in Gurevich [1977a] by
adding quantifiable variables that range over arbitrary convex subgroups, and
the expanded theory of such groups was there proven to be decidable. You might
suspect that the expanded theory is decidable because the expansion did not
greatly increase the expressive power, and that the restricted monadic quantifica-
tion can be essentially eliminated. However, this is not at all the case! Not only
does the expansion considerably increase the expressive power, but it is also the
elementary quantification that can be essentially eliminated in the expanded
theory. Two o.a. groups are equivalent in the expanded language iff their chains
of convex subgroups with some definable weights are elementarily equivalent.
Moreover, the decision procedure is clearer and less cumbersome in the case
of the expanded theory. Thus, in the case of o.a. groups, the monadic logic really
does provide a better formalization.

Not too much work has yet been done on this kind of algebraic application
of restricted monadic quantification. In this connection, the reader might consult
Kokorin-Pinus [1978], an informative, although somewhat biased, survey.
The remainder of this chapter is devoted mainly to unrestricted monadic quantifica-
tion, an area in which some very impressive progress has been made. In the original
papers, many of the results on unrestricted monadic quantification are accom-
panied by restricted monadic quantification results. The work on unrestricted
monadic quantification seems to be a natural step in the development of ways
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that are capable of dealing with the presumably more applicable restricted monadic
quantification.

13. Monadic Languages

The monadic (second-order) logic is the fragment of the full second-order logic
allowing quantification only over elements and monadic predicates. One way to
define the monadic version of an elementary language L is to augment L by a
sequence of quantifiable set variables and by new atomic formulas t e X, where t
is an elementary term and X is a set variable. The intended interpretation here is
that E is the membership relation and the set variables range over all subsets of a
structure for L. Observe, however, that in the case of restricted monadic quan-
tification the set variables range only over special subsets; that is to say, they only
range over subgroups, or normal subgroups, etc.

The following proposition shows that the monadic theory of a structure may
easily be intractable.

1.3.1 Proposition. Let P be a ternary predicate on a non-empty set S. Suppose that,
for every x,yeS, there is zeS, with (x, y, z) E P, and for every zeS there is at most
one pair (x, y) with (x, y, z) e P; such P may be called a pairing predicate. Then the
true {full) second-order theory of S is interpretable in the monadic theory of(S, P).

Proof. The proof is quite clear. First, we code ternary, quaternary, etc., predicates
by binary ones. That done, we then code a binary predicate B by a monadic
predicate {z: there is a pair (x, y) in B with (x, y, z)e P}. D

We will be interested in the monadic theories that are not able to express
pairing such as monadic theories of (linear) orders, monadic theories of trees, etc.
In these theories it is useful in many cases for us to rid ourselves entirely of
elementary variables by coding the original structure on singleton sets. For
example, we consider the monadic language of order as the (formally) first-order
language whose vocabulary consists of the binary predicate symbols c and <.
Every chain (that is, every linearly ordered set) gives a standard model: the
variables range over all subsets of the chain, c; is the usual inclusion, and X < Y
means that there are elements x < y with X = {x}, Y = {y}. The (formally)
first-order theory of these standard models is, by the definition, the monadic
theory of linear order.

2. The Automata and Games Decidability
Technique

The first technique for dealing with nontrivial monadic theories originated in the
theory of finite automata. In Section 2.1 we will demonstrate this technique on an
easy example of the monadic theory of finite chains. Section 2.2 is devoted to the
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monadic theory of the chain ω of natural numbers, while Section 2.3 is devoted
to the central result proven by the technique which is decidability of the monadic
theory of the binary tree.

2.1. Monadic Theory of Finite Chains

We define the monadic language of one successor as formally the first-order language
with binary predicates c and SUC. It is convenient here for us to view a finite
chain as a model for the monadic language of one successor, that is, the variables
range over the subsets of the chain, c is ordinary inclusion, and SUC(X, Y)
means that there are points x, y such that X = {x}, Y = {y}, and y is the successor
of x. The linear order (on singleton sets) is then easily definable.

Throughout this section Σ is an alphabet (all of our alphabets are finite and
are not empty). A Σ-automaton is a quadruple A = (S, T, s in, F), where S is the
finite set of states, T^SxΣxS is t h e transition table, sin e S is t h e initial state,

and F ^ Sis the set of final (or accepting) states. A is generally a non-deterministic
automaton. It is deterministic if T is a total function from S x Σ to S.

A run of the Σ-automaton A on a word σ1 . . . σx in Σ is a sequence sx ... sι of
states such that (s i n, σl9 st) e T and every (si9σi+l9si+ί)eT. The automaton
accepts σί9..., σx if there is a run sγ . . . st on this word with sx e F.

2.1.1 Theorem. There is an algorithm that, given an alphabet Σ and a Σ-automaton
A, constructs a deterministic Σ-automaton accepting exactly the words accepted by A.

Proof. See any standard text in automata theory or, for the original proof Rabin-
Scott [1959]. D

2.1.2 Theorem. There is an algorithm that, given an alphabet Σ and a Σ-automaton A,
decides whether A accepts at least one non-empty word.

Proof. Let A = (S, T, sin, F). First, we construct a singleton alphabet Σ' = {a}
and a Σ'-automaton A = (S, T',sm,F) that accepts a non-empty word iff A
accepts a non-empty word. Set

T = {sxas2'. sγσs2 e T, for some σ e Σ}.

Second, we use the algorithm of Theorem 2.1.1 to construct a deterministic
Σ'-automaton A" that accepts exactly the words accepted by A'.

Third, let n be the number of states of A". Consider now the unique run
s1... sn+ί of A" on the Σ'-word of length (n + 1). There are i < j < n + 1 with
st = Sj. Hence, any run of A" is purely periodic from the ΐth place on. Thus,
A" accepts a non-empty word iff a final state appears among su ..., s7 _ v D

A finite chain C with n subsets Xl9...,Xn can be considered as a word
Word(C, Xl9...,Xn) of length | C \, in the alphabet Σn that is the Cartesian product
of precisely n copies of {0, 1}. If n = 0, then Σ o is a singleton. In case n > 0, a
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letter of Σn can be viewed as a column of n zeros and ones. For example, if C is the
chain Sunday,..., Saturday and Xx = {Monday, Thursday} and X2 = {Monday,
Tuesday, Wednesday}, then we have

2.1.3 Theorem. There is an algorithm that, given n and a Σn-automaton A, constructs
a formula φ(Xί9..., Xn) in the monadic language of one successor such that for
every finite chain C and any subsets Xί9..., XnofC,we have that

C\=φ(Xl9...,XH) iff A accepts Word(C, Xl9..., Xn).

Proof. Without loss of generality, C can be taken as the chain 1,. . . , / for some /. Let
sl9...,sm be the states of A. The desired formula says that there are subsets
Yl9..., Ym describing an accepting run of A on Word(C, Xu . . . , Xn). The intended
meaning of Yk is {i: A is in the state sk after reading the ith letter}. D

2.1.4 Theorem. There is an algorithm that, given a formula φ(Xί9..., Xn) in the
monadic language of one successor (with free variables as shown), constructs a
Σn-automaton A such that for every finite chain C and any subsets Xί9..., Xn of C,
we have that

C\=φ(Xl9...9Xn) iff A accepts Ψoτd(C,Xί,...,Xn).

Proof. We will merely sketch the proof. The automaton is built by induction on
the formula. The atomic cases and the case of disjunction are quite easy. As to
the case in which φ = 3Xn+1ψ, the desired Σπ-automaton guesses Xn+1 and
mimics the Σ n + 1 -automaton corresponding to φ. The case of negation is easy
for deterministic automata. We will now use Theorem 2.1.1 and the result will
follow. D

Theorems 2.1.3 and 2.1.4 together constitute a kind of normal form theorem
for the monadic theory of finite chains.

2.1.5 Theorem. The monadic theory of finite chains is decidable.

Proof. Given a sentence φ9 we use the algorithm of Theorem 2.1.4 to find an
appropriate automaton. The sentence φ is satisfiable iff the automaton accepts
at least one non-empty word. Now, using Theorem 2.1.2, the assertion follows
immediately. D

2.2. Monadic Theory of ω

As usual, ω will denote the chain of natural numbers. We consider it here as a
model for the monadic language of one successor: The variables range over the
subsets of ω, c is the usual inclusion, and SUC(X, Y) means that there is a natural
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number x such that X = {x} and Y = {x + 1}. The monadic theory of ω is
known as SIS which is an acronym for second-order (monadic) theory of one
successor. Observe that the linear order (on singleton sets) is easily definable in
SIS.

A sequential Σ-automaton is a quadruple A = (S, T, sin, F), where S is the set

of finite states, T^SxΣxS is the transition table, sin is the initial state and F is

the set of final collections of states. A is generally a non-deterministic automaton.
However, it is deterministic if T is a total function from S x Σ to S. A run of ,4 on a
sequence σ xσ 2 . . . is a sequence s ^ . . . of states such that (s i n, σ1 ? sx) e T, and
every (sh σi + 1, si+1) e T. It is an accepting run iϊ {s: sn = s for infinitely many π}
belongs to F. And, finally, A accepts a sequence σ x σ 2 . . . if there is an accepting
run of A on this sequence.

2.2.1 Theorem. There is an algorithm that, given an alphabet Σ and a sequential
Σ-automaton A, constructs a deterministic sequential Σ-automaton accepting exactly
the sequences accepted by A.

This result is proven in McNaughton [1966]. However, simpler proofs can be
found in Rabin [1972], Choueka [1974], Thomas [1981]. D

2.2.2 Theorem. There is an algorithm that, given an alphabet Σ and a sequential
Σ-automaton A, decides whether A accepts at least one sequence.

Proof. The argument here is simple, since we only need repeat the proof of Theorem
2.1.2, speaking about sequences rather than words and changing the last sentence
to: Thus A" accepts the unique Σ'-sequence iffthe collection {si9..., s, -1} is final.

D

Subsets Xx, ...,Xn of ω form a sequence S E Q ( Z l 9 . . . , Xn) in the alphabet
Σn. The following three theorems and their proofs are similar to the corresponding
theorems and proofs in Section 2.1.

2.2.3 Theorem. There is an algorithm that, given n and a Σn-automaton A, constructs
a formula φ(X\,..., Xn) in the monadic language of one successor such that for
any subsets Xί9..., Xn of ω,

ω\=φ(Xl9...,XH) iff A accepts SEQ(Xl9...,Xn). D

2.2.4 Theorem. There is an algorithm that, given a formula φ(Xί9..., Xn) in the
monadic language of one successor (with free variables as shown), constructs a
Σn-automaton A such that for any subsets Xl9..., Xn of ω,

ωV=φ(Xγ,...,Xn) iff A accepts SEQ(X,,..., Xn).

2.2.5 Theorem. The monadic theory of ω is decίdable. D
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23. Monadic Theory of the Binary Tree

The binary tree is here defined as the set {/, r}* of all words in the alphabet {/, r}.
The empty word e is the root of the tree. The words xl and xr are respectively the
left and the right successors of a word x.

The monadic language of two successors is (formally) the first-order language
with binary predicates c 9 Left and Right. We regard the binary tree as a model for
the monadic language of two successors: the variables range over the subsets, c
is the usual inclusion, Left(X, Y) means that there is a word x with X = {x},
Y = {xl}, and Right(X, Y) means that there is a word x with X = {x}, Y = {xr}.
The monadic theory of the binary tree is known as S2S which is an acronym for
the second-order (monadic) theory of two successors.

S2S is a very expressive theory. The relation "x is the initial segment of y"
and "x precedes y lexicographically" are easily expressible (when coded on
singleton sets). Rabin [1969] interpreted in S2S the monadic theories of 3, 4, etc.
successors, the monadic theory of ω successors, and a good deal more.

A mapping V from the binary tree to an alphabet Σ will be called a Σ-valuation
or a Σ-tree. We say that a tree Σ-automaton is a quadruple A = (S, T, Tin, F) where
S is the finite alphabet of states, T ^ S x {l,r} x Σ x S is the transition table,
Tin c Σ x S is the initial state table, and F is the set of final collections of states.
In order to describe when the automaton A accepts a Σ-tree V, we introduce a
game T(A, V) between the automaton A and another player called Pathfinder.

A chooses: Pathfinder chooses:

d2

Here each sne S and each dn e {I, r}. The choices of A are restricted by the following
conditions:

(V(e), s0) e Tin and (sn, dn+1, V(dt . . . dn + 1 ), s π + 1 ) e T.

We would like to avoid the possibility of the automaton not being able to
make the next move. One way to do this is to provide our automata with an
additional state FAILURE in such a way that a transition into FAILURE is
always possible, but a transition from a FAILURE to another state is never
possible. Of course, the singleton set {FAILURE} will not be a final collection.
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The automaton A wins a play s0d1s1d2 . . . if {s e S: sn = s for infinitely many n}

belongs to F. Otherwise, Pathfinder wins. The automaton A accepts V if it has a

winning strategy in Γ(^, V). Otherwise, it rejects V. The notion of strategy is

clarified below.
A position in T(A, V) is a word in the alphabet S u { ί , r } that is an initial

segment of some play s0d1sίd2.. . The last appearance record LAR(p) in a

position p is the string of last appearances of states in p. Consider the following
example:

Pathfinder Position LAR

e
a
al
alb
albr
albra
albral
albr ale
albralcr
albralcrc
albralcrcl
albralcrcla

e
a
a
ab
ab
ba
ba
bac
bac
bac
bac
bca

a
I

b
r

a
I

c
r

c

Here is an inductive definition of the last appearance record LAR(p). If p is
the empty word e (that is, the initial position), then LAR(p) is empty. If p = ql or
p = qr, then LAR(p) = LAR(g). Suppose now that p = qs, u = LAR(g) and u'
is obtained from u by erasing all appearances of 5. Then LAR(p) = u's. Every last
appearance record is a word in alphabet S, where each state appears at most once.

A (deterministic) strategy for the automaton A in the game Γ(A, V) is a func-
tion assigning a legal state to every position of even length. A (deterministic)
strategy for Pathfinder is a function assigning a direction / or r to each position of
odd length.

Unfortunately, deterministic tree automata are too weak and Theorem 2.1.1
cannot be generalized to them. That theorem played a key role in Section 2.1;
and in the case of tree automata the proper form of determinacy will play an
analogous role.

2.3.1 Theorem (Forgetful Determinacy Theorem). One of the players has a winning
strategy fin Γ(A, V) such that ifp, q are two positions, where the winner makes moves
and p, q define the same residual game (that is, they have the same continuation)
and have the same last appearance records, then f(p) = f(q).

Proof See Gurevich and Harrington [1982]. D
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A strategy/for a player in Γ(A, V) will be called forgetful if/(p) = f(q\ for
all positions p, q such that the player makes moves in p, q and p, q define the same
residual games, and moreover, the last appearance records in p and in q coincide.
The reason for this term is that any value/(p) depends on the residual game and
an only limited information about the history. Thus, in brief, we may say that a
forgetful strategy "forgets" most of the history.

2.3.2 Theorem. There is an algorithm that, given an alphabet Σ and a tree Σ-auto-
maton A, decides whether A accepts at least one Σ-tree.

Proof. As in the proof of Theorem 2.1.2, we first reduce the problem to the case
of a singleton alphabet. Thus, suppose that Σ is a singleton and V is the unique
Σ-tree. By the forgetful determinacy theorem, one of the players has a forgetful
strategy winning Γ(^, V). List all forgetful strategies f ί 9 . . . ,/m for the automaton
A and all forgetful strategies gl9..., gn for Pathfinder. It is possible to check each
fι against each g 3 because the play eventually becomes periodic. This way we can
find the desired winning strategy and determine whether or not A accepts V. D

Subsets Xί9...,Xn of the binary tree give a Σn-tree that will be called
T R E E ( X l 9 . . . , Xn), where Σπ is as in Section 2.1.

2.3.3 Theorem. There is an algorithm that, given n and a tree Σn-automaton A,

constructs a formula φ(Xί9..., Xn) in the monadic language of two successors such

that for any n subsets Xu ..., Xnof the binary tree,

{l,r}*\=φ(Xl9...,Xn) iff A accepts ΊREE(X,,..., Xn).

Proof. A run of a tree Σ-automaton A on a Σ-tree V is a function R from the binary
tree to the set of states of A such that every sequence

R(e)d1R(d1)d2R(dίd2)...

is a legal play in Γ(A, V). If A wins all these plays then the run R is accepting.
The desired formula says that there are subsets Ys, where s ranges over the

states of the given tree Σn-automaton A, that describe an accepting run R of A on
TREEpf i , . . . , Xn). The intended meaning of Ys is

s}. D

2.3.4 Theorem. There is an algorithm that, given a formula φ(X\,..., Xn) in the
monadic language of two successors, constructs a tree Σn-automaton A in such a
way that for any n subsets Xί9...9Xnofthe binary tree,

{l9r}*\=φ(Xl9...9Xn) iff A accepts ΎREE(X u ..., X n).

Proof. The argument here is similar to that given for Theorem 2.1.4, except for the
case of negation which is treated in Theorem 2.3.6 below. D
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2.3.5 Theorem. The monadic theory of the binary tree is decidable.

Proof. The argument here is similar to that given for Theorem 2.1.5. D

2.3.6 Theorem (Complementation Theorem). There is an algorithm that, given an
alphabet Σ and a tree Σ-automaton A, constructs a tree Σ-automaton accepting
exactly the Σ-trees rejected by A.

Proof. Let V be a Σ-tree rejected by A. By the forgetful determinacy theorem,
Pathfinder has a forgetful strategy / winning Γ(A, V). If p is a position in Γ(A, V\
let Node(p) be the string of even letters in p. For example, if p = albralcrcla then
Node(p) = Irlrl. If p, q are two positions of odd length, Node(p) = Node(g),
and A is in the same state in p, q (that is to say, p, q have the same last letter),
then p, q define the same residual game. This allows us to code/by an appropriate
valuation of the binary tree.

Let RECORDS be the set of words u in the alphabet of states of A such that
every state appears at most once in u. Elements of RECORDS will be called
records. Let Σ' be the set of functions assigning a letter / or r to each record.
There is a Σ'-tree V such that for every position p in Γ(A, V) we have

= (F'(Nodep))(LARp).

Since / is winning, every path

e, dl9 d1d2, dιd2d3,...

through the binary tree {/, r}* satisfies the following condition:

(*) There are no sequences s 0

5 i 5 2 a n ( 3 u0uίu2 . . . such that
s0d1s1d2 . . . is a play with respect t o / a n d w0, wl5 u2,
are corresponding last appearance records and {5: for
every i there is j > i with Sj = s} is a final collection of
states.

Clearly (*) abbreviates a formula in the monadic language of one successor
whose parameters code the path e9 dl9 dίd2, d1d2d3,... and the corresponding
s e q u e n c e s V{e\ V{dλ\ V{d1d2\ . . . a n d V\e\ V'ldά V\dγd2\ . . . . B y T h e o r e m

2.2.4 there is a sequential automaton A' = (S\ T\ sjn, F
f) over the alphabet

(Σ x Σ') u ({/, r} x Σ x Σ') that accepts a sequence

V{e)V\e\ d,V{d^V\dx\ d

iff it satisfies (*).
Let A1 = (S\ T", 77n, F

f) be the deterministic tree Σ x Σ'-automaton with
T"(s, d, σσ') = T'(s9 dσσ') and T'{n(σσf) = T'(s[n, σσ'). A" mimics A' and accepts
the Σ x Σ'-tree V x V given by V and V. Finally, let A be the Σ-automaton that
guesses V and mimics A". Note that each successor in the row A, A', A", A is
computable from the predecessor. Evidently A accepts V.
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A is the desired Σ-automaton complementing A. For, suppose that A accepts
a Σ-tree V. There is a Σ'-tree V such that A" accepts V x V. Then A' accepts
every sequence

V(e)V'(e), dMdJV'Wά d2 F ( < M 2 ) H < M 2 ) , . . . .

Thus, every path e, du dιd1,... through the binary tree satisfies (*), where / is
the strategy for Pathfinder defined by

= (F'(Node p))(LAR p).

Evidently / is winning. Hence, A rejects V. D

3. The Model-Theoretic Decidability Technique

The most important tools for dealing with monadic theories are composition
theorems. The term "composition" here means generalized products in the sense
of Feferman-Vaught [1959]. The Feferman-Vaught theorem reduces the first-
order theory of the given composition to the first-order theories of the parts
(summands, factors) and the monadic (!) theory of the index structure. Monadic
composition theorems reduce the monadic theory of the given composition to the
monadic theory of the parts and the monadic theory of the index structure (see,
for example, the monadic composition theorem for chains in Section 3.2). Thus,
monadic composition theorems appear to be more natural. Moreover, the inter-
play of monadic theories opens absolutely new and unexpected approaches to the
decision problem. One of these approaches is demonstrated in Section 3.3 by a
model-theoretic proof of decidability of the monadic theory of ω. Limited by the
size of this chapter, we have chosen in the present section to explain only an easy
part of the model-theoretic technique for proving decidability of monadic theories
and to make this exposition as comprehensible as possible. We hope that this
discussion—selective though it may be—will assist the interested reader in
examining the more comprehensive exposition to be found in either Shelah [1975e]
or in the papers Gurevich [1979a] and Gurevich-Shelah [1979].

3.1. Bounded Theories

Recall that the prefix of a prenex first-order formula is a word in the alphabet
{V, 3}. Blocks of universal quantifiers alternate with blocks of existential quantifiers
in a prefix. The alternation type of a prefix is the sequence of lengths of the quan-
tifier blocks. For example the alternation type of both V334V5 and 33V435 is
3, 4, 5. Clearly, the alternation type of the empty prefix is the empty sequence.
Letters ξ and η (without subscripts) will be used to denote alternation types. We
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use the symbol ^ to denote concatenation of sequences. Thus, if ξ is 3, 4, 5 then
ξ ~ 8 is 3, 4, 5, 8.

Let L be a first-order language. For every n, indistinguishability by prenex
sentences with prefix of length n gives an equivalence relation on structures for
L. The n-step Ehrenfeucht game was introduced to provide a convenient sufficient
condition for this equivalence relation to hold. Indistinguishability by prenex
sentences with prefix of a given alternation type is also an equivalence relation on
structures for L. We generalize Ehrenfeucht games to provide convenient sufficient
conditions for these new equivalence relations to hold.

Proviso 1. The vocabulary of L consists of finitely many relation symbols and
individual constants.

Let M and N be structures for L and ξ be an alternation type ξ1 ... ξn. The
game ξ - Γ(M, JV) is played between players I and II in n steps. On the fcth step,
player I chooses a structure M or N and a tuple of ξk elements of the chosen
structure and, in response, player II chooses a tuple of ξk elements of the remaining
structure. Let al9 . . . , am be the tuple ofallξ1 + -- + ξn elements chosen in M;
the £2-tuple of the first step concatenated with the £2-tuple of the second step,
etc. Let bl9...,bm be the corresponding tuple of elements chosen in JV. Player II
wins if the quantifier-free type of αί9..., αm in M coincides with the quantifier-
free type of bl9..., bm in N, otherwise player I wins.

3.1.1 Theorem. If player II has a winning strategy in ξ — Γ(M, JV), then M and N
are indistinguishable by prenex sentences with prefix of type ξ.

Proof. Any distinguishing prenex sentence of type ξ gives a winning strategy for
player I. D

We will say that L-structures M and N are ξ-equivalent if player II has a winning
strategy in ξ — Γ(M, N).

By induction on the length of ξ, we define the ξ-theory of an L-structure M
with a tuple of additional elements. 0 — Th(M, aί,.. .9at) is the quantifier-free
type of al9..., ax in M. If ξ is η ~ k then ξ — Th(M, aί9..., at) is the set of all
η - T h ( M , al9..., ah bl9...9 bk) w h e r e bl9 ...9bke M.

3.1.2 Theorem. Two structures for L are ξ-equivalent iff they have the same ξ-theory.

Proof. The proof is simple and we will omit it here. D

The usual π-step Ehrenfeucht game corresponds to the case when ξ is a sequence
of n ones. This sequence will be denoted Γ. 1 "-equivalent structures are called
usually n-equivalent. The 1 "-theory of a structure is called usually the w-theory.

It is important for us that our bounded theories—in particular, quantifier-free
types—are finite objects. This explains Proviso 1. This proviso is, however, too
restrictive for applications. Is there any way to have finite quantifier-free types in
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a situation when Proviso 1 fails? The answer is Yes. In fact, consider the first-
order theory of boolean algebras. There are infinitely many terms in a given
finite set of variables, but only finitely many of these terms are in disjunctive
normal form and each term is equal to one in disjunctive normal form.

Proviso 2. L may have function symbols but it has only finitely many relation symbols.
T is a theory in L, T allows a definition of normal terms in such a way that:

(i) there are only finitely many normal terms for any given finite set of variables;
and

(ii) every term is equal in T to a normal term (in the same variables).

An atomic formula P(τ 1 ? . . . , τk) will be called standard if the terms τ l 5 . . . , τk

are normal. We identify the quantifier-free type of a tuple ( α 1 ? . . . , αz) in a model
M of T with the set of standard atomic formulas φ(vί9..., vz) such that
M \= φ(au ..., at). Now we can simply repeat the definition of ξ-theories. Proviso
2 will suffice for our purposes here. A more liberal proviso can be found in Gurevich
[1979a].

3.1.3 Theorem. T is decidable if there is an algorithm computing
{ξ — Th(M): M \= T} from ξ. T is decidable if there is an algorithm computing
{Γ-Th(Λf):M |= T}fromn.

Proof. As in the case of Theorem 3.1.2, the proof of this result is simple and will
not be given here. D

Even if T is not decidable, there is often an algorithm which computes a box
including {ξ — Th(M): M \= T} from ξ. We define these boxes by induction on
the length of ξ. The 0-/-Box is

{0 - Th(M, α l 9 . . . , αz): M \= T and aί9..., at e M}.

If ξ is η ~ fc, then the ξ-l-Box is the power-set of the η-(l + /c)-Box. We now turn
our attention to

3.1.4 Proposition. If M\= T and aι,...,aιtM then

ξ - Th(M, au . . . , ai) e ξ-l-Box.

Proof. Again, the argument for this result is obvious and is omitted here. D

It will be convenient to view elements of every ξ-l-Box as ordered in a standard
manner. For example, the order may be lexicographical.
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3.2. Monadic Composition Theorem for Chains

To fit this section into the framework of Section 3.1, we should say what the
language L and the theory T are. Let BOOL be the first-order language of boolean
algebras containing all the usual boolean operations and the equality predicate.
L is the monadic language of order that is obtained from BOOL by adding the
predicate X < Y. Every chain gives a standard model for L in the following way:
We consider the boolean algebra of subsets and define X < Y iff there are points
x < y with X = {x} and Y = {y}. Tis the monadic theory of order in L. In other
words, T is simply the first-order theory of the described standard models for L.
L and T satisfy Proviso 2 and we can freely use ^-theories as well as other notions
defined in Section 3.1.

Suppose that M is the lexicographic sum

LΣ<M ί:i6/>

of chains Mt with respect to a chain /. This means that M is itself a chain, the
chains M{ are disjoint, the universe of M is the union of the universes of the chains
Mi9 and a point x e Mt precedes in M a point y e M} iff i < j or i = j and x < y
in Mt.

Let X be an /-tuple X1,...,Xι of subsets of M. For i e /, the /-tuple
Xx n Mi9..., Xι n Mt will be denoted X\Mt. For every alternation type ξ and
every t e ξ-/-Box, let

P(ξ, X, t) = {i: ξ - Ύh(Mi9X\Mt) = t}.

Furthermore, let P(ξ, X) be the sequence <P(£, X,t):te £-/-Box> that partitions

/.

3.2.1 Lemma. There is an algorithm that computes 0 - Th(M, X) from
0 - Th(/, P(0, X)) when /, M and X are varied.

Proof. Let P = P(0, X) and Pt = P(0, X, t). If τ is a boolean term in variables
vί9..., vh then we let τ* = τ(Xί9..., Xt\ where the complements are taken in
M. It is easy to check that

τ * n Mi = τ(Xι ΓΛMh...,Xιn Aff),

where the complements are taken in Mt.
In order to compute 0 - Th(M, X) it suffices to compute the truth values of

statements σ* = τ* and σ* < τ*, where σ and τ are in disjunctive normal form.
σ* = τ* iff σ* n Mi = τ* n Mi9 for every i e /, iff for every t e 0-/-Box, we

have that either Pt = 0 or t implies σ = τ. Given 0 - Th(/, P), we can check the
last necessary and sufficient condition.



494 XIII. Monadic Second-Order Theories

Note that τ < τ means that τ is a singleton set. τ* is a singleton iff there is
s e O-Z-Box such that P s is a singleton, 5 implies τ < τ and for every other t e O-Z-Box,
we have that either Pt = 0 or t implies τ = 0. Given 0 - Th(7, P), we can check
the necessary and sufficient condition.

Finally σ* < τ* iff both σ* and τ* are singleton and either

(i) there are distinct s, t e 0-Z-Box such that P s < Pt and s implies σ Φ 0, t
implies τ / 0; or

(ii) there is t e O-Z-Box such that Pt Φ 0, and t implies σ < τ.

Given 0 - Th(7, P), we can check the necessary and sufficient condition. D

3.2.2 Definition. If ξ is empty, then for every k, H(ξ, k) is the empty alternation
type. If ξ is η ~ j , then H(ξ, k) = H(η, k + j)~ p, where p is the cardinality of

3.2.3 Theorem. There is an algorithm COMP that computes ξ - Th(M, X)from
H(ξ, Z)-Th(/, P(ξ, X)\ when I, M, X and ξ are varied.

Proof. By induction on n, we construct algorithms COMP,, such that every
COMPW computes ξ - Th(M, X) from H(ξ, I) - Th(7, P(ξ, X)\ for every ξ of
length n. The construction is uniform in n and results in the desired algorithm
COMP.

The case n = 0 was treated in Lemma 3.2.1. Suppose that COMPΠ is already
constructed. Instead of defining COMP n + 1 formally, we will simply explain how
it works.

Let ξ be an alternation type of length n. ξ ~ k — Th(M, X) is the set

51 = {ξ - Th(M, X ~Y): lh(Y) = k}9

where Y ranges over tuples of k subsets of M. COMP,, will compute SI from

52 = {η - Th(7, P(ξ, X - Y)): lh(Y) = k}9

where η = H(ξ, I + k). S2 is computable from

53 = {η - Th(7, P(ξ - k, X\ P(ξ, X ^ Y)): lh(Y) = k}.

From the other side, 77(£ ~ kj) - Th(7, P(ξ ~ k, X)) is the set

54 = {η - Th(7, P(ξ ~k,X)~ Q): lh(Q) = \ξ-{l + /c)-Box|},

where η is again 77(£, Z + k). Evidently, S3 is included into S4. We give a verifiable
necessary and sufficient condition for an element u = η - Th(7, P(ξ ~ k9 X) ~ Q)
of S4 to belong to S3:

The sequence

partitions 7, and t e s whenever Qt meets P(ξ ^ k, X, s).
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The argument for necessity is obvious. To prove the sufficiency, suppose that
u satisfies the condition. We need to find a tuple Y of k subsets of M such that
P(ξ, X ~Y) = Q. For every i e J, there are s e ξ~ k-l-Box and t e ξ-(l + /c)-Box
s u c h t h a t ieP(ξ~ k, X, s ) n Qt. T h e n t s s ; t h a t i s t o s a y , t e ξ ~ k -

Th(Mi9 X\Mt). Hence, t = ξ - Th(Mi9 (X\Mt) ~ Y*)9 for some tuple Yι of k
subsets of M t . Now choose Y such that Y\Mt= Y\ for ίe I. D

3.3. Monadic Theory of Countable Ordinals

3.3.1 Theorem. There is an algorithm PLUS such that if M is the lexicographic
sum M x + M2 of chains Mγ and M2 and if X is a tuple of subsets of M, then for
every alternation type ξ,

ξ - Th(M, X) = PLUS(£ - Th(M!, X\MX)9 ξ - Th(M 2 , X\M2)).

Proof. Simply take / = < 1,2> in the composition theorem and the result follows. D

We write t = tί + t2 if t = PLUS(ί1 ? t2). The induced addition of bounded
theories is obviously associative.

3.3.2 Theorem. The monadic theory of finite chains is decidable.

Proof. By Section 3.1, it suffices to show that {1" — Th(M): M is a finite chain}
is computable from n. Given n, we compute the Γ-theory tι of singleton chains.
We thus compute t2 = tί + ί l5 t3 = t2 + tί9 etc., stopping when we find i <j
with tt = tj. The set {tl9..., t} _ x} is equal to {1" - Th(M): M is finite}. D

3.3.3 Theorem. There is an algorithm MULT satisfying the following condition.
Let M be the lexicographical sum of chains Mt with respect to a chain /, and let X
be a tuple of I subsets of M. If ξ - Th(Mh X \ Mt) = s for every i and η = H(ξ, /),
then

ξ - Th(M, X) = MULTO; - Th(/), s).

Proof. The algorithm COMP computes ξ - Th(M, X) from η - Th(/, P(ξ, X))
which is itself computable from η — Th(/) and s, because P(ξ, X, s) = I and any
other P(ξ, X, t) = 0. D

We write s' = t s if s' = MULT(ί, s).

3.3.4 Theorem. The monadic theory of ω is decidable.

Proof. By induction on n, we construct an algorithmfn such that, given an alterna-
tion type ξ of length n and a natural number /,/„ computes {ξ — Th(ω, X): X is
an /-tuple of subsets of ω}. The construction is uniform in n and provides an
algorithm which will subsume every/,,. By Section 3.1, we know that this is enough
for decidability.
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Case n = 0 is easy. Suppose that n > 0 and/n_ : is already constructed. Given
ξ and /, we compute η = H(ξ, /) which is equal to ή ~ /c, for some alternation type
/J of length n — 1 and some /c. Also, we compute

t = η - Th(ω) = {// - Th(ω, Y): 7 is a /c-tuple of subsets of ω}

= fn-M^-
Using the decision procedure for the monadic theory of finite chains, we

compute A = {ξ — Th(M, X): M is a finite chain and X is an /-tuple of subsets

of M}. And, finally, using the algorithms PLUS and MULT, we compute B =

{s0 + t - s: 50, 5 e A}.

Evidently, B ^ C = {ξ - Th(ω, X): X is an /-tuple of subsets of ω}. We prove
that B = C, which fact allows us to compute C.

Given an /-tuple X of subsets of ω color every non-empty interval [/, j) of
natural numbers by the "color" ξ — Th([i,j), X\[iJ)). By the Ramsey theorem,
there is an infinite sequence 0 < nx < n2 < such that all intervals [nh ni+1)
have the same color s. If s0 is the color of [0, n^), then ξ — Th(ω, X) =
so + t-seB. ϋ

3.3.5 Theorem. The monadic theory of countable ordinals is decidable.

Proof. We explain how to compute {Γ — Th(α): α is a countable ordinal} from a
given number n. First, we use the algorithm of Theorem 3.3.4 to compute
t = η - Th(ω), where η = H(Γ, 0). By Theorem 3.3.3 Γ - Th(α ώ) =
t - (Γ - Th(α)), for any α. Second, compute the minimal set S of Γ-theories which
contains the Γ-theory of singleton chains and which is also closed under addition
and under multiplication by t. It is easy to see that S is the desired {Γ — Th(α): α
is a countable ordinal}. D

4. The Undecίdabίlίty Technique

The monadic topology of a topological space U is the first-order theory of the
structure <PS((7), c , OPEN), where PS(ί/) is the power-set of U, c is the usual
inclusion and OPEN is the unary predicate "X is open." In this section, we will
describe a proof of undecidability of the monadic topology of the Cantor dis-
continuum CD. The monadic topology of CD is easily interpretable in the monadic
theory of the real line R. In this way, we get undecidability of the monadic theory
of R. We could, of course, deal directly with the monadic theory of R—it would be
practically the same proof. Undecidability of the monadic topology of CD seems
to be even more mysterious and more difficult to prove.

In Section 4.1 we will give a rough idea how one can talk about natural
numbers in the monadic topology of CD—explaining the details would require
more space. However, the details can be found in Gurevich-Shelah [1982]. There
is a serious restriction on how much we can say about natural numbers in the
monadic topology of CD: true first-order arithmetic is not interpretable (in the
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usual sense of this word, for example Monk [1976]) in the monadic theory of R,
see Gurevich-Shelah [1981a]. In Section 4.2, we show that whatever we can say
about natural numbers in the monadic topology of CD is enough to reduce true
first-order arithmetic to the monadic topology of CD. Actually, a much stronger
result is proven in Section 4.2.

4.1. How Can One Speak About Natural Numbers in the
Monadic Topology of the Cantor DiscontinuumΊ

The idea is to slice a countable everywhere dense set D into everywhere dense
slices S0,Sί9... and to code this decomposition by parameters. First, we choose
an everywhere subset D° of D such that D — D° is everywhere dense also. Then,
we slice D in such a way that the sets Ao = So n D°, A1 = Si n D°, A2 =
S2 π Z)°,... are disjoint as well as everywhere dense. We then prove that there is a
parameter W such that a certain monadic formula φ(X) with parameters D,
D°, W defines the slices locally: that is, every Sn satisfies φ and if some X satisfies
0, then every non-empty open set G has a non-empty open subset H where X
coincides with one of the slices Sn. We have not said anything about sets So — Ao,
Si - Al9... . They can be used to code additional information. In particular, a
pairing function can be coded.

The coding described is best explained in Gurevich-Shelah [1982]. Here we
can only summarize results of the coding in a convenient form. There are monadic
topological formulas Premise(w), Share(w, v0) and Pairing(w, vΌ, vί9 v2, v3) which
satisfy the following conditions. Both ΰ and (v0, vί9 v2, v3) are sequences of (set)
variables. The formulas Premise, Share, and Pairing do not have any free variables
except those shown. Premise(w) is satisfiable in CD. If t is a sequence of point
sets and Premise(ί) holds in CD then there is a sequence (At: i < ω> of disjoint
subsets of CD which satisfy the conditions C0-C2 below:

CO. Each An is everywhere dense and each intersection A{ n Aj9 with ί Φ j , is
empty.

Cl. Share(ί, X) holds iff every non-empty open set G has a non-empty open
subset H such that X n H is equal to some An n H.

We will say that X is a t-share if Share(ί, X) holds. We order the ordered pairs
of natural numbers first by the maximum and then lexicographically:

(0, 0), (0, 1), (1, 0), (1, 1), (0, 2), (1, 2), (2, 1 ) , . . . .

Let P be the set of triples (i,j, k) of natural numbers such that (ij) is the fcth

pair (when (0, 0) is pair number 0).

C2. Suppose that X, 7, Z are ί-shares and G is a non-empty open set. Then,
Pairing(ί, X, Y, Z, G) holds iff, for every non-empty open Gx c G, there
is a triple (ij, k)eP and a nonempty open H c Gx with XnH =
At n H, Y n H = Aϊ n H, Z n H = Ak n H.
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Before we go on to discuss reduction, let us recall that an open subset G of a
topological space is called regular if the interior of the closure of G coincides with
G. The following propositions is well known.

4.1.1 Proposition. The regular open subsets of any topological space U form a
complete boolean algebra with:

(i) GH = GnH;
(ii) G + H = Interior(Closure(G u #)) ;

(iii) — G = Interior((7 — G); and
(iv) 1 = U, and 0 = 0.

4.2. Reduction

Models of ZFC, the Zermelo-Fraenkel set theory with the axiom of choice, will
be called worlds. In this discussion we will work in a world V. By sets is meant
elements of V. For every complete boolean algebra B (in the world V) a standard
construction provides a β-valued world VB (see Jech [1978]). If φ is a formula
in the language of ZFC with possible parameters from F β , then the boolean value
of φ will be denoted as usual \\φ\\. Some simple but useful facts about VB are
summarized in the following

4.2.1 Proposition, (a) Suppose that {bf: i e/} is an antichain in B (which means
that bt - bj = 0 for i Φj). For every {σt e VB: i e 1} there is σ e VB such
thatbi < || σf = σ\\ for i e /.

(b) Let φ(v) be a formula in the language of ZFC with exactly one free variable
and perhaps some parameters from VB, then there is σ e VB such that \\ φ(σ) \\ =
\\3vψ(v)\\.

(c) Let φ(v) be as above and τe VB. Suppose \\3v(v e τ)|| = 1, then there is
σeVB such that \\σ e τ\\ = 1, and \\φ(σ)\\ = \\(lv e τ)φ(v)\\.

Proof. For the proof of (a), see Lemma 18.5 in Jech [1978]. As to part (b), see
Lemma 18.6 in Jech [1978]. Turning now to part (c), we let b = \\(3v e τ)φ(v)\\. By
part (b), there are σ0 and σx such that ||σ0 eτ | | = 1 and \\σί eτ and iKσi)ll = ^
Moreover, by part (a), there is σ such that ( — b) < \\σ = σo\\ < | |σeτ | | , and then
b < ||σ = σ j < | |σeτ | | | |^(σ)||. σ is the desired element of VB. D

In the remainder of this subsection B is the boolean algebra of regular open
subsets of the Cantor discontinuum CD (in V). An element σ e VB will be called
a quasi-element (of ω) if | | σ e ω | | = 1. It will be called a quasi-set (of natural
numbers) if ||σ ^ ω|| = 1. Hereafter, we ignore the difference between an element
of V and the canonical name for it in VB.

Let ί be a sequence of subsets of CD satisfying Premise(ί). We will say that a
ί-share X represents a quasi-element σ if

Σ{b e B\ X nb = Anr\b] = ||σ = n|| for n < ω.
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Subsets of CD will be called point sets, and we will say that a point-set Y represents
a quasi-set τ if

Σ{beB:Annb^Y} = \\neτ\\ for n < ω.

4.2.2 Proposition, (a) Every t-share represents some quasi-element, and every
quasi-element is represented by some t-share.

(b) Suppose that t-shares Xθ9 Xί9 X2 represent quasi-elements σ0, σl9 σ2. For
every be B, Pairing (t, Xo, Xl9 X2, b) holds in CD iffb < \\(σo,σl9σ2)eP\\.

(c) Every point set represents some quasi-set, and every quasi-set is represented
by some point set.

(d) Suppose that a t-share X represents a quasi-element σ, and a point set Y
represents a quasi-set τ. Then

\\σeτ\\ = Σ{b e B: X n b c y}.

Proof, (a) Given a ί-share X let

bn = Σ{beB:X nb = Annb} for n < ω.

By condition CO, distinct regular open sets bn are disjoint. Moreover, by condition
Cl, they partition CD. By Proposition 4.2.1, there is σ with ||σ = n|| > bn, for all
n. σ is the desired quasi-element. Conversely, if σ is a quasi-element, then the
desired ί-share is

X=\J{AΛn\\σ = n\\:n<ω}.

For the proof of part (b) we use condition C2.
Turning now to part (c), we see that if Y is a point set, then the desired quasi-set

τ is a function from ω to B with

τ(n) = Σ{beB\Annb^Y} for all n.

Conversely, if τ is a quasi-set, then the desired point set is

Y=[j{Ann\\neτ\\:n<ω}.

We now consider part (d). To prove ^ , we will suppose that 0 < a < \\σ e τ||.
It then suffices to show that there is 0 < b < a with X n b £ Y. Since σ is a quasi-
element and τ is a quasi-set, there are n and 0 < aγ < a such that a1 < \\σ = n\\
and ax < \\n e τ| |. Since X represents σ, there is 0 < a2 < aγ such that X n a2 =
^ π n α 2 . Since Y represents τ, there is 0 < b < a2 such that An n b c: y. Thus,

To prove 3 , we will suppose that α > 0 and I n α ς 7. It then suffices to
show that there is 0 < b < a with b < \\σ e τ||. Since σ is a quasi-element, there
are n and 0 < ax < a with ax < \\σ = n\\. Since X represents σ, there is 0 < b < ax
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such that X n b = An n b and, therefore, An n b <Ξ y. Since y represents τ, we
have b < ||n e τ| |. Thus, & < ||σ e τ| |. D

4.2.3 Theorem. The full second-order theory of Ko in the world VB is reducible to
the monadic topology (in the world V) of the Cantor discontinuum. In other words,
there is an algorithm (not depending on the choice of the ground world V) that
assigns a sentence φ* in the language of monadic topology to every second-order
sentence φ in such a way that CD |= φ* iff \\ω \= φ\\ = 1. D

This theorem tells us that the monadic topology of CD is very complicated.
In particular, true first-order arithmetic is reducible to the monadic topology of
CD. For, V and VB share the same true first-order arithmetic. Moreover, there is
an algorithm interpreting true first-order arithmetic in (and therefore reducing it
to) the full second-order theory of Ko in any world. This algorithm, in conjunction
with the algorithm of Theorem 4.2.3, reduces true first-order arithmetic to the
monadic topology of CD.

Proof of Theorem 4.2.3. The algorithm of Proposition 1.3.1 interprets the full
second-order Fβ-theory of ω in the monadic Fβ-theory of the structure (ω, P),
where P is the pairing predicate defined in Section 4.1. Let L be the monadic
language of (ω, P). We will view individual variables (respectively set variables)
of L as variables ranging over quasi-elements (respectively quasi-sets). Thus, we
view L as a sublanguage of the language of ZFC. If φ is a sentence that is an
L-formula with parameters, we will write \\φ\\ instead of ||ω \= φ\\.

Let t be a tuple of point sets such that Premise(ί) holds in CD. By induction
on L-formulas φ(uu . . . , wm, Vl9..., Vn\ we define a formula

( w < \\φ(ul9...9um9Vl9...,VH)\\)t

in the language of monadic topology in such a way that if ί-shares Xί9...,Xm

represent quasi-elements σ 1 ? . . . , σ w , and point sets Yl9..., Yn represent quasi-sets
τl9...,τn and b e B, then

(*) CD \= (b < \\φ(xu..., xm9 γl9..., yπ)||)t

iff b < \ \ φ ( σ ί 9 . . . 9 σ m 9 τ l 9 . . . 9 τ n ) \ \ .

In the case m = n = 0, Z ? = l w e will have the desired:

Premise(ί) - (1 < \\φ\\\ holds in CD iff \\φ\\ = 1.

Case 1. φ is (w0, w l5 u2) e P. Let (w < \\φ\\)t be Pairing(ί, uo,u1,u2,w\ and
use Proposition 4.2.2(b).

Case 2. φ is u e V. Let (w < \\φ\\\ be a formula saying that u n w - V is
nowhere dense, and use the result of Proposition 4.2.2(d).

Case 3. φ is φ1 & φ2. Set

(w < \\φ\\)t = (w < | | < M ) f & ( w < | |0 2 | | ) f .
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Case 4. φ is ~ φ. Let (w < || φ \\)t be a formula saying that there is no 0 < W < w
satisfying (w' < | | ^ | | ) f . To check (*), we suppose for simplicity that φ is a sentence.
Then (ft < \\φ\\)t holds iff there is no 0 < a < b with a < \\ψ\\ iff ft < ||0||.

Case 5. φ is 3uφ(u). Let (w < \\φ\\\ be a formula saying that there is a ί-share
w satisfying (w < ||ιKw)ll)ί TO check (*) assume for simplicity that φ is a sentence.
We first suppose that b < \\φ\\. By the results of Proposition 4.1.1(c), there is a
quasi-element σ with ||^(σ)|| = \\φ\\ > ft. If a ί-share X represents σ, then by the
induction hypothesis (ft < ||^(X)||X holds. Hence, (ft < ||0||) f holds. Next, we
suppose that some ί-share X satisfies (ft < \\ψ(X)\\)t. It represents some quasi-
element σ. By the induction hypothesis, ft < ||^(σ)||. Hence, we have ft < \\φ\\.

Case 6. φ is 3Vψ(V). Let (w < ||0||) f be a formula asserting that there is a
point set V which satisfies (w < | |^(F)||) f. To check (*) in this situation is similar
to the task of checking in Case 5. D

5. Historical Remarks and Further Results

We will first review very briefly the history of the method of automata and games.
We will also mention delimiting undecidability results and some other closely
related results obtained by model-theoretic methods. In Section 5.2 we will, very
briefly review the history of the model-theoretic methods used to deal with monadic
theories. Some later results use model-theoretic methods as well as the method of
automata and games. It seems to make no real sense to divide the two approaches
too sharply, however.

5.7. Emphasizing the Method of Automata and Games

Church [1963] gave "a summary of recent work in the application of mathematical
logic to finite automata." Exploring connections between logic and finite automata
proved fruitful indeed; but the most interesting applications appeared to be
applications of finite automata to the decision problems for monadic second-order
theories. Decidability of the monadic theory of finite chains could have been the
first, the most natural and the easiest example—but it was not. I only just made
up this particular application and inserted it into Section 2 for expository purposes.
Arithmetic was too much on the minds of those who first explored the connections
between logic and finite automata. The first results were related to the weak
monadic theory of ω with the successor relation. This theory was called weak
second-order arithmetic. (Let us recall that the weak monadic theory of a structure
is the theory of that structure in the monadic second-order language when the set
variables range over finite sets of elements.) We will not speak about weak monadic
theories here. A survey of the results in this area can be found in Thatcher-Wright
[1968]. Let us note merely that the game technique given in Section 2 can be used
to give an alternative (and relatively simple) proof of decidability of the weak
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monadic theory of the binary tree. We should also note that the decidability
schema of Section 2, a schema that is based on correspondence between monadic
formulas and automata, had already taken shape in the work on weak monadic
theories.

Decidability of the monadic theory SIS of ω with the successor relation was
proved by Buchi [1962]. He established a correspondence between SIS formulas
and Buchi automata. These machines are ordinary finite automata A = (S, T, sin,F)
with F ς S that work on sequences. A is said to accept a sequence σ1σ2 ... in the
input alphabet of A if there is a run 5^2 ... of X on the given sequence (which
means, of course, that (sin, σί,s1)e T and every (si5 σi+usi+ί)eT) such that for
every i there is j > i with sj e F. Buchi also solved the emptiness problem for
Buchi automata. Unfortunately, a non-deterministic Buchi automaton may be not
equivalent to any deterministic Buchi automaton, and Buchi used the Ramsey
theorem to solve the complementation problem for Buchi automata. Our se-
quential automata were introduced by Muller [1963] in order to prove Theorem
2.2.1. However, the first correct proof of that theorem was published by
McNaughton [1966]. Simplifications of McNaughton's proof can be found in
Rabin [1970], Choueka [1974], Thomas [1981].

Decidability of the monadic theory S2S of the binary tree with two successor
relations was proven by Rabin [1969]. He established a correspondence between
S2S formulas and Rabin automata that are somewhat different from our tree auto-
mata, and his proof of the complementation theorem is an extremely difficult
induction on countable ordinals. He used the same technique to solve the emptiness
problem for Rabin automata, although Rackoff [1972] found a simple reduction
of the emptiness problem for Rabin automata to the emptiness problem for auto-
mata on finite binary trees. Our simple proof of the decidability of S2S follows
Gurevich and Harrington [1982].

The idea of using games had been exploited earlier however. Bύchi-Landweber
[1969] used a strong determinacy of more special games to prove the following:
Suppose that a sentence VZ 3Yφ(X, Y) holds in SIS where X, Y are tuples of
variables. Then there is a deterministic sequential automaton which outputs an
appropriate output Y when reading X. In particular, there is an SIS formula
φ*(X, Y) uniformizing φ; that is, φ* implies φ in SIS and, for every X, there is a
unique Y such that φ*(X, Y) holds in SIS. Buchi [1977] sketched a reduction of the
complementation problem for Rabin automata to a strong determinancy for
boolean-Fσ games. This determinacy result was proven independently in
Gurevich-Harrington [1982] and in the manuscript Buchi [1981]. The latter
solution, however, is much more complicated (and it still uses an induction on
countable ordinals).

Let me add a few words about Rabin's uniformization problem for S2S.
Suppose that a sentence VZ 3Yφ(X, Y) holds in S2S (where for the sake of sim-
plicity, X, Y are just single variables). Is there an S2S formula φ*(X, Y) such that
φ* implies φ in S2S and, for every X, there is a unique Y such that φ*(X, Y) holds
in S2S? Using model-theoretic methods and forcing Gurevich-Shelah [1983b]
solved this problem negatively. Their counterexample φ(X, Y) asserts that if X
is not empty, then Y is a singleton subset of X.
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Rabin [1969] proved the decidability of many interesting theories by inter-
preting them in S2S. Among those theories we find the monadic theory of count-
able chains and the theory of the real line with quantification over countable sets.
More direct model-theoretic proofs of these two results as well as delimiting
undecidability results can be found in Gurevich-Shelah [1979]. For more on
this the reader may also see Section 5.2. Finally, we note that Rabin [1969]
also proved that S2S allows us to quantify over Fσ subsets of (infinite) branches
of the binary tree. (Basic open sets of the topology in question are sets of branches
through a given node.)

Open Question. If we augment the language o/S2S by allowing quantification of

arbitrary Borel sets over branches, is the resulting theory of the binary tree in the

augmented language decidableΊ

Shelah [1975e] states the reducibility of the monadic theory of a tree of height
ω with a given structure S on the successors of each node to the monadic theory
of S. The details appear in Stupp [1975]. Their proof uses Rabin's technique. The
game technique of Gurevich-Harrington [1982] gives the generalized result
fairly easily.

Buchi [1973] used automata to prove decidability of the monadic theory of
ω1 (with the order). See also Litman [1972], Bϋchi-Siefkes [1973], Bύchi-Zaiontz
[1983] for additional results about monadic theories of ordinals of cardinality at
most Nx. There is a good reason why these results cannot be generalized to ω 2 .
Using model-theoretic methods and assuming the existence of a weakly compact
cardinal, Gurevich, Magidor, and Shelah [1983] prove:

(i) for any given S c: co, there is a forcing extension of the given set-theoretic
world, where the monadic theory of ω2 has the Turing degree of S; and

(ii) there is a forcing extension of the given set-theoretic world, where the
monadic theory of ω2 and the full second-order theory of ω2 are reducible
each to the other.

5.2. Model-Theoretic Methods

The paper Shelah [1975e] represented a breakthrough in the study of monadic
theories of chains. Shelah developed the model-theoretic decidability method,
which we illustrated in Section 3, and proved all known decidability results about
monadic theories of chains in a uniform way. Assuming the continuum hypothesis,
he reduced true first-order arithmetic to the monadic theory of the real line. This
was the first undecidability result in the area.

Shelah's decidability method was rooted in achievements of his predecessors.
In this connection, let me mention Feferman-Vaught [1959], Ehrenfeucht [1961],
and Lauchli [1968]. Working on well-orderings, Shelah used ideas of Bϋchi and
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Rabin. For more on this, see the references in Shelah [1975e]. A detailed version of
the model-theoretic decidability method, a version which prepared the ground for
stronger results, is given in Gurevich [1979a]. Shelah's undecidability method was
absolutely new. Actually, he wanted to prove decidability of the monadic theory
of the real line. He was developing and sharpening the decidability method to
achieve this goal when he discovered the undecidability. Later, he reduced true
first-order arithmetic to the monadic theory of the real line just in ZFC, without
making any additional set-theoretic assumptions. See Gurevich-Shelah [1982] in
this connection.

Sometimes model-theoretic analysis is less informative than is the automaton-
theoretic. For example, the decision procedure in Section 2 for the monadic theory
of ω gives more than the corresponding decision procedure in Section 3: It estab-
lishes the correspondence between monadic formulas and deterministic sequential
automata. In many other cases, however, the model-theoretic analysis is more
informative. For example, Shelah answered negatively a question posed by Rabin,
a question asking whether or not countable orders can be characterized in the
monadic theory of chains.

Let us examine the monadic theory of countable chains a bit further. Shelah
[1975e] conjectured that the monadic theory of countable chains can be finitely
axiomatizable in the monadic theory of chains. However, Gurevich [1977b]
refuted this conjecture. He provided a certain axiomatization of the monadic
theory of countable chains. A chain is short if it embeds neither ωx nor ωf, where
ωf is the dual of ωλ. A chain without jumps (that is, a densely ordered chain) is
perfunctorily n-modest if for all everywhere dense subsets Xl9..., Xn, there is a
perfect subset Y without jumps such that Y <^ XX\J - - \J Xn and every Xt n Y
is dense in Y. A chain is n-modest if all its subchains without jumps are perfunctorily
rc-modest. A chain is modest if it is n-modest, for every n. It appears that a chain is
monadically equivalent to a countable chain iff it is short and modest. Rabin
[1969] proved decidability of the monadic theory of countable chains. Thus, the
monadic theory of short modest chains is decidable. Gurevich-Shelah [1979]
proved directly decidability of short modest chains.

The situation is very different for non-modest chains. Assuming the continuum
hypothesis, Gurevich-Shelah [1979] reduced true first-order arithmetic to the
monadic theory of any nonmodest chain. The use of the continuum hypothesis
was removed in Gurevich-Shelah [1982]. The reader may also consult
Gurevich-Shelah [1979] for a model-theoretic analysis of the theory of the real
line with quantification over countable subsets.

In order to discuss undecidability results, we need to clarify the terminology.
A reduction of a theory T to a theory T* is an algorithm associating a sentence φ*
in the language of T* with each sentence φ in the language of T in such a way that
φ* holds in T* iff φ holds in T. An interpretation of one theory in another is a
special case of reduction when models of T are defined inside models of Γ*. An
exact definition of interpretation can be found in Monk [1976] for example.

As we mentioned above, Shelah [1975e] reduced true first-order arithmetic to
the monadic theory of the real line. In Section 4 we did not say much about the
undecidability method of Shelah [1975e]. This method was augmented in Gurevich
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[1977b] by a technique of towers, a technique that has been exploited extensively
in subsequent papers. Confirming Shelah's conjecture, Gurevich [1979b] reduced
true third-order arithmetic to the monadic theory of the real line (in fact, to the
monadic theory of any short non-modest chain) in GόdeΓs constructive universe.
The converse reduction is obvious. Only during the Jerusalem Logic Year 1980-81
we—Saharon Shelah and I—realized that our reductions are really a kind of inter-
pretation of (in terms of Section 4) theories in the "next world" VB in theories in
"this world" V. Subsuming all mentioned undecidability results, Gurevich-
Shelah [1981a] managed:

(i) reduce true second-order arithmetic in VB to the monadic K-theory of any
short non-modest chain and also

(ii) to reduce true third-order arithmetic in VB to the monadic F-theory of any
short non-modest chain if the continuum hypothesis holds in V.

In contrast to this, Gurevich-Shelah [1981a] proved that true first-order arith-
metic is not interpretable in the monadic theory of the real line.

Gurevich-Shelah [1983a] reduce true second-order logic to the monadic
theory of (linear) order under very weak set-theoretical assumptions. This gives
the complexity of the monadic theory of order. It does not mean, however, that
the monadic theory of order is as un-manageable as second-order logic. From a
model-theoretical point of view, there is an enormous difference between these
two theories (reflected somewhat in different Lόwenheim and Hanf numbers).
This topic is, however, beyond the scope of this chapter and the reader may see
Chapter 12 in this connection.

A few words about topology. Grzegorczyk [1951] introduced the monadic
topology (see Section 4) and interpreted (in a simple and natural way) true first-
order arithmetic in the monadic topology of the Euclidean plane. It does not take
much more sophistication to verify that the monadic topology of the Euclidean
plane and true third-order arithmetic are interpretable, each in the other. For
more on this, the reader may see Gurevich [1980]. Grzegorczyk's question
about the decision problem for the monadic topology of the real line was, however,
long open. Reading the paper Shelah [1975e], I noted that Shelah had solved
negatively the question of Grzegorczyk under the continuum hypothesis. Several
papers—especially Gurevich-Shelah [1981c]—give undecidability results about
the monadic topology. In particular, all mentioned above undecidability results
about the monadic theory of the real line apply to the monadic topology of the
Cantor discontinuum. For a positive result on monadic topology see Gurevich
[1982].

Gurevich-Shelah [1981b] use both model-theoretic methods and the method
of automata and games to construct a decision procedure for the theory of trees
(all trees, not necessarily well-founded) with quantification over maximal branches.

Finally, let us mention some results that are not directly related to decision
problems. Gurevich [1977b] proved (thus refuting Shelah's conjecture) that the
predicate "X is countable" is expressible in the monadic theory of the real line if
the continuum hypothesis holds. Gurevich [1979b] also proved (and thus partly
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refuted and partly confirmed Shelah's conjectures) that the monadic theory of the
real line can be finitely axiomatizable (in the monadic theory of chains) and cate-
gorical under natural set-theoretic assumptions. By "Shelah's conjectures" here,
we mean the collection of conjectures that are given in Shelah [1975e]. Almost all
of these conjectures have been decided by now, and a majority of those decided
are true. Thus, the program sketched in Shelah [1975e] is essentially fulfilled.
Moreover, I have an impression that an important and natural phase in the study
of monadic second-order theories is now completed.




