
PartB

Finίtary Languages with
Additional Quantifiers

Part B of the book is devoted to the study of logics with added quantifiers and the
applications of such. The logics considered, for the most part, express properties
of ordinary structures. Logics with additional quantifiers based on richer structures
are studied in Part E.

Chapter IV begins the discussion by investigating the logic ^{Qλ) with the
quantifier "there exist uncountably many." It also discusses various extensions of
JSfCQi) including stationary logic ^(aa) and the Magidor-Malitz logic if < ω . The
primary emphasis of the chapter is on the method of constructing models of size
Ki used by Keisler [1970] to prove his completeness theorem for i?(βi), a method
that has become one of the standard tools of the subject. Each of these logics
comes with its own intended concepts of "small" set and "large" set. The basic
idea of Keisler-type proofs is to use an elementary chain <^lα: α < ωx > of countable
non-standard or "weak" models to build a standard model, one where the quan-
tifier has its intended interpretation. The key step is always from AΛ to Λa+ί,
constructing Aa+1 so that all small definable subsets of Aa stay fixed, but where a
fixed definable subset of Aa that is supposed to be large receives a new element.

Chapter V discusses the general problem of transferring results known about

α) to some other J?(Qβ), especially the problem of taking results known about
X where we have powerful techniques for building models, to ^(Qβ+ί) for

larger β. For example, if we assume the Generalized Continuum Hypothesis, it
follows that the axioms and rules that are complete for J?(Qi) are also complete
for any logic of the form ^(Qβ+1), as long as K̂  is regular. In general, this chapter
depends heavily on various set-theoretical assumptions which are independent of
the usual axioms of set theory, however.

Chapter VI surveys and compares the strength of a host of other logics with
additional quantifiers. One of these is the class of partially ordered quantifiers like
β H whose meaning is given by: QHx, y; z, wφ(x, y, z, w) is true just in case for every
x there is a y9 and for every z there is a w, such that y depends only on x, w only
on z, such that φ(x, y, z, w). Quantifiers of this kind are called partially ordered
because they are often written:

Vx3v
φ(x,y,z,w).

Vz 3w
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Some other quantifiers discussed in Chapter VI include:

• the Hartig quantifier /, defined so that Ix, y[φ(x\ φ(y)] means that the
number of φ's is the same as the number of φ's;

• the similarity quantifier S, defined so that Sx, x'\_φ{x\ φ(xfy] means that the
substructures defined by φ and φ are isomorphic; and

• the well-ordering quantifier W, defined so that Wx, yφ{x, y) means that φ
defines a well-ordering.

The relative strengths of these logics, and their Δ-closures are discussed. For
example, it is shown that Δ(J^(ρH)) = Δ(J^(S)) = Δ(JSfmI1), where ifmU is monadic
second-order logic. Under the assumption of the axiom of constructibility, it is
also shown that Δ(J^(/)) = Δ(J^mI1).

Chapter VII is devoted to identifying decidable and undecidable theories in
logics with generalized quantifiers, especially i?(βi), the Magidor-Malitz logic
5£<ω, logic J£?(J) with the Hartig quantifier, and stationary logic JS?(aa). The
chapter is organized around three main methods of proof, quantifier elimination,
the method of interpretations, and the use of "dense systems." These are all well-
known methods from first-order logic which have interesting extensions to stronger
logics. The mathematical theories discussed include abelian groups and modules,
orderings, and boolean algebras. This chapter leads into a rich literature on the
decidability of theories with extra quantifiers.



Chapter IV

The Quantifier "There Exist Uncountably Many
and Some of Its Relatives

by M. KAUFMANN

The idea of adding quantifiers to first-order logic goes back at least to Mostowski
[1957]. Fuhrken [1964] and Vaught [1964] were the first investigators to prove
compactness and (abstract) completeness theorems for such a logic, namely the
logic J^iQx) obtained by adjoining the quantifier Q1 (there exist uncountably
many) to first-order logic. The first systematic study of ^ ( Q J and, in fact, of any
well-behaved logic obtained by adding a quantifier to first-order logic, appeared
in Keisler's 1970 paper. By giving the completeness of a simple explicit set of
axioms for J^(βi), along with other nice features of a logic such as an omitting
types theorem (with applications), Keisler's work encouraged the further study
of ^(Qx) as well as the search for extensions of if(βi) that retain some of the
nice properties of first-order logic. In this chapter we will present some of the
progress in this study.

A main focus of this chapter is on the development of methods of proving
completeness theorems for logics extending J£(Qγ). (Such an approach allows
compactness theorems to be derived as corollaries.) In Section 3, the proof of
Keisler's concrete completeness theorem for if(βi) leads to new methods of
constructing models and to a version of the omitting types theorem which differs
a bit from the first-order version, and which leads to a completeness theorem for
the corresponding infinitary version of i?(βi). These methods, and the resulting
intuition developed for i?(<2i), make possible the completeness proofs for the
other logics that are examined in Sections 4 and 5. Although concrete completeness
is a desirable feature of a logic, our main purpose here is to present the methods
that go into the proofs of such theorems.

The basic plan for proving each of these completeness theorems is to reduce
the given logic to first-order logic in some manner so that familiar tools from
first-order model theory may then be applied. One such reduction is used in
Section II.3 to prove that the set of validities for J^(βi) is r.e. in the vocabulary;
another reduction—one that is due to Fuhrken—is given in Section 1.1 below.
However, in order to prove a concrete completeness theorem, we need a reduction
that is somehow more closely tied to the logic. The notion of weak model is thus
developed for this purpose in Section 2 although some of the details are relegated
to the appendix. The general approach adopted in Section 2 enables us to give a
reasonably unified treatment of the completeness theorems in Sections 3, 4, and 5.
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In Section 6 we conclude our study with an investigation of interpolation and
definability questions for various extensions of J^(βi). The interest in these
questions is largely due to the use of a variety of back-and-forth arguments for
proving if-equivalence (for various logics !£\ although the original motivation
was largely due to the search for well-behaved extensions of first-order logic.
Several of the proofs given in Section 6 elaborate the basic model-theoretic practice
of showing that certain partial isomorphisms preserve elementary equivalence.

This chapter is essentially self-contained, its only prerequisite being a reason-
able familiarity with first-order model theory.

I. Introduction to

Probably the simplest quantifiers which are stronger than 3 and V are the cardi-
nality quantifiers βα, "there exist at least Kα" defined in Section Π.2.2. When
α = 1, the subscript on Q will be omitted. In this case, Q asserts that "there exist
uncountably many." The notation if (βα)(τ) denotes the set of if (Qα)-formulas of
the vocabulary τ. In the present chapter, however, we will rarely consider the case
α > 1, since it comprises part of Chapter V.

Of course, <&(Qa) is strictly stronger than first-order logic. For example, the
sentence βαx(x = x) Λ VX ~Ί Qay(y < x) holds in a linear order if and only if
that order is Kα-like. Examples of the expressive power of J^iQJ tend to be rather
obvious. In order to express more interesting notions in the logic, we must
extend <Sf(Qa). This is done in Sections 4 and 5.

As is shown in Section II.3, if(βi) is countably compact (compact for count-
able theories), a fact which we will again prove in this chapter, in Section 3. How-
ever, our method and emphasis are somewhat different from the one in Section
II.3, as was explained in the introduction above. For now, we will begin our work
by discussing the incompactness of ^(Qo) in subsection 1.1 and then examine
some Lδwenheim-Skolem properties of J^(Qa) in Section 1.3, giving also a brief
outline (with comments) of Fuhrken's original compactness proof for ^{Qλ) in
Section 1.2.

1.1. Incompactness o

The following finite theory T has only one model (up to isomorphism), namely
(ω, <): T = {Vx ~Ί Qoy(y < x), " < is a linear order without last element"}. It
follows then that J?(Q0) is not countably compact. Moreover, the set of valid
sentences of J£(Q0)(x) is not recursively enumerable (it is actually complete Πj)
if τ contains a binary relation symbol. In fact, Barwise [1974] has shown that the
Δ-closure of &(Q0) is equivalent to ift

aoω n if ωcκ (see Section II.7.2), the latter
being the hyperarithmetic fragment of 5£ooω (see also Theorems VI.2.3.3 and
XVII.3.2.2).

Since most of the emphasis in this chapter is on logics that are countably
compact, we will now turn to
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7.2. On Completeness and Compactness of

Mostowski [1957] asked whether S£(Q^ has a recursively enumerable set of
validities. The chief result in this direction was Vaught's two-cardinal theorem
(see Morley-Vaught [1962]), or, perhaps more accurately, the proof of the theorem.
To be precise, Fuhrken discerned that ^{Qx) is countably compact by abstracting
the following lemma from the proof of Vaught's theorem.

1.2.1 Lemma (Fuhrken [1964; 1.7]). Suppose that T is a set of (first-order) sen-
tences in a countable vocabulary τ which contains a unary relation symbol U. Let
W be a new unary predicate symbol, and let Δ be the set of all sentences

V»o . VΓΠ_ AWiVo) Λ Λ W(vn. i) -> iφ <-> φWJ\,

where φ is any τ-formula having only v0,.. .,vn_ι as free variables, and φw is ob-
tained from φ by relativizίng all quantifiers to W. That is, W defines an elementary
submodel of the universe. Then the following are equivalent:

(i) T u Δ u {Vx(l/(x) -• W(x)), 3x ~i W(x)} is consistent;
(ii) T has a model Wfor which \ U*\ < \A \ = Kx

(iii) T has a model 91 for which \Usa\<\A\. D

A proof of this result is carefully worked out in Chang-Keisler [1973; §3.2,
especially 3.2.12]. We will now examine the two relevant corollaries of this lemma,
discussing their proofs in 1.2.4.

1.2.2 Corollary (Fuhrken [1964; Theorem 3.4]). J2?(g) is countably compact. D

1.2.3 Corollary (Vaught [1964]). For countable τ, the set of valid sentences of
J^(6i)( τ) is recursively enumerable in τ. In fact, J^(βi) is recursively enumerable
for consequence (in the sense of Definition II. 1.2.4). D

1.2.4 Idea of Proofs of Corollaries 1.2.2 and 1.2.3. These corollaries both follow
from Fuhrken [1964, Theorem 2.2]. The idea is that one can replace ~iQxφ(x, y)
by a statement asserting that there is a function mapping {x: φ(x, y)} one-one
into U; and that one can replace Qxφ(x, y) by a statement asserting that there is
a one-one function from the universe of the model into {x: φ(x, y)}. The details
of how this may be accomplished can be found in Fuhrken [1964]. However, the
result is that questions about satisfiability of an ^(Qp+i) theory Σ may be reduced
to the satisfiability of a corresponding «S?ωω theory Σ* in a model 91 with Um <
tfβ < \A\. Setting β = 0 gives the corollaries. These ideas were expanded in
Keisler [1966a] in giving an axiomatization of 2-cardinal models. The reader
should also see Section V.I for more about the method of reduction.

Comparison of Completeness Proofs and the Related Literature. As we have
pointed out, Fuhrken's Lemma (1.2.1) is based largely on the proof of Vaught's
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2-cardinal theorem. That is generally proved by using homogeneous models to
build an appropriate elementary chain. However, the proof of Keisler's complete-
ness theorem (see Section 3.2, also Section II.3.2) is based on the proof of Keisler's
2-cardinal theorem. That is, homogeneous models are replaced by an omitting
types argument. The latter technique is what really enables Keisler to give an
explicit set of axioms for ^{Qγ\ and to prove an omitting types theorem for
«Sf(βi). The reader should see Section 3 for more on this.

It is also interesting to compare the method of Section Π.3.2 (and also of Sec-
tion 3.2) to that used for the MacDowell-Specker theorem for models of arithmetic.
The latter asserts that every model of Peano arithmetic (even if it is uncountable)
has an elementary end extension. (See Section V.7 for a related result.) The former
is more closely related to the methods used to prove an analogous theorem for
models of set theory, Theorem 3.2.5 below (Keisler-Morley [1968]). The Keisler-
Morley theorem does not hold for all uncountable models. However, the fact
that it requires the collection schema, rather than the (stronger) induction schema
does speak in its favor. The connection between the Keisler-Morley theorem and
Keisler's i?(β) completeness theorem is made somewhat more explicit in the
proof of Theorem 3.2.5 given below (the Keisler-Morley theorem), which uses the
Main Lemma (3.2.1) from the proof of completeness of

13. Observations on

We will close this introduction by making some easy observations about if (Qα).
The first was noticed by Mostowski, and it generalizes easily to the ^-interpre-
tation of if < ω (see Definition 5.1.3).

Before we examine the argument for this result, we should make a comment
on the notation and notions involved. By 93 <&(QΛ) 3Ϊ

 w e mean that 93 •< 91
and that both 93 and 91 satisfy the same if (Qα) formulas at any assignment of 93.
These ideas clear, we now turn to

1.3.1 Proposition. 7/91 is any model, then there exists 93 <<e{Q<x) 91 such that \B\ <

Sketch of Proof. For α = ωί9 the result follows from Fuhrken's normal form (see
subsection 1.2.4) together with Lemma 1.2.1, if we only require 93 =^ ( Q β ) 9I.
However, the more general statement has an even easier direct proof. Assuming
that IAI > Kα (for otherwise, the argument is done), the usual proof of the down-
ward Lowenheim-Skolem theorem can be easily modified to provide Kα witnesses
to each Qxφ instead of only one. D

On the other hand, as we will now show, the upward Lowenheim-Skolem
property clearly fails. (The reader should consult Theorem Π.6.1.6 and V.4.2.3
for theorems on Hanf numbers.)
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1.3.2. Proposition. For each of the conditions (i) through (iv) below, there is a sen-
tence φ of 5£(Q) such that for all α and β: φ has a model of power ttβ in the oc-ίnter-
pretation (that is, considering φ as a sentence of^(QJ) iff that condition holds.

(i) β < α.

(ii) β = α.
(iii) β < α + n,for any n < ω.
(iv) Kβ < ΠM(Xα),/or anyn< ω, wAerέ?30(α) = α

Hence, full compactness fails for all

Proof, (i) φ is, of course, simply ~πβαx(x = x). Thus, it follows that compactness
fails for i?(β α ) : Consider the set {πβ α x(x = x)} u {cβ ^ cγ: β < y < Nα}.

(ii) (/> says that < is a (reflexive) Xα-like linear order: " < is a linear order"

(iii) Here, such a sentence φn can be constructed by induction on n. Thus, φ0

is " < is a linear order" /\Vx ~Ί βαy(y < x), while φ π + x says " < is a linear order
and every proper initial segment can be expanded to a model of φn"

(iv) We assume that n > 1 (for, in the absence of this assumption, (iii) clearly
applies). Thus, the language of φ includes <, P o , Pl9..., Pn, and ε. And, that
much being so, we assert that each P ί + 1 is contained in the power set of P f . (See
also Theorem II.6.1.6.) D

This contrasts with Theorem 8 of Yasuhara [1966], which gives full compact-
ness when one removes = , 3, and V from *S?(Qa), a > 1.

2. A Framework for Reducing to
First-Order Logic

Our goal in this section is to provide some means of reducing a given logic to
first-order logic in order that we may develop some model theory for JSf(Q) and
some of its extensions in Sections 3, 4, and 5. As we will see, when we transform
a given logic into first-order logic in some manner—say, by enlarging the vo-
cabulary—we may apply methods of first-order model theory to obtain results
about the given logic. The reduction given here works for any logic that possesses
some basic syntactic properties, "concrete syntax". Our notion of "concrete
syntax" is neither memorable nor worthy of study in its own right. Indeed, every
reasonable logic probably has this property in some sense. However, it is a notion
which will enable us to prove theorems about so-called weak models, and these,
in turn, will enable us to carry out the more interesting model constructions later
on. In fact, we will omit the precise definition of "concrete syntax" here as well
as most proofs. These are, however, included in Section 7 (the appendix) where
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they may be safely ignored. The reader might want to read this section with
j£f(β) in mind.

Keisler's notion of weak model is presented in Section 2.3, where it is related
to the notion given here in Definition 2.1.3. That done we will then briefly touch
on the logic of monotone structures.

2.1. Logics With Concrete Syntax and Weak Models

A precise definition of concrete syntax can be found in Definition 7.1.1. For present
purposes, it suffices to say that the properties include:

• closure under —i, v , 3
• possession of a notion \- # of finitary proof, with a deduction theorem;
• existence of a rank function r(φ) which measures the complexity of φ in a

reasonable way;
• existence of a function frvar(φ) which gives the set of free variables of each

formula φ, as well as a notion of substitution φ(f) for any function
/ : frvar(φ) -> C, for some set C of constants.

These properties are sufficient (when stated precisely) to prove the deduction
theorem in the usual way, as in Enderton [1972].

2.1.1 Theorem (Deduction Theorem). Γ u {φ} \-&{τ) φ iffT \-&{τ) φ -+ φ. D

Any logic with concrete syntax can be transformed into first-order logic by
using extra relation symbols and "weak models" as follows in

2.1.2 Definition. Let i f be a logic with concrete syntax. We define a map
φ\-+φ* which sends if(τ)-formulas to ifω ω(τ+)-formulas, where τ + = τ u
{Rφ'.φ is an JSf(τ)-formula, neither atomic nor of the form —\φ, φί v φ2, or
3xφ}. The arity of Rφ is | frvar((/>) |. The definition is by recursion on rank r(φ).
If φ is atomic, set φ* = φ. Also, set (~ι^)* = ~ι(^*), OAi v φ2)* = Ψ* v Ψ*>
and (3xφ)* = 3x(φ*). If φ is neither atomic nor of the form ~iφ, φ1 v φ2, nor
3xφ, and if frvar(0) = {vh,..., vin} with ii < < /„, then set φ* = RφiVi^ . . . , vin).

2.1.3 Definition (Weak Models). A weak model for a logic J^ with concrete syntax
is a τ+-structure 9ϊ* = <9l, R**}φej?iτ), for some τ, which satisfies every instance
of 0* for every h- ̂ .-axiom φ in J?(τ). For φ any formula of i f (τ), we write 91* |=
φ[s] to denote 91* \= </)*[s]. Since " * " commutes with ~i, v , and 3, "μ=" obeys
the usual inductive clauses for first-order satisfaction.

For weak models 91* and 95* of vocabulary τ + , we write 91* <w 95* if A c B
and for all assignments s into A and all φ e if(τ), 91* \= φ[s] iff 95* |= φ[s].
Notice that this is weaker than 91* •< 95*, since we restrict ourselves to formulas
of the form φ*.
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22. Some Weak Model Theory

In this discussion we will present completeness (and related) theorems for weak
models. The proofs, although routine, are given in the appendix. Throughout this
section we assume that ££ has concrete syntax.

2.2.1 Proposition (Soundness). Let 21* be a weak model for ££(τ), and suppose that
φ is an <£(τ)-formula andf: X -* C,for some one-one function /, some X c= frvar(φ),
and some set C of constants which is disjoint from τ. / / 1 - ^ ( τ u C ) Φ(f) then for all
s:frvar((/>)->y4, 21* [= 0[s]. D

2.2.2 Proposition (Elementary Chain Theorem). Let 21* be a τα

+-structure for all
α < y, where α < β implies that τα c τ^ am/ 2Ϊ* -<w 2 l | f τα

+. Lei 21* fee the union
o/{21*: α < y}, that is, 21* is a (ljα<γ τ£)-structure and for all α < y, 21* Γ τα

+ =
Q A e y _ α 21*. T/ien/or all α < y, 21* - ( w 21* Γ τα

+. D

2.2.3 Theorem (Weak Completeness). Lei T be an <£(τ)-consistent set of i f (τ)
sentences, where τ is countable. Then T has a countable weak model, that is, there
is a countable weak model 21* for L(τ) such that 21* |= φfor all φ e T.

The following extension of the weak completeness theorem will also be useful.
First, however, we need a related definition which, in applications, will be equiv-
alent to a more familiar condition.

2.2.4 Definition. Let T be an J^(τ)-consistent set of i f (τ)-sentences. Also let Σ be
a set of if(τ)-formulas such that frvar(σ) c x for all σ e Σ ; then we write
frvar(Σ) ς= x. T is said to £P(τ)-locally omit Σ, if for every finite set C of constant
symbols, every if(τ u C)-sentence φ which is <£(τ u C)-consistent with T, and
every function/mapping x into the set C, there exists σ e Σ such that φ A [~I σ(/)]
is <£(τ u C)-consistent with T. Notice that range (/) may include constants of φ.

2.2.5 Weak Omitting Types Theorem. Let T be an £?(τ)-consistent set of
sentences, where τ is countable. Also let {Σn: n < ω} be a family of countable sets
of <£(τ)-formulas with frvar(ΣM) ^ xn. If T <£(τ)-locally omits Σnfor all n < ω,
then T has a countable weak model omitting each Σn, that is, which satisfies

σeΣn}. 0

The following technical lemma is used in Sections 3, 4, and 5, to extend weak
models while omitting types. The exact statement can be found as Lemma 7.2.3;
for the present, we will use this slightly imprecise but considerably more readable
statement of it.

2.2.6 Lemma (Extension Lemma). Suppose 2ϊ* is a countable weak model for
3?(τ\ where τ is countable. Also let T be any consistent countable extension of the
elementary diagram of 2Ϊ* which <£(τ)-locally omits sets Σn(xn), each n < ω. Then
there exists a weak model 93* of T which omits each set Σn, such that 21* •< 33* {τ+.

D
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23. Connections With Monotone Structures

We will conclude this section by relating the notion of weak model as given
by Keisler [1970] (and studied later by others: see Definition 2.3.3) to the notion
given above. Keisler considered structures (91, q\ where q £ &(A\ and inductively
defined satisfaction for i f (Q) formulas in such models with the new clause

(91, q) \= QXΦLS] iff {aeA: (91, q) \= φls(x, α)]} eq.

Here, s(x, a) denotes [sf (dom(s) — {x})] u {<x, a}}.

2.3.1 Definition. $£°(Q) is the logic with concrete syntax with the usual notions
of substitution, frvar((/>), and r(φ)( = complexity of φ). The axioms are simply the
schemas of first-order logic together with the universal closure of each formula
Vx(0 <-» φ) -> (Qxφ <-» Qxφ), as well as of each formula Qxφ <-+ Qy(φy) whenever
y does not occur in φ.

Strictly speaking, JSf°(Q) is a logic only if we give a "standard semantics",
that is, a global interpretation of Q. But this is not a problem, since in this discus-
sion we are only concerned with weak models. For a fuller explanation of this
point see Remark 7.1.2.

2.3.2 Proposition. Suppose 91* is a weak model for i ? 0 (β) . Let q consist of all sets
of the form {as A: 91* N φ[s(x, α)]} such that 91* |= Qxφ[s]. Then for all
φ e Se\Q) and s, 91* \= φ[s] iff(% q) |= 0[s].

Proof. The proof is a straightforward induction on complexity. The only interesting
step is that of assuming that (91, q) \= Qvφ[s] holds and showing that 91* N
Qvφ[s] must hold also. By definition, there exist Quψ and t such that 91* N Quφ[t']
and for all aeA,

(1) 91* |= ψ[t(u9 ay] o 91* N 0[s(i>, fl)].

The following two facts are easy to establish.

(2) Suppose x and y are disjoint. For every J^°(β) formula 0(x) there is
an JS?°(Q) formula θ'(x) of the same vocabulary, such that no yt from
y occurs in θ\ and h- ̂ o ( (2) Vx(θ <-> θ')

(3) For any formulas θ and θ' and sequences x and y as in (2), if/maps y
to x, that is, f(yt) = χi9 all i, then for all 5, 91* N θ[s] iff 91* N Θ'M

For, (2) follows by induction on θ, using the axioms Qyoc *-• Qz{oζ) and the theorems
3yα <-• 3z(o£), while the second "iff" in (3) follows from the equality axiom x =
y Λ θ'(x) -• θ'(y). Thus, we may assume that φ and φ have disjoint sets of free
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variables; and by changing φ again, we may assume that u and υ are the same
variable. Accordingly, (1) then yields

(4) 91* \= {φ «-> φ)l(s u t){v, a)] for all a e A;

and hence,

(5) 91* |= V t # <-> 0)[s u ί].

By the axioms, we have

9ϊ* |= (Qυφ <-• Qvφ)[s u ί] .

Since 91* t= β # [ ί ] , 51* N= 6^</>[s] and the argument is complete. D

We can also define the class of monotone structures as in

2.3.3 Definition. A structure (91, q\ where q ς: @>{A\ is said to be a monotone
structure if for all X and 7, X Ώ. Y e q implies that X eq.

For more on monotone structures, the reader should consult Makowsky-
Tulipani [1977] or Ziegler [1978]. In the present volume, Chapter III, Section 4,
Chapter XV, Section 6 and Section 6.4 of this chapter offer some further material
along these lines.

The logic with concrete syntax Jέfm(β) where the " m " stands for monotone, is
obtained from J?°{Q) by strengthening the axioms \/x{φ <r+φ)-+ (Qxφ <-• Qxφ) to
\fx(φ ^φ)^ {Qxφ -> Qxφ).

2.3.4 Proposition. Suppose 91* is a weak model for J£m(Q). Let q consist of all sub-

sets of A which contain {a e A: 91* \= </>[s(x, α)]} for some φ and s such that 9Ϊ* t=

Qxφ[s~]. Then (91, q) is a monotone structure and for all φ e Jδfm(Q) and s, 91* |=

</>!>] iff(% q) 1= Φίs].

Proof. Of course, (91, q) is a monotone structure. The remainder of the proof is
obtained from the proof of Proposition 2.3.2 by changing "<-•" to " - > " in (1),
(4), and (5). D

Although our main purpose in this section has been to pave the way for com-
pleteness proofs in Sections 3, 4, and 5, we should notice that our digression here
in Section 2.3 has brought us to the well-known weak completeness theorem given
in

2.3.5 Corollary (Folklore Weak Completeness). Let T be a consistent set of sen-
tences in ^°(Q). Then, for all K > ω, there exists (91, q) \= T such that \A\ =
κ + \T\.IfTis in fact <£™(Q)-consistent, we may take (91, q) to be a monotone
structure. The converses {soundness) also hold, regardless of cardinalities.
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Proof. For countable T, this is immediate from the weak completeness theorem
(2.2.3) together with Propositions 2.3.2 and 2.3.4. In general, we can obtain a weak
model of each countable subset of T, apply first-order compactness and
Lόwenheim-Skolem arguments to get a weak model 91* of T of the desired
cardinality, and then apply Propositions 2.3.2 or 2.3.4. The argument for soundness
is clear. •

2.3.6 Corollary (Compactness for Weak Models). Let T be a set of sentences of
&°(Q) such that every finite subset of T has a weak model. Then T has a weak
model. The term "weak model" may have either of the two meanings from
Proposition 2.3.2.

//, in fact, every finite subset ofT has a weak model which is a monotone structure,
then T has a weak model which is a monotone structure. The reader can find an
ultraproduct proof for this in Makowsky-Tulipani [1977, §7].) D

3. J^iQi) and <£ωχ ω ( β i ) : Completeness and
Omitting Types Theorems

This section consists primarily of the main results from Keisler's paper [Ke]1 on
i?(<2), where Q = "there exist uncountably many." Although we will base the
proofs on the notion of weak model as presented in Section 2, the reader may
prefer to use Keisler's notion (see Section 2.3) or any other notion having reason-
able properties. Further applications of the completeness theorem for 5£(Q) can
be found in [Ke].

3.1. The Axioms, Basic Notions, and Properties

3.1.1 Definition ([Ke]). The axioms of J^(β) include the universal closures of all
first-order axiom schemas as well as the following axioms, all of which may have
free variables other than those displayed.

(1) ~ΊQX(X = y v x = z);

(2) Vχ(φ -> ψ) -> (Qxφ -+ Qxφ);

(3) Qxφ(x) <-> Qyφ(y\ where φ(x,...) is a formula of S£(Q) in which y
does not occur, and φ(y,...) is obtained by replacing each free occur-
rence of x by y;

(4) Qy 3xφ -+ ixQyφ v Qx 3yφ.

1 Henceforth, [Ke] will refer to Keisler [1970]. Except as otherwise noted all results in Section 3 are
proved in [Ke].
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The rule of inference is modus ponens (but universal generalization may be
derived as in Enderton [1972]). Notice that the axioms are all valid (where again,
Q = δ i ) To see that Axiom 4 is valid, consider its contrapositive ~\Qx3yφ A
-ι 3xQyφ -> -ι Qy 3xφ, which asserts that a countable union of countable sets is
countable. Throughout the following discussion we will assume that the axiom
of choice holds. Keisler [Ke] also credits Craig and Fuhrken with the conjecture
that these axioms are complete.

In order to apply the results of Section 2 (on weak models) to the problems at
hand, we need the following lemma. The proof, though routine, is omitted since
it lacks interest. Nevertheless, we note that the proof of (i) is similar to the jS?ωω

case as treated in Enderton [1972].

3.1.2 Lemma, (i) With the notion of proof as defined above, ^(Q) has a concrete
syntax (in the sense of Section 2).

(ii) The notion "J£(Q)-locally omits" as given in Definition 2.2.4 is equivalent
to the usual notion. That is, for a fixed vocabulary τ, T <£(Q)-locally omits
Σ(x) iff whenever 3xφ is consistent with T, then so is 3x(φ A ~iσ)for some
σ e Σ . D

For the remainder of this section, we fix a countable vocabulary τ. The proof
of the completeness theorem is composed of three steps. First, the weak complete-
ness theorem (2.2.3) is applied to obtain a countable weak model of a consistent
theory T. That done, we then prove a "main lemma" which will, in effect, show
how to expand "uncountable" sets while keeping "countable" sets unexpanded.
Extending the given countable weak model and iterating ω x times using this
process, we will find that the union of the structures gives the desired model of
T. First, however, let us formally state the kind of extension we need.

3.1.3 Definition. Let 91* and 95* be countable weak models for JS?(β). We say
that 23* is a precise extension o/9I* relative to φ, if φ(x) is a formula of i f (Q) with
parameters in A and

(i) 91* -<w 93*.
(ii) If 91* |= Qxφ, then 93* |= φ(b) for some b e B - A.

(iii) Whenever 91* |= ~Ί Qxφ for Qxφ a sentence with parameters in A, then
93* |= -Ίφ(b) for all b e B - A.

3.1.4 Remarks on Notation. Notice that the notation has become more informal
than that used in Section 2. A precise definition would consider precise extensions
relative to (φ, s>, where φ is a formula of JS?(β), and s is an assignment into A
with domain including all but at most one free variable x of φ. Then, for example,
(ii) would be worded thus: "if 91* \= Qxφ[s\ then 93* |= φ[s(x,bj] for some
be B - A." The more informal notation will generally be used in the sequel.
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The symbol Q*x is an abbreviation for - ι β χ - ι , "for all but countably many
x." Before moving to the "main lemma", we should summarize some easy conse-
quences of the axioms. Accordingly, we have

3.1.5 Lemma. Every formula in the following schema is a theorem of J£{Q) and is
therefore valid in every weak model for J^(β).

(i) -ΊQxψ<r+Q*χ - | φ.

(ii) Qx(x = x) -> β Λ . . . Qnxn(φ A Qn+1yγ ... Qn+mymφ)

<-βi* i Qn*nQn+ιyi Qn+m >>m(</> Λ φ\ whenever yl9...,ym are not
free in φ, and each β, e {3, V, β, β*}.

(iii) (Monotonicity) Vx(0 -» φ) -> (qxφ -> qxφ), where qx is any string of 3, V,
β, β* quantifiers on x.

Moreover, we also have the following "Intersection principles":

(iv) Λ Q**Ψ - Q*x Λ Φ (I finite).
iel iel

(v) Qxφ A Q*xφ -• Qx(φ A φ).

(vi) Vxφ Λ qxφ -> qx(φ A φ) (for q = Q or β*). D

5.2. Towards a Proof of Keislefs Completeness Theorem

3.2.1 Main Lemma. Suppose 91* w α countable weak model for <&(Q), and suppose
φ(x, p) is a formula of<£f(Q) with parameters p in A. Then there is a precise extension
of 91* relative to φ.

Proof. If 91* t= ~ιβxφ(x, p), then we set 95* = 9Ϊ*. So, assume that 91* 1= Qxφ(x, p),
and let CA = {ca: ae A} be a set of new constant symbols. Also let D = CAu {c}
for yet another constant symbol c, and form the following set T^(9I*) of τ u D-
sentences of J£?(β). The notation c a denotes < c α i , . . . , can), when a = < α 1 ? . . . , an}
is any sequence of elements of A.

ί*) = {0(ca): 91* |= 6>(a)} u {(/>(c, cp)}

u {~iφ(c, c a): 91* |= nβxιA(x, a)}.

For each φ(x, a), we define a set Σ^ such that

)}. D

ClaimA.Tφ(9I*) is an J^(β)-consistent theory which ^(β)-locally omits Σ^, for
each φ(x, a), such that 91* \= ~i Qxφ(x, a).

Deferring the proof of Claim A for the moment, we will see how the theorem
follows. Let 93* > w 91* be the countable weak model guaranteed by the extension
lemma (2.2.6) or by Lemma 7.2.3. That is, 93* omits each Σφ, and there exists
eeB (corresponding to c) such that for all 0(c, ca) e Tφ(9I*), 93* N θ(e, a). Since
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φ(c, cp) e TΦ(ΪI*), it follows that 93* N= φ(e, p). Moreover, -ι(c = O e T0(9I*) for
all α e A , since 91* |= iQx(x = a) by Axioms 1 and 2. Thus, 95* \= e φ a for all
α e i , and hence eφ A. Accordingly, we see that (ii) in the definition of "precise
extension relative to φ " is satisfied. Part (iii) holds because 93* omits each necessary
Σ^. Thus, the proof is complete once Claim A has been proved. First, however,
it is very helpful to have a useful criterion for consistency of τ u D-sentences of
JSP(β) with Tφ(9I*).

Claim B (Consistency Criterion). For any τ-formula θ(γ, z) of 5£{Q) and a in A :

(i) 0(c, ca) is <£(β)-consistent with 7^(31*) iff 91* N Qy(φ(y, p) Λ θ(y, a)),
(ii) TΦ(9I*) μ * ( < 2 )θ(c, ca) iff 91* N e*y(φ(y, p) -> θ(y, a)). (Recall β* = i Q~\.)

Proof of Consistency Criterion. Using Lemma 3.1.5(i) and ~Ί0 for 0, it is easy to
see that (i) and (ii) are equivalent. Thus, we will only prove (ii). For the (<=)
direction, we suppose that 91* |= ~ι Qy ~ι (φ(y, p) -> θ(y, a)). Then ~~ι (~ι (φ(c, cp) -•
0(c, ca))) 6 Tφ(9I*), by definition. Thus, Γφ(«ϊ ) μ ^ ( ρ ) 0(c, cp) -> 0(c, ca). And,
since (/>(c, cp) e Γφ(9I*), we have that Tφ(5ί*) μ ^ ( Q ) 0(c, ca).

Conversely, suppose Γφ(9I*) μ 0(c, ca). Since proofs are finite, there exist
formulas <5j(ca.) for i e / and ψjίy, cΛj) with j e J, where both / and J are finite,
such that

(1) 9 1 * ^ ( 5 ^ ) , all iel;

(2) 9 I * N = - i β # / y , a J ), all jeJ;

(3) {0(c, cp)} u {^.(cai): i E 1} u {-i^r/c, c a j.):7 e J} μ * ( Q ) 0(c, ca).

By repeated application of the deduction theorem (2.1.1), we see that (3) implies

that

*-*<« ( A 5 l ( C ^ } ) "> P C ' ^ Λ ( Λ ^Ά/C' Ca,)j -* ^ Ca) L

By soundness (see Proposition 2.2.1), since 91* \= /\ieI όfa) by (1) this yields

(4) 91* |= Vy\φ(y, p) Λ ί/\ -iψ{y, a^J ^ θ(y, a) .

We now make use of the "intersection principles" of Lemma 3.1.5. Applying
Lemma 3.1.5(iv) and (i) to (2) above, we obtain 91* 1= Q*y/\ j e J " " ' ^ A a ;)
Combining this with (4) above, the "intersection principle" given in Lemma
3.1.5(vi) shows that

91* t= β*)JΓ<X}>, p) y, a) 1 Λ /\^Ψj(y, *j).
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By Lemma 3.1.5(iii) (monotonicity) this implies 91* \= Q*y[φ(y, p) -> θ(y, a)],
which concludes the proof of Claim B, the "consistency criterion".

It now remains to prove Claim A. First of all, the consistency criterion implies
that Γφ(9ϊ*) is if(Q)-consistent. Now suppose that 91* \= -iQxφix, a). We must
show that TΦ(9I*) JS?(Q)-Iocally omits Σ^ = {ψ(x, ca) u {x φ cb: 91* \= ψ(b, a)},
in the sense of Lemma 3.1.2(ii). Thus, suppose 3xθ(x, c, cd) is consistent with
7 ,̂(91*), where d is from A. By the consistency criterion and Lemma 3.1.5(ii), we
have

(5) K*\=Qy3x[φ(y,ι>)Λθ(x,y,ά)l

If 91* |= Qy 3x[φ(y, p) Λ Θ(X, y, d) Λ iφ(x9 a)], then by the consistency criterion,
3x[0(x, c, cd) Λ "iφ(x9 c j ] is consistent with Tφ(9I*), and we're done. Otherwise,
91* |= Q*yix\_φ(y, p) Λ 0(X, y, d) -• ψ(x, a)]. Then, by the intersection principle
Lemma 3.1.5(v) and its analogue for ifωω, this combines with (5) to yield

(6) 91* |= Qy 3xllφ(y, p) Λ Θ(X, y, d)] Λ [φ{y, p) Λ 0(X, J , d) -> ^(x, a)]].

Applying the monotonicity principle (Lemma 3.1.5(iii)) to (6), we have

(7) 91* |= Qy 3xlφ(y, p) Λ Θ(X, y, d) Λ ^(X, a)].

Now is the time to apply the main axiom of i f (Q), namely Axiom 4. Applied to

(7) this gives

(8) 9Ϊ* |= Qx 3ylφ(y, p) Λ 0(X, y, d) Λ ^(X, a)],

or

(9) 91* *= 3xβy[φ(3;, p) Λ Θ(X, y, d) Λ ιA(̂ ? a)].

But (8) is impossible, since it implies that 91* \= Qxψ(x, a)—a contradiction of the
assumption. Thus, there exists a witness e e A for (9) above. Then 91* t= Qy\_φ(y, p)
Λ θ(e, y, d)] which further implies 91* \= Qy 3x(φ(y9 p) Λ Θ(X, y, d) Λ ~IX φ e\
by monotonicity. But applying the consistency criterion we see that 3x(θ(x, c, cd) Λ
-ιx φ ce) is if(β)-consistent with 7 ,̂(91*), as desired. D

Remark. In [Ke], 93* is defined to be a precise extension of 91* if it is a precise
extension relative to every formula. By iterating the Main Lemma ω times in an
appropriate manner, we may construct such an extension. Although this would
slightly simplify the proof of the completeness theorem (3.2.3), such a notion of
extension is not as useful for if(aa) in Section 4 and for if(Q2) in Section 5.

The final lemma needed for the proof of the completeness theorem tells us
that a careful iteration of the Main Lemma produces the desired model.
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3.2.2 Lemma (Union of Chain Lemma). Assume that <9I*: α < ω t ) is a chain of
countable weak models for ££(Q\ with the following properties.

(i) For all a < ωί9 91*+ x is a precise extension o/9I* relative to φ9for some φ.
(ii) For each formula φ(x) with parameters in some Aa, {β < coί: 9I* + 1 is a

precise extension ofW$ relative to φ} is uncountable.
(iii) The chain is continuous, that is, 91J = ( J α < A 91*/or /imiί A < ω ^

T/zen by setting 91 = ( J α < ω i 9Iα, we have 91 |= (/> ijffSl* \= φfor all sentences φ
with parameters in Aa9 where α < ωγ is arbitrary.

Proof. The proof is by induction on the length of φ. For atomic φ, it is clear, and
both the-ι and v steps are trivial. Now notice that α < β < ωx implies 91* < W 9 I * ,
by Proposition 2.2.2 (the elementary chain theorem for weak models). The case
φ = 3yφ(y) then follows in the usual way.

Finally, suppose that φ is Qxφ. If 91* |= Qxφ, then by (ii) above, there exists
an uncountable set X ^ ωί such that for all βeX, 9 l | + 1 \= φ(a) for some
aeAβ+1 — Aβ. This implies that 911= φ(a) for some aeAβ+1 — Aβ. Thus,
911= Qxφ. Conversely, if 91* 1= ~Ί Qxφ, then by (i), it follows by induction on β
(and the definition of precise extension relative to a formula) that 91* 1= φ(a)
implies a e Aa. By the inductive hypothesis, this translates into: 911= φ(a) implies
aeAa. Since Aa is countable, we must have that 91 \= ~iQxφ. D

3.2.3 Theorem (Completeness Theorem for JS?(0). Suppose T is a set ofτ-sentences
of&(Q), where τ is a countable vocabulary. Then T is 5£{Q)-consistent iffT has a
model.

Proof. We have already shown soundness. For the other direction, we suppose T
is j2?(Q)-consistent. We wish to define a chain <9ί*: α < ωx} which satisfies the
hypotheses of Lemma 3.2.2, the "union of chain lemma." It will be convenient to
require Aa ς: ωx for all α < ωv For then we will have that ( J α < ω i Aa ς: col9 and
the following construction will indeed witness each Qxφ uncountably many times.

More precisely, we start with any partition of ωx into uncountable sets Xφ,
where φ ranges over formulas φ(x) with parameters in ωv Let us define 9ϊ* by
induction on α. First, let 91* be a countable weak model for ££(Q) which satisfies
T, by the weak completeness theorem (2.2.3). We may require Ao = ω. For suc-
cessor stages α + 1, we apply the Main Lemma (3.2.1). Let 9l*+ 1 be a precise
extension of 91* relative to φ, where α e Xφ (unless the parameters of φ do not lie
inside Aa9 in which case set 9I* + 1 = 91*). Finally, set 9ίf = (Jα<Λ2ϊ* for limit
λ < ωv Also set 91 = (J {9Iα: α < ω j . By Lemma 3.2.2, we have that 91 \= φ(a)
iff 91* |= 0(a), for all α < ωί and a in ^4α. In particular, since 9I§ 1= φ for all
0 G Γ, we have that 91 is a model of T. D

3.2.4 Corollary. JSf(β) is countably compact. D

Before continuing with an extension of the completeness theorem to JS?ωiω(β)
and omitting types in i f (β), we will examine a corollary to the Main Lemma, as
was promised in Section 1. This result appears as Corollary 3.6.1 of [Ke].
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3.2.5 Theorem (Essentially due to Keisler-Morley [1968:4.2,2.2]). Let 91 = (A,E)
be a countable model of ZF, possibly excepting power set. For all aε A, set aE =
{b:(b,a>εE}.

(i) There exists 95 = (B, F) >• 91 such that for all ae A, aF = aE, and the
ordinals of 23 are ω^lίke.

(ii) For every regular cardinal a of 91, there exists 95 = (B, F) > 91 such that
bε = bpfor all bEa, but <αF, F [ aF} is ω^like.

In fact, for (ii) it is not necessary that 91 satisfy the collection schema.

Proof, (i) We expand 9ί to a weak model 91* for jSf(Q) by interpreting Q as "for
unboundedly many." For every ε-formula φ of J?(β), let φ+ be the result of re-
placing each quantifier of the form " β x " by "there exist arbitrarily large x", that
is, Vy 3x(x $ y A •) (where y is chosen not to conflict with other variables of φ).
We then set RQXφ(X,y) = {a: 91 \= (Qxφ) + (a)}. As in the proof of Proposition
2.3.2, an easy induction on complexity of φ e J£(Q) shows that 91* \= φ(a) iff
911= φ+(a) for all φ and a. It is then easy to check that 91* is a countable weak
model for ^(Q): the axiom of collection is used to verify Axiom 4.

By the Main Lemma (3.2.1), 91* has a precise extension relative to "x is an
ordinal". Iterating, we thus obtain a chain <9I*: α < ωx> with 91*. = 91*, such
that 91*+! is a precise extension of 91* relative to "x is an ordinal" for all α < ωu

and 91* = ( J α < Λ 91* for all limit λ < ωv Set 95 = | J α < ω i 9Iα; then 95 is the desired
model.

(ii) The proof here is the same, except for two changes. This time, φ+ is obtained
by replacing each quantifier Qx by Vy e a 3x e a (y e x Λ •)» and the expansion
91* of 91 is defined accordingly. Also, in this situation we require that 91*+ x be
a precise extension of 91* relative to x e a. These changes made, the proof of (i)
goes through. D

A rather similar development concerning linear orders appears in Jervell
[1975].

3.3. Omitting Types in

The next goal in this section is to get an omitting types theorem. Further on, in
Section 3.4 we will discuss applications.

3.3.1 Definition ([Ke]). Let T be a set of τ-sentences, and Σ(x) a set of τ-formulas
(with free variables contained in the finite sequence x), of ££(Q). T is said to
strongly omit Σ if the following condition is met. Let Qy be an arbitrary quantifier
string of the form Q1yί ... Qnyn, where Qt e {3, Q} for 1 < i < n. We call such a
Qy a quexistentίal string. Then, for every sentence of the form Qy 3xφ which is
consistent with T, there exists σ e Σ such that Qy 3x(φ A ~ι σ) is consistent with T.
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A weak model 9ϊ* is said to strongly omit Σ(x), where Σ may have parameters
in A, if whenever <Ά* \= Qy 3xφ_ with Qy a quexistential string, where φ may have
parameters in A, then 91* μ= Qy 3x(φ A —i σ) for some σ e Σ.

For applications to logics such as i f < ω (in Section 5), it is helpful to consider
certain extensions of

3.3.2 Definition. A logic i f with concrete syntax is a reasonable extension of
i f (Q) if it meets the following criteria.

(i) ^ is closed under Q: if φ e JSf(τ) then βxφ e Jίf(τ).
(ii) Every formula (/> of <£(τ u C) with C n τ = 0 , is ^ ( / ) for some ^ e i f (τ)

and some/. (This is needed for the proof of the Main Lemma (3.2.1); it
enables the proof of Proposition 3.1.2(ii) to go forward.)

(iii) The notions of free variable, substitution, and rank—frvar(</>), </>(/)>
r(φ) from Section 2.1—obey the obvious inductive clauses for Q.

(iv) Every axiom schema (1-4) of i f (β) is an axiom schema of if. In particular,
there is a notion of change of free variable to which Axiom 3 applies, as
does 3xφ(x) <-* lyφ(y).

3.3.3 Remark. The notion of "precise extension relative to φ", Lemma 3.1.2(ii),
the quantifier manipulations of Lemma 3.1.5, and the Main Lemma (3.2.1) with
Claims A and B, extend in the natural way to any reasonable extension of !£{Q).
That this is actually the case can be verified in a routine way. Accordingly, we will
use these extended versions.

3.3.4 Lemma. Fix a countable vocabulary τ. Let 91* be a countable weak model
for any reasonable extension ££ of^(Q). Suppose that Σ(x) is any set of formulas in
the finite sequence x of free variables, where Σ may have parameters in A. For every
formula δ = Qy 3xψ(x, y, u), where ψ is parameter-free, such that u is disjoint from
x and y and Qy is a quexistential string, let

Σ'(u) = {Qy 3xφ(x, y, u)} u {^ ~Qy 3x[>(x, y, u) Λ I <φc)]: σ e Σ}.

If A* omits each such Σδ(u), then A* strongly omits Σ.

Proof. The proof of this result follows immediately from the definitions. D

To prove the omitting types theorem we will follow the pattern of the com-
pleteness theorem proof. That is, we will obtain a weak model, iterate a "main
lemma" ωx times, and then take the union. Hence, we will need:

3.3.5 Lemma ("Main Lemma" for Omitting Types). Suppose 91* is a countable
weak model for J£(τ), τ countable, where $£ is a reasonable extension of 5£(Q). Let
{Σn :n < ω}bea countable family of sets ofτ-formulas of <£, possibly with parameters
in A, each in a finite sequence xn of free variables. Assume that 91* strongly omits
Σnfor all n < ω. Then for all φ(x, p), there is a precise extension o/9I* relative to
φ which strongly omits each Σn.
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Proof. The proof is an extension of the proof of the Main Lemma (3.2.1), and we
refer to that argument below. Form the theory ΓΦ(9I*) and the sets Σ^, as before.
By Claim A (from the proof of Lemma 3.2.1), Tφ(SΆ*) locally omits each set Σ^.
Suppose for the moment that Tφ(9ϊ*) also locally omits each set Σδ

n, as defined in
Lemma 3.3.4. Then as before, we apply the Extension Lemma (2.2.6) to obtain a
precise extension 33* of 9t* relative to φ, which omits each Σδ

n. By Lemma 3.3.4,
we see that 93* strongly omits each Σn.

It now remains to show that Tφ(9I*) locally omits each Σ*, say δ is
Qy 3xι^(x, y, u), where Qy is a quexistential string and u is disjoint from x and y.
Suppose that 3u0(u, c a , c) is consistent with Γ^(9l*). If

3u[0(u, c a , c) Λ ~iQy 3xφ(x9 y, u)]

is consistent with T^(9ί*), our argument is done. Otherwise, 3u[0(u, c a , c) A
Qy 3xψ(x, y, u)] is consistent with T^(9I*). By "quantifier shuffling" as discussed
in Lemma 3.1.5(ii), 3u Qy 3x[θ(u, c a , c) A φ(x, y, u)] is consistent with T^(9I*).
We now apply the consistency criterion (that is, Claim B in the proof of Lemma
3.2.1) to obtain

91* N βz[φ(z, p) Λ 3u Qy 3x[0(u, a, z) Λ ^(X, y, u)]].

By using the last part of Definition 3.3.2(iv), we may replace u, y, x if necessary so
that these are disjoint from the free variables of φ. Then, by using quantifier
shuffling again, we have that

91* N Qz 3u Qy 3x[ψ(z, p) Λ 0(U, a, z) Λ ^(X, y, u)].

But Qz 3u Qy is also a quexistential string; and so, since 91* strongly omits ΣM,
there exists σ e Σn such that

9ί* N Qz 3u (Γy 3x[0(z, p) Λ 0(U, a, z) Λ ^(X, y, u) Λ i σ ( x ) ] .

By using quantifier shuffling again, we obtain

91* N βz[(/>(z, p) Λ 3u Qy 3x[0(u, a, z) Λ ^(X, y, u) Λ ^σ(x)]] .

And applying the consistency criterion once more, we see that

3u Qy 3x[0(u, c a , c) A ψ(x, y, u) Λ Ί ( J ( X ) ]

is consistent with TΦ(9I*). Again using quantifier shuffling, we have that

3u[0(u, c a , c) A Qy 3x[^(x, y, u) Λ i σ ( x ) ] ]

is consistent with Tφ(9l*), and the proof is complete. D

3.3.6 Theorem (Omitting Types Theorem for i?(β)). Suppose that ££ is a reason-
able extension of ^(Q) and that τ is countable. Suppose also that T is a consistent
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τ-theory of J£(Q) which strongly omits sets Σn(xn) (n < ω)from J£?(τ). Then T has
a model which omits each Σn.

Proof. As was shown in the proof of Lemma 3.3.5, it follows that T <£(Q)-locally
omits the sets Σδ

n of Lemma 3.3.4. By the weak omitting types theorem (2.2.5),
there is a countable weak model 91* for <&(Q) which omits each Σδ

n. Thus, by
Lemma 3.3.4, 91* strongly omits each Σn.

We now partition ωγ into disjoint uncountable sets Xφ, where φ ranges over
formulas with parameters in ωv We proceed, as in the proof of the completeness
theorem (3.2.3), to construct a chain <9I*: α < ωx>, with the additional require-
ment that each 91* strongly omits each Σn. Set 51*. = 91*, where we may assume
that Ao ^ ω1; and, in fact, each Aa c ωv For limit λ, set 9IJ = [ja<λ 2Ϊ*; then
it is clear from the elementary chain theorem for weak models (2.2.2) that 91* is
still a weak model for i f (β) which strongly omits each Σn. For successor stages
a + 1, we choose φ so that CCEXΦ. We may thus apply the main lemma for omit-
ting types, Lemma 3.3.5, to obtain 91*+ x as a precise extension of 91* relative to φ9

which still strongly omits each Σn.

Set 91 = ( J α < ω i 9lα. Using the Union of Chain Lemma 3.2.2, we see that
91 \= φ(μ) iff 91* 1= φ(a) for all φ and for all a in Aa (all α < ωx). Since 91*. 1= T,
then we must also have that 9ϊ 1= T. In order to see that 91 omits Σn, we suppose
that a is a sequence from A with | a | = | x j . We may, of course, choose α < ωx so
that a e A<ω. Then, since 91* N 3x(x = a) (that is, 3x /\ f xf = αf), and 91* strongly
omits Σ π , we may then choose σ G Σ Π such that 91* 1= 3x(x = a Λ πσ(x)). Tha,t
is to say, 9ί* 1= ~ι σ(a). Then, 9ϊ 1= ~ι σ(a) and the argument is done. D

3.3.7 Remarks. At this point we should make a few remarks on some of the
developments we have examined.

(i) The converse of Theorem 3.3.6 also holds for complete theories T, as the
reader may verify. Hint: Use the fact that 3 and Q commute with countable
disjunctions.

(ii) Bruce [1978b] has improved the omitting types theorem for &*(Q) by
showing that the notion of strong omitting may be replaced by an equivalent
notion, a notion in which the quexistential string Qy may be required to consist
only of quantifiers Qyt (not 3yt). His proof is a direct one which uses forcing for
^f(β). An alternate syntactic argument can be found in Kaufmann [1979], where
there is also an extension of Theorem 3.3.6 which produces models of /\n ~i Qxn /\
Σn(xn) in which Qxn may have Q quantifiers in addition to 3 quantifiers. Finally,
we remark that these results extend, in fact, to families of <2ω sets of formulas, by
a corresponding result for first-order logic by Shelah [1978a; Conclusion 5.17B,
p. 208]. In this connection the reader should also see Lemma VIII.8.2.2.

3.4. Other Topics

3.4.1 The Infinitary Case. Before we undertake the exposition of the topics to
which this section is devoted, we will observe that the reader should also consult
Chapter VIII for a discussion of J^ ω i ω without Q. That said, we will begin our
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formal discussion by noting that the logic J ^ ω i ω ( β ) is formed from JS?(β) by
allowing the new rule of forming countably infinite conjunctions as long as the
resulting formula has only finitely many free variables. In our development we
will take \J as a defined symbol. The axioms and rules of inference include those
of i f (β), together with the universal closures of all formulas of the form

(Λ) Λφ-*Φ fora11 ΦEΦ-

The added infinitary rule of inference is

Γ \- ψy(φ -+θ) al l θeθ

for any quexistential string Qy, where Q*y is formed by replacing Q by β* and
3 by V, in Qy.

A fragment is a set of formulas of ^ωιω(Q) which is closed under the finitary
formula-building operations. In [Ke], these axioms and rules are proved complete
for S£ωχω(Q) and its countable admissible fragments. Observe that for the latter,
we show by induction on proofs that if T h- φ, then there is a proof in the fragment
of φ from T. Keisler's argument has been abstracted in Barwise [1981] and,
roughly speaking, it asserts that for many logics, the omitting types theorem implies
a completeness and omitting types theorem for a corresponding infinitary logic.
For the details on this, the reader should see Section VΠI.6.6. Furthermore, the
reader who wishes to examine Keisler's argument in this chapter may find it for
S£(aa) in the proof of Theorem 4.3.4.

The following theorem is interesting even for first-order logic, and a well-
written proof of it can be found in Section 5 of [Ke], as well as (in its essentials)
in Keisler [1971a, Theorem 45]. As an exercise the reader should prove the analog
of this result for i f ω i ω (aa) as defined in Section 4 of this chapter.

3.4.2 Theorem. Let T be a consistent set of sentences of the countable fragment
^tfiQY Suppose that T has an uncountable model which realizes uncountably many
complete ^^(Q)-types in k variables, some k < ω. Then there is a family
{SΆf: fe

 (ωi)2} of non-isomorphic models of T. In fact, iff Φ g, then SΆf realizes an
3?sAQ)-tyVe which is omitted in SΆg. In particular, a consistent countable theory of
<£ωω with uncountably many complete types has 2 ω i models of power ωv D

The next theorem is quite striking and its proof is beyond the scope of this
chapter. For extensions of this result see Section XX.3.

3.4.3 Theorem (Shelah [1975c, Theorem 5.7]). Assume O ω i , or even (as in later
work) 2ω < 2ω\ If T is a countable consistent theory of <$fωιω(Q) containing
Qx(x = x) with fewer than 2ωι models of power ωl9 then T has a model of power
ω2. D
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This result stands in contrast to the situation for i?(aa). For more on this the
reader should see Remark 4.1.2(v).

The study of admissible fragments ££JS£) has been advanced by the work of
Harnik-Makkai [1979], and these advances were based on the earlier work of
Gregory [1973] and Ressayre [1977]. As concerns Gregory [1973], the reader
should consult Section VIΠ.7.3 of the present volume. The idea is to provide an
axiomatization of if^(β) based on the notion "if φ holds then φ is countable."
Proofs in this direction involve Σ^-saturated models.

Another direction that the study of J ^ ( β ) has taken is that of the Robinson-
style forcing of Krivine-McAloon [1973] and Bruce [1978b]. Extra predicates
are used in the former development, while the latter requires no extra predicates
at all. In Bruce-Keisler [1979] one can find applications to the study of
"decidable" weak models for if^(Q), where the model has domain α (with si = Lα)
and Q means "for unboundedly many." This idea of using Lα has been extended
in Wimmers [1982] to if(aa) and <£<ω (see Sections 4 and 5).

In the next two sections some countably compact extensions of if(Q) are
considered.

4. Filter Quantifiers Stronger Than Q1:
Completeness, Compactness, and
Omitting Types

In this section we will examine extensions of if(βi) that are formed by adding
"filter quantifiers" over Pωι(A) = the set of countable subsets of A. We will
mainly concentrate on if (aa), or "stationary logic". Just as Qγ refers to the
family of uncountable sets, the aa quantifier ("almost all") refers to the family of
closed unbounded subsets of ωί9 a basic family of study in set theory. For a dis-
cussion of closed unbounded sets and their largeness properties, the reader should
see Kunen [1980]. This logic was introduced in a slightly different form in Shelah
[1975d], where countable compactness and abstract completeness (recursive
enumerability for theories) are proved. These properties are also implicit in
Schmerl [1976] and, later, in Dubiel [1977a]. The proofs of these properties are
related to the argument for if(aa) in Section Π.3.2. In a manner analogous to
that of Keisler's 1970 paper (see Section 3) as compared to that of Fuhrken [1964]
and Vaught [1964], Barwise-Makkai [1976] introduced an explicit set of axioms
for if (aa). Their completeness proof and an omitting types theorem can be found
in Barwise-Kaufmann-Makkai [1978]2 and Kaufmann [1978a]. These notions
form the main part of the present section. We will conclude our exposition with a
discussion of some extensions of if (aa).

2 Henceforth referred to as [BKM].
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4.1. Preliminaries

4.1.1 Definition (Stationary Logic (if(aa)) and the Closed Unbounded (cub)
Filter). Let τ be any vocabulary. A τ-formula of if(aa) is a formula which is built
up from atomic τ-formulas and formulas sf(xj), by using first-order formation
rules and the following rule: If φ is a formula so is aa st φ. The defined quantifier
stat is also useful, and, formally stat s φ is —i aa s —i φ.

To define satisfaction, we interpret aa by the cub filter D(A) on Pωi{A\ an
interpretation that is due to Kueker [1972] and Jech [1973]. A collection X of
countable subsets of A is cub if X is closed under unions of countable chains and
unbounded in Pωί(A); that is to say, (Vs e Pωι(A))(3s' e X)(s <Ξ s') Then D(A) is
the filter generated by the cub subfamilies of Pωi(A). Satisfaction may now be
defined by induction on formulas, with the new clause:

911= aa s φ(s) iff* {s e Pωι(A): 911= φ(s)} e D(A).

A sublogic of i f (aa) is ifpos or "positive logic", where one forms aa s φ only
if 5 occurs only positively in φ and φ e J£?pos. For more on this the reader should
see Example 3 of Section Π.2.2 and Remark 4.1.2(iii) below.

4.1.2 Remarks. We will now gather some facts which serve to clarify the definition
just given.

(i) Suppose \A\ = ω1 and (Aa: α < ω ^ is a filtration of A, that is, we have
Aa=[j{Ap+1:β<0L} and A = Uα Aa. Then, for all X <Ξ Pm(A), X e D(A) iff
{α < ωί: Aa e X} contains a closed unbounded subset of ωί. It follows then that
if A has domain A, then 91 \= && s φ iff {α: 911= φiAJ} contains a cub subset of
ωl9 and 91 \= stat s φ iff {α: 911= φ(Aa)} is stationary in ωv

(ii) Exercise: For all A, the cub filter on Pωι(A) is closed under countable
intersections. In fact, even more than this is true, as the reader can confirm by
examining the proof of Proposition 4.1.4.

(iii) If s occurs only positively in φ(s,...) and 91 \= φ(t, p) for some t e Pωι(A\
then 911= φ(t\ p) for all ί ' 2 ί ; and, hence, 9ϊ |= aa 5 φ. Hence, j£?pos can be defined
using 3s in place of aa s.

(iv) j£?pos contains ^{Qγ\ since Qxφ <-» ~ιaa s \/x(φ(x) -> s(x)).
(v) The class of ω^like linear orders which continuously embed ωl9 whose

members are sometimes called strongly ω^lίke, is axiomatized in if(aa) by:
" < is a linear order" Λ QX(X = X) Λ aa S 3X("S = {y: y < x}"). This is easy to
see using (i) above. Hence, Shelah's non-categoricity theorem for <£(Qx) (Theorem
3.4.3) fails for j£?(aa). In fact, we just add " < is dense with least element" to get a
categorical sentence. The class is not ifpos-axiomatizable: a back-and-forth
argument such as is used in Example 6.1.2 shows that all ω r l ike dense linear
orders with first element are J5f p o s- = . This example naturally suggests that one
could restrict to strongly cOi-like linear orders and then obtain a first-order version
of i f (aa). The reader should also see Section II.3.2 for more on this.

Other properties of linear orders can be expressed in i f (aa). The following
offer two interesting examples in ifpos. 91 is separable iff 91 N aa 5 (s is dense),
that is to say 91 \= aa s Vx Vy (x < y -• 3z(s(z) Λ X < z A Z < y)\ which belongs
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to JSfpos. 91 has cofinality ω iff 91 \= aa s (s is cofinal); that is, 911= aa s Vx 3y e s
(x < y). In fact, Shelah [1975d] has proved full compactness for such a cofinality
quantifier; see Section XVIII. 1.3 and Theorem Π.3.2.3. None of these classes is
axiomatizable in J^(Qi): see Theorem 6.3.3, Proposition Π.7.2.5, and Theorem
Π.7.2.6.

(vi) Keisler's original counterexample to interpolation in Jέf(βi) shows that
the following class C/f of models is not ^(QJ-axiomatizable (see also Section
VI.3.1 and Π.4.2.8): J f = {91: 91 = (A, E\ where E is an equivalence relation on
A with countably many equivalence classes}. However, j f is axiomatizable in
jS?pos by the sentence "E is an equivalence relation" Λ aa s Vx 3y(s(y) A E(X, y)).

(vii) It is shown in [BKM] that J^(aa) $έ J ^ ^ . I n fact> there does not exist K
such that 91 ΞO O K 95 =^ 91 =^(aΛ) 35 (Kaufmann [1984]). This should come as no
surprise, given Kueker's game-theoretic description of the aa quantifier: If
X^Pωι(A\ then X e D(A) iff Vx0 3y0 Vxx 3y, . . . VxM 3yn... ({xt : ί < ω} u
{yi'. i < ω} e X). (See also Chapter X of the present volume for a discussion of
game quantification.)

Another sense in which j£?(aa) is strictly stronger than S£{Q) is the sense of
Shelah's theorem which asserts that its Hanf number exceeds Hω, the Hanf number
for J^(β); see Theorem V.3.3.11. More on this can be found in Shelah-Kaufmann
[198?]. The idea is that, in a sense, j£?(aa) can express well-ordering for sufficiently
large structures. Notice that the constructions to follow produce models of power
at most ωv

Alternatively, one can define D(A) to be the set of subsets of K of power less
than K. This idea was successfully applied to abelian group theory in Eklof-
Mekler [1981].

4.1.3 Axioms of if(aa). For any formula φ, call φ a quasi-universal closure of φ,
if φ has no free first- or second-order variables, and φ results by prefixing φ with
quantifiers of the form aa s and Vx.

The axioms of i f (aa) consist of the quasi-universal closures of the following.

(FO) All axioms and axiom schemas of first-order logic.

(0) aa Sfφfo , . . . ) <-> aa Sjφ(Sj,...) (sj not occurring in φ(Si)).

(1) ~Ί aa s (x φ x).

(2) aa s (x e s).

aa Sj (Si c Sj) for ί Φ j .

(3) aa 5 φ A aa s φ -• aa 5 (φ A φ).

(4) aa 5 (φ -> φ) -> (aa s φ -• aa s φ).

(5) Vx aa s φ(x, s, . . .)-> aa s Vx (s(x) -• φ(x, s,...))

(6) φ -> aa s φ, if 5 is not free in φ.
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The only rule of inference is modus ponens. The reader will observe the similarity
here to Keisler's axioms for &(Qγ) in Definition 3.1.1. In [BKM] there is a rule
of aa-generalization, a rule which we do not need because we have taken quasi-
universal closures in forming the axioms.

4.1.4 Proposition (Soundness). IfT\-φ in Jδf(aa), then 91 \= φfor all 91.

Proof. It suffices to verify the validity of axioms (l)-(5), since all the others are
obviously valid. Axiom 1 says 0 φ D(Λ); and Axiom 2 is equally clear since
{t E Pωι(Λ): s ^ t} e D(A) for all s e Pωι(Λ). Axioms 3 and 4 are valid because
D(Λ) is a filter. Finally, Axiom 5 is valid because D(A) is closed under diagonal
intersections, that is, we have that if {Xa: ae A} ^ D(A), then A{Xa: ae A} =
{s G Pωι(A): (Vα G s) s G Xa} G D(A). In fact, the diagonal intersection of cub
families is cub, as the reader may verify. D

In order to apply the results of Section 2 on weak models to our development,
we may now state the following proposition by way of analogy to Proposition
3.1.2 for ^(<2i). The proof of this result is routine and will therefore be omitted.

4.1.5 Definition, (i) The logic if(aa) with the above notion of proof is a logic with
concrete syntax in the sense of Section 2.1, when we are restricted to formulas
in which no second-order variable st occurs free.

(ii) The notion of'"J£f(aa)-/ocα//y omits" in Definition 2.2 A is equivalent to
the usual notion. That is, whenever 3xφ is 5£(di2i)-consistent with T, so is
3x(φ A ~iσ) for some σ G Σ. D

In light of the above, we may speak of weak models 91* for i f (aa)(τ) when τ is
a countable vocabulary. That is to say, we have 91* = <9I, #™S0>φe.s?(aa)(τ) Recall
now that τ + refers to the vocabulary of 91*. The reader may have guessed our
strategy by now. We will require a main lemma which will show how to witness
formulas stat s φ (recall that this means ~Ί aa s ~i φ\ much as we witnessed
formulas Qxφ in the if(Qi) case. Since s is a second-order variable, we propose to
witness stat s φ(s) by having φ(A) hold. This approach differs slightly from the
one in [BKM], where 2-sorted structures are used with interpretations for first-
order and second-order variables. Instead, we add a predicate symbol for A.

4.2. Proving the Completeness Theorem for J5f(aa)

We begin this section with

4.2.1 Definition. Suppose that τ is any vocabulary and that 9ί* is a countable
weak model for i f (aa)(τ). Let PA be a unary relation symbol not in τ. We say that
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33* is a precise extension o/9l* relative to φ if φ(s) is a formula of J^(aa)(τ) with
parameters in A, 33* is a (τ u P^)+-structure, and

(i) S I * < W S * Γτ + ;
(ii) if 91* t= stat s φ, then 33* |= φ(PA); that is to say, 33* |= (φ(PA))* (see

Section 2);
(iii) whenever 91* t= aa s φ(s) for aa s φ a sentence with parameters in 91*,

then 93* |= ^ ( P J ;

(iv) ( P j * = A.

4.2.2 Main Lemma ([BKM, 3.4]). Suppose that A* is a countable weak model for
J£ (aa)(τ) and that φ(s9 p) is a formula of ££ (aa)(τ) with parameters p in A. Then there
is a precise extension of 91* relative to φ.

Proof. We may assume that 91* |= stat s φ(s, p), or else we may replace φ by
Vx(x = x). Let CA = {ca: a e A} be a set of new constant symbols, and set

= {0(ca): 91* N 0(a)} u {0(Λ*, cp)} u {φ(PΛ, c a):

91* N aa 5 ̂ (s, ca)},

where c a = < c α i . . . cfln> if a = <ax . . . an}. Also set

Claim A. Tφ(9I*) is an Jί?(aa)(τ u Pv4)-consistent theory which i?(aa)(τ u
locally omits

As in the proof of Lemma 3.2.1, the Main Lemma for if(Qi), let us see how the
result follows from Claim A. Now the Extension Lemma (2.2.6) (or formally,
Lemma 7.2.3) gives us a countable weak model 93* for i?(aa)(τ u {PA}) such that
91* <w 93* Γ τ + , 33* |= 0(a) whenever 91* \= θ(a), 33* \= φ(PA, p), and 33* N
ι^(P^, a) whenever 91* \= aa s ι/̂ (s, a). So (i) through (iii) hold in the definition of
precise extension relative to φ (Definition 4.2.1). Now Lemma 2.2.6 also allows us
to choose 33* so that it omits ΣA, and this guarantees (P )̂®* £ A. Since 91* 1=
aa s(a e s) for all a e X (Axiom 2), we have that P(cβ) 6 Tφ(SΆ*). So 93* t= P^(α);
and hence A c (PA)®*. Thus, (iv) holds, and 33* is the desired precise extension of
91* relative to φ.

In order to prove Claim A we will use the analogue of Claim B in the proof of
Lemma 3.2.1. The proof is essentially the same once we observe that, for every
τ-formula θ(s,...) and every set Γ of J^(aa)(τ)-sentences, if Γ h- Θ(PA,...) in
^f(aa)(τ u {PA}\ then Γ I- aa s θ(s,...) in Jέf(aa)(τ). This follows from an induc-
tion, using Axiom 4.

Claim B (Consistency Criterion). For any formula θ(s, z) of if (aa)(τ) and a in A,

(i) Θ(PΛ, ca) is (τ u {P^})-consistent with T/9I*) iff 91* \= stat s(φ(s, cp) Λ

(ii) Tφ(SΆ*) μ Θ(PA, ca) in j?(aa)(τ u {PA}) iff 91* |= aa s(φ(s, p) -> θ(s, a)).
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It remains to prove Claim A. The consistency criterion implies that 7^(21*) is
consistent. Now suppose 3xθ(x, PA, ca) is consistent with T/9I*). If
3x(θ(x, PA,cΛ) Λ ~ΊPA(X)) is consistent with 7 ,̂(91*), then our work is done.
Otherwise, we have that 3x(θ(x, PA, ca) Λ PA(X)) is consistent with Tφ(9l*). Thus,

91* \= stat s 3x[φ(s, p) Λ 0(X, S, a) Λ S(X)]

by Claim B. Rewriting this as

91* 1= π a a s V x e s π [φ(s, p) Λ Θ(X, S, a)],

we see that Axiom 5 implies that 91* 1= ~Ί VX aa s ~i [φ(s, p) Λ 0(X, S, a)]. That is
to say, we have that

91* |= stat s[φ(s, p) Λ 00, s, a)]

for some ee A. Then, by using the consistency criterion again, we have that
0(ce, PA9 ca) is consistent with 7^(81*). And, hence, 3x(θ(x, PA, ca) Λ Ί X φ ce) is
also. D

4.2.3 Lemma (Union of Chain Lemma). Assume that <9ϊ*: α < ωx> is a chain of
countable weak models for J?(aa) with the following properties.

(i) 91* is a countable weak model for Jέ?(aa)(τα) for all α < ωl9 where τα =
τv{PAβ:β<x}.

(ii) For all cc < ωl9 9l*+ x is a precise extension o/9I* relative to φ,for some φ.
(iii) For all α < ω x and for every formula φ(s9 x) of <£ (aa)(τα) and for all param-

eters a from Aα, the set {β < ω1: 91*+ x is α precise extension o/9l| relative
to φ(s, a)} is stationary in ωv

(iv) The chain is continuous: For all limit λ < ω x and α < A, 9IJ {τ^ =

S e t S Ά = \Ja<ωιWLa.ThatisJorallδ < ωl9Vί [ τ δ = ( J { 9 ϊ α Γ τ , : ^ < α < ω 1 } .

Thenjor all α < ω 1 ? Jέf(aa)(τα)-/ormw/αs 0(x), απrf a in 4 α , 91 N 0(a) iff 9ί* N 0(a).

Proof. The argument is by induction on the length of (/>. Notice that <x < β < ωx

implies that 91* <W

+9I* Γ τα

+, by Proposition 2.2.2. We first show that α < β < ωx

implies that (P^)^ = Aa9 by induction on β. For β = α + 1, this is part of the
definition of precise extension. Now, 91* |= aa s aa t(s c ί) by Axiom 2. So 91*+ x |=
aa t(PAa c ί); and, hence, 91* t= aa ί(P^α c t) for all y > α + 1. Then 9I*+ 1 t=
P^α c p^ y so (PΛβF*+1 = (PAJ**, which IS Aα by the inductive hypothesis. Limit
stages of the induction are clear and we have verified that (PAJ

m*β = AΛ for all
α < β < ωx.

Clearly, 911= φ(a) iff 91* \= φ(a) for atomic φ. The v and ~i steps are trivial,
while the 3 step presents no problems. For φ(a) = aa s ψ(s, a), suppose that
91* |= φ(a). Then 91* |= φ(έ) for all β > α, so that 9l*+ 1 |= ψ(PAβ9 a) for all
β > α. By the inductive hypothesis, we have that 91 N ψ(PAβ,

 a ) f o r a ^ β > α.
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Hence, 911= aa 5 φ(s, a). As to other direction, we suppose that 21* μ= —1 aa s ψ(x, a).
That is, we suppose that 9ϊ* |= stat s -1 ψ(s, a). Then, 91* \= stat 5 ~i ψ(s9 a) for all
β > α. But hypothesis (iii) implies that {β > α: 9 I | + 1 \= -Ίψ(Aβ, a)} is stationary
in ωv Since this set equals {β > α: 911= ~\φ(Aβ, a)} by the inductive hypothesis,
we must have that 91 μ= stat s ~ι ̂ (s, a) by Remark 4.1.2(ii). That is,
91 \= -ιaasι/<s, a). D

4.2.4 Theorem (Completeness Theorem for if(aa) [BKM]). Suppose T is a set of
sentences of if(aa)(τ), where τ is a countable vocabulary. Then T is if(aa)(τ)-
consistent iff T has a model

Proof. The direction <= is Proposition 4.1.4 (Soundness). Now suppose that T is
if(aa)(τ)-consistent. For each α < ωl9 set τα = τ u { P ^ : /? < α}. By a theorem
of Ulam [1930] (see, for instance, Kunen [1980, p. 79]), there is a partition of ωx

into disjoint stationary sets Xφ, where φ ranges over formulas φ(s) of i?(aa)(τω i)
with parameters in ω x . Define <9ΪJ: α < ω ^ , each 91* a countable weak model
for j£?(aa)(τα), by induction on α as follows, where Aa^ ωx for all α < ωv Let
9ίJ be a countable weak model for S£(aa)(τ) which satisfies T, and for each α, if
ae Xφ let 91*+ x be a precise extension of 9ί* relative to φ, by the Main Lemma
(4.2.2). We take unions at limits.

We now set 91 = I J α < ω i 9Iα. Since 91* |= Γ, then 911= T by the union of chain
Lemma 4.2.3. D

4.2.5 Corollary, (i) if(aa) is countably compact.
(ii) Every consistent countable theory of i f (aa) has a model of power at most

«!. D

In connection with this corollary, it is interesting to observe that whether or
not if(aa)-elementary submodels must exist is independent. This fact has been
proved by Harrington, Kunen, and Shelah (see [BKM], Footnote 2, p. 221).

As is true for ^(Qx), the study of if(aa) was partly motivated by the study of
end extension of linear orders and models of set theory. By analogy with Theorem
3.2.5(ii), we could reverse history by proving a relativized version of the Main
Lemma (4.2.2) to obtain the following theorem of Hutchinson [1976a].

4.2.6 Theorem. Let 91 = (A, E) be a countable model of ZF, possibly excepting
power set and the collection schema. For every regular cardinal a ofW, there exists
93 = (£, F) > 91 such that bE = bF for all bEa, but (aF - aE, F [ aF - aE) has a
least element. Moreover we may require <αF, F [ aF} to be ω^like and embed ωγ

continuously.

Hint of Proof. Define 91* 1= aa s φ iff 91 1= 3C (C is cub in a and Vy e C(φ(γ)). D

4.2.7 Remark. Probably the closest known analogue of Theorem 3.2.5(i) is ob-
tained by adding a quantifier "aa α" to the language of set theory, as studied in-
dependently by Kaufmann [1983] and Kakuda [1980]. See, for example,
Kaufmann [1983, 2.16 and 5.8]. A combination of Peano arithmetic and JS?(β2),
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a topic that is discussed in Section 5, has been studied in Macintyre [1980], in
Morgenstern [1982], and in Schmerl-Simpson [1982]. The reader should also
see Schmerl [1982] for an extension.

4.3. Omitting Types and Infinίtary Completeness

As in Section 3, we now extend the completeness theorem to obtain omitting
types and infinitary completeness theorems. In fact, the proofs are direct descen-
dents of Keisler's proofs for i f (β).

4.3.1 Definition ([BKM]). Let T be a set of ^(aa)(τ)-sentences and Σ(x, t) a set
of J2?(aa)(τ)-formulas in finitely many free variables xί . . . xm9 tx . . . tn. Let S be
any quantifier string composed of quantifiers stat s, and stat ίi? where ί < j implies
that stat ίt occurs only before stat tj. T strongly omits Σ if for every such S and
every formula S 3x φ(x, s, t) which is i?(aa)(τ)-consistent with T, then
S 3x(φ A -\ σ) is consistent with T for some σ e Σ. (Notice that we've fixed an
ordering < ί 1 ? . . . , tn} of the second-order free variables of Σ.) We say that 31 omits
Σ if 311= aa t1 ... aa tn Vx \/δeΣ ~iσ(x, t).

4.3.2 Theorem (Omitting Types Theorem for i f (aa) [BKM, 4.2]). Let τ be count-
able and suppose that T is a consistent τ-theory o/if(aa) which strongly omits sets
Σn(xn, tn)9 where n < ω. Then T has a model which omits each Σn. The converse
also holds if T is complete.

Hint of Proof. Let us merely remark that Lemmas 3.3.4 and 3.3.5 have straight-
forward translations into if(aa), and the case tn = 0 for all n follows just as
Theorem 3.3.6 follows for if(6χ). D

4.3.3 Definition. The logic i f ω i ω (aa) is formed from ^f(aa) by allowing the new
rule of forming countably infinite conjunctions, as long as the resulting formula
has only finitely many free variables. The new axioms are the quasi-universal
closures of

(Λ) Λ φ ^<£ fora11 Φ e φ ;

and the new rules of inference are

Γ h- S*(</> -• 0) all Θeθ

for any quantifier string S consisting only of quantifiers of the form stat s or 3x.
Here, S* results from S by changing each stat to aa and each 3 to V.

"Countable fragment" is defined as for ^ ( Q J in Definition 3.4.1), as is the
notion of 5£^(aa)-consistency, that is, consistency with respect to proofs consisting



4. Filter Quantifiers Stronger Than Qx 151

of i f ^(aa)-formulas. If the fragment is admissible, then the following theorem
can be extended to give Barwise completeness and compactness.

4.3.4 Theorem (Completeness and Omitting Types Theorems for i f ω i ω (aa),
[BKM, 4.6]). IfTίs a consistent theory of a countable fragment J^(aa) , then Thas
a model. If in addition T strongly omits sets Σn, where n < ω, then T has a model
which omits each Σn.

Proof We will reduce to finitary logic in a manner analogous to that of Definition
2.1.2, except that we do not need to eliminate the " a a " quantifier, since we already
have a completeness theorem for j£?(aa). Rather, we will replace each infinitary
conjunction by an atomic formula. Formally, we define a map "prime" (') from
formulas of J ^ ( a a ) to J£?(aa)(τ), where

τ = [vocabulary of J ^ ( a a ) ] u {RA φ(x, t): /\ Φ(x, t) e

We set φ' = φ for atomic φ\ and we set (φ A φ)' = φ' A φ\ (~Ί</>)' = ~ιφ\

(3xφ)' = 3xφ'; and (aa 5 φ)' = aa s (/>'; and, finally,

(/\Φ)' = Λ Λ Φ ( x 1 x m , ί 1 . . . ί I I λ

where x1.. .xm (resp. tγ... tn) enumerates the first-order (resp. second-order) free
variables of Φ in order of subscript. "Prime" almost has an inverse, "minus":
namely, φ~ = φ for atomic φ e J£?^(aa), and "minus" commutes with the finitary
connectives and quantifiers and

[ K Λ Φ ( τ 1 . . . τ m , s 1 . . . s n ) Γ = Λ φ ( * 1 *m I1-';)
\τ1 τm s1 snj

where Φ, xί... xm, t j . . . tn are as above. It is clear that (φ')~ = φ for all φ e j£^(aa).
Let T = {φf: T \- φ and φ e J^(aa)} u {S*[(φ(x, t)")'*-> φ(x, t)] : φ e if(aa)(τ),

S* consists of quantifiers aa ί, Vx}. D

Claim 1. For every φ £ ^(aa, T \- φ iff T \- φ'. The forward implication is
clear. For the converse direction, we verify that if p is a proof from axioms of T in
j£?(aa)(τ) and p~ results from p by replacing each formula φ in p by φ~, then p "
is a proof in J ^ ( a a ) from axioms of T. We omit the details of the argument. So if
V r- 0', then T \- {φ')~. That is, T V- φ.

Claim 2. IfT strongly omits Σ, ί/ien V strongly omits Σf = {σ':σe Σ}. F o r suppose

that S 3x φ is consistent with T', for appropriate S. Then S 3x φ~ is consistent
with T, by Claim 1. So for some σ e Σ, S 3x (φ~ A ~Ίσ) is consistent with Γ. And,
hence, by using Claim 1 again we have that S 3x ((</>")' Λ -ισ') is consistent with
T . But since S* Vx [(φ ~)' <-+ φ~\ is an axiom of T , we must have that S 3x (φ A - I σ')
is consistent with T', as desired.
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Claim 3. T strongly omits the set Σ Λ φ = {~ι /\ Φ} u ΦJor each /\ Φ e
To see this, suppose that we are given a sentence S 3x φ(x, s, t) which witnesses that
T does not strongly omit Σ Λ φ . Then, for all φ e Φ, T \- S* Vx (φ -> φ). By the
infinitary rule of inference, we deduce that T \- S* \fx(φ -> Λ φ ) B u t a l s o

Ί / \ Φ G Σ A Φ . Hence, by choice of S 3x ψ, T \- S* Vx (φ -> ~ι Λ φ ) It t h u s

follows that S3xφ is not consistent with T, which contradicts our choice of this
sentence.

Now by Claim 1, T is consistent, and by Claims 2 and 3, T strongly omits
(ΣJ and each (Σ /\ φ ) ' for /\ Φ e JSf*(aa). Let 91 be a model of T which omits each
(ΣJ and each (Σ Λ Φ)', by Theorem 4.3.2 (the omitting types theorem for Jέf(aa)).
The theorem now follows from the following claim.

Claim 4. For all φ(x, t) e JS^(aa), 91 (= aa t Vx [0(x, t) <-> 0'(x, t)]. The proof is by
induction on φ. Although the details are left as an exercise, some hints are put
forward in the following discussion. For the /\ step, one should at some point
observe: |= /\ f e j aa t fy <-• aa t /\f e ι Q{ if / is countable and

φeΦ
*Λφ( - H

J
since 91 omits (Σ /\ φ ) ' . For the " aa" step, aa s φ(x, t, s), one uses |= aa t aa s Vx φ
aa t Vx aa 5 ̂ , where φ is the formula φ(x, t, s) <-• φ'(x, t, s), together with

1= aa s \_φ <-> 0'] -^ [aa s φ <-» aa s (/>']. D

4.4. Other Filters

The completeness and compactness theorems of J^(aa) were extended by Kauf-
mann [1981] to logics if^(aa, M). The quantifier M ( = "most") is interpreted
using a filter 3F on ωγ which contains every cub subset of ω^ That is, for \A \ = ωx

and any filtration <Λα: α < ω j of A, 91 N M s φ(s) iff {α < ω x : 91 h= φ(^lα)} e P.
Thus, for example, M is really just aa if 3F is just J^c u b = {X c cox: X 2 7 for
some cub Y}. Some of these results are summarized in:

4.4.1 Theorem Suppose that J* is a countably complete filter on ωγ. Then J?^(aa, M)
is countably compact and recursively enumerable for consequence. Moreover, for
countably complete 3F and <§, J ^ ( a a , M) and J£?^(aa, M) have the same valid
sentences iff either

(i) 9 = 9 = ^cub;or
(ii) & Φ J^ c u b, <§ φ ^cub, but & and <3 are both closed under diagonal inter-

sections', or
(iii) no diagonal intersection from 3F is empty, and the same holds for <$, but

3F and 9 are not closed under diagonal intersections; or
(iv) neither 3F nor 9 belongs to the classes described in (i), (ii), or (iii) above. D
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Other filters <F give compact logics. As an example, countable compactness
holds for any regular ultrafilter 3F on ωγ such that <F 2 # " c u b (see Kaufmann [1981,
3.14]). We know of no filter & 3 J^ c u b, in fact, for which 5£^(aa, M) is not count-
ably compact. What about filters & ^ J^ c u b ? In [BKM, 7.1], we find the "eventual
filter" ^ e v = {X c / ^ ( α ^ ) : for some s0, we have s e X for all s 2 s o ( s c α^)}.
By [BKM, 7.2] the corresponding logic JS?^(M) is not countably compact. How-
ever, if J f is the filter generated by all collections of the form {s — F : s e X, F is
finite, F ^ ωx}, then the resulting logic i f ̂ (M)is countably compact and axiomat-
izable even though 5£^(aa, M) is not (see Kaufmann [1981b, Example C, p. 189]).

5. Extensions oft^
?(Q1) by Quantifiers

Asserting the Existence of Certain
Uncountable Sets

5.7. Preliminaries

In Section 4 we considered an extension if(aa) of =έ?(Qi) in which one could
quantify over countable sets. A simple piece of if(aa), ifpos, was presented in which
we can assert 3sφ(s) when s occurs only positively in φ. A related logic is
"negative logic" i f n e g , which is defined below. Now $£neg is not countably compact
(Theorem 5.1.2), which is perhaps surprising, since it looks like a rather small
extension of the logic i f < ω of Magidor-Malitz [1977a]3, which is countably
compact assuming <> (Corollary 5.2.6). That done, we will examine some related
quantifiers of Malitz-Rubin [1980] and of Shelah [1978d].

5.1.1 Definition. The logic ifneg is formed from the atomic formulas by closing
under ~ι, v , ΐbc, and a second-order quantifier 3X: if X is a unary relation symbol
which occurs only negatively in φ, where φ e ifneg, then 3Xφ e JS?neg. Hence, we
allow VXφ when X occurs only positively in φ and φ e i f n e g . The interpretation of
3X is given by: A t= 3Xφ iff (A, X)\= φ for some uncountable X ^ A. Notice that
i* n e g contains 5£(QX\ since Qxφ(x) +-> 3X Vx(Z(x) -> φ(x)).

5.1.2 Theorem (Stavi and Malitz, Independently). The class

is RPC in J£neg. Hence, J£neg is not countably compact.

Proof. Let φ be the conjunction of the following: a sufficiently large finite amount
of set theory (for the argument below); yix(U(x)<-^xeω1); and the sentence ψ,

3 Henceforth we will write [M 2 ] for Magidor-Malitz [1977].
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where ψ says that U is ω r l ike in the real world and that every uncountable subset
of U (in the real world) contains a subset internal to the model. Formally, ψ is

Qx(x £ ωγ) A Vα e ωx —i Qx(x e α)

Λ VX[X c ω i -> 3y(|y| = β)! Λ y c X)].

Now if (A, E)\= φ and some reasonable set theory holds in (A, £), then
(αrf, £ Γ ω^) is well-ordered. For, in (,4, £) we let X be any strictly increasing
ωx-sequence that is cofinal in ωf. If y c X, then y is also well-ordered. Now,
choose y e X, witnessing φ. Then the transitive collapse of y in 91, which must be
ω x in 21, is well-ordered. D

Note: Suppose that there is an "almost disjoint" family of K2 subsets of ωl9

that is, every pair has countable intersection; this, of course, is the case if CH holds.
Then the argument above shows that although φ has an uncountable model, the
argument above shows that φ has no model of power at most K1# Hence, the follow-
ing logic is properly contained in if n e g , as the reader can easily verify by using the
exercise which immediately precedes Proposition 1.3.1.

5.1.3 Definition ([M 2]). The logic S£<ω = &(Q, β 2 , β 3 , . . . , Q\...) is obtained
by closing the atomic formulas under ~ι, v, 3x, and the quantifiers β": If φ is a
formula of i f < ω so is Qnx1x2 . . . xnφ- The semantics are defined with the new rule:
211= Qnxγ... xnφ(x) iff for some uncountable X c A, 21 \= φ{ax... an) for all
distinct al9..., an e X; that is, "there is an uncountable homogeneous set for φ".
This is really a definition of i f(Q 1 ? Q 2 , . . . , β",. . .). A compactness theorem for the
^-interpretation is proved in Shelah [1981a] for α = A+, assuming O α and Oλ;
see Section V.8. See also Remark 4.2.7 and VII. 1, 2, and 5 for "applied" results on
the S£{Q§. Notice that if i < j then Qι is definable in terms of Q\ that is:

QiXl . . . X f0(X! . . . Xt) <^QJX1 . . . X$(XX . . . Xi).

Let if(<2") denote the restriction of i f < ω to the quantifiers β, β 2 , . . . , β".

Recall that in i f (aa) we may axiomatize the class of models 21 = (A, E) such
that E is an equivalence relation on A with only countably many equivalence
classes. This is also possible in J^(Q2) using the sentence iQ2xy ~iE(x, y). Hence,
S£(Q2) is also a proper extension of 5£(Q). In fact, Garavaglia [1978b] has shown
in ZFC that if(β")-equivalence does not imply if(β"+^-equivalence, and it is
shown in Rubin-Shelah [1983] that {21: 211= i Q n + ίxί... xn+ ιR(x1... xn+ 0} is
not the class of reducts of models of a countable if(β")-theory, assuming O ω i

However, while satisfiability is absolute in i f (aa) (by the completeness theorem),
this is not the case for

5.1.4 Example ([M 2]). A Suslin-like tree is an ω r t r e e (T, <, < ) (also see Section
V.3.3) such that:

(i) there is no branch; that is, ~iQ2xy(x < y v y < x), and
(ii) there is no uncountable antichain; that is, -\Q2xy{—\x < y A ~iy < X).
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It is easy to see that there exists a Suslin-like tree iff there exists a Suslin tree.
However, the latter is independent of ZFC. Therefore, satisfiability of J*f(<22)
sentences is not absolute for models of ZFC. D

52. The Magidor-Malίtz Completeness Theorem

The next goal is to prove completeness for &(Q2). The same idea works for if < ω ,
although the notation there is more involved. That being so, we will only indicate
how the argument for S£(Q2) extends to if (g3) (in Section 5.2.5), rather than to all
of if<ω. Sections 5.2.1 through 5.2.6 are adapted from [M2].

5.2.1 Axioms of if(β2). An acceptable vocabulary τ is a vocabulary which con-
tains a (|z| + l)-ary predicate symbol PφfX,y,z for all formulas φ which do not
contain constants, and for all distinct x, y, z. We will feel free to write Pφ for
Pφ,x,y,z> when the variables are understood. The axioms for S£(Q2) include the
universal closures of [0]-[6] below. Notice that [0]-[4] are exactly the <£f(β)
schemas (see Definition 3.1.1). Fix an acceptable vocabulary.

[0] All first-order axiom schemas.

[1] ~πβx(x = y v x = z).

[2] Vx[</> - <fl -> (Qxφ - Qxφ).

[3] Qxφix) <-> Qyφ(y\ where φ(x) is a formula in which y does not occur.

[4] Qy 3xφ -* 3xQyφ v Qx 3yφ.

[5] "Witnessing schema": this axiom schema says that Pθ,Xι,χ2, z(x> a ) pro-

vides a witness to Q2x1x2θ(x1, x2>
 a ) :

u χ 2 , y)

Λ [ Q x P β f χ l f χ 2 f y ( x , y) -> Vxi Vx 2 [P θ , X l , X 2 > y (x 1 , y)

Λ Pθ,Xί,χ2,y(χ2> y) Λ xi * X2 -+ θ(xl9 X2, y )]]

And, finally, there is the following schema, a schema that is both difficult to describe
and hard to look at (hence the name "Medusan"). For now, think of it as saying
that φ produces a homogeneous set for θ. What this actually means will become
clearer in the proof of soundness which follows. Moreover, the origin of these
axioms will be explained in the proof of completeness.

[6] "Medusan axioms": Let Qy be a quexistential_string, that is, a string
of quantifiers of the form Qyt or 3yt. Also let Q*y be the result of re-
placing each Qyt and 3yt by Q*yt and Vy,, respectively. Then

Qy 3xφ(x, y) Λ Q^ VX|>(X, y) -> Ψϊ Vx'(^(x', y')

-> x' φ x A θ(x\ x) A θ(x, x'))] ^ Q2xίx2θ(x1, x2)

is an axiom, whenever all variables in the list x, y, x', y' are distinct.
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The rule of inference is modus ponens, and, as usual, we can check that universal
generalization is a derived rule.

Clearly every τ-structure may be expanded to a σ-structure for some acceptable
σ Ώ τ so that schema [5] holds, where we may assume that no Pθ is in τ. Hence,
soundness follows from

5.2.2 Proposition. The "Medusan axioms" [6] are valid.

Proof. Suppose Qy is quexistential and

(1) 2l

(2) «N

where η(x) is Q*y' Vx'[ι̂ (x'> y') -> θ(x, x') A Θ(X\ X) A X Φ X'~\. We will construct
a homogeneous set {xα: α < ω j for θ by induction on α with inductive hypotheses
(a) 91 \= η(χβ\ (b) 91 N θ(xβ, xγ) A θ(xγ, xβ) A xβ Φ xy, all γ < β < α. To define
x 0 , notice that (1) and (2), together with an appropriate intersection principle
(Lemma 3.1.5), combine to yield 91 N 3y 3x[(^(x, y) -• η(x)) A φ(x, y)]. It follows
then that 911= 3xη(x); choose x 0 such that 91 N η(x0).

Now, suppose that we have xβ for all β < α, where the inductive hypotheses
hold for all β < α. Then (a) implies that 91 N ^(x^) for all β < α; that is, for all
jS < α, we have

(3) 91 N β ^ Vx[ιA(x, y) » 0(x, x^) Λ θ ^ , x) Λ x Φ xβl

(1) through (3) yield, by "intersecting",

91 N 3y 3x[(A(x, y) Λ lψ(x, y) -* f/(x)]

Λ /\ [^(X, y) -• Θ(X, Xβ) A θ(xβ, X) A X φ XβJ].
β<a

This implies that

(4) 91 \= 3x(η(x) A /\ [θ(x, xβ) A θ(xβ, x) A x Φ xβj).
β<OL

Pick any witness to (4) and call it xα. Then the inductive hypotheses are preserved.
Inductive hypothesis (b) guarantees that { x α : α < ω 1 } is an uncountable

homogeneous set for θ. D

As for ^(Qγ) and i?(aa), it is convenient to observe:

5.2.3 Lemma. J£?(g2) is a reasonable extension of Jδf(Q) {see Definition 3.3.2) if we
are restricted to acceptable vocabularies (defined in Section 5.2.1). D

Example 5.1.4 shows that the set of valid sentences of ^(Q2) is not absolute.
Therefore, we will need an added set-theoretic hypothesis in order to prove that
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the axioms, already proved sound in Proposition 5.2.2, are also complete. The
following well-known principal of Jensen is a consequence of V = L.

O: There is a sequence <Sα: α < α^) with Sa c α for all α < ωl9 such
that for all X c ω 1 ? {α: X n α = S J is stationary.

We will call such a sequence a O-sequence.

5.2.4 Theorem (Completeness Theorem for &(Q2)). Assume O. Let τ be a countable
acceptable vocabulary (see Section 5.2.1) and suppose that T is an JS?(Q2)(τ)-
consίstent set of τ-sentences of£f(Q2). Then T has a model.

To prepare for the proof of this theorem, we will give a fairly detailed outline
in the following discussion. We will build an ω1 -chain of weak models, much as we
did for JSP(Q). The "witnessing schema" [5] will guarantee that sentences
Qx1x2θ(x1, x2) which hold in some 91* will also hold in 91. The key problem is to
guarantee that when some 91* satisfies -ι Q2xιx2 θ, then this also holds in 21. So, we
must in a sense "kill off" all potential uncountable homogeneous sets for such θ.
The following diagram summarizes the plan of the proof, as explained further
below. Notice the similarity to Jensen's construction of a Suslin tree from O An
arrow indicates that the lower box is intended to make the upper box true.

Goal: To "kill" all potential uncountable homogeneous sets for θ.

ΐ

Keep each 5α from growing into an uncountable homogeneous set

forfl.

ΐ

Suffices to omit (in 91) a type Σ°α(x) which says that Sα u {x} is a
homogeneous set for θ.

Instead, it suffices to omit a slightly bigger type Σθ a(x) (as we will
see).

ΐ

It suffices that 91* strongly omit Σθιx(x) for all γ > α.

ΐ

Suffices that 91* strongly omit Σθf α, which follows from the Medusan

Axioms.
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As before, the interesting stages of the construction are the successor stages.
Suppose we already have 9 I | and want to get 9I|+ v We form essentially the same
theory T0(9lf) as in the proof of the Main Lemma 3.2.1, for appropriate φ. The
consistency criterion still holds. Keeping countable sets from expanding can be
accomplished just as before, by omitting certain types. It makes sense that we also
omit types to keep homogeneous sets countable, as follows.

Suppose that a set Sβ is a homogeneous set for a formula θ(xu x2\ where
91* \= iQχίx2θ(xί, x2). Here, Sβ is the βth member of a fixed O-sequence. How
can we keep Sβ from expanding to an uncountable homogeneous set for ΘΊ We
would like to omit the type

Σ^(x) = {x φ a A θ(x, a): asSβ},

where, for the sake of simplicity, we will suppose that θ is symmetric; that is,
\=θ(xί9 x2) <-• Θ(x2,xι). As before, it will suffice that 9 I | strongly omit Σ ^ . In this
way, we can keep strongly omitting this type at later stages.

How can it be that 9 ϊ | does not strongly omit Σj^? That means that there is
some φ(x, y) for which (1) and (2) below hold in 91*:

(1) Qy lxφ(x, y)

(2) Q*y Vx(^(x, y) -> (x φ a Λ 0(X, a)) for all aeSβ.

However, this is not enough. A bigger type than Σ$5 β might be easier to strongly
omit—that is, failure to strongly omit a bigger type might have stronger con-
sequences. Regard (2) as a formula η(a)—then η(a) holds for all a e Sβ. If we had
chosen Σβtβ so that it included η(x\ we would then have 91* satisfying

(3) ψ~y VxMx, y) -> η(x)).

But, "(1) Λ (3) -> Q x 1 x 2 θ " is an instance of the Medusan Axioms (6). Hence

5ί* 1= 6*1*2 #> a contradiction.
So 91* does strongly omit any type containing Σ£ β which also contains every

formula η(x) having the property possessed by our ' V above, that is 91* N= fKfl)
for all α e S ^ . So set

Σ M = Σθ% u {5(x): for all α ε Sβ9 9 I | N δ(fl)}.

As previously mentioned, we can continue strongly omitting this type in models
91* for y > β. Hence, as in the previous proof for J^(β), 91* omits Σ θ β9 where

Suppose that 9l*01= ~iQ2x1x2θ; we want to show that 911= ~\Q2x1x2θ. To
this purpose, we will suppose not, and choose S c A so that 91 N θ(α, b) for all
distinct a,beS.O will give us α > α0 for which (91*, SJ < (91*, S). We may check
that every aeS - Aa realizes Σ β f β in 91*. On the other hand, since 9I*0 <W(Ά*,
5ί* N= ~ιβ 2XiX 2^ which implies (by construction) that 91* omits Σθ α !
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Proof of Theorem 5.2.4. Partition ω1 = \J {Xφ: φ is a formula of i ? (β 2 ) with
parameters in ωt}. For all α < ωl9 choose </>α so that α eX^α. Fix a O-sequence
<Sα :OL < ωx >. We build a chain <9l*: α < ωγ > of countable weak models satisfying
the following inductive hypotheses on α:

(a) 91* N 7\
(b) If α = /? + 1, then 91* is a precise extension of 91* relative to <^.
(c) If α is a limit, then 91* = \Jβ<a 91*.
(d) Aβ = ω (1 + α)
(e) For each δ < α and formula 0(x l 5 x 2 ) with parameters in Aδ9 if Sδ is a

homogeneous set for 0 in 91* (that is,Vx1x2 eS a,9IJ N θ(xu x 2) v xx = x2),
and 91* N ~πβxiX20, ί/iew 91* strongly omits

Σβ,,(x) = {x Φ a A θ(x, a) A θ(a, x):ae Sδ}

u {η(x): for aΆ asSΛ9Wi t= η(a)}.

91*. is constructed by applying the weak completeness theorem (2.2.3). For
limit α, it's easy to see that, by setting 91* = \Jβ<a 9I |, we preserve the inductive
hypotheses.

For the successor step α = β + 1, we want to use the Main Lemma 3.3.5 from
the proof of the omitting types theorem for JέP(Q). Hence, it suffices to see that 91*
strongly omits all of the sets given in inductive hypothesis (e) for α. For δ < β,
91* strongly omits Σ θ δ(x) whenever Sδ is a homogeneous set for θ in 3l£, by the
inductive hypothesis. So we are left with the problem of showing that for any
formula 0(x1? x2) with parameters in Aβ, iϊSβ is a homogeneous set for θ in 91* and
9Ϊ* 1= - iβ 2 x 1 x 2 θ(x 1 , x2), then 91* strongly omits Σθiβ(x).

To obtain a contradiction, we suppose not. Then, for some formula ^(x, y)
with parameters in 91* and some quexistential Qy, Qy 3xψ witnesses this supposi-
tion. Hence, we have

(1) 9I*

(2) 91* N= Q*7 Vx[ι^(x, y) -> x Φ a A Θ(X, a) A θ(a, x)] for each aeSβ.

By (2), the formula η(x) e Σβj j8(x), where

(3) η(x) = ψ~y' Vx'IXx', y') -> x' # x Λ Θ(X\ X) Λ Θ(X, X ')] .

So, by choice of Qy 3xψ, we have

(4) 9 I * μ ^

By the Medusan axiom schema [6], together with (1), (3), and (4) above, 91* |=
Q 2 x 1 x 2 θ. This contradicts our assumption and the successor step is thus complete.
Hence, the induction is also complete.

Set 91* = ( J α < ω i 9Ϊ*. Since 91*. 1= T, the proof will be finished once the follow-
ing claim has been established.
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Claim. For every α < ωί9 sequence a of members of Aa, and formula φ(y) of

SI* 1= φ(a) iff 2 l |=ψ(a) .

The proof is by induction on the number of Q2 quantifiers occurring in φ, and
within a fixed such number, by induction on the complexity of φ. All of the inductive
steps except Q2 work just as in the proof of the union of chain Lemma 3.2.2. Let
us therefore focus on the Q2 step.

Using the witnessing schema [5], the direction (=>) is easy. For the converse, we
suppose that 211= Q2xίx2θ(x1,x2,a); say S c A9 S uncountable and for all
Xx> x2 eS,xx φ x2 implies that 211= θ(xl9 x 2 , a). Let Cγ and C 2 be the following
cub subsets of ω1:

Ci = {α < ωγ: ω (1 + α) = α} = {α < ωί: ^ α = α}

C 2 = {α < ωx: (21*, S n i a ) < (21*, S)}.

Also, define a set

E = {a < ωί: S n α = Sα}

then £ is stationary by choice of <Sα: α < ω x>. Choose δsCί n C 2 n £ such that
a 6 ̂ δ

< ω and pick ft e S - ^ .

Proof. Choose σ e Σθ ( J c l > J C 2 > a ). If σ is x / c Λ Θ(X, C, a) Λ Θ(C, X, a) for some
then c e 5. So this follows from the choice of S, since 2ϊ* 1= θ(b9 c, a) iff, by the
inductive hypothesis, 211= θ(b9 c, a), which is true for all distinct b,ceS. Otherwise,
σ is η(x) for some η holding in 21* of every element of Sδ. But Sδ = S nδ = S n Aδ,
since δeE n Cv Thus, since δeC2, and since Sa = S r i i 4 ό implies that 21* N
Vx(x G 5 -• f/(x)), we have 21* 1= Vx(x G S -* f/(x)). Therefore, 21* 1= ιy(fe). D

Subclaim 2. 21* N βx!X 2θ(xi, x2)

Proo/ Suppose not. By inductive hypothesis (e), that would imply that 2 I | strongly
omits Σθ{xuX2tΛ)tδ for all β > δ. But then 21* strongly omits and hence omits
Σθ(Xί,χ2,Λ),δi contradicting subclaim 1.

Now (21* :β < ω j is an -<w-elementary chain, by construction. Thus, by
subclaim 2, 2ϊ* |= Q2XiX2 θ(xl9 x2). D

5.2.5 The Case J*?(β3). The goal here is to lift the preceding results to J^(β 3 ) , so
that one can believe in a corresponding set of results for S£<ω without going
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through all the ghastly notation which might otherwise be required. For J£?(<23)
we need extra witnessing axioms of the form

, x2, X3, y) -> G^βfe y)] A

, y) -> Vx1x2x3(Pθ(x1, y)

Λ P θ(x 2, y) Λ Pθ(x3,y) Λ Xχ φ X2 A Xχ φ X3

Λ χ2 Φx3-+Θ(xί9x29x3,y)y].

Furthermore, we need extra Medusan axioms, and these are described below.
To prove the completeness theorem, we proceed as in the situation for i?(β 2 ) .

As before, we want to omit a type Σ θ α , whenever 91* 1= -iQ3x1x2x3θ(xu x 2 , x3).
By analogy, we have

Σθ,a = {θ'(x,a,b):a,beSa,aφb}

u {η(x): for all but at most one a e Sα, 91* \= η(a)}

here θ'(xl9 x2, x 3) is /\ {θ(xfl, xi2,xi3): i a permutation}. If 91* does not strongly
omit Σ ^ then for some Qy 3xφ where "Qy is quexistential, 91* |= Qy 3x^ and
5T* |= g*y Vx(^(x,y) ^ x ^ α Λ x / ί ? Λ θ'(x,a,b)) for all distinct a.beS^. Thus,
we may write 91* 1= η^a, b\ where

ίi(χ, fr) = (Fy1 VxH^x 1, y1) ^ x 1 ^ x Λ x 1 # fc Λ θ'ίx1, x, 6)).

Accordingly, [x # b A η^x, ft)] e Σ β α for all beS^; then

(1) 91? N β ^ Vx(^(x, y) - x # 6 Λ f/^x, 6)), all ft e SΛ.

Now set

ι/2(x) = ψy1 Vχ2(ιA(χ2, y2) -> χ 2 # x Λ ^ x (χ 2 , x)).

Then (1) says that 91* 1= rj2Φ) f° r a ^ beSΛ. Thus, yy2(x)6Σθ>α. Again, using
our choice of Qy 3xψ,

This yields 91* 1= β 3 x 1 x 2 x 3 θ(x i , x2 > X3)—a contradiction—if we make the fol-
lowing an axiom:

\_Q~y 3xφ A Q^\fx(φ(x, y) -> ιj2(x))] -> β 3 x 1 x 2 x 3 θ(x 1 , x 2 , x3),

where ^ 2 is as defined above.
As before, at stages β > α we can strongly omit Σ θ α (x), if 91* 1= - ι β 3 x 1 x 2 x 3 θ .

And, as before, this does the job.
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Are the new axioms valid? Suppose that ?I is a model of the hypotheses of a
new Medusan axiom. Define {xα:α < ω j subject to the following inductive
hypotheses on α. For all αx < α2 < α3 < α:

(i) 91 |= η2(χj.
(ii) S lNi fΛx^xJ.

(iii) 3lN=0'(xαi,xβ2,xβ3).

Details are straightforward extensions of those given in Theorem 5.2.2 for J£(Q2).
D

5.2.6 Corollary ([M 2]). Assume O Then S£ <ω is countably compact and recursively
enumerable for consequence.

Proof for ^(Q2). This result follows from the completeness theorem, since every
countable vacabulary τ can be expanded to an acceptable τ' which is still countable
and is recursive in τ. D

There is no known explicit set of axioms for i f (β 2 ), that is, axioms which do
not require τ to be acceptable, even assuming O Shelah has recently shown that
in a certain sense, no finite set of schema axiomatizes the set of validities of i?(Q 2);
see Shelah-Steinhorn [1982].

The following theorem bears on the sensitivity of i f < ω to the axioms in the
metatheory. We are indebted to Ken Kunen for supplying the following theorem
and proofs. In this connection we note that it would also be interesting to find a
complete set of axioms under MA + —ι CH.

5.2.7 Theorem (Kunen). (i) One cannot prove in ZFC + SH (Suslirfs hypothesis)
that adding " S H " to the axioms for i f(Q 2) (in Section 5.2.1) results in a complete
axiomatization for i?(Q2).

(ii) One cannot prove in ZFC + ~Ί SH that the usual axioms of !£(Q2) (see
Section 5.2.1) are complete.

Proof (i) Otherwise, satisfiability for if(g2)-sentences is absolute for models of
ZFC + SH. However, in if(Q 2) one can assert that a partial order is c.c.c. On
the one hand, Con(ZFC + SH + CH) by Jensen, and CH -• 3P (P is c.c.c and
P x Pis not c.c.c), by Laver and Galvin. While on the other hand, MA + ~ι CH ->
SH and MA + ~iCH -> VP (P is c.c.c. -• P x P is c.c.c).

(ii) In Kunen-Van Douwen [1982] we find that by iterating c.c.c forcing, we
may obtain the consistency of ZFC + ~ι CH + ~i SH +

(*) Whenever Aa c Q for α < ωx satisfy Vα < β < ω1 (Aβ - Aa is
bounded ΛAΛ — Aβ is unbounded), there is an X a ω1 such that
\X\ = ωx and Vα, βeX (α < β -• Aβ φ AJ.

Observe that here, 5 ^ Q is bounded iff 3q(S <z (—oo, q)). However, there is a
sentence φ of ^(Q2) which has a model iff ~ι(*). φ is consistent with the usual
axioms because CH => ~ι(*). D
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It is shown in [ M 2 ] that the axioms for i f < ω remain complete in some model
of ~i O, namely when one adds K2 Cohen reals to a model of <>. Nevertheless,
Shelah has recently found a model of set theory in which i f (β 2 ) is not countably
compact.

5.5. Other Related Logics

An extension of 5£<ω has been proved to be countably compact (assuming O) in
Malitz-Rubin [1980]. In this logic, for example, we can say that {<x, y}: φ(x, y)}
contains an equivalence relation with uncountably many uncountable equivalence
classes as follows, where X2 ranges over uncountable sets of uncountable sets.

(3X2)(\/X\ E X2){\/X\ e X2)0/xί E X})(Vx2 E X})(V*3 G X\)

IΦ(X19X2) Λ -lφ(X

Here, it is understood that distinct variables are intended to represent distinct
things. More generally, we allow "descending quantifier strings", which begin
with (3Xn) (some ή) and contain various QJX^EX^1) for i < n, such that each
such Xι

k

+i is either Xn or else appears in an earlier quantifier (VX£+1 EX\ + 2 ) .
Here, X°} = xj ranges over K°(Λ) = A, and X)+1 ranges over

{Z c K\A): \Z\ > ω j = Kn+ί(A).

Perhaps a simpler logic, which is equivalent—at least if one has a pairing function-
allows quantifiers (3X")(Vxs: SET) φ((xs: s e T » , where T is any finite subtree of
ωn (ordered by inclusion). This quantifier is interpreted as follows: Xn is a tree
of height n having uncountably many elements of level 0 as well as uncountably
many immediate successors of each element of level <(n — 1); and xs is to be
< xt whenever s < ί, with xs ranging over elements of level \s\ — 1.

Another version of this quantifier is defined in Rubin-Shelah [1983]. More-
over, it is there proved that one has a strict hierarchy of these quantifiers.

The following definition gives a simplified version of the quantifier "there is a
branch" from Shelah [1978d], the general version being found in Section V.8 of the
present volume. Shelah's quantifier is, in fact, fully compact, whereas the following
version is not (and this for the same reason that if(Qi) is not). It is also interesting
to note that this logic is a countably compact piece of i f (β 2 ) for which O is not
needed, since satisfiability is absolute. Intuitively, it seems then that one has the
equation

if ("there is a branch") ^ Aronszajn tree

~ Suslin tree

And, of course, O (or something at least) is needed to construct a Suslin tree, but

not to construct an Aronszajn tree.
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5.3.1 Definition. J^(β β ) is the logic formed from ^(Qλ) by adding an additional
quantifier QB: if φ(x, y) is a formula of &(QH) then so is QBxyφ. Write η* for
{a: 911= η(a)}. Then the new inductive clause for satisfaction is

2Ϊ 1= QBxy φ(x, y) iff (field^21), φm} is a tree satisfying
Vy~ιβxφ(x, y\ such that there is an
uncountable branch through this tree.

5.3.2 Theorem (Shelah [1978d]). S£(QB) is countably compact and recursively

enumerable for consequence.

Proof. An approximate idea of the proof is to place &(QB) inside Δ(J^(β)) (de-
fined in Section Π.7.2), more or less, in a generic extension of universe. We then
may use the absoluteness of i£(©-satisfiability. Fix a vocabulary τ. We define
maps φ\-^φ3 and φ H-> φ v from &(QB)(τ) to JS?(QXτ'), where τ' = τ u S for some
set S of new relation symbols (these relation symbols will be determined below).
The approximate idea here is that if the world were perfect, then φ would be
equivalent to 3Xφ3 and to VY0v, where X and Y are the new relation symbols in
φ3 and φ v , respectively.

φ3 and (/>v are defined by induction on the following depth r(φ) of the quanti-
fiers QB and Q in φ: r(φ) = 0 for φ atomic, r(~\φ) = r(Vxψ) = r{\jj\ r(φ v φ) =
max(r(0), r(ψ)\ r(Qxφ) = r(φ) + 1 and r(QBxyφ) = r(φ) + 2. Set φ3 = φ" = φ
for φ atomic. Now, suppose that φ3 and φy are defined for r(φ) < n. We then
define φ3 and φ v for r(φ) = n by induction on φ. If φ is —Ί ψ, then φΞ is -ι (ι//v) and
φ v is "Ί (φ3). Suppose that φisθ v ψ. Then, of course, φ3 is θ3 v ^ 3 . To define φ v ,
where ψ is θ v ψ, we first make the new relation symbols of θ v disjoint from
those of i/Λ, say by suffixing a " 0 " on those of 0V and a " 1" on those of ψ*. Call
these modified formulas θ' and ι//, and set (θ v ι^)v = θ' v φf. The next case is
φ = Mxxjj. Then φy is Vx^v. For φ3, we first consider the choice schema

Vx 3Yη(χ, 7,...) - 37 ' Vx̂ y(x, ( 7 % , . . . ) ,

where η(x, (Y')X9 ...) denotes the result of replacing each occurrence of the form
Y(y) by an occurrence of Y'(x, y) in η. Then φ3 = }ixφ3((X1)x,..., (xn)x\ where
X1,..., Xn are the new relation symbols occurring in φ3. (Observe that this idea
appears in the proof of Theorem II.7.2.4(a).) The next step in our development is to
define (βxθ)Ξ as QxX{x) A [VX(X(X) -• 0)]3 by using the rules above. Similarly,
we have that (Qx0)v is [β*xX(x) -> [3x(X(x) A Θ)] V ] Λ Qχ(x = x).

Finally, we wish to define η3 and η*, when η is QBxyφ(x, y). η3 is easy to define,
since it simply is ["X is an uncountable branch of the tree <field((/>), 0 > " Λ
Vy ~ι Qxφ(x, y)~] 3. In order to define η1, we imagine that if a given ranked tree
does not have a branch, then there is an order-preserving map from that tree into
the rationals. Thus, rf is the following formula, where R and S are binary relation
symbols not in τ which do not occur in η: ~i ["R is an order-preserving function
from the tree {<x, y>: φ(x, y)} to the countable linear order 5 " v -ι"</>isatree" v
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It is routine to verify by induction on φ that for all φ e £?{QB\ we have that

(1) \=φ3->φ and \=φ^φ\

Now we claim that for any set Γ of sentences of J?(QB\ if Γ3 = {φ3: φ e Γ}, then:

(2) Γ is satisfiable iff Γ3 is satisfiable.

Since φ3 e ^(Q) for all φ e ^{QB\ the theorem follows from (2) above. The direc-
tion (<=) follows immediately from (1) above. For the proof of (=>), we suppose
that 21 N Γ. Let (U, <) be the disjoint sum of all trees P such that Vyπ QxPxy, with
field contained in 21, that do not contain an uncountable branch. Then ([/,<)
does not contain an uncountable branch. By Baumgartner-Malitz-Reinhardt
[1970], there is a c.c.c. partial order which generically adds an order-preserving
map from (I/, <) into the rationals. An easy induction shows that the predicate
"911= (/>[s]" is absolute for the generic extension, since no new branches are
added. Thus, Γ remains satisfiable. Moreover, in the generic extension: 3Xφ3 <-> φ,
φ «-* VY(/>V are valid in 91 for all φ e if(QB), as one can again check by induction
on φ. Hence, we have that Γ3 is satisfiable in the generic extension. Thus, Γ3 is
<£(β)-consistent in the generic extension, which implies that Γ3 is if (β)-consistent
in V, since consistency is finitary. By the completeness theorem for if(β), Γ3 is
satisfiable (in V). D

6. Interpolation and Preservation Questions

In this section we will survey some of the results, methods, and questions that are
related to definability properties of if(Qi) and (to some extent, at least) its ex-
tensions if(aa) and if<ω. In Section 6.4 we will consider such properties for the
"weak models" of Section 2.3.

6.7. Preservation of <£-equivalence Under Products and
Unions Jor <£ = J5?(βα), JSf(aa), <£<ω

The following theorem is proved in Lipner [1970].

6.1.1 Theorem. Suppose that {21,: je/} and {8, : i e / } are finite families of τ-
structures, where % =^iQoc) ^ifar all i e I. Then Y\ {%: i e 1} =^{QX) Π {®;: ι e }̂
And if τ has no function symbols, then the disjoint unions (J {3l f:ΐe/} and
{J {95f: i e 1} are also ^(QJ-equivalent. D

One method of proof is the method of back-and-forth systems, also known as
"Ehrenfeucht games": see Section II.4.2. This method has also been used in
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Vinner [1972]. Badger[1977] has also given an appropriate back-and-forth
criterion for <£<ω. In that work, we also find—in spite of this criterion—that
Jέf(Q2)-equivalence is not preserved by finite direct products. The reader should
see Definition Π.4.2.2 for material on back-and-forth systems in a more general
setting.

By assuming an appropriate combinatorial hypothesis on Nα, Lipner has also
proved Theorem 6.1.1 for other powers of/. For Kα = 2ω, this theorem also holds
for any index set / which is not at least as large as some measurable cardinal, and this
even if we only assume 9I£ and 33; are i?ωω-equivalent for all i e I (Flum [1975a,
Theorem 2.10]). Related results on preservation of i?(βα)-equivalence by reduced
products, where Kα = 2ω can also be found in Flum [1975a].

We will now turn to i f (aa). There are several back-and-forth criteria for $£(aa)-
equivalence. These results were developed independently by Caicedo [1978],
Makowsky (see Makowsky-Shelah [1981, Section 2]), Kaufmann [1978a], and
Seese and Weese [1982]. Nevertheless, the following example shows that if(aa)-
equivalence is not preserved by disjoint unions. A similar argument can also be
given to show that it is not preserved by finite products.

6.1.2 Example (Shelah). Let S be a stationary subset of ωγ with stationary com-
plement, and set (A, < ) equal to the ordered sum £ {^α: α < ω i ) where Z α = Q
if OLES, otherwise X a = 1 + Q, and < results from replacing each α by I r

Similarly, let (£, < ) be the ordered sum J] {7α:α <ωj} where Ya = 1 + Q if
α e S, otherwise Yα = Q. A back-and-forth argument establishes that (A, <) and
(B, < ) are ^?

ooω(aa)-equivalent. [Hint: let X'Λ = (J {Xy: y < α}, and Y'Λ =
(J {Yy: y < α}. By induction on φ(s, x) show that if α0 < < απ_ j and β0 <
</?„_!, where at e S iff βiφS, and if / is a partial isomorphism from
(91, * ; 0 , . . . , X'Xn_χ) to (23, Y;o,..., y;n_ t), then SI N φ(X'ao,..., X'an_,, domain/)
iff 93 1= φ(Y'ao,..., yi n _ l 5 range /).] However, if (A\ <') is a disjoint copy of
(A, <), then (A' u A, < ' u < ) and (A'uf l , < ' u < ) are not if(aa)-equiva-
lent. For, the following sentence θ holds in the former but not in the latter: θ =
stat s 3x 3y Vz(s(z) <-• z < ' x v z < y).

To take care of this problem, Kaufmann [1978a] defines and Eklof-Mekler
[1979] further studies the notion of finitely determinate structure. Roughly
speaking, such a structure is one in which we do not have disjoint definable station-
ary sets. In fact, we might say that the aa quantifier is self-dual on such structures.
More precisely, we have

6.1.3 Definition. A structure 91 is finitely determinate if it satisfies all formulas of
the form aa s x . . . aa sn Vx [stat ί φ(x, s, t) -• aa t φ(x, s, ί)]

We observe that many familiar structures are finitely determinate, for example,
(R, < ) and all modules are proved to be finitely determinate in Eklof-Mekler
[1979].

Using back-and-forth systems for finitely determinate structures (see Kauf-
mann [1978a] or Eklof-Mekler [1979]), we can prove an analogue of Theorem
6.1.1.
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6.1.4 Theorem(Kaufmann [1978a]). Suppose that { S l f : i e / } and {33 t :/e/} are

families of finitely determinate τ-structures such that % =j?iaa) 93;/or all i e /.

(i) /// is finite then Y\ {%: isl} and f ] {93£: iel} are <£ (^-equivalent and
finitely determinate.

(ii) Ifτ is relational then the disjoint unions (J {21,-: i e /} and (J {33t : i e /} are
<£ (^-equivalent and finitely determinate. D

6.1.5 Remark. Shelah has recently shown that every countable consistent theory
of&(Qi) has a finitely determinate model; see Mekler-Shelah [198?].

A number of variants of Theorems 6.1.4 and 6.1.1 have been proved. Aside
from some obvious extensions to S£ooω(βα) and to J ^ J a a ) , we may also consider
other operations on structures, such as direct sums (see Eklof-Mekler [1979] or
Kaufmann [1978a, IIL3.11]). Moreover, Seese [1981b] and Mekler [1984] have
used ordered sums to prove theorems such as Seese's theorems that every ordinal
(α, e) is finitely determinate, and that the J*?(aa)-theory of ordinals is decidable;
see also Section VII.4.

6.2. Preservation of '£?(Q^-sentences by Extensions, and
Related Problems

Among the definability problems that might be raised for JSf(Qi), one that has
received some attention (see, for example, Bruce [1978a]) is:

6.2.1 Question. Classify those sentences φ of £f(Qι) such that whenever 911= φ
and 91 c 33, then 33 |= φ. Such φ are said to be preserved by extensions.

Of course, the Zos-Tarski theorem for first-order logic establishes that the
class of existential sentences is the answer if one restricts to S£ωϋ>. The natural
generalization is the class of quasi-existential or "quexistential" sentences:

6.2.2 Definition (Bruce [1978a]). A formula φ of jSf(Q) is quexistential if it is in
prenex form, with only Q and 3 quantifiers.

One may easily verify, as Bruce has noted, that every quexistential sentence
is preserved by extensions. Although Question 6.2.1 remains open, the natural
conjecture was proved false in Baldwin-Miller [1982] if one restricts to the class
of models of a given theory. The general result, given below, is new and due to
Shelah:

6.2.3 Example (Shelah). There is a sentence φ of i?(βi) which is preserved by
extensions but which is not equivalent to a quexistential sentence.
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Proof. Let φ be the conjunction of:

(a) < is a linear order of the universe such that every proper initial segment
is countable.

(b) <* is a linear order of the universe.
(c) Qx(x = x) -> ϊbc[{y: y < x) is dense for <*].

Then φ is preserved by submodels. This is not difficult to see, since every suborder
of a separable linear order is separable. It suffices to show, then, that —i φ (= φ) is
not equivalent to a quexistential sentence. This, in turn, follows from the existence
of models 91 = (A, <A, <5) and 95 = (B, <B, <%) such that 211= ~iφ and
$5 \= φ, and for every quexistential sentence 0, if 911= 0 then 95 1= θ. We will
construct models 91 and 95 with the following properties:

(l)A (9ϊ, <5) is a non-separable linear order.

(2)A (91, <5) is ωx-dense, that is, it satisfies

Vx Vy(x <* y -• Qz(x <* z <* y)).

0)Λ (% <Λ) is ω r l ike.

(1)B (S? <f) i s a n ωx-dense subset of U of power ω1.

(2)B If a <B b and c <%d then for some e, a <B e <B b and c <%e <% d;

and there is no <β-least element.

(3)β (95, <B) is ω.-like.

Assume for the moment that such models have indeed been constructed.
Then 911= ~iφ and 95 \= φ. In fact, {x: x <B b} is <|-dense for all b eB, by (2)B

above. We thus claim that for every quexistential formula 0(x) and finite partial
isomorphism {<af, bf>: i e /}, if 911= 0(a) then 95 \= 0(b) also. This is easy to show
by induction on complexity of θ. We use (2)B for the 3 step. As to the Q step, if
ai <Aa2 <*•*• <*an-i an<3 911= Qxθ(x,a), then for some j < n there exist
uncountably many x such that 91 N 0(x, a ) Λ f l j < * x < * f l j + 1 (where a0 = — oo
and flΛ = oo). Since almost all these x are <^-greater than every at by (3)^, then
every x with fr, <%x <%bj+ι which is <β-greater than every b}, will satisfy
0(x, b) in 95, by the inductive hypothesis. By (1)B and (3)β above, we have that
95 N Qx0(x, b).

It now remains to construct such models 9Ϊ and 95. (A, <3) is any ωx-dense
cofinal subset of U ωl9 of power ω^ Then <A is any ω^like ordering of A. Also
(J5, < | ) is easy to choose so that ( l ) β holds. The construction of < β so that (2)B

and (3)β hold is left to the reader, with the hint that it proceeds ω steps at a time,
and that it suffices to consider rational numbers c and d in (2)B above. D
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An analogous question is raised in Bruce [1978a] for J£?(aa). One might con-
jecture that the sentences preserved by extensions are the "generalized Σ " sen-
tences, that is, those sentences in prenex form with no universal quantifiers. In
fact such sentences are preserved by extensions (Bruce [1978a, Theorem 3.1]). But
here again equality eludes us. For, Theorem 3.5 of Baldwin-Miller [1982] states
that the class of separable dense linear orders is defined by some sentence φ for
which —i φ is not equivalent to a generalized Σ sentence, and yet Mod(φ) is closed
under substructures.

Of course, there are other preservation questions we might raise, and they are
all open. For example, Bruce has conjectured that by analogy to first-order logic,
a sentence is preserved by unions of ω-chains iff it is of the form Qfxx... Qϊxnφ(x\
where each Qf e {V, Q*} and φ is preserved by extensions. Here again, one direc-
tion is easy. Bruce points out that interpolation properties can be useful in proving
such theorems—see, for example, Section 6.4(1). Thus, let us turn next to the
interpolation problem.

6.3. The Interpolation Problem for Extensions o

Recall that the interpolation property (even Δ-interpolation) fails for i?(βi) ; see
Remark 4.1.2 (vi). However, research has been stimulated by questions such as the
following, which was raised by Feferman and others (also see Makowsky-
Shelah-Stavi [1976, §3]).

6.3.1 Question. Is there an extension of Jέf(Qi) which is countably compact and
satisfies the interpolation property?

Shelah has recently announced that it is relatively consistent with ZFC that
the answer here should be affirmative, and he has also recently shown [1982a] that
every valid implication in J? c f ω (see Section Π.2.4) has an interpolant in ^f(aa). A
topological result of Caicedo [1981b, 1.3] is that interpolation holds for the restric-
tion of if(Qi) to monadic vocabularies. Since space is limited here, we will not
prove any of the (admittedly limited) number of positive results. Instead, we will
indicate some obstacles to the interpolation property by way of presenting a few
examples. This will also provide us with a rationale for becoming more familiar
with the expressive powers of the logics we have been discussing.

6.3.2 Lemma (Badger [1977]; see also Ebbinghaus [1975b]). Let K be a cardinal
and suppose that 91 and 93 are linear orders which are κ-dense, that is, they satisfy
Vx \/y[x < y^> Qκz(x < z < y)] Then 91 and 93 are &*"-equivalent in the K-
interpretation.

Proof. A routine induction on formulas φ of i f ^ω shows that for every partial
isomorphism/from 91 to 93, 91 \=κ </>[s] iff 93 f=κ φ [ / ° s] for every assignment s of
the free variables of φ into domain(/). The key observation here is that if — oo =
a0 < ax < < ak = oo and 91 l=κ Q"x0 --xn- i#(x, a), then for some i < k,
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91 \=κ Q
nχ(/\j<n at < Xj < ai+1 Λ 0(X, a)); and, hence, for all one-one x in A,

91 \=κ (/\j<n at < Xj < ai+1 -• 0(x, a)). We argue similarly for 93. D

6.3.3 Theorem (Based on Makowsky-Shelah-Stavi [1976, Theorem 2.15]).

^nω does not allow ^-interpolation for

Proof. Let X be the class of separable G^-dense linear orders without endpoints.
Clearly, J f is Σ\(^(Q)). Also the complement of Jf is immediately seen to be
Σj(JS?(Q)), once we observe that a dense linear order L is non-separable iffL x L
has an uncountable family of pairwise disjoint open rectangles not meeting the
diagonal (Kurepa [1952]). Certainly, if L is separable, then so is L x L; and, for
the converse, notice that for every maximal family of pairwise disjoint rectangles
not meeting the diagonal {(αi? bt) x (c i5 d^'. i ε /}, {αt : i ε /} is dense.

However, X is not elementary in JSf^J For 21 = (R, < ) is separable, while
93 = (R ω l 5 < ) is not separable, yet 21 and 95 are i f ^-equivalent by Lemma
6.3.2. D

Badger [1977] has shown that £?„" does not allow Δ-interpolation for i f (β 2 ) ,
in every cardinal interpretation. In Badger [1980] one finds that the Beth property
fails for JS?^> i n every cardinal interpretation K with K regular. This partially
generalizes a theorem (and its proof) of H. Friedman [1973], that the Beth property
fails for every ^^SQo)- In particular we can prove:

6.3.4 Corollary (Badger [1980]). There is an implicitly definable relation of j£?(Q)
which is not explicitly definable in 5£^ (in the ω ^interpretation).

Hint of proof We may combine the proofs of Corollary 6.3.4 and of Theorem
XVIII.4.3, which then say that under suitable conditions the Beth property implies
interpolation. Roughly speaking, we may show by induction on formulas that
for any two tree structures as in the proof of Theorem XVΠI.4.3, every map
which is a partial isomorphism from a subtree onto a subtree (and appropriately
respects the tree order) actually does preserve <£ ̂ -formulas. D

Following is a natural example which shows that the Δ-interpolation property
does not imply the interpolation property. The original version appears in Theorem
Π.7.2.6 and is due to H. Friedman. Although that result involves infinitary logic,
the following one, in fact, is based on it.

6.3.5 Theorem. Δ(JSf < ω ) does not allow interpolation (or the Robinson property) for

Proof If K = ω or K = ωγ then the class of linear orders of cofinality K is a PC
class of i f (β), as we simply assert that X is a cofinal subset which is countable (if
K = ω) or is α^-like (if K = ω x). Since these classes are disjoint, it suffices to find
two linear orders which are Δ(JSf< ω)-equivalent, and whose cofinalities are ω and
ωv Choose a structure 91 = (Ra, ω2, e), where (Λα,ε) satisfies the same Σn-
sentences with parameters in (Ra, e) as does (V, e), by the reflection theorem; n
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should be sufficiently large so that the definitions of satisfaction for Δ(Jέf<ω), and
of ω2 should be, say, Σ π _ 1 0 (to be safe). Thus, let us say that ω2 = PA. Choose
93! -< 91 and 332 -< 9ϊ such that ωx + 1 c Bι n B2, (P®1, G) has cofinality ω, and
(P®2, G) has cofinality ωx. That done, our proof will be complete once we have
proved that for all formulas φ of Δ(if< ω):

(*) Let £ -< 91, where ωx + 1 c C. Then, for all a in PG and all X l 5 . . . ,

(PG, G, AΊ n C,..., Xn n C) |= φ(a) iff (ω2, G, X 1 ? . . . , *„) |= 0(a).

To prove (*) it suffices (see the proof of the result in Theorem Π.7.2.4(i)) to show
that for all Σ formulas θ of J^< ω, if Xe C (X <= ω2

<ω) and (ω2,e,X) |= 0(a)
then (PG, G, X π C) N 0(a). Thus, suppose that (ω2, G, X) N 3 7ψ(a, 7), where
ψE^<ω. Then, by choice of 91, 91 N 37"(P, G, X, 7) |= φ(a, Yy\ Since £ < 91
we have 911= "(P, G, X, 7) 1= ι/̂ (a, 7)" for some 7 eC; and then again, by choice
of 91, it follows that (ω2, e, X, 7) \= φ(a, 7). Hence, it suffices to prove (*) for
all φeJ£<ω. However, this is merely a straightforward induction on φ and is
therefore left to the reader. D

For if<ω, we have just presented counterexamples to interpolation involving
separability of linear orders and countable versus uncountable cofinality, notions
which are elementary in i?(aa). However, the notion of whether an ω rlike tree
has a branch is elementary in if < ω but not in if(aa). This was observed by Shelah,
and the relevant details are supplied in Makowsky-Shelah [1981]. In this con-
nection, the reader should also see Ebbinghaus [1975b] for a related theorem.
For an extension see also Example XVII.2.4.5 and Proposition XVΠ.2.4.6.

6.3.6 Theorem, if(aa) does not allow interpolation for if(β). In fact, under MA +
-iCH, if(aa) does not allow ̂ -interpolation for if(β).

Hint of Proof We find two ranked trees of height ωλ (or α^-like) which are if(aa)-
equivalent, but such that one has a branch and the other does not. More precisely,
we find if(aa)-equivalent structures in the following disjoint PC classes of ^(Q):
the class of α^-like ranked trees satisfying 3X ("X is an uncountable linearly
ordered subset"); and the class of models of 3/("/is an order-preserving map into
a countable linear order"). According to a theorem of Baumgartner-Malitz-
Reinhardt [1970, Theorem 4], under MA + πCH, these classes are comple-
mentary in the class of α^-like ranked trees. D

Shelah [1982a] has announced the relative consistency of Δ-interpolation of
if(aa) for ^(Q). We should also note that by a theorem of Caicedo [1981b, 4.1],
Theorem 6.3.6 implies that if ooω(aa) does not allow interpolation for &(Q).

Question 6.3.1 might be asked for the Robinson property rather than for the
interpolation property. As to that case, Mundici [1981c] used uncountable vocabu-
laries to supply a negative answer. See also Section XVIΠ.4.1 for a generalization.
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6.4. Interpolation and Preservation Revisited:
Monotone Structures

Consider the logic of monotone structures (2Ϊ, q) as defined in Section 2.3; that
logic has nice properties, including not only compactness and axiomatizability
(see Section 2.3), but also interpolation. Interpolation was first proved inde-
pendently by Shelah (see Bruce [1978a; 3.1, 3.2]), Sgro, and Makowsky-Tulipani
[1977, Corollary 3.1]. The reader should also see Chapter XV for related theorems
about topological logics. A particularly straightforward way of obtaining com-
pleteness and interpolation theorems, even for countable fragments of ifωiω, is
to use consistency properties: see Section VIII.3. We add the following clause: if
Qxφ and Q*xψ are in s where s belongs to a consistency property S, then for some
c, 5 u {φ(c\ ψ(c)} E S. The details involved in this development are straight-
forward for the reader who is familiar with consistency properties.

Some Directions Radiating from the Study of the Logic of
Monotone Structures

(1) Guichard [1980] has used consistency properties to generalize Feferman's
many-sorted interpolation theorem [1974a] and its application to preservation
theorems, so as to obtain a preservation theorem for bounded quantifiers Qyx ("for
many x e y"), such as are studied in Barwise [1978b].

(2) Interpolation and countable compactness theorems can be proved for
the logics JSP (̂Q), whose structures are of the form (A,... q^), where q#
= {X c ω: ω - X $^}, with <F being any given filter on ω which properly
contains the cofinite filter; see Kaufmann [1984a]. There seems to be a connection
with uniform validity (as discussed in Kueker [1978]) which has not yet been
fully clarified although related work has been undertaken by S. Buechler and
D. Kueker.

(3) Finally, we will mention a paper by Ebbinghaus-Ziegler [1982], a paper in
which the quantifiers Qn (as discussed in Section 5) are studied for monotone
structures (9Ϊ, q\ especially when q is an ultrafilter on A. It is proved there (Theorem
1.1) that the following are equivalent, where we write JS?U(QΠ) to indicate our
restriction to ultrafilters:

(i) ifu(βπ) is compact;
(ii) ^v(Qn) satisfies interpolation;

(iii) n = 1.

The emphasis in this chapter has been on logics involving cardinality Klβ

Although monotone structures may provide some additional understanding of
the area, their application to logics with cardinality (and related) quantifiers seems
to be limited. Methods appropriate to higher cardinals are studied in the next
chapter.

We will conclude this section with a problem: To find an extension of
which has a Lindstrόm-type characterization (in the sense of Chapter III).
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7. Appendix {An Elaboration of Section 2)

In this section we will present here the precise definitions and the proofs that were
promised in section 2. We will begin by considering

7.1. Concrete Syntax

In the ensuing discussions, we will frequently make use of the notation i f =
(J τ !£(τ). This clear we now present

7.1.1 Definition. A logic i f has concrete syntax if the following properties hold.

(i) ^ ω J t ) ^ ^ ( τ ) for all τ, a i*d furthermore ££ is closed under first-order
operations ~i, v , 3 (and there is unique readability). If τ is countable, so is <£(τ).
V, Λ , ->, and <-* are defined symbols. Finally, τ x ^ τ 2 implies that £^{τx) £Ξ if(τ 2 ).

We allow the map τ i—• if(τ) to be a partial map, provided that if(τ u C)
exists whenever <£{τ) exists and C is a set of constant symbols.

(ii) There is a map frvar which assigns a finite set of variables to each formula
φ of if. Moreover, for φ e i f ω ω , frvar((/>) is the set of free variables of φ. As usual, a
sentence is a formula (/> such that frvar(0) = 0. Finally, the map frvar obeys the
obvious rules for —i, v , 3.

(iii) For each formula φ of i f and function/mapping a finite set of variables to
constants, there is a unique formula φ{f\ which has the usual meaning (substitute
f(υ) for v) if φ is atomic. If φ e if(τ), then </>(/) e i f(τ u range(/)). Moreover,

(a) (3vφ)(f) =
13υ(φ(f - {<!>,/(!>)>})), if t> e dom(/).

(b) (-I0X/) = -ι0(/), (</> v M / ) = </>(/) v ^(/).
(c) ("Restriction rule of substitution") φ(f) = </>(/Γfrvar(0)).
(d) φ(f)(g) = φ(/u gf), if/u gf is a function.
(e) φ(0) = φ

(iv) There is a notion I- ̂ ( τ ) of i f (τ)-proof satisfying the following properties:

(a) An if(τ)-proof is a finite sequence of i f (τ)-formulas. We write Γ f- ^ ( τ ) φ
to indicate that an i f (τ)-proof from Γ c <£(%) exists. That is to say, each
formula in the proof is either a member of Γ, or an axiom of !£(τ) (where
the axioms include those given below), or else follows from previous
formulas in the proof by modus ponens. We also require that whenever
Γ h ^ ( τ u { c } ) φ({(x, c>}) where Γ u {φ} c i^( τ), then Γ μ^ ( τ ) Vxφ. That is,
universal generalization is a derived (and not an explicit) rule.

(b) Every tautology in <£{τ) is an axiom of !£(τ\ as is every if(τ)-formula

φ 0
(c) Every if(τ)-formula iByφ(f) -• ~i0(/u {< ,̂c>}) is an axiom of if(τ),

when y ^ dom(/).
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(d) Every equality axiom of first-order logic which belongs to !£ (τ), is an
axiom of Jέf (τ). And, for all φ e J^(τ), and / and g such that / and g map
variables to constants in τ, where dom(/) = dom(g), we have l-^ ( τ ) </>(/) Λ

Λ*Edom(/) f(χ) = g(χ) -+ Φ(g)>
(e) If Γ u {φ} c <£ (τ) and t ' = t u C for some set C of constants, then

The final condition for a concrete syntax is:

(v) There is a "rank function" r from S£ into the ordinals such that r(φ) is
less than each of r(3xφ\ r(φ v ψ), r(~ι ψ).

7.1.2 Remark. For the purposes of Section 2.3, we note that we may speak of a
"concrete syntax" even if we omit all of the semantics of a logic. Since all of the
results below rely only on the first-order semantics of weak models anyhow, they
also make sense and remain true when the semantics is removed.

7.1.3 Proof of Soundness (Proposition 2.2.1). Assume that \-^(τuC)Φ(f\ where
range(/) n frvar((/>) = 0 . Using the derived rule of universal generalization, we
have h-^ ( τ u C ) V*! . . . VxBφ, where dom(/) = ( x l 9 . . . , xn). Then h-^ ( τ ) Vxt

VxMφ, by Definition 7.1.1 (iv) (e). Thus, we have reduced to the c a s e / = 0 . But
this is a trivial induction on the length of the proof, since modus ponens is the only
rule of inference and every axiom is valid in 91*. D

7.2. Proofs of the Weak Completeness Theorem and
Its Extensions

7.2.1 Proof of Theorem 2.2.3 (Weak Completeness Theorem). The argument here
is a straightforward Henkin argument. However, it should be observed that we do
not attempt to control what sentences hold in 91* other than, of course, those of the
form φ*. Since τ is countable, so is <£(τ) by Definition 7.1.l(i). Now, let C be a
countable set of constant symbols disjoint from τ, and let {<</>„,/„>: ft < ω}
enumerate all <</>,/> such that φ is an if(τ)-formula and / : frvar(0) -> C. By
proceeding in the usual way, we may form finite theories Tn of i f (τ u C) such that
T u Tn is i f (τ u C)-consistent, such that for all n:

(i) </>„(/„) eTπ + 1orπ(/>„(/„) e T B + 1 ;
(ii) if φn is 3yφ and φn(fn)e Tn then ψ(fv {(y,c>})eTn+1 for some c e C

Let Tω = ( J n e ω Tn. Observe that Tω is deductively closed. Form the Henkin
model from equivalence classes from C ([c] = [d] iff "c = d " e Tω). For
y(τ)-formulas φ, define

(*) 91* μ= φ [ / ] iff φ(/) e Tω, whenever / : frvar(^) -> C,
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where f(x) = [/(x)]. For j£?(τ)-formulas φ which are neither atomic, nor a
negation, nor a disjunction, nor of the form 3xφ, define

where

dom(/) = {vio,..., t ^ . J = frvar(0) (i0 < < /„-!>

and

/(i?J = c l k (all * < * ) } .

This is well defined by the equality axioms for j£f, and we see that (*) holds
for all such φ also. As usual (using the rank function r(φ) so that we can carry
out the induction), (*) holds for formulas ~\φ and φί v φ2. The latter uses
the "restriction rule of substitution," which is given in Definition 7.1.1(iii)(c)
and which we henceforth use implicitly. Finally, for the 3 step, suppose that 91* N
3yψlf]> w h e r e d o m ( / ) = ϊτvar(3yφ), s o yφdom(f). C h o o s e ceC s u c h t h a t

91* 1= Φίfu Ky, M>}] By the inductive hypothesis (since r(φ) < r(3yφ)\
*K/ U {(y>c}})ε Tω. Hence, (3yφ)(f)θ Tω. For otherwise, we would have that
—\3yφ(f)e Tω, so that by an axiom and modus ponens, ~\φ(fu {<y, c>})e Tω,
contradicting consistency of some Tn. For the other direction of (*), suppose that
(3yφ)(f) E Tω9 where/: frvar(</>) -• C. Then for some n, we have that ((3yφ)J) =
(φn,/„> holds. Thus, by construction, there exists ceC such that φ(f u {<)>, c>})
e Γn + 1. By the inductive hypothesis, 91* 1= φ(fu {<y, [c]>}). So, 91* 1= 3yφlΠ.

By construction, T c Tω and every if(τ) axiom belongs to Tω. By (*) it now
follows that 91* is a weak model of T. ϋ

7.2.2 Proof of Weak Omitting Types Theorem (2.2.5). The proof of the weak
completeness theorem given above will suffice here provided we mix in some
additional steps as follows. We enumerate (in type ω) all pairs <Σ,/> such that
Σ = Σπ for some n < ω and/maps xn to C. At stage (n + 1) we guarantee that
91* (= —i σ [ / ] for some σ e Σ. By (*) in the proof of Theorem 2.2.3, it suffices that
~ισ(/)e Tn+1 for some σ e Σ . But this can be easily achieved by using the local
omitting hypothesis, since Tn is consistent with T. D

The following technical lemma is used in Sections 3, 4, and 5, to extend weak
models. It is the precise version of Lemma 2.2.6.

7.2.3 Lemma (Extension Lemma). Assume the following hypotheses, where 5£ has

concrete syntax.

(i) τ, τ', and D are disjoint countable vocabularies.
(ii) 91* is a countable weak model for J^(τ), and D 3 DA = {da: a e A}.
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(iii) T is an <£{τ u τ' u D)-consistent set of J^(τ U T ' U D)-sentences; and in
addition, T = {φ(f): <</>,/> e Γ} for some Γ such that for all <0,/> e Γ,
φ G JS?(τ u τ') and range f c D.

(iv) For all assignments s in A, set s = {<x, ds(x)}: x e dom s}; then

(v) T j£?(τ u τ' u D)-locally omits sets Σn(fn) = {σ(fn): σ e Σ J /or a/Z π < ω,
where Σn has free variables xn and yn (disjoint) andfn: yn -> DA. Observe that
yn may be infinite.

Then there exists a countable weak model 93* for JSf(τ u τ') such that
91* -<W93* [τ+, and moreover there exists a function g:D-+B such that
g(da) = afor all as A and 95*N0feo/] for all < 0 , / > G Γ . Finally, 95* N
Vxπ v {-ισ: σ e Σπ} [g o/J /or α// w < ω.

Proo/ The proofs of the weak completeness and weak omitting types theorems
show that if we add a countable set C of new constant symbols, we may obtain an
££(τ u τ' u D u C)-theory 7^ with the following properties.

(1) T <= Tω.

(2) For all φ e if (τ u τ') and all maps /: frvar(0) -> D u C, 0(/) G Tω iff

(3) For all 3xφ e J^(τ u τ') and /: frvar(3x0) ^ D u C , if 3xφ(f) e Γω

then φ(/u {<x, c>}) G Tω for some ceC.

(4) For all/: x ^ D u C , -ισ(/π u / ) G Tω for some σ G ΣM.

Form the Henkin model 95* from D u C A s in the proof of Theorem 2.2.3, (2) and
(3) together imply that

(*) 8 * M [ / ] iff Φ(f)eTω

for all 5£(τ u τ')-formulas φ and functions / : frvar(φ) -> C u D, where /(x) =
[/(x)]. In particular, since T £ Tω by (1) above, 95* 1= φ[f~\ for all <(/>,/> G Γ,
by (iii). Now, if 9ί* N ψ[s], then <φ, 5> e Γ so 95* 1= φ[s]. Hence, by identifying
[d j and α for all αeA,we obtain I = s and conclude that 91* <w 95* f τ + . Finally,
if we set g(c) = [c] for all ceD, then, by using (4) to see that each Σn is appropriately
omitted, we obtain the desired conclusions. D




