
Chapter II

Extended Logics: The General Framework

by H.-D. EBBINGHAUS1

The contents of this chapter are intended to serve as preparation for the more
specific or more advanced topics of the chapters that follow. We will pay equal
attention to general notions and concrete systems. The first part of the material
is concerned with basic notions and examples. In Section 1 we define general
logical systems. Section 2 contains a description of numerous concrete examples
together with an elaboration of their essential properties—as far as this can be given
without greater effort. Section 3 is concerned with elementary and projective classes
as a tool to compare the expressive power of logical systems. Applications include
the systematic use of PC-reducibility for compactness proofs. In Section 4
numerous preceding examples are systematized by the notion of the Lindstrόm
quantifier, and an analogue of the Ehrenfeucht-Fraisse characterization of
elementary equivalence for logics with monotone quantifiers is proved. The
second part of the chapter is concerned with a more systematic representation of
central model-theoretical notions, divided into three groups around compactness
(Section 5), Lόwenheim-Skolem phenomena (Section 6) and interpolation
(Section 7).

We assume that the reader is acquainted with basic notions and facts of first-
order model theory. In general we will consider only one-sorted structures;
however, since in some cases many-sortedness leads to a methodological enrich-
ment even for one-sorted model theory (see, for instance, Examples 7.1.2), we
give the definitions for the many-sorted case (provided the many-sorted formula-
tion is not too tedious and is of practical value). If not stated otherwise, examples,
results and proofs refer to the one-sorted version. In most cases it is not hard to
give the many-sorted extensions. For example, this can be done by reduction to
the one-sorted version using additional predicates ("Unification of Domains", see
Feferman [1968a, p. 13]). However, there are exceptions and the warning following
Definition 2.1.1 should be consulted.

1 I would like to thank the co-authors for their advice, suggestions and corrections. Special thanks
go to Gert H. Muller for all his support and stimulating encouragement and to Jonathan Stavi whose
thoughts on the subjects have influenced my views and are apparent particularly in Sections 3.2 and 5.3.
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1. General Logics

What is a logic? The answer to this question is a pragmatic one: we collect some
basic features common to well-known logical systems and use them as defining
properties of a logic. In order to cover all important systems, we would have to
be rather general. On the other hand we wish to provide convenient definitions to
work with. In order to escape this dilemma we do not fix a single definition, but leave
it to the working logician to choose a suitable notion according to the needs of
specific situations. Having thus created the general framework, we then list some
further properties of logics that serve as a means for describing numerous im-
portant examples of stronger logics in Section 2.

LI. The Framework

For the purposes of exposition, we shall restrict ourselves to notions of logics
based on conventional algebraic structures. For natural generalizations to other
structures such as topological ones, see Chapters III and XV. We begin by listing
our notational conventions and by recalling standard concepts from model
theory.

Many-sorted vocabularies τ, σ,... are non-empty sets that consist of sort
symbols s,..., finitary relation symbols P, R,..., Unitary function symbols /, g,...
and constants c,d,... . Each constant and each function symbol of a vocabulary τ
is equipped with a sort symbol of τ as are the argument places of relation and
function symbols of τ.

Let i^bea binary relation symbol whose argument places are equipped with
sort symbols s2, Si, respectively,/be a unary function symbol equipped with s2,
whose argument place is equipped with sί9 and c be a constant equipped with sx.
Then

(*) τ = {sus2,s3,RJ,c}

is a vocabulary. The τ-terms are built up and equipped with a sort symbol in the
obvious way. For instance,/(c) is a τ-term. It is assigned the sort symbol s2, the
symbol with which / is equipped. f(f(c)) is not a τ-term because f(c) is not
equipped with s^ In first-order logic the atomic τ-sentences are of shape Rtot1

where t0, t1 are τ-terms equipped with s2, sί9 respectively, or of shape t0 = tγ

either for arbitrary τ-terms ί0, tι or—a variant that we shall adopt—only for
τ-terms to,t1 which are equipped with the same sort symbol.

We use self-explanatory denotations of vocabularies such as

τ = {5,..., R,...,/,..., c,...}.

In the one-sorted case we drop the sort symbol, writing for instance
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A many-sorted structure 2ί of vocabulary τ (called a "τ-structure") possesses
non-empty domains AS9..., corresponding to the sort symbols s,... of τ, and
interprets the other symbols in τ as usual. The elements of As are called the ele-
ments of sort s of 21.

For instance, with τ as in (*) above, a τ-structure 21 consists of domains ASί,
AS2, AS3, of a subset Rm of AS2 x ASι, a function/2 1: ASί -• AS2 and an element

We denote structures in obvious ways such as

31 = 0 4 , , . . . , Λ β , . . . , / « . . . , c « , . .)

in the many-sorted case, and

in the one-sorted case. The class of τ-structures will be denoted by Str[τ], and for
any structure 21 we let τ^ be the vocabulary of 2Ϊ.

If σ c τ and 21 e Str[τ], then we define 21 [ σ, the σ-reduct of 21, to be the
σ-structure that arises from 21 by "forgetting" As for s φ σ and R**9... for R,... φ σ.
If τ is as in (*) above, then for instance

(ASί, AS2, XS3, * * , / * , *") Γ {si, s2, R} = (A8ί9 AS2,

Let τ be one-sorted, 21 e Str[τ], and C ^ A. C is τ-closed in 21 if C # 0 , if
moreover c31 e C for c e τ, and C is closed under/ 2 1 for/ e τ. If C is not empty,
[C] 3 1 denotes the substructure of 21 generated by C, sometimes also written 211C
if C is τ-closed in 21. If P e τ is unary, σ c τ, and P^σ-closed in 21 f σ, we can form
the structure (21 [ σ) | P a . This gives what is called a relativized reduct of 21.

A map p: τ -• σ is called a renaming (from τ onto σ) if it is a bijection from τ
onto σ that maps sort symbols onto sort symbols, relation symbols onto relation
symbols of the same arity, function symbols onto function symbols of the same
arity, and constants onto constants such that the sort symbols the latter ones are
equipped with correspond via p. For instance, if R e τ is as in (*) above, then the
argument places of p(R) are equipped with pisj, p(s2\ respectively. Given a
renaming p: τ -> σ and a τ-structure 21, we can "rename" 21 by p, thus obtaining
the σ-structure 93 = 2IP with Bp(s) = As for s e τ and p(§)β = §91 for the other
symbols § from τ.

With this preparation, we can now come to the central notion of this chapter.

1.1.1 Definition. A logic is a pair (jSf, \=&\ where ££ is a mapping defined on
vocabularies τ such that S£\τ\ is a class (the class of <£-sentences of vocabulary τ)
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and \=<? (the i?-satisfaction relation) is a relation between structures and if-
sentences. Moreover, the following properties (i)-(v) hold:

(i) // τ c σ, then JSf [τ] <= j ^ [ σ ] ;

(ii) // 9ί |= ̂  φ, then <p £ i f [ τ β ]
(iii) Isomorphism Property. If 91 \=# φ and 33 = 91, then 93 1=^ φ.
(iv) Reduct Property, lϊ φe !£ [τ] and τ ^ %, then

9 I t = ^ φ iff 91 [τ\=<?φ.

(v) Renaming Property. Let p: τ -> σ be a renaming. Then for each φ e $£[τ]
there is a sentence, say φ p, from i f [σ] such that for all τ-structures 91,

iff

Remark. The renaming property expresses the following simple fact: Given an
^-sentence φ of vocabulary τ = {s,..., R,...}, then the symbols (and the sorts)
in φ can be renamed in any reasonable way p, and the resulting {p(s),..., p(R),.. .}-
sentence φp has, for any τ-structure 91, the same meaning in the "renamed"
{p(sl..., p(R\ .. .}-structure 93 = ( B p ( s ) , . . . , p(R) β , . . .) as <p has in 91.

The reader will have noticed here that we did not incorporate conditions con-
cerning rules of inference or other "logical" properties in our definition. Hence it
would seem more appropriate to use a term such as model-theoretic language (see
Feferman [1974b]) instead of the term logic. However, the latter is shorter and has
become customary. (See also Chapter I for a discussion concerning the choice of
this terminology.)

In order to avoid overburdening the notation, we often denote logics simply
by $£, $£*,... and write " \= " instead of " 1=^". Basic model-theoretic notions are
introduced as usual. For instance, if φ e ££\τ\ we write Mod^(φ) (or simply
Mod(φ), if τ and ^ are given) for {91 e Str[τ] 1911= ̂  φ} and for Φ u {φ} c j£?[τ]
the if-consequence relation is defined by

Φ \=# φ iff for all 916 Str[τ], 91 \=<? Φ implies 91 \=<? φ.

Two τ-structures 91, 93 are ^-equivalent, 91 =<? 93, iff for all φ e i^[τ], 91 \=<? φ iff
93 \=<? φ. We write Th^(9I) for {φ e i f [ τ j | 9 1 \=<? φ}\ it is called the &-theory
of 91.

1.1.2 A First Variant. For some purposes it is especially convenient to have
variables and formulas available in a logic. This can be accomplished by a natural
generalization of Definition 1.1.1: For each sort symbol s we specify a class of
variables Xs, . . . for objects of sort s and replace i£ by two functions Sent^ and
Form^, where, for all τ, we let Form^[τ] be the class oί <£-formulas of vocabulary
τ and Sent^[τ] be the class of <έ'-sentences of vocabulary τ. Exact definitions, even
including that for the free occurrence of variables, can be obtained along the lines
of Definition 1.1.1 in a canonical way. For the general theory we will usually
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assume that logics are given without variables, although in most concrete examples
we will follow the definition just sketched. Since free variables behave like con-
stants, there are only minor differences between the two variants.

The traditional first-order logic, 5έ)

ωω, can be regarded as a logic in the for-
going sense. Moreover, it is also a logic in the sense of Definition 1.1.1, if, for any
τ, we define J^ ω ω [τ] to be the set of first-order sentences of vocabulary τ. Similarly,
second-order logic, J^2, weak second-order logic, 5£wl, infinitary logics such as
ifωi0J or J^ooω and logics with cardinality quantifiers such as ^ ω ω ( β α ) (where β α

is interpreted as there are Kα many) are logics in both sense, with or without free
variables.

1.1.3 A Second Variant. The so-called ω-logic arises from first-order logic by fixing
a vocabulary {s, < } and allowing only structures 91 such that {s, <} ^ τm and
SΆ Γ {s, < } is isomorphic to the standard structure (ω, < ) of the ordering of the
natural numbers. Of course ω-logic does not fit into the present framework because
the renaming property fails. In order to cover it by a notion of logic, we are led to a
generalization of Definition 1.1.1: In addition we demand that a logic J£? have a
further component, namely a map Str ̂  defined on vocabularies where, for all τ,
we let Str^[τ] be a class of τ-structures, the τ-structures admitted for j£f. Then we
modify the basic properties of Definition 1.1.1 in the obvious way (see Section 2.6).

7.2. Basic Closure Properties

Practically all investigations of logics need stronger assumptions than those of the
last section. The following closure properties are met by most of the well-known
systems and provide much technical facilitation.

1.2.1 Definition. The purpose of the basic closure properties is to guarantee that
we have at least the expressive power of first-order logic. We have:

(i) Atom Property. For all τ and all atomic φ ε J^ω ω[τ] there is a sentence
φe£C[τ] such that

(ii) Negation Property. For all τ and all φ e S£[τ] there is a sentence φ e .Sf [τ]

such that

Mod^ι/0 = Str[τ]\Mod^(φ);

(iii) Conjunction Property. For all τ and all φ0, φx e i f [τ] there is a sentence
φ e <£ [τ] such that

M d ^ ( ) n
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(iv) Particularization Property. If c is of sort 5, c e τ, then for any φ e S£\τ\
there is a sentence φ e if [τ\{c}] such that for all (τ\{c})-structures 91,
911= φ iff (31, α) |= φ for some ae As.

If if has the boolean property, that is, (ii) and (iii) together, then we use ~Ί φ,
φQ A φx to denote the required sentence φ. If if has the particularization property,
we write 3cφ for a corresponding ^.

For technical convenience we formulate the following properties only in the
one-sorted case.

1.2.2 Definition. All the basic examples of logics above (but not ω-logic) allow
relativizations in the sense of:

Relativization Property. If c φ τ u σ, χ e if[σ u {c}] and φ e 5£[τ], then there
is a sentence φ e !£[τ u σ] such that for all (τ u σ)-structures 95, if the set
χ® = {b G B|(S, b) t= χ} is τ-closed in S, then

© μ= ιA iff (33 rτ)|χ*Nφ.

Intuitively, ^ is the (more exactly, it is a) relativization of φ to {c\χ(c)}, often
written as φ{c |*(c)} or simply φp, if χ = Pc.

If constants are present, relativizations can cause difficulties. For instance, if a
vocabulary τ contains constants, it is impossible to represent two τ-structures
with distinct domains as relativized reducts of a third structure. For the usual
logics this difficulty can be overcome, because one can eliminate constants via
descriptions by unary relations. We formulate this in a general context, giving an
even stronger version that is needed on various occasions: the substitution property.
In the simplest case this property guarantees that for any σ, τ the following holds2:
If Rφτ is n-ary and φ(c)eJ£[a u {c0,..., cn_1}\ then for every φe i? [τ u {R}~\
there is φ[R/Acι̂ (c)] e i f [ τ u σ ] with the meaning

3K(Vc(£c~ιKc)) Λ φ).

Similarly for rc-ary/ φ τ and constants c φ τ, where for instance φ[f/λccφ(c, c)]
has the meaning

and φ[c/λdφ(dy] has the meaning

d^ φ(d)) A ψ).

1.2.3 Definition. In generality i f has the substitution property iff for any τ, τ' with

τ c t', if φ e J^[τ'] and, for all R , . . . , / , . . . , c , . . . e τ'\τ, there are given predicates

2 We use a,..., c,..., x,... to stand for finite sequences of elements, constants, variables, respectively,
of appropriate length.
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φR(cR\ ... then there exists an if-sentence that arises from φ by simultaneously
replacing R,... by λcR φ(cR\ . . . , respectively.

It is easy to give a more precise formulation of this definition and to see that
any logic <£ with the atom property and the substitution property allows elimination
of function symbols in the following sense: If σ arises from τ by replacing any / e τ,
where/is ft/-ary, and any c e τ by new relation symbols Rf and Rc of arity (nf + 1)
and 1, respectively, then for each φ e i f [τ] there exists φ e J*?[σ] such that the
σ-models of φ arise from the τ-models of φ by replacing the functions and constants
by their graphs. A similar consideration shows that the substitution property
yields the renaming property, at least in the one-sorted case. The many-sorted
version needs a diligent treatment of sort symbols.

Logics satisfying the properties given in Definitions 1.2.1 to 1.2.3 are well-suited
for general investigations, and we call them regular logics. A regular logic contains
for each first-order sentence φ a sentence φ of the same vocabulary and with the
same models. When working with such a logic, it is convenient (and will be done
tacitly) to assume that φ itself can be taken as such a φ.

Further basic properties of logics can be of value in specific situations. One
can, for example, demand that for any if-sentence ψ there is a smallest τ = τψ

such that φ ε <£ [τ] ^occurrence property"). Concerning questions of effectiveness
it is reasonable to assume that τφ exists and is finite. In order to have precise
definitions of such notions for the examples that follow, we complete this section
with a translation of crucial properties known from first-order logic into our
general framework. More detailed definitions will follow in Sections 5 through 7.

1.2.4 Definition. Let i^ be a logic. Then

(i) For an infinite cardinal K, i f is κ-compact iff for all τ and all Φ ^ i f [τ]
of power < K, if each finite subset of Φ has a model, then Φ has a model,

(ii) ^ is compact iff 5£ is ^-compact for all infinite K.
(iii) !£ is effective iff for all τ ^ HF (the set of hereditarily finite sets),

to finite

and for all τ 0 e HF, ^[Xo] is a recursive subset of HF. (Of course, it is
the usual encoding of first-order formulas by hereditarily finite sets that
leads to this definition.)

(iv) 5£ is effectively regular iff ^£ is regular and effective and all regularity
properties are effective. For instance, effectiveness of the negation
property means that for each τ 0 e HF there is a recursive function
~Ί : ^[τo] -• ̂ ITQ] such that for any φ e J£[τo\ ~^(φ) is a negation
of φ.

(v) <£ is recursively enumerable for validity iff ^£ is effective and for all
τ 0 e HF the set {φ e i f [τ o ] | 1= φ} is recursively enumerable,

(vi) !£ is recursively enumerable for consequence iff ^£ is effective and for all
τ 0 e HF and all recursively enumerable subsets Φ of <$f[τo] the set
{φ e i f [ τ o ] | Φ \= φ} is recursively enumerable.
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(vii) 5£ has the Lowenheίm-Skolem property (down to K) iff each satisfiable
5£-sentence has a model of power <tto(<κ). (Here, the power of a
τ-structure ?l is defined as \Λ\ in the one-sorted case and as Σseτ \ΛS\
in the many-sorted case.)

(viii) 5£ has the Craig or interpolation property iff for all τ 0 , τί: if φt e i f [ τ j
(i = 0, 1) and φ0 \= φ l 9 then there is an interpolant, that is, a sentence
φ e 5£[τ0 n τ x ] such that φo\= φ and φ \= φί (provided—in the many-
sorted case—that τ 0 n τ x contains at least one sort symbol),

(ix) S£ has the Beth property (that is, $£ satisfies Beth's definability theorem)
iff for all τ, all symbols § from τ different from sort symbols and all
φ e i f [τ], if § is implicitly defined by φ, then § is explicitly definable
relative to φ.

The notions of implicit and explicit definability are given, say for unary R
according to the following definition.

1.2.5 Definition, (i) R is implicitly defined by φ, if every (τ\{#})-structure has at
most one expansion to a τ-structure satisfying φ.

(ii) R is explicitly definable relative to φ, if for a new constant c of the same
sort s as the argument place of R, there is a sentence φ(c) in i f [(τ\{K}) u
{c}] such that for all τ-structures 9Ϊ with 911= φ one has

Intuitively this last means that

Inspection shows that the usual proof in i f ω ω of Beth's theorem via the inter-
polation theorem needs only the regularity properties of S£ωω given by (i)-(v)
in Definition 1.1.1 together with the basic closure properties given in Definition
1.2.1. Hence, any regular logic S£ with the interpolation property has the Beth
property. This simple fact may be considered as the first theorem of abstract
model theory that we have met. And, of course, there is also a first problem:
Under what conditions can one conclude that the definability property yields the
interpolation property? For an answer, the reader is referred to Section XVIII.4.

Historical Remarks. The impetus to treat general logical systems goes back to
Mostowski [1957]. Definitions similar to the ones above were given first by
Lindstrόm [1969] and H. Friedman [1970a]. Barwise [1974a] develops a more
systematic approach in a categorical framework. A fairly general definition
covering, for instance, topological logics is given in Mundici [1984b]. A thorough
discussion of properties of logics—from basic ones to more specific ones—can be
found in Feferman [1975].
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2. Examples of Principal Logics

The study of general logics should provide us with means to investigate concrete
logics. On the other hand the study of concrete systems can indicate paths that
should be followed in the abstract theory. Led by this insight, we now briefly
describe numerous systems beyond first-order logic and sketch their most im-
portant features. According to our agreement we restrict ourselves to the one-
sorted case. An exception is the higher-order case in Section 2.1. More details
can be found in Chapter VI.

2.7. Logics of Higher Order

Among the possible higher-order logics, we will restrict ourselves to those of just
the next level.

2.1.1 Definition. Second-order logic, J£?2, is built up as usual, allowing for each
sort s quantification over rc-ary relations on the domain of sort s.

Obviously, if2 is regular. Its expressive power, however, contrasts with the
fact that practically all useful model-theoretic properties of first-order logic fail.
Moreover, because of our weakness in governing the notion of subset, we quickly
run into set-theoretical dependencies as well. For instance, via a suitable formula-
tion of the continuum hypothesis (CH), one can obtain an 5£2-sentence that is
valid iff CH holds. Nevertheless the situation is not quite hopeless since many of
the logics developed up to now can be considered as parts of <£2. Hence investiga-
tions of stronger logics can be seen as aimed at providing a model-theoretic
treatment for more and more of <£2. In particular, Chapters XII and XIII will
demonstrate that it is even possible to venture into the "real realm" of second-
order logic.

Warning. We are usually correct in taking it for granted that properties of a logic
do not change if we pass from the many-sorted case to the one-sorted case or vice
versa; however, the interpolation property does fail for $£2 in the two-sorted case,
even though it is trivially true in the one-sorted case. The proof uses a far-reaching
method that goes back to Craig [1965]. A version of it is given in Section 7.3,
and a systematic treatment can be found in Section XVII. 1.2.

2.1.2 Definition. Weak second-order logic, J^w2, in contrast to if2, has the relation
variables ranging only over finite relations.

It would appear that S£w2 deprives the notion of subset of its teeth. In i?w 2 ,
however, one can easily express the notion of finiteness, because the finiteness of
the domain of sort s is guaranteed by the sentence 3XS Vxs Xsxs. In this way, one
can characterize, for example, the standard model of arithmetic, torsion groups,
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etc. Hence, ££w2 is neither K0-compact nor recursively enumerable for validity.
On the other hand, it is easy to prove the Lόwenheim-Skolem property. As
arithmetical i?w 2-truth is implicitly definable, it can be seen by the method men-
tioned in the warning above (see Section 7.3) that the Beth property and hence
the interpolation property fail.

2.2. Examples of Logics with Cardinality Quantifiers

If ££ωω is enlarged by a unary quantifier Q that is monotone in the sense defined
for Theorem 4.2.3, then, according to Theorem III.4.1, the resulting logic i ? ω ω (β)
is regular just in case Q is some Qα. (For any ordinal α, QΛxφ(x) means that there
are at least Kα many x such that φ(x).) We shall deal here with the logic ^ωω(Qι)
and some of its relatives. For considerably more information and historical notes
see Chapter IV, and for J^ω ω(Qα) with α > 1 see Chapter V.

Example 1. The logic J2?ωω(βi) has some useful properties: It is K0-compact
(Fuhrken [1964]) and recursively enumerable for consequence (Vaught [1964]).
Keisler [1970] gives a completeness proof using an elegant system of rules that
arises from a complete first-order calculus by addition of the following four
axiom schemata:

(i) "2 is countable": —i^jφc = y v x = z);
(ii) "Qj is monotone": Vx(φ -• φ) -• {QγXψ -* Q\xψ)\

(iii) ^ Countable unions of countable sets are countable" :Qxx^yφ -> 3xQλyφ v

(iv) Renaming of bound variables: Qγxφ{x, x) <-> Q^yφiy, x) for any y not free
in φ(x, x).

For details see Section IV.3. Alternative proofs will be given in Sections 3.1 and
3.2. As we shall see there, the expressive power of «S?ωω(6i) beyond first-order
logic comes down to the characterization of Unlike orderίngs, i.e. structures
21 = (A, < a ι ) that are models of the axioms for linear orderings plus the sentence

Qxx x = x A Vy ~Ί Q^x x < y.

For the strength of &ωω(Qι) in mathematical contexts, see Chapter VII.
Thesetί-iQiXx = x} u {~ιcα = cβ\0 < α < β < K J shows us that & ω ω ( β i )

is not Ki-compact. Of course, the Lowenheim-Skolem property fails, but the
Lδwenheim-Skolem property down to Nx (even for sets of sentences of power
< X i ) can be proved similarly to the downward Lόwenheim-Skolem-Tarski
theorem in 5£ωω. Also, i?ωω(<2i) satisfies an omitting types theorem (cf. Section
IV.3.3). But the hope of having found a useful logic was weakened by several
points. For instance, by the up-to-now unsuccessful search for satisfactory pre-
servation theorems, and by the failure of the interpolation property (Keisler
1971) and the Beth property (H. Friedman [1973]).
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Keisler's counterexample to interpolation in JS?ωω(βi) can be described as
follows. Let φo(E, R) express that E is an equivalence relation with only un-
countable equivalence classes and that R is a countable set of representatives.
Furthermore, let φ^E, S) express a similar statement with S being an uncountable
set of representatives. Then the entailment

(*) φo(E,R)\=

holds, but there is no ^^(QO-irnxrpolant (cf. 4.2.7).

Example 2. What might be called the "Ramseyfication" of the quantifier Q1 leads
to the regular logics JS?ωω(Q?), for n > 1, and J ^ ω ω ( β ΐ | n > 1) of Magidor-Malitz
[1977a]. Ql is an n-ary quantifier, the meaning of which is defined by the following
satisfaction condition :

911= Q"xφ(x) iff there is an uncountable subset M of A where
91 \= φ[b] for all b e M".

Sometimes one uses the variation with "for all b e M " " replaced by "for all
distinct b0, ...,bn-1e M"; however, the quantifiers resulting in either version
can easily be defined from each other.

Assuming V = L (or even O ^ ) , Magidor and Malitz showed that
&ωω(Qϊ\n ^ 1) is K 0 - c o m P a c t A proof is given in Section IV.5.2. On the other
hand, according to a result of Shelah, it is consistent to assume that J^ω ω(βi) is
not K0-compact. The dependence on set-theoretical principles beyond usual set
theory (such as Oκ,) becomes intelligible if one takes into consideration that
Suslin trees, for instance, are characterizable in &ωω{Q\) (see Example IV.5.1.4).

In ^ωω{Q\\ the entailment (*) of Example 1 has the interpolant

φ(E) Λ~ΊQjxy(x = y v ~\Exy)

where φ(E) states that E is an equivalence relation with only uncountable equiva-
lence classes. Nevertheless, for no n > 1 does ^ωω(QX) have the Beth property (see
Badger [1980]). For a counterexample to interpolation see 7.1.3(b). Because
J^ωω(δi) overcomes Keisler's counterexample, it is strictly stronger than
^ωω(Qi); moreover, as was shown by Garavaglia and Shelah, the expressive
power of J ^ ω ω ( β Ί + 1 ) is greater than that of JSfωω(β"), for all n > 1. Details and
further results of this kind can be found in Rapp [1983], [1984].

Example 3. "Positive" logic, J^ω ω(pos), and "negative" logic, j£?ωω(neg). As has
been pointed out, mainly by Feferman, it would be interesting to have a regular
K0-compact extension of ϊ£ωω(Q\) that is recursively enumerable for consequence
and has the interpolation property. Such a logic would combine the usefulness of
X0-

c°mpactness and interpolation with the expressive power of ^ωω(Q\) The
search has been unsuccessful so far. (Reasons can be found, for instance, in
Proposition XVΠ.2.4.6.) However, the attempts to date have led to various systems
possessing all desired properties up to interpolation.
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In order to find a candidate besides 5έ'ωω(βΐ|n > 1) we observe that Qιxφ(x)
means the same as

(*) 3 uncountable X Vx(-ιAx v φ(x))

or as

(**) —13 countable X Vx(Xx v —\φ(x)).

Thus we are led to logics that arise from S£ωω by allowing quantifications over
either uncountable or over countable subsets. In both cases, however, K0-com-
pactness fails, since we can characterize in these logics (ω 1 ? < ) and (ω, <),
respectively. For instance, a linear ordering is isomorphic to (ω l 5 < ) iff it is
cϋj-like and each uncountable subset has a least element.

Let us say that a set variable X occurs negatively (positively) in a formula φ,
if there is an occurrence of X in φ that lies in the scope of an odd (even) number
of negation signs provided —i, Λ , v are the only propositional connectives in φ.
Obviously, X occurs only negatively in the matrix of (*) and only positively in
the matrix of (**). Hence, in our second, and more modest attempt, we define
the logics J^ωω(neg) and 5£ωω(pos) that arise from 5£ωω by allowing existential
quantifications such as 3Xφ, with the variable X ranging over uncountable
(countable) subsets, only in case X occurs at most negatively (positively) in φ.

j£?ωω(neg) extends ^ωω(Qn\n > 1), but, according to a result of Stavi, (ω l 9 < )
is still characterizable (see Theorem IV.5.1.2). On the other hand, i?ω ω(pos) turns
out to be K0-compact and recursively enumerable for consequence. It is strictly
stronger than JS?ωω(<2i), because the entailment (*) in Example 1 has the i f ωω(pos)-
interpolant

φ(E) Λ 3X Vy 3x(Xx A Exy).

An easy induction shows the validity of:

(***) // φ(X,...) is an ^ωω(pos)-formula and 91 \= φ\_M,...] holds for some

countable M <= A, then for any countable M' such that M c M' <Ξ A,
we have 911= φ[M'',...].

Intuitively, this means that j£?ωω(pos) allows existential quantifications over large
countable sets. The next example provides a natural generalization of this feature.

Example 4. Stationary logic is denoted by JS?ωω(aa). Here we restrict ourselves to a
short description that will be sufficient to give a compactness proof for models of
power Kj in Section 3.2. A comprehensive treatment is given in Section IV.4.

We first need some set-theoretical terminology. For any set A, a subset S of
the set Pωι(A) of countable subsets of A is unbounded (in Pωi(A)\ if for any s e Pω i04)
there is some s' e S such that s ^ 5'. The set S is closed (in Pωi(A)\ if the union
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of any countable c -chain in S belongs to S. The set S is said to be cub, if it is both
closed and unbounded. The cub filter, D(A), over A (and it really is a filter!) con-
sists of those subsets of Pωi(A) which contain a cub set. If A = ω l 5 then those
subsets of ω t which are closed and unbounded in the usual sense of ordinal number
theory form a basis of D(A). Intuitively, D(A) may be considered as the set of those
subsets of Pωι(A) which consist of "almost all" elements of Pωι(A).

The logic «Sf ω ω(aa) arises from S£ωω by adding new variables X, 7 , . . . for
countable subsets. These lead to new atomic formulas Xt (for first-order terms ί).
Besides the usual first-order operations, quantifications over set variables are
allowed only by means of a new unary quantifier (aa). The meaning of (aa) is
specified by the satisfaction condition:

iff {s e Pω i(Λ)|Sl \= φ[s]} e D(A).

In other words the condition means that ?l \= φ[s] holds for "almost all" count-
able subsets 5 of A.

The name "stationary" suggests several features: For instance, the dual
quantifier ~i (aa) ~i to (aa) means intuitively "for stationary many" (where a
stationary set is one intersecting every cub set). As the results in Chapter IV will
illustrate, stationary logic is a nice resting point in the ladder of extensions of
<&<oω(Qι)' According to (***) of Example 3 above, any i?ωω(pos)-formula 3Xφ
has the same meaning as (d.a)Xφ. Therefore J^ω ω(aa) can be considered as an
extension of JSfωω(pos). It is even a strict extension (see Remark IV.4.1.2(v)).

23. Cardinality Quantifiers with Complex Scopes

There are some interesting quantifiers which are applied to pairs of formulas.
The Rescher quantifier, QR, from Rescher [1962], is defined by the satisfaction
condition :

\{aeA\W\=φlά}}\<\{beA\Wϊ=ψ[b-]}\.

The equicardinality or Hάrtig quantifier, I, from Hartig [1965], is defined similarly
but with " = " instead of " < ". QR and / lead to the regular logics ^ωω(QR) and

Clearly, the quantifier / can be expressed by QR. On the other hand it can be
seen that there is no j£?ωω(/)-sentence of vocabulary {U} that has the same models
as Qκxy[Ux, ~Ί Uy]. (See also Hauschild [1981].)

Since (ω, < ) can be characterized in JS?ωω(/) by adjoining to the usual axioms
of linear orderings without last element the sentence

Vxy(x = y <-> Iuv[u < x, v < y])9
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we see that neither ί? ω ω (J) nor J? ω ω (β R ) is K0-compact. Even more, if φ is the
j£?ωω(/)-sentence in the vocabulary {<, U} formed from the axioms of a linear
ordering by adjoining the sentence

\fxy(Ux A Uy A Iuv[u < x, v < y] -» x = y)

then the {< }-reducts of the models of φ relativized to the predicate U form the
class of all linear orderings that are isomorphic to the natural ordering on a set of
cardinals, and this is nothing more than the class of all well-orderings. In the
terminology to come (see Definition 3.1.1) the class of all well-orderings in RPC in
JS?ωω(/) and hence in JS?ωω(βR).

2.4. Logics with Cofinality Quantifiers

Is there a regular logic strictly stronger than first-order logic that is fully compact?
In Shelah [1975d] one finds a variety of examples. We mention the logic ^ωω(QcΐωX
where Qcίω is a binary quantifier the meaning of which is given by

91 μ= Qcίω

xy φ(χ9 y) iff {(a, b) e A x A1911= φ[a, b]} is a linear

ordering of its field with cofinality ω.

In Section 3.2 we sketch a proof that ^ωω(Qcΐω) is fully compact and recursively
enumerable for consequence. For the failure of the interpolation property see
Counterexample 7.1.3(c), and for larger cofinalities, see Chapter V.

2.5. Logics with Quantifiers of Partially Ordered Prefixes

A usual first-order prefix is of "linear character" in the sense that each existential
variable depends on all preceding universal ones. This becomes obvious by the
introduction of Skolem functions. For instance, a formula such as

Vw 3v Vwx 3y φ(u, v, w, x, y)

is equivalent to

3fg Vwwx φ(uj(u\ w, x, g(u, w, x)),

where/is a unary and g a ternary function variable. One of the simplest examples
of a prefix that is not of this kind leads to the 4-ary Henkin-quantίfier QH (Henkin
[1961]). Its meaning is given by:

β H

iff there are functions/0,/i: A -> A such that for all

a0, ax e A we have 91 \= φ[aθ9fo(ao), αi,
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Usually QHxoyoxiyi φ(χo> Jo* χu J i) is written more intuitively as

in order to display the functional dependence of the variables.

The Henkin logic ^ωω(QH) is regular. But, if φ is the sentence

3z w!° / ° ( z Φ y* Λ (^o = *i -> J>i = *o))

and A Φ 0 , then we have 4̂ μ= φ iff there are a e X and / 0 , / x : 4̂ -• ̂ 4 such that
a φ rg(/0) and fι(fo(b)) = b for all ft e A. This simply means that A is infinite.
Hence, ^ωω(QH) is not K0-compact. Moreover, the adjunction to jSf ω ω of quanti-
fiers like β H that stem from partially ordered prefixes leads to the full expressive
power of second-order logic. Details can be found in Section VI. 1. For the mathe-
matical relevance of these quantifiers see Barwise [1976].

2.6. Logics with Standard Part

An immediate way to obtain a logic in which, say, (ω, < ) is characterizable, is to
incorporate (ω, < ) into the semantics of first-order logic as done in ω-logic. The
following definition provides a generalization.

Let i f be a logic, τ 0 a vocabulary, U a unary relation symbol not in τ 0 , and
ft a class of τo-structures closed under isomorphism. We define a logic i f (ft) in
the sense of the generalization under 1.1.3 as follows:

[ , otherwise,

and

!

{SΆ e Str[τ] | U* τ0-closed in S& and

( 8 i r τ o ) | I / " e Λ } , i f τ o u { t / } ^ τ ;

0 , otherwise.

21 *= *(Λ) φ iff 91 G Str^ ( Λ ) [τ β ] , φ e i f (Λ)[τJ , and 91 N ̂  φ.

In the many-sorted case one can proceed similarly (and even dispense with the
analogues of U by introducing new sorts, see also Remark 3.1.2).

If ft = {33193 ^ 91}, we write i f (91) instead of i f (ft).
An interesting example in addition to ω-logic, ^ωω(ω, <) , is ifωω(ft), where

ft is the class of K r l ike orderings. In both cases one can dispense with U, as the
task of U can be taken over by the field of <.
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The following fact plays a key role in the compactness proof for JS?ωω(βi) as
given in Section 3.1.

2.6.1 Theorem. Let ft be the class oftt^lίke orderings. Then J^ωω(ft) is K0-compact.

Proof. Let τm = {<} for 21 e ft and τ a fixed countable vocabulary, < e τ.

The τ-regularity scheme Σ = Σ(τ) consists of the J^ωω[τ]-sentences of the form

Vx Vx 3y Vw < x(3ϋ efield(<)φ(u, v, x) -> 3ι; < y φ(u, v, x)).

It is sufficient to prove that for all Φ c JSfωω[τ],

(*) Φ has an i f ωω(ft)-model iff Ψ has an i?ω ω-model,

where Ψ = Φ u Σ u { < is α /meαr ordering of its field without last element}.
The implication from left to right is clear, because ϋί is regular.
For the other direction assume that Ψ has a τ-model 91, where 91 can be chosen

countable. We show that there exists a countable τ-structure 33 such that 91 -< 93
and <® is a proper end extension of <m. Then we can repeat this process Nx-times,
taking unions at limit stages, and arrive at an ^ω ω(ft)-model of Φ.

Let Δ(9l) be the elementary diagram of 91 formulated with new constants a
for a e A, c a new constant, and let Ξ = Δ(9l) u {a < c\a e field(<21)}. We have
to show that Ξ has a model which, for all a0 e field( < ^), omits the type
{x Φ a\a < 2 ϊ α 0 ) u {χ < ao)- I n order to prove this, let a0 e field(<91) be given
and a formula χ(x, y) of vocabulary τ u {a | a e A} be such that

(1) Ξ u {3x χ(x, c)} has a model.

We have to show that

(2) Ξ u <3x[ χ ( x , C ) Λ \ / x = a v a o < x v x φ f i e l d ( < )

has a model.

Let us write 3 arb. lg. wφ(w,...) for Vw efield(<)3w > uψ(w,...). By an easy
compactness argument we see that (1) is equivalent to:

(1') (91, (a)aeA) \= 3 arb. lg. w 3x χ(x, w),

and that it is sufficient to prove instead of (2):

(91, (a)aeA) \= \J 3 arb.lg. wχ(a, w), or

(2')

(21, (a)aeA) t= 3 arb.lg. w 3x(χ(x, w) Λ (β0 < x v x φfield(<))).
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For a proof of (2') assume the first disjunct to be false. Then for each a <® a0

there is some ί?efield(<5 ί) such that for all d e field( < *), if χ(a, d) holds in
(2ϊ» (fl)αe^X t n e n d <* b. As 91 satisfies the τ-regularity scheme, there is a uniform
bound fr0 of this kind for all a < * a0. Hence, because of (Γ), the second disjunct
must be true. D

The proof yields more. From (*) we obtain for Φ u {φ} c i f ω ω (ft)[τ]:

φl=j2WΛ><P i f f ψ ^ ω ω < P

If Φ is recursively enumerable, then so is ψ. Thus we have:

2.6.2 Corollary. Let ft be the class oftf^like orderings. Then J£?ωω(ft) is recursively
enumerable for consequence, ϋ

2.7. Infinitary Logics

We shall not go into details here. Infinitary logics of type S£κλ and admissible
fragments will be treated in Chapters VIII and IX. Infinitary quantifiers such as
the game quantifier G are described in Chapter X. For S£\^ω and arguments for its
naturalness, see Section III.3 and, in particular, Section XVΠ.2.2. Occasionally we
shall also consider logics such as £fκλ(Qi).

In JSfωω, the set {—i, Λ , v } forms a complete system of propositional connec-
tives. Of course, in i f ω i ω , where we use only —I and the generalizations of Λ , v ,
we are far away from propositional completeness. Hence the question arises
whether there are other reasonable (infinitary) propositional connectives for
ifω i ω. The answer is, in some sense, positive; details can be found in the references
given in Section IΠ.3.8.

3. Comparing Logics

In the preceding section we intuitively compared logics with respect to their
expressive power. The aim of this section is to give precise definitions for the
comparison of logics by use of elementary and projective classes and to present
some concrete examples that will illustrate the methodological importance of the
latter notions.

3.1. Elementary and Projective Classes

We begin with a basic definition.

3.1.1 Definition. Let i f be a logic and ft a class of τ-structures.
We say that ft is an elementary class in S£ (or that ft is EC in if, or that ft 6 EC^)

iff there is φ e &[τ\ such that ft = Mod^(φ).
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We say that ft is a projective class in if (or that ft is PC in iζ or that ft e PC^)
iff there is τ' =2τ, having, in the many sorted case, the same sort symbols as τ,
and a class ft' of τ'-structures, ft' e EC^, such that ft = {91 {τ 191 e ft'}, the class of
τ-reducts of ft'.

On the other hand ft is a relativized projective class in if (or ft is RPC in ^£,
or ft G RPC^) iff (in the one-sorted case) there is τ' ^ τ, a unary relation symbol
U e τ'\τ, and a class ft' of vocabulary τ', ft' e EC^, such that

ft = {(91 \ τ) I Um 191 e ft' and I/* is τ-closed in 91}

or (in the many-sorted case) there is τ' =2 τ and a class ft' of τ'-structures, ft' G EC^,
such that ft = {91 fτ |9Ieft '}.

Using an intuitive notation, we can say for instance that ft is RPC in 5£ in
the many-sorted version, if there is some τ' 3 τ and φ e if [τ'] such that ft =

3.1.2 Remarks. For all usual logics ^£ and classes ft of one-sorted structures, we
have ft G RPC^ in the one-sorted version iff ft G RPC^ in the many-sorted version.
The same is true for all regular logics, if we restrict ourselves to finite vocabularies.
(The direction from right to left can be shown by unification of domains, and that
from left to right by the dual procedure.) Obviously, we have "PC c RPC" for
any logic ^£ containing sentences such as Vxt/x; the inclusion is strict for J^ω ω,
but not for $£}

ωχω. For details concerning these and other well-known logics, see
Oikkonen [1979c].

In general it is not true that every class PC in ^£ is EC in 5£, even if if = <£ωω.
A counterexample for <£ωω is given by the class of infinite sets. The question whether
any class ft of τ-structures such that ft and ft = Str[τ]\ft are (K)PC in ^£, is EC
in I£, will lead to an interesting interpolation property, the so-called /^-interpolation
(see Section 7.2). The following simple equivalence shows that interpolation is a
generalization of Δ-interpolation.

3.1.3 Proposition. For any logic <£ having the negation property, the following are
equivalent'.

(i) 5£ has the interpolation property.
(ii) For all τ, any two disjoint classes ft0, ftj of τ-structures that are PC in <£

(one-sorted case) or RPC in <£ (many-sorted case), can be separated by an
elementary class; that is, there is a class ft e EC_^ such that ft0 ^ ft and
fti c ft. D

What does it mean to say that a logic i^* is as strong as if ? The model-
theoretical point of view offers several ways that lead to a precise definition,
starting for example from the following concepts:

(*) For any ^-sentence φ there is an <£*-sentence φ* having the same
meaning as φ.
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(**) Structures that can be distinguished in if, can also be distinguished in
&*.

From (*) we obtain the usual definition if we identify the meaning of a sentence
with its class of models:

3.1.4 Definition. Let if, if* be logics. We say that if* is as strong as ££, in symbols
^£ < &*, iff every class EC in Se is EC in ^ . Similarly, J^ and ^ are equally
strong or equivalent, in symbols ^ = &*, iff both <£<<£* and ^ < <£. Finally,
we say that i^* is stronger than i^, in symbols !£ < <&*, iff i f < i f * and not

Obviously, < is a partial ordering on logics.
Concept (**) can be made precise by the notion of if-equivalence of structures:

3.1.5 Definition. J^ < Ξ if* iff for all τ and all 91, 93 e Str[τ], if 91 =#. 93, then

When we compare the two notions, we immediately see that 5£ < J£* implies
££ <= ££*. The other direction can be false; for instance ^£^G < = 5£aoω, as 5£^G

has the Karp property, but £^ooω < 3?^ (see the remark following Theorem
4.3.2 and Section X.3.1). Whereas we shall refer to < = only occasionally, the
relation < and its generalizations (see Definition 3.1.6 below) will actually turn
out to be of great methodological importance.

From the examples in Section 2 and the results there stated, we obtain that

i f ω ω (aa);

9> < 9> (Π < <P ((ΫΛ
°^ toco °ί/ (oco\ ) °^ ωωv& /•

Moreover, one can easily prove that ^ w l < ^ωιω, but !£2 ^ &ωχω and &ωγω £
&1. For the class ft of K^like orderings we have ^ωω(R) < i ^ ω ω (β i ) However,
the other direction is false as can be seen from the sentence Qxx x = x. In order
to remedy this situation to some extent, we introduce some new relations between
logics, taking (relativized) projective classes instead of elementary ones in Defini-
tion 3.1.4.

3.1.6 Definition. For logics Se and jSf*, ^£ < ( R ) P C ^ iff every class that is (R)PC
in ^£, is (R)PC in 5£^. Analogously < ( R ) P C and = ( R ) P C can be defined.

Now we can state:

3.1.7 Proposition. Let ft be the class of^γ-like orderings. Then i f ω ω ( 6 i ) <RPC
ifωω(ft), provided that for ifω ω(Qi) we do not allow the symbol < that is used for
the orderings in ft.
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Proof. Let φ ε i f ω ω (β i ) [τ] be given such that φ contains a subformula Qxx φ(x, y)
with Qx not in I/Λ We take an appropriate new function symbol/and then, writing

fy(x) for f{x9 y), we replace Qγxψix, y) in φ by a formula χ = χ(y) expressing

{fy(x)IΨ(χ> y)} ί S a n unbounded subset offield(<).

Also we add to the resulting sentence, as a conjunct, the sentence Vy(χ v θ),
where 9 means that

λxfy(x) is injectίve on {x | φ(x, y)} and {fy(x) \ ψ(x, y)} is α bounded
subset offield( <).

Repeating this process until all occurrences of Q1 are eliminated, we arrive at
some i f ωω(ft)-sentence φ in some vocabulary τ 3 τ such that

ω ω ( ( ? l ) (φ) = {91 Γ τ 121 E Mod^ ω ω ( Λ ) (φ)}. D

3.1.8 Corollary. i f ω ω ( β i ) is X0-corapαcί.

Proo/. Let Φ c i f ω ω ( β ! ) [ τ ] be countable such that every finite subset of Φ has
an j£?ωω(gi)-model. We may suppose < φ τ. Then every finite subset of Φ has
an i f ωω(ft)-model, where Φ = {φ \ φ ε Φ} and all the function symbols used in the
construction of the sentences φ are chosen to be different. By K0-compactness of
JSfωω(ft) (see Theorem 2.6.1) Φ has an jSfωω(Λ)-model, and hence Φ has an

D

When we analyze the preceding argument, we see that it is essentially based
on the ordering i ? ω ω ( β i ) < R P C JS?ωω(Λ). Generalizing, we obtain the first part of:

3.1.9 Proposition. Assume i f < R P C if* and K to be infinite. Then:

(i) If ^ is κ-compact, then so is <£. Hence, if Ί£* is compact, then so is ££.
(ii) If ^ has the Lόwenheίm-Skolem property down to K, then so does <£.

Proof. To prove part (ii) for instance in the many-sorted case, assume that ^
has the Lόwenheim-Skolem property down to K and that φ is a satisfiable sentence
from 5£\τ\. As 5£ < R P C ^ , there is some τ* Ώ τ and a sentence φ* ε ^[τ*]
such that 0 Φ Mod^(φ) = Mod]£*(<p*) \ τ. By assumption, φ*, having a model,
has a model 2ϊ* of power < K. Hence 91* [ τ is a model of φ of power <κ. D

Proposition 3.1.9(i) is used in numerous compactness proofs. Similar to
Corollary 3.1.8, the (κ>) compactness of the logic J^ in question is reduced to the
(K-) compactness of some other logic ^* by showing 5£ < R P C ^ and proving
(κ>) compactness for 5£^. Often ^ is first-order logic with some additional
restrictions (for instance Ki-like orderings). Some further examples will be pre-
sented in Section 3.2.
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The general scheme underlying all these proofs can be formulated as follows:
In order to show that a logic if has some property P, one

(a) first finds a logic <£* such that 5£ < R P C if*;
(b) then proves that 5£* has property P;
(c) and finally verifies that P descends from <£* to if\

If P means (κ~) compactness or the Lόwenheim-Skolem property down to K,
step (c) above becomes superfluous because of Proposition 3.1.9. In later sections
we will see that numerous other properties are inherited downward along < R P C ,
thus enlarging the applicability of the reduction method considerably.

In many cases, if if < R P C if*, completeness properties also descend from i^*
to ^£. Rather than give a general theorem, we will confine ourselves to examples.
In order to present the first one, we again let ft be the class of K^like orderings.
In the terminology of the proofs of Proposition 3.1.7 and Corollary 3.1.8 we have
for any Φ c <£ωω(Qγ\τ\ and any φ e &ωω(Qι)[τ\ that if < φ τ, then

φ ^ ω ω (Ch)<P i f f φ ^

As the transition from an if ωω(Q ̂ -sentence φtoφΊs effective, we obtain the follow-
ing result from Corollary 2.6.2:

3.1.10 Theorem. ifω ω(Qi) is recursively enumerable for consequence. D

3.2. A Reduction Method

Many applications of the reduction scheme given in Section 3.1 can be systematized
in a way first made explicit in Hutchinson [1976b]. The method applies to logics
i^ that admit a nice set-theoretical description, and the corresponding logics
&* are based on specific models of set theory. Without exhausting its full power,
we illustrate the method by some examples. (See also Section XVII.2.3.) First, we
treat if ω ω (δi) . Then we sketch a similar procedure for if ωω(aa) and for i f ω ω ( β c f ω).
Besides Corollary 3.1.8 and Theorem 3.1.10 (K0-compactness and recursive
enumerability for consequence) we show that i f ω ω (βi) has the Lόwenheim-
Skolem property down to Kx. The reader is urged to compare the following proofs
with those given in Section 3.1.

We set !£ = i f ω ω (βi). Our first considerations aim at a suitable logic ^
based on models of set theory which is > R P C i^\ K 0 ~ c o m P a c t a n ( 3 h a s the
Lδwenheim-Skolem property down to Kx. For our purposes it will be sufficient
to have an intuitive description of ^ . A precise definition is left to the reader.

Let τ be a countable vocabulary, which is kept fixed for the argument to follow,
and let σ = {ε, c0} u {c§|§ e τ}, where ε is a new binary relation symbol for the
e-relation between sets, and c0 and the c§ are new constants. Next we define a set
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Γ = Γ(τ) of ifωω[σ]-sentences that provides us with a set-theoretical description

of τ-structures. In fact, we set

where

φ0 is c 0 φ 0 , i.e. φ0 = 3x xεc0, and

!

c§ ε cθ9 if § is a constant

c^ ^ cn

0, if § is an n-ary relation symbol;

c§: cn -• c0, if § is an n-ary function symbol.

If φ e i f [τ], let φ* be a natural set-theoretic translation of φ. For example, if φ is

3z ρ ^ R z x Λ -ι/(x) = d)

put φ* equal to

3zεcol{xeco|(z,x)εcΛ Λ ~icf(x) = cd}\> Kx.

The transition from φ to φ* enables us to treat if-satisfaction in models of ZFC
(Zermelo-Fraenkel set theory with the axiom of choice). For technical reasons,
we consider a system (ZFC) that differs from ZFC in having only finitely many
instances of the axiom scheme of replacement, but that is strong enough to yield
all set-theoretical facts we need. The reader should think of (ZFC) as ZFC and
verify that at the end we have needed only finitely many axioms of replacement.
The main reason for introducing (ZFC) is the following: In contrast to the
situation with ZFC, one can prove that for (ZFC) there are cofinally many ordinals
α for which (Va9 <=VJ is a model of (ZFC). (VΛ denotes the set of all sets of rank <α.)

Next, we call a structure ΪR good, if ε e τm, (M, εm) \= (ZFC), and

(Nf, fij?,) = {{asM\Wl N aεKJΛfab) e M x M\Wi\=aεb A

is an Kj-like ordering. For good models 301 (un-)countability in 9Jί means (un-)
countability in the real universe. This can be made precise in the following way.
If 21 is a τ-structure, there is a minimal ordinal α > ω1 such that 91 e Va and
(Kα, evj \= (ZFC). We expand (Kα, evj to a good σ-model 931(91) of Γ such that
c 0 and the c§ describe 91 in 9Jl(9l); that is,

A = {a 6 M = Fα|SR(9I) N aεc0}

and, say, for unary/ e τ,

/ * = {(a, b)eM x M|SR(9I) μ= (α,
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Conversely, any good σ-model SDΪ of Γ yields a τ-structure 9I(90ΐ) such that c0

and the c§ describe 91(30?) in SOΪ. Using these notations, we have:

Lemma A. For any Φ c i f [ τ ] , 91 e Str[τ] and 9K e Str[σ],

(i) ff 91 μ=^ φ, ί/!βn 9Jί(9l) is a good model ofΦ* u Γ;
(ii) z/ 9W is a good mode/ o/Φ* u Γ, then 91(501) μ= Φ.

Proof. By induction one gets that for any φ e J^[τ] and any τ-structure 9ί, 91 μ= φ
iff 901(31) μ= <p*. Part (ii) is proved similarly. D

As stated above, we leave it to the reader to define a logic if* that has as a
standard part the class of good {ε}-structures and to show 5£ < R P C if* (for ε-free
sentences).

The next lemma yields K0-compactness of if*.

Lemma B. For Ψ ^ J£?[σ], the following are equivalent:

(i) Ψ u (ZFC) has a model
(ii) Ψ u (ZFC) has a good model of power K :. D

The direction from (ii) to (i) is trivial. For the other direction we invoke the
so-called Keisler-Morley lemma (see Theorem IV.3.2.5(ii)), which is here stated
for its own interest:

3.2.1 Lemma (Keisler, Morley). Let 9ft be a countable {ε}-model of (ZFC). Then
there exists a countable {ε}-structure 30Ϊ' > 9JΪ such that (X^, ε^) is a proper end
extension of (Kf, ε^).

Now, to prove the other implication in Lemma B, we start with a countable
model 9JΪ of Ψ u (ZFC) and build an elementary chain (9Kα)α<Ml, taking unions
at limit points and setting SDΪ0 = 901 and 9Jta+ x = Wa in the sense of Lemma 3.2.1.
(The additional constants in σ are not essential.) Then SJΪ^ satisfies (ii) of Lemma B.

We can now show that ^ is K0-compact. Assume Φ c 5£\τ\, and every
finite subset of Φ has a model. Then, by part (i) of Lemma A, every finite subset of
Φ* u Γ has a model, and hence so does Φ* u Γ. Using Lemma B and part (ii)
of Lemma A, we see that Φ has a model of power <\$x. In particular, we also
obtain the conclusion that ^£ has the Lowenheim-Skolem property down to Kx.
Finally, to show that ^£ is recursively enumerable for consequence, we observe
that for any Φ u { ( p } ς <£\τ\

Φ\=<?φ iff Φ* u Γ u

and that the operation * is effective.
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In concluding this subsection, we digress to take a brief look at i f ω ω(aa) for
structures of power Kx (see Section IV.4.2 for the general case) as well as at

3.2.2 Theorem. J2?ωω(aa), restricted to structures of power K1? is tt0-compact and
recursively enumerable for consequence.

Proof. We proceed in a manner similar to that for JS?ωω(βi). A structure 901 with
ε e τm is called good if 901 \= (ZFC), (K^, ε^) is an Ki-like ordering that admits a
continuous embedding π of the real K1? and further, for every s e M such that
901 \= s is a stationary subset o/K1 ? the set {a e M\aεms} n rg(π) is stationary in
rg(π). The analogue of Lemma A is an exercise on closed unbounded subsets of
Kj. The analogue of Lemma B uses a stronger form of the Keisler-Morley lemma
due to Hutchinson [1976a], according to which, given some seM which is a
stationary subset of ϋ1 in 9J1, the structure 9JΓ can be chosen such that K^ has a
least new element, say p, and pε^'s.

Now, to obtain a good elementary extension of some countable model SOΐ
of (ZFC), one splits the real Hx into Xx disjoint stationary subsets Sα (for α < Kx)
and builds an elementary chain (S0ϊα)α<Kl over 9W = 9W0 by Hutchinson's lemma
such that for each s e M^, which is a stationary subset of Xx in SM^, there is some
α < H1 with π(/J) = pfi^

 + ls for all sufficiently large β e S α . We describe the
successor step. For simplicity we assume that all Mα are chosen as subsets of some
fixed set {αα|α < K J , where αα φ aβ for α < /? < Kx. Suppose that jS < Kx and
901̂  has already been constructed and is a countable elementary extension of 9K.
Let β e SΛ. Define 5 to be αα, if αα is a stationary subset of Kλ in 9Jί̂  and to be
K ^ else. Then choose 9Jl^+1 according to Hutchinson's lemma with a least new
countable ordinal π(β) = pβ9 pβε

mβ + 1s. D

3.2.3 Theorem. J^ω ω(Q c f ω) is compact, recursively enumerable for consequence and
has the Lόwenheim-Skolem property down ίo Kx.

In this case τ need not be countable. We call a structure 301 with ε e τ ^ good,
if 901 \= (ZFC), (or01, ε™) has cofinality ω, and for all ft e M that are uncountable
regular cardinals in 9DΪ, (ft, εf1) has cofinality >ωv Then the analogue of Lemma A
is routine. In the analogue of Lemma B, we have to cancel the limitation of power
in part (ii), if | τ | > K2. The role of the Keisler-Morley lemma is taken over by:

3.2.4 Lemma. Every (ZFC)-model 90? = (M, ε®1) has a good elementary extension.

Proof. We start with a suitable chain construction that yields a structure W > 901
such that for all ft' e M' that are uncountable regular cardinals in W, (ft', εff) has
cofinality ωv A good extension 9Jί" >- W can now be constructed as the union
of an elementary chain of length ω, where 90ίo = 901' and for each i, 901ι + 1 >- 9Wi5

ω9^1 gets longer in 3Ri+ί and no regular uncountable cardinal of 9JΪ; gets longer in
9Dtf + !• To obtain 9Wί+ i from 9Wf, one defines inside SRj an ultrapower
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where °U is some free ultraίilter on ωαRί in W{. Then 9WI+1 is chosen such that
SDΐι+1 = Wi via an extension of the canonical embedding of SOΪt into Wt (in the
real universe).

When checking the details, one sees that the proof of the ultrafilter theorem
for SOΪ; requires the instances

Vz(Vx e ω 3y φ(x, y, z) -> 3u Vx e ω 3y e uφ(x, y, z))

of the collection scheme. These can be added to (ZFC), since they are satisfied in
(Fα, GKα), if α is a limit ordinal of cofinality Φω, and there are cofinally many such
α, for which (Va,e VJ is a model of (ZFC). D

4. Lindstrόm Quantifiers

Let ft be a class of structures of some fixed (finite) vocabulary closed under iso-
morphism. For a given logic if, is there an extension of ^£ more natural than
if (ft), in which ft is characterizable ? In the first part of this section, we will give
an affirmative answer that uses the notion of a Lindstrόm quantifier as developed
by Lindstrόm [1966a]. At the same time this notion enables us to systematize—at
least to a certain extent—the variety of specific logics that we have considered up
to now. The systematization not only assists in the representation of logics but
can also be helpful from a methodological point of view. In the second part of this
section, we will illustrate the latter aspect by proving a generalization of the back-
and-forth characterization of elementary equivalence for logics with monotone
quantifiers that covers several of the Ehrenfeucht-Fraisse type theorems for
stronger logics. In order to avoid any cumbersome notation, we will confine
ourselves to the one-sorted case and treat logics with free variables in the sense of
1.1.2.

4.1. Definitions and Examples

Let σ be & finite vocabulary and Q a quantifier symbol suitable for σ (in a sense
that will become clear from Definition 4.1.1). Furthermore, let ft be a class of
σ-structures closed under isomorphism. We confine ourselves to the special case
σ = {R,f, c} with binary R and unary/.

4.1.1 Definition. For any logic if, the expanded logic if(QR) is obtained as follows:
Form^ (QΛ )[τ] is taken as the smallest class containing Form^[τ] which is

closed under boolean operations and particularizations (see Definition 1.2.1) and
that with each φ, φ, χ and for any variables x0 Φ xu y0 φ yί9 z0 also contains the
new formula

9 =
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A variable u is free in 9, if it is free in φ or φ or χ and different from x0, xί or y0,
yγ or z0, respectively.

Sent^(QΛ)[τ] is the class of sentences from Form^ ( β Λ )[τ].

Finally, the meaning of Q is determined by the satisfaction condition:

iff there is a σ-structure d e f t such that C = A,

R* = {(a, b)eC xC\SΆ N* ( β f t ) <p[fl, ft]},

graph of/e = {(α, ft) 6 C x C|«ϊ *=* ( C j | ) ι/Ί>, ft]

and 21 \=^QΛ) Z M exactly for α = cG.

The quantifier β with the interpretation by ft (for short, QR) is called a Lίndstrδm
quantifier.

Let if be regular. As it is clear that

= c\

we see that ft is EC in J£?(QΛ), even in JSfωω(βΛ). On the other hand, if ft is EC in
if, then JS?(βΛ) < 5£ and hence i?(βΛ) = &. To see the key fact, assume that
ft = Mod^(£). Then the if(βΛ)-formula β x o ^ o ^ i ^ o Φ ί ^ o ^ O ^ o ^ O x ^ o )
(with if-formulas φ, ^, χ) has the same meaning in if(QΛ) as the formula
ξlR/λxoXίψixo, xi)J/λyoyiΨ(yo, y\) c/λzoχ(zo)] has in <£.

The definition of if (βΛ) can easily be generalized to the case of more than one
Lindstrδm quantifier, and it is not difficult to see that for regular ^£ the logic
if(βΛ i\ι G I) with Lindstrόm quantifiers β Λ ι is regular, possibly up to the rela-
tivization and the substitution property. However, the latter property holds, for
example, in case 5£ = 5£κλ . A counter-example to relativization is provided by
^ωω(QC) which is defined below. In Definition 4.1.4 we describe a variant of
Lindstrόm quantifiers that also guarantees the relativization property.

The following list demonstrates that it is possible to model numerous quanti-
fiers on Lindstrδm quantifiers and thus illustrates the scope of this notion.

4.1.2 Examples. In each of the following, a well-known quantifier becomes β Λ for
the class indicated:

(i) 3forft = {(
(ii) Ql for ft = {(A, Λf)|Afc A\ there is C c A, \C\ > K and Cn c M}

(iii) β c f ω for ft = {(A, <*) | <* is a linear ordering relation c A x A of
cofinality ω}

(iv) Qwo, the so-called well-ordering quantifier, for ft = {(A, < 9 I) | <3 1 is a
well-ordering relation c A x A};

(v) β c, the so-called Chang quantifier, a specialization of the equicardinality
quantifier /, for ft = {(A, C)\C c A, \C\ = \A\}.
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In order to model higher-order quantifiers, one could introduce Lindstrόm
quantifiers of higher order. In principle, however, the present framework is
universal in broad sense:

4.1.3 Theorem. Let <£ be a regular logic which ίsfinitary, that is for any τ,

Format] = (J Form^[τ0].
τoίΞτ

τ 0 finite

Then, 5£ = ^ωω(QΛι \ι e /), where the ftt run over all classes of finite vocabulary
that are EC in <£.

Proof. For " < " note that each ft, is EC in i f ω ω ( β Λ l ) . As for the other direction,
use the fact that i f (QΛl) = ^ for every / e /. Q

In particular, second-order logic <£2 has a representation as in Theorem 4.1.3.
Any such representation requires / to be infinite, that is, if2 is not finitely generated',
for otherwise, according to a consideration in Section 7.3, we would get a contra-
diction, since (the one-sorted version of) <£2 has the Beth property.

Returning now to the relativization property, we introduce a variant of

4.1.4 Definition. The logic ££{Q%) is defined as follows. We change the definition
of J£f(βΛ) given in Definition 4.1.1 by allowing predicates for the domains of
structures in ft. Using a quantifier symbol Q* instead of g, we replace the quantifier
clause for Q in Definition 4.1.1 by

9* =

where the meaning of Q* is now determined by

21 !=*«&) Q*uoχoχiyoyizo ξ(u0) φ(χ0,

iff there is a σ-structure (Left such that C = {a e A191

and i^ e ,/ e and cG are as in Definition 4.1.1.

For regular if, the logic J^(β§) is regular, possibly up to substitution, and
really regular for instance in case i f = <£κλ. Intuitively, relativization to some
predicate P can be defined by induction on formulas with the essential clause for
the relativization of a <2*-formula being:

ρ*u 0 . . . zo(Puo A ξp)(Px0 APX,A φp)(Py0 A Py, A φp)(Pz0 A χp).

It is obvious that ^{Qsd < ^(Q%) For instance, the Q-formula 3 from Definition
4.1.1 has the same meaning in 5£(Q^) as the <2*-formula 3* from above has in
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%\ if one takes u0 = u0 for ξ. Concerning the other direction we have the
following fact:

4.1.5 Proposition. With new unary U set

ft* := {91 G Str[σ u {(7}] | U* σ-closed and (31 Γ σ)| E/* e ft}.

Then JSf(QX) Ξ i?(Q«0.

Proof. The argument for " > " is trivial. For " < " observe for instance that

Q%uoxoxιyoyίzo ξ(u0) φ(x0, xt) ψ(yθ9 yj χ(z0)

has the same meaning as

QR*u0 . . . zoξ(uo)(ξ(xo) Λ ξ(Xi) Λ φ(x0, xx))

((ξ(yo) Λ ξ(^i) Λ (A(y0, yj) v (—i ξ(y0)
 Λ y\ = yo))

(ξ(z0) Λ χ(z0)),

where <^(M0) represents [/. D

Taking Proposition 4.1.5 into consideration it is not difficult to extend results
about logics JS?(gΛ) to logics JSf(Q^)—at least in many cases (for example, Theorem
4.1.3 and the results in Section 4.2).

Let us now return to our introductory question. For numerous logics i f such
as i f = Jίf κ λ or i f = i f κλ (Q%τ \ιel), the logic JS?(Q$) is, with respect to elementary
classes, the smallest regular extension of 5£ in which ft is EC. In this sense the
transition from ^£ to J£(Q%) is a natural closure operation. What can we say
about the relationship to <£(${) as defined in Section 2.6? If, for instance, ft =
{(A, < ί H)|9I ^ (ω, <)}, then, of course, we have

(*) ^ ω ω ( « ) = ω - logic < ifω ω(βΛ*) = J2UQS).

Using a method like that in the proof of Proposition 3.1.7 one obtains for the
other direction

(**) ^ωω(Q%) <PC ^ωω(&) f° r vocabularies not containing U, <.

Whereas the analogue of (*) is true in general, the analogue of (**) may fail. For
instance, if ft is the class of all fields of characteristic zero, ^ωω(SΪ) is compact,
but &ωω{Q%) is not.
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4.2. Partial Isomorphisms and a Characterization of
££-Equivalence

The characterization of elementary equivalence in terms of partial isomorphisms
or games by Fraisse and Ehrenfeucht (cf. Section IX.4 for a thorough treatment)
has been extended to various stronger logics such as i ? ω ω (β i ) , JS?ωω(βϊ), i?ω ω(aa).
A generalization to extensions of S£ωω by arbitrary Lindstrδm quantifiers is given
in Caicedo [1979]. The characterization becomes very natural for quantifiers QΛ

and Q%, where ft is of finite relational vocabulary σ and monotone (Krawczyk-
Krynicki [1976], Weese [1980]). The following considerations are devoted to
this case. For reasons of readability we fix a relational vocabulary σ = {£}, S
I -ary, and a class ft of σ-structures, ft closed under isomorphisms. We treat the
quantifier QΛ .

4.2.1 Definition. For 9ί, 95 e Str[τ], p is a partial isomorphism from 91 into 93, if
p is a bijection from dom(p) c A onto rg(p) c £ such that the following hold:

(i) for all n > 1, rc-ary R e τ and αo> » an- I e dom(p):
i ^ a iff Kep(a), where p(a) stands for (p(α0), - , p(«,,-1));

(ii) for all n > 1, rc-ary/eτ and α 0 , . . . , a n _ l 5 αedom(p):

(iii) for all c e τ and α e dom(p): c21 = α iff c93 = p(α).

Part (91, 93) denotes the set of partial isomorphisms from 91 into 93.

Sometimes, one demands in addition that the domain of a partial isomorphism
from 91 to 93 be τ-closed in 91 (or empty). However, the difference between the
two variants involves only minor technicalities.

4.2.2 Definition. Let 91, © be τ-structures, 0 < α < ω, and / = (Iβ)β<0L a sequence
of subsets of Part(9l, 93).

We say that / has the 3-forth property iff for all m < <x9pelm+ι and ae A there
exists q € Im such that p c q and a e dom(q).

Similarly, we say that / has the 3-back property iff for all m < α, p e Im+1 and
b G B there exists qe Im such that p c q and b e rg(#).

Likewise / has the Q^-forth property iff for all m < oc,pelm+1 and ( ίe f t with
C = A there is D e ft with D = B such that for all d e S* there exists g e /m with
p £ q, d0,..., άx-! € rg(ςf) and g" x(d) e SG.

Similarly, we say that / has the Q^-back property iff for all m < oc,pelm+1 and
D e f t with D = B there is £ e f t with C = A such that for all c e S c there exists
g 6 /m with p c q9 c0,..., c,_ x G dom(g) and f̂(c) G 515.

Two structures 91 and 93 are oc-isomorphic via /, written /: 91 = α 33, iff/ = (/m)m<α

is a sequence of length (α + 1) of non-empty subsets of Part(9l, 93) having the
3-back and the 3-forth property. 91 and © are a-isomorphίc, written 91 = α 93,
iff there exists an / such that /: 91 ^ 93.
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The notion of α, St-ίsomorphίc structures is defined similarly, demanding in
addition that the partial isomorphisms in question also meet the βΛ-back and the
QΛ-forth property.

We call the class ft and also QΛ monotone, if for all A, M, M' such that (A, M)eft
and M <^ M' ^ A\ we have (A, M') e ft.

The main result in this section can now be formulated as:

4.2.3. Theorem. Let ft of finite relational vocabulary be monotone. Then for finite
τ and 91, 95 e Str[τ] the following are equivalent:

(ii) S&^nS{S£>foralln\
(iii) 9 I ^ ω , Λ S .

If we dispense with QR, the proof below will yield the analogous result for
j£?ωω, that is, the Ehrenfeucht-Fraisse characterization of elementary equivalence:

4.2.4 Corollary. For finite τ and 91, 23 e Str[τ] the following are equivalent:

(i) 91 = ^ ω ω 9 3 ;
(ii) SΆ^n%foralln;

(iii) 9 I ^ ω 9 5 . D

Proof of Theorem 4.2.3. Let ft be as above. We set JSf = J^ ω ω (β Λ ) and fix some
finite vocabulary τ. By φ, ψ,... we denote formulas from JSf [τ]. Each φ is equiv-
alent to a so-called term-reduced formula—a formula where all atomic subformulas
are of kinds Rx0 . . . xn_ ί9 x = y, c = y, o r / ( x 0 , . . . , xn_ x) = y. We can obviously
confine ourselves to such formulas, which we do for technical convenience.

The implication from (iii) to (ii) is trivial. To prove that (ii) implies (i), we
define the so-called quantifier rank of φ, qrk(φ), inductively by the following
clauses:

qrk(φ) = 0, if φ is atomic;

qrk(-ιφ) = qrk(φ);

qrk(<p Λ φ) = max{qrk(φ), qrk(ι^)};

qrk(3xφ) = qrk(Qxφ) = 1 + qrk(φ).

Next we write

91 = „ Λ 33 iff for all (term-reduced) sentences φ with qrk(φ) < n,
we have 91 \= φ iff 95 \= φ.

Then the implication we want follows from:

(*) For all n, if 9 I ^ Λ 9 3 , then 9 I Ξ Π Λ 9 5 .
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To prove (*), let /: 91 ^ π Λ 33 be given. One shows by induction on qrk(φ) that
for all m < n, p e /m, φ(x0,..., xk- J with qrk(φ) < m, and ao,...,ak-ιG dom(p),
911= φ[βi] iff 95 |= φ[p(a)]. For atomic φ one uses that φ is term-reduced. For
the β-step, let m < n, p e / w , and α 0 , . . . , ak^γ e dom(p) be given and assume
<P = Qyo--yi-i Ψ(χo> ...,xk-l9y0,..., y,-1), q r k ( » < m. If for instance 91 \=

φ[a], then

(£ = (A, {c G ̂ | 9 ί N ιA[a, c]}) G Λ.

For (£ and p we take ϊ e S with D = B as guaranteed by the g^-forth property
and define £)' to be the structure

), d]}).

As ft is monotone, we get 23 |= φ[p(a)], if we have proved

To see (**), let d e S® be given. Choose qe Im-l9q Ώ p, such that d 0 , . . . , d^ x

Grg(g) and ^~ 1(d)GSG . As qrk(ι/0 < m — 1, the induction hypothesis yields

91 \= Ά[a, q~ x(d)] iff 23 |= ιA[p(aλ d], and hence d G iSφ.
Finally, we come to the implication from (i) to (iii). This is the only point

where we need the finiteness of τ. To give a more systematic treatment, we insert a
general definition which is modelled on the extension properties of partial iso-
morphisms that we want to realize.

4.2.5 Definition. For 91 G Str[τ], a = ( α 0 , . . . , ak- 0 G Ak and x = ( x 0 , . . . , x k _ x )
the formulas ψ^ gj9 a(x) (or, shorter, ψ™) are given as follows:

(i) ψ® = f\ {φ(x) I φ term-reduced, atomic or negated atomic,

(ϋ) >AΓ+1 = Λ 3#Γ.c(χ. y) Λ Vy V O x , y)

Λ Λ
c e M

Λ Λ ^ β y ^ V Άamc(χ,y)
M^A1 ceAi\M

(A,M)φR

As τ is finite, it can immediately be seen that in the definition of ψ™ all conjunc-
tions and disjunctions can be chosen finite. Hence ψ™ e i f [τ]. The following facts
can easily be proved by induction on m.
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4.2.6 Lemma. For 21 e Str[τ] and a0,..., ak- x e A we have:

(i) qrk(ψ:) = m;
(ii) ΪNffW;

(iii) i/C „ |= ψΐfor all a e A; and hence
(iv) ψζ+1\=Φΐ. •

The Proof of 4.23 Concluded. Assume 31 =<g 93 and define

Im = {pe Part0U, 93)|dom(p) = {α0,.. , αt_ x} for distinct α; and
}, and

/„ = {0}

Then the assertion follows from

We now argue for ( + ). First, because of 91 =& 33 and Lemma 4.2.6(ii), we
have 0 e Im for all m. Let us, for example, check the QΛ-back property. Assume
p G / m + 1 , dom(p) = {a0,..., αfc_i), and (β, N) e Λ. We have to find M ^ A1

such that (A, M ) e S and (̂ 4, M) meets the further requirements of the Q^-back
property. We set

M = \ceAι\&\= V^ί
I deJV

First, we see that for each c G M there is d e N such that 33 = ι/C,c[p(aX d]. Hence,
by definition of Im and Lemma 4.2.6(iii), if c is given, we can choose

q = p u {(co,do), ...,(cι-u di-i)} G lm.

Obviously q e Part(9I, S), because by 4.2.6(iv) we have 33 = ιAa,cCp(a)? fl-
it remains to show that {A, M) e ft. By definition of M,

ΛΓ = id G B1133 N -i V <cCKa), d] j 2 J
L ce/l'\M J

and as ft is monotone, we obtain that (J5, JV') 6 ft; that is,

® ^ 6 y - i V <c(p(a),y).
ce>4'\M

As 93 N ι/C+1[f>(a)], the formula

^ β y ^ V <c(χ,y)
ceyt'\M

cannot be a conjunct of ι/^+^x). Hence, (A, M) e ft. D
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Remarks, (a) In the preceding proof one can avoid the restriction to term-reduced
formulas if one replaces the quantifier rank by a notion of rank that also takes into
consideration the complexity of terms.

(b) Theorem 4.2.3 can be extended without difficulty to the case of finitely
many monotone Lindstrδm quantifiers.

(c) As for first-order logic, the algebraic characterization of i?ω ω(βΛ)-equiv-
alence can be reformulated in terms of game-theoretical notions; see, for example,
Weese [1980]. If we translate Theorem 4.2.3, say for J^ ω ω (βi)—note that Qx is
monotone!—into the game-theoretical version, we get the following characteriza-
tion of 5£ ω ω(βi)-equi valence:

For any finite τ, two τ-structures 21, 95 are $£ωω(Q ^-equivalent iff player II has
a winning strategy in the game Gw(Sί, 23) for all neω.

The game GM(2I, 23) is defined as follows: A play in Gπ(2l, 23) takes place
between two players I, II and consists of n consecutive moves which are either
3-moves or Qx-moves. Furthermore, at the beginning of each move player I is
free to choose the kind of move he wants. The moves run as follows: 3-move:
Player I chooses an element α e i o r a n element b e B. This done, player II then
chooses some b e B or some as A respectively. Qi-move: Player I chooses a
subset M c= A (or a subset N ^ B) of power > Kx. Player II then chooses some
N <= B (or some M c A) of power > Kx. Subsequently, player I chooses some
b e N (or some a e M), and finally player II chooses some a e M (or some b e N,
respectively). Player II wins the play iff the set {(a0, b0),..., (an-19 feπ_ x)} of pairs
from A x B chosen in the play is a partial isomorphism from 21 into 23.

4.2.7 Application. As an easy application of Theorem 4.2.3 we complete the
argument for Keisler's counterexample to interpolation in «£?ωω(βi) from Example 1
of Section 2.2. For / = 0, 1, let 21, = (Ai9 E%i), where E*' is an equivalence
relation with only uncountable equivalence classes and AJE^ is countably
infinite for i = 0 and uncountable for i = 1. It is easy to see that (/α)α<ω:
2I0 =ω,Qi 2ΪIJ where for α < ω the set Ia consists of all partial isomorphisms
from 2I0 into 2IX which have a finite domain. By Theorem 4.2.3, 2I0 Ξ ^ ω ω ( Q i ) 2I l 5

and hence by Proposition 3.1.3 interpolation fails for (*) in Example 1. (As
2It G Mod(3# φt{E, R)) and 2I0 =^ωω(Qι) 9ϊi, the classes Mod(3# φo(E, R)) and
Mod(3.R ψι(E, R)) cannot be separated by a class EC in Jέ?ωω(βi).) •

43. Partially Isomorphic Structures

In the last paragraph 2l0 and 211 were seen to be ω, Qγ-isomorphic in a strong
sense, as all Ia are equal: they are ω, Q^partially isomorphic. To give a definition,
let 21, 95 be τ-structures and / c Part(2I, 95). We say that / has the 3-forth (3-back)
property, if for all pel and ae A(beB) there is qe/, q 3 p with aedeϊ(q) (or
b e rg(g), respectively). 21 and 95 are called partially isomorphic, 2ϊ =P95, if there is
/ such that /: 21 ^p 95, that is, if / c Part(2l, 95), / is not empty and has the 3-forth
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and the 3-back property. The notions /: 5ϊ ^ p Λ 93 and 91 ^ p Λ 93 are defined
similarly, also incorporating the QΛ-forth and the QΛ-back property into the
definition.

Looking first at the Q^-free version, a fortiori, the structures 9I0

 a n d 311 given
in the argument of 4.2.7 are partially isomorphic. Furthermore, any two dense
open orderings are partially isomorphic—also via the set of partial isomorphisms
with finite domain.

The relation ^ ω can be considered as a finite approximation of the isomorphism
relation. In good accordance with this view, ω-isomorphic structures are iso-
morphic in case they are finite. Similarly, the stronger notion of ^p embodies
countable approximations of isomorphisms:

4.3.1 Theorem. Countable partially isomorphic structures are isomorphic.

Proof. Assume /: 91 ^p 93, A = {a^isω}, and B = {biliGω}. By induction on i
one can define pj e Part(9I, 95) such that for all i: pf ^ pi+ί, at e dom(p2ΐ), M

The theorem generalizes a well-known result of Cantor according to which
any two countable dense open orderings are isomorphic. However, it is not valid
for uncountable structures: As mentioned above, any two dense open orderings
are partially isomorphic, and there are easy examples of non-isomorphic dense
open orderings even of the same cardinality Kα, for every α > 1. Take, for instance,
Kα many copies of the rationals and order them either according to Kα or inversely.
Moreover, any two infinite sets or any two algebraically closed fields of infinite
degree of transcendence (so-called universal domains) of the same characteristic
are partially isomorphic.

We see from Theorem 4.3.1 that = p is strictly stronger than elementary equiv-
alence. Hence, from a model-theoretical point of view, we may ask whether there
is some logic $£ (necessarily) stronger than first-order logic, such that ^ p equals
if-equivalence. The answer is affirmative.

4.3.2 Theorem (Karp [1965]). For all structures 91 and 95, 91 ^p 93 iffM =^>^ω 95.

From an algebraic point of view, any two universal domains of the same
characteristic—even if they are not isomorphic—are not essentially different. The
fact that they are partially isomorphic demonstrates that ^p can be considered
as a methodologically interesting weakening of the isomorphism relation (see
also Barwise [1973b]).

The direction from right to left in Theorem 4.3.2 tells us that ^ooω is weak
enough not to distinguish between structures that are "weakly identical" in the
sense of being partially isomorphic. This feature leads us to a new notion: For
any logic if, define 5£ to have the Karp property iff any two partially isomorphic
structures are if-equivalent. The direction from right to left in Theorem 4.3.2
now yields that 5£ooω is a strongest logic with this property, in the sense that if a
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logic S£ has the Karp property, then any two if ^-equivalent structures are also
if-equivalent (that is, if < Ξ if ^ J .

A proof of Theorem 4.3.2 (see Theorem IX.4.3.1 or Barwise [1973b, 1975]) can
be given as a suitable "infinitary" version of the corresponding proof for ^ωω

and ^ ω , that is, for Corollary 4.2.4. Returning now to partial isomorphisms
including Lindstrόm quantifiers, we can proceed similarly with the proof of
Theorem 4.2.3, thus verifying the following generalization of Theorem 4.3.2.

4.3.3 Theorem. Let QΛι, for i e /, be monotone relational Lindstrόm quantifiers.
Then for any τ and 91, 33 e Str[τ] we have:

« s M Λ l | l 6 / ) 8 iff M^β o β, ( β R i |,6/,». •

5. Compactness and Its Neighbourhood

Up to now we have described important examples in the framework of general
logics and we have tried to isolate some systematizing aspects such as Lindstrόm
quantifiers and (R)PC-reducibility. In this and the concluding sections we will
try to provide an insight into some basic features of essential model-theoretic
notions. Our considerations are grouped around compactness, Lόwenheim-
Skolem properties and interpolation. Later chapters will exhibit interesting
bridges between these concepts which constitute some of the main achievements
of abstract model theory. For the remainder of this chapter, we will assume that the
logics under consideration are regular.

5.7. Notions of Compactness

In Definition 1.2.4 we introduced the notions of compactness and ̂ -compactness.
The following generalization, which deprives finiteness of its designated role, is
important for instance, with infinitary languages.

5.1.1 Definition. For K > λ > Ko, & is (K, λ)-compact iff for all τ and Φ c j ^ [ τ ]
of power < /c, if each subset of Φ of power < λ has a model, then Φ has a model.

The notion "compact" stems from a connection with topology. Given ί£ and
τ, where ^[τ] is a set, define a topological space 3E^[τ] in the following way. The
domain X^[τ] of 3E^[τ] forms a set of representatives of Str[τ] modulo <£-
equivalence, and a basis of (clopen) sets is given by the sets Mod^(φ) n X^[τ]
for φ e <£\τ\. 3E^[τ] is a Hausdorff space, and it is easy to prove

(*) if is compact iff all 3E^[τ] are compact.
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Call a topological space X (/c, X)-compact if for all sets C of closed subsets of X
with \C\ < K and f] C = 0 there exists C^ C with | C'| < λ and f| C = 0 .
Then, according to an observation of Mannila [1983], topological (K, ̂ -compact-
ness does not correspond—in the sense of (*)—to (K, Λ,)-compactness of logics, but
to a stronger compactness property, the so-called (TC, Λ)*-compactness, which will
play a central role in Chapter XVIII.

Compactness properties have an influence on the number of symbols in a
sentence φ that are essential for the meaning of φ. We make this precise by use of
the following notion. Let φ be from S£\τ\ and σ ^ τ. We say that φ depends only on
the symbols in σ, if for all τ-structures 91, 95 such that 9 I Γ σ ^ 9 3 p σ w e have
91 \= φ iff 33 \= φ. For S£ ̂ M there does not exist a uniform bound for the number
of symbols that are essential for the meaning of a sentence. According to the follow-
ing proposition compactness properties lead to a dual situation.

5.1.2 Proposition. If <£ is (K, λ)-compact and \τ\ < K, then any φ e i f [ τ ] depends
on less than λ symbols. Hence, any sentence of a compact logic depends only on
finitely many symbols.

Proof. Assume | τ | < K and φ e Jέf[τ]. We take a renaming p : τ - » τ ' , where
τ' n τ = 0 , and set

Φ = {Vx(#x <-• p(R)x) \Reτ}

u {Vx /(x) = p(f)(x)\f e τ} u {c = p(c)\c e τ}.

Then Φ μ= φ <->• φ p. As | Φ | < fc, (/c, X)-compactness yields a subset Φ o ^ Φ with
IΦ | 0 < λ and Φ o \= φ «-> φp. Let σ be the set of symbols of τ which occur in Φ o .
Then I σ | < λ, and if 91,93 are τ-structures with 9Ϊ [ σ ^ 93 Γ σ, say 9ί Γ σ = 93 [ σ,
we have (91, (p(§) β P) § e τ) μ= Φ o and therefore 911= φ iff 93P N φp iff 93 |= φ. D

5.2. Well-Ordering Numbers

Compactness properties provide a powerful tool for constructing non-standard
models. For instance, K0-compactness implies the non-characterizability of
infinite well-orderings. On the other hand, the logic J ^ ω i ω , which is not Ko-
compact, admits characterizations of all countable well-orderings. By the following
definitions we create the appropriate terminology to exhibit precise relations
between compactness properties and the characterizability of well-orderings. For
technical convenience we introduce a number oo with α < oo for all ordinals α.

5.2.1 Definition. Let be < e τ and Φ c J5?[τ]. We say that Φ pins down the ordinal
α (via <), if

(i) for all models 9ί of Φ, < ^ is a well-ordering of its field;
(ii) there is a model 91 of Φ such that < m is a well-ordering of order type α.
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We define wκ(JSf) to be the supremum of all ordinals that can be pinned down by a
set of ^-sentences of power < K and call w(J£) = wλ{^£) the well-ordering number
of j£f. A logic i f is bounded, if there is no sentence that pins down arbitrarily large
ordinals.

By regularity of ££ we have w(i?) > ω. If Φ pins down α via <, then any
β < α is pinned down by Φ u {< is an initial segment of < } via -<, and α + 1 is
pinned down via -< by Φ together with -< equals < with the least element put
at the end (assumed α > ω). Hence wκ(J5f) = oo or wκ(<£) is a limit ordinal, and an
ordinal α can be pinned down by a set of if-sentences of power < K iffα < wκ(JSf).
Similar arguments yield that wκ(JSf) is closed under the ordinal operations of
addition, multiplication and exponentiation.

There is a useful characterization of well-ordering numbers:

5.2.2 Proposition. Suppose κ>\ and wκ{5£) < oo. Then wκ{<£) is the least ordinal
en such that for all Φ c ί?[τ] wiί/z < e τ and | Φ | < K it is the case that if for arbi-
trarily large β < a, Φ has a model 91 where <m is a well-ordering of order type β,
then Φ has a model 93, where < ® is noί a well-ordering.

Proof. Assume \vK(if) < oo and let α be the ordinal in question. By constructions
such as in the preceding paragraph one can easily see that wκ(JS?) < α. For the
other direction, it is sufficient to show: If < ex, Φ c j£?[τ], | Φ | < /c, and if for
arbitrarily large β < wκ(j£?)5 Φ has a model 91 with < n a well-ordering of order
type β, then Φ does not pin down ordinals via <. In order to establish this, let Φ
be given such that Φ satisfies the hypothesis and pins down ordinals via <. As
if allows elimination of function symbols, we may assume that τ is relational.
With new binary R, -<, and/let Ψ consist of the following sentences:

(1) ~< is a linear ordering A VX sfield(^ζ) 3z Rxz;

(2) Vxefield«)φ{zlRxz} forφeΦ;

(3) \/y efield(<) 3x >• y: λzf(x, z) is an isomorphism
from (field(< [ {z\Rxz}\ < [ {z\Rxz}) onto
({z\z<x},< [{z[z<x}).

Then Ψ pins down wκ(J?) and is of power < K—a contradiction. D

5.2.3 Examples, (a) wκ(ifω ω) = ω for all K > 1.
(b) For $£ = Seωω{Qύ we have w{&) = Wχo(£>) = ω, but for instance w2κ0(&)

> (2No) + . (Note that for any well-ordering -< of the reals the structure (R, + , ,
<, Q, -<, (r) r e K ) is characterizable up to isomorphism by its if-theory, because
(1R, + , , <,Q, (r) r e [ R) is if-maximal, that is, it has no strict extension in the sense
of ^ ^ (Exercise!).) For further results see Fuhrken [1965].

(c) w(j^ω i ω) = ωv We have w(J?ωiω) > ωί9 because a countable ordinal
α Φ 0 is pinned down by the i f ωiω-sentence

" < is a linear ordering" A VX \/ {μβ(x)\β < α},
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where μβ is defined inductively by

μβ(x) = Vy(y <χ~\/{μy(y)\y < β})

A similar argument works for all admissible fragments 1£ ̂ , showing us that
w(J2?J) > o(jtf\ the least ordinal not in s/. The converse inequality is true for
countable si and yields w(J?ωiω) < ωx.

(d) If i f < ( R ) P C if*, then wκ(5£) < wκ(JSf*). Using this fact and the remark on
countable admissible sets in (c), one can deduce that

the least non-recursive ordinal (the "Church-Kleene ωγ").
(e) The argument from (c) can be extended to arbitrary ordinals α, if we admit

sentences from i f aoω. Hence, w(^ ^ = °° O n t n e o t n e r hand, <£ ̂ ω is bounded
(Lόpez-Escobar [1966]).

(f) The logics if2, i f ω ω (ρ R ) , <£ωω(l\ i f ω ω (6 H ) , i f ω ω (β W ° ) , ^ ω i ω i are not
bounded as they admit a definition of well-orderings, at least as a projective or a
relativized projective class (see Sections 2.3, 2.5 and Example 4.1.2(iv)).

We now return to our introductory remark and state a precise relation between
compactness and the characterizability of well-orderings. A stronger form is
implicit in Theorem ΠI.2.1.4 in the equivalence of (i) and (iii).

5.2.4 Proposition. j£f is i<0-compact #f wNo(if) = ω.

Proof. For the interesting direction, assume ^ to be not K0-compact and Φ =
{φn I n e ω} to be a countable set of sentences of some vocabulary τ such that any
finite subset of Φ has a model, but Φ itself does not. Since ^ allows elimination of
function symbols, we can assume that τ is relational. Then, with new binary
relation symbols R and <, the set Φ' pins down ω, where Φ' consists of

(1) < is a linear ordering;

(2) Vxefield(<)3zRxz;

(3) Vxefield(<X\{y\y < x}\> n^φ{

n

z]Rxz]) ϊorneω. D

At this point we can make another idea precise. Often compactness of a logic
can be proved by defining a calculus and showing its completeness. In the frame-
work of our precise notions we can extract the following general fact:

5.2.5 Theorem. Let <£ = i f ω ω (<2S 0 , . . . , Q%n_) be a logic with Lindstrδm quanti-
fiers (in the sense of Definition 4.1.4), where 1£ is recursively enumerable for validity.
Then, for any τ e HF, !£ satisfies the compactness property for recursive sets of
sentences from <£\τ\.
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Proof. First, we treat the special case where i f = ^ωω(Q%.\i < ή) is recursively
enumerable for consequence. Let Φ c j£? [τ] be a recursive set of sentences such
that any finite subset has a model. If Φ had no model, we could pass from Φ to a
recursive (!) set Φ' as defined in the preceding proof. Adding recursive definitions
of addition and multiplication on field( < ) to Φ' would lead to a recursive set Φ"
characterizing the set of natural numbers with addition and multiplication.
Hence, the consequences of Φ" could not be recursively enumerable. Contradiction.
By a technique that goes back to Kleene (see Craig-Vaught [1958]) one can give
a. finite axiomatization of Φ" by use of additional predicates. Hence, the assumption
that i f is recursively enumerable for validity is sufficient for the preceding argu-
ment. D

5.3. Substitutes

There are extensions of first-order logic—and ifωiω is one of the best examples—
that admit an interesting model theory despite the fact that essential properties
such as compactness fail. They illustrate that the value of a logical system
should not only be measured by the number of significant properties of first-order
logic that are preserved. For instance, JSfωiω compensates missing compactness
by other properties that are well adapted to its specific syntax and its expressive
power, such as that of having the "small" well-ordering number ω l 5 or the inter-
polation property. Guided by such experience and moreover by results such
as Proposition 5.2.4, we may arrive at the idea of considering compactness not
only in the "crude" sense of κ>compactness or its variants, but of measuring it,
for instance, by the size of the well-ordering number. In this sense, the logic i f ooω,
having well-ordering number oo, but being bounded, has preserved a vestige of
compactness.

Taking these aspects seriously, we are led to the following way of exploring the
value of some logic if. Instead of asking for the preservation of properties of
ifωω, we try to isolate properties of 5£ that are able to replace missing properties
of <£ωω or are useful in connection with the special features of 5£. Properties of
the first kind could be called substitutes (for the corresponding properties of
J£ωω). Adhering to compactness we try to give an illustration by some examples.
When doing so, however, we should bear in mind that we are not searching for
some technical means, but rather are on the trace of some kind of "methodological
ferment".

Example 1. Barwise compactness, based on a suitable generalization of finiteness,
may be considered as the most convincing example. (For details see Barwise
[1975] or Chapter VIII.)

Example 2. Small well-ordering numbers and boundedness. We have already
mentioned ^ωλ(a and the role of its well-ordering number being ωx (see also
Flum [1975b]). A further illustration will be treated in Theorem IΠ.3.6: If we
combine boundedness as a substitute for compactness with the so-called countable
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approximation property (see Kueker [1977]) as a substitute for the Lόwenheim-
Skolem property down to Ko, we get a "substitute" for Lindstrom's first theorem
with ^ooω as a "substitute" for ifωω.

The reader who watches carefully for methodological aspects, will meet
further examples at various points. Certainly he will do so when he recognizes the
role of ίndίscernίbles (instead of compactness properties) as a means of obtaining
upper bounds for Hanf numbers (" stretching method ", see the examples following
Theorem 6.1.6).

6. Lδwenheim-Skolem Properties

The well-ordering number w(j£?) and its generalizations wκ(J?) center around the
characterization of well-orderings. Lδwenheim-Skolem phenomena refer to
analogous questions concerning the cardinality of models. There are two dual
aspects: one deals with Hanf numbers (as a counterpart of well-ordering
numbers), the other one with Lόwenheim numbers.

The following definitions and results can be restated for the many-sorted
case, if one defines the cardinality of a many-sorted τ-structure 91 as ]Γ s e τ \AS\
(see Definition 1.2.4(vii)).

6.1. Hanf Numbers

For any logic if, compactness yields the upward Lόwenheim-Skolem theorem
in the following form: If Φ is a set of sentences of i f of power < K that has an
infinite model, then Φ has models of arbitrarily high cardinality. In the terminology
to come this means that hκ(J£) = Ko for all K.

6.1.1. Definition. We say that Φ c 5£\τ\ pins down the cardinal K iff Φ has a model
of cardinality K, but Φ does not have models of arbitrarily high cardinalities. We
let hκ{5£) be the supremum of all cardinals that can be pinned down by a set of
if-sentences of power <κ and call /z(if) := ft^JS?) the Hanf number of if.

By regularity, /z(if) > Ko. To get more information, let Φ c <£\τ\ pin down
arbitrarily high cardinals below μ, μ > Xo Assume without loss of generality that
τ is relational. Then Ψ pins down μ, where Ψ consists of

(1) < is a linear ordering of the universe;

(2) Vxφ { z | R x z } forφeΦ;

(3) Vx λuf(x, ύ) Γ {y\y < x} is an injection into {z\Rxz}.

From this we see (taking μ + instead of μ) that hκ(<£) = oo or hκ(^) is a limit
cardinal that cannot be pinned down by a set of if-sentences of power < K. Hence,
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hκ{<£) = oo or hκ(^) is the least cardinal μ such that every set of if-sentences of
power < K that has a model of cardinality μ has arbitrarily large models. More-
over, we obtain as a weak analogue of Proposition 5.2.2:

6.1.2 Proposition. // Φ c jS?[τ], | Φ | < K, and Φ has models of arbitrarily high
cardinality below hκ(<£\ then Φ has models of arbitrarily high cardinality. D

We have h{<£ ̂  = oo even if we restrict ourselves to finite vocabularies (for
instance to {<}, as can be obtained from Examples 5.2.3(c), (e)). On the other
hand, logics with "few" sentences should have Hanf numbers < oo. To make this
precise, we introduce a new notion.

6.1.3 Definition. Occ(j^), the occurrence number of Ί£, is the least cardinal μ such
that for all τ,

JSf[τ]= U ^Ί>o]>
to —τ

| τ o | < μ

if such a cardinal exists; otherwise Occ(if) = oo.3

The following theorem can be considered as one of the earliest results of what
is now called abstract model theory.

6.1.4 Theorem (Hanf [I960]). Let $£ be small (that is, for all τ, i f [τ] is a set) and
assume that Occ(^) < oo. Then for all /c, hκ(J?) < oo.

Proof. Set μ = K Occ(if) and let τ be a "universal" vocabulary of power μ;
that is, τ contains μ many relation and function symbols of each arity and μ
many constants. In order to investigate /zκ(if), we can confine ourselves to τ-
sentences of if. As 5£[τ] is a set, we have

hκ(&) = sup{|/l| |SΪ N Φ, Φ c j ^ [ τ ] , | φ | < κ and Φ does not have
arbitrarily large models} < oo

(Axiom of Replacement!). D

The use of the Axiom of Replacement in the argument above is quite essential.
This can already be illustrated in case ^ = ^ 2 (see Barwise [1972b]).

3 Just as one defines the occurrence number Occ(if) one can introduce a so-called dependence number

o(if), as is done in Chapter XVIII, 2.1.4: o(if) is the smallest cardinal K such that for all τ and φ e if [τ]

there is a vocabulary σ c= τ of cardinality < K such that φ depends only on σ, and o(j£?) = oo if no such

K exists. Intuitively, the dependence number is the semantic side and the occurrence number the

syntactic side of one and the same coin. Indeed, using the substitution property to remove dummy

relation symbols, function symbols, and constants, one can easily see that o(if) and Occ(if) can

play the same role in the one-sorted case. In the many-sorted case this may not be true because the

substitution property as we have stated it in 1.2.3 does not enable us to remove dummy sort symbols;

however, it can be guaranteed by a suitable reformulation of 1.2.3 which we leave to the reader.
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Compactness properties yield small Hanf numbers. For example, if if is
(K, λ)-compact for all K, then /zκ(if) < λ for all K. On the other hand, compactness
fades away with growing well-ordering numbers. Hence the question: Do large
well-ordering numbers come along with large Hanf numbers? For a precise answer
we introduce the beth numbers from classical set theory:

6.1.5 Definition. We define by recursion:

(i) 30(κ) = κ\
(ii) 3 β + 1 (fc)=2 a W;

(iii) 1β(κ) = suppα(κ)|α < β} for limit β.

To illustrate the size of beth numbers, let A be a set of power K and define
V*(A\ a variant of the von Neumann hierarchy over A, by the following equations:

(i')
(ii') 7*+1(Λ) = power set of V*(A),

(iii') V$(A) = U {^*(^)|α < β} for limit /?.

Then for all α we have | V*(A)\ = 2a(κ).
Now assume that λ < hκ(J£) is pinned down by a set Φ c i?[τ] of power < κ;,

where τ can be chosen relational (if allows elimination of function symbols!).
With new binary relation symbols V, s and new constants co,c1 let Φ' consist of

(1) 3z Vcoz A Vz(Vcoz v Vcxz);

(2) φbWcoz) f o r φ 6 φ ;

(3) \/xy(Vz(zεx -<-> zε^) -• x = y); that is, "ε /s extensίonaΓ;

(4)

Then for any model 31 of Φ' we have with μt = \{a e A\(cf, a) e Vs*} \ that \A\ <
μ0 + μu where μ0 < Ki^) and μx < H^/io). Hence Φ' pins down cardinals, and
obviously/zκ(if)> 3X(A).

Φ' can be considered as a description of the first two steps of the modified von
Neumann hierarchy over the domain of models of Φ, where Φ pins down λ. The
construction can be easily generalized in a natural way to describe the hierarchy
along well-orderings that can be pinned down in if Thus, one can prove:

6.1.6 Theorem. Assume that each ordinal α < wκ(J£) can be pinned down by a set
Ψα of sentences, | Ψ J < /c, having a model 91 of power </zκ(if) where <m is of
order type α. Then for every λ < hκ{5£\ hκ(&) > 2Wκm(λ).

As an application we obtain, for instance, that

/z(ifωiω) > n ω i (κ 0 ) ;

3 ω «(K 0 ) for ^ = $£™\ <?
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What about the other direction in these examples? It is valid, too. Thus, in each
case we get equality. The corresponding proofs are based on partition theorems
and indiscernibles. These techniques can also be used to get further strong results
in the same direction (see, for example, Barwise [1975]).

If a logic is weak in pinning down ordinals, it may happen that we are unable
to give satisfactory information about Hanf numbers. For example, for i f =
J2PJ/), the size of Λ(jSf) depends on set theory: If V = L, then h(&) = h(£>2).
On the other hand, h(J£) may be smaller than the Lόwenheim number /(if) as
defined below, which may itself be smaller than 2No (see Section VI.2.1 and
Vaananen [1982a]).

Warning. We have become accustomed to numerous preservation facts for
(R)PC-reducibility. For instance, we obviously have

(*) If i f < pc J?*, then for all κ9 hκ(&) < /zκ(if*).

However, it is plausible that we would meet difficulties if we were to try to prove
(*) for < R P C . Indeed, in the remark preceding Proposition 7.2.5 we will see that
there are counterexamples.

6.2. Lδwenheim Numbers

Lόwenheim numbers measure the strength of downward Lόwenheim-Skolem
theorems.

6.2.1 Definition. /κ(if) is the least cardinal μ such that any satisfiable set of if-
sentences of power < K has a model of power < μ, provided there is such a cardinal
otherwise, Zκ(i?) = oo. We call f(J£?):= /^if) the Lόwenheim number of if.

Obviously, !£ has the Lόwenheim-Skolem property down to λ iff l(J^) < λ.
By taking inequalities between K many constants we see that lκ(&) > max{κ, No}
The proof of the downward Lόwenheim-Skolem theorem for i f ω ω ( β i ) as men-
tioned in Example 1 of Section 2.2 can be generalized and yields /(ifω ω(βα)) =
W^f ω ω (β α ) ) = Kβ. Clearly, / ( i f ^ J = oo. But if ^ is small (that is, if all &\τ]
are sets) and Occ(if) < oo, then by an argument like that for Hanf's theorem
(6.1.4), we have lκ(&) < oo for all K.

Numerous results such as /χβ(ifωω(6α)) = ^α c a n be strengthened by showing
that structures possess small elementary substructures; however, this possibility
may fail already with familiar logics. For instance, Z(ifωω(aa)) = X1? but the
existence of ifωω(aa)-elementary substructures of power < Ht is independent
from ZFC (see remark after IV.4.2.5). For a closer look at Lόwenheim-Skolem
properties and substitutes the reader is referred to Section III.3.
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7. Interpolation and Definability

In this final section we return to central notions of a more "logical" character.
The main topics we shall touch concern interpolation and a generalization of
Robinson's consistency theorem in Section 7.1, Δ-interpolation in Section 7.2 and
variations of Beth's definability theorem in Section 7.3. Again we confine ourselves
to regular logics. However, we explicitly include the many-sorted case. As the re-
formulation of the usual interpolation property given in Definition 1.2.4(viii) by
separability of projective classes as in Proposition 3.1.3 splits into cases—referring
to " P C " in the one-sorted version and to "RPC" in the many sorted version—we
use "(R)PC" to stand for " P C " in the first and for "RPC" in the second case.

7.1. Interpolation and the Robinson Property

As a generalization of the interpolation property, we state

7.1.1 Definition. Let JSf, if* be logics, if* has the interpolation property for <£ or
if* allows interpolation for if iff* any two disjoint classes of the same vocabulary
that are (R)PC in ^£ can be separated by a class EC in J^*.

Interpolation is indeed rare. The positive examples among the logics we have
mentioned up to now can be listed very quickly:

7.1.2 Examples, (a) ifωω. The one-sorted case is due to Craig [1957a], the many-
sorted one is proved in Feferman [1968a]. The one-sorted version follows from
the many-sorted one, even in the stronger form with "RPC" instead of "PC",
because relativized reducts can be rewritten as simple reducts of many-sorted
structures (see Barwise [1973a]). It is especially with interpolation that many-
sortedness pays. As seen in Feferman [1974a], the many-sorted version of the
interpolation theorem together with its possible refinements is a powerful tool
even for one-sorted model theory, offering for instance elegant proofs of various
preservation theorems. For a proof of a strong version of ifωω-interpolation
the reader is referred to Theorem X.2.2.9.

(b) ^ωiω (Lopez-Escobar [1965b]) and countable admissible fragments
(Barwise [1969b]).

Interpolation properties seem to indicate some kind of balance between syntax
and semantics. This can be seen, for instance, from the work of Zucker [1978]
or from the fact that interpolation implies Beth's definability theorem, according
to which implicit definitions can be made explicit. Last but not least it is illustrated
by a result of Feferman [1974a] according to which Δ-interpolation is equivalent
to truth maximality (see Corollary XVII. 1.1.17). Hence we may expect that inter-
polation properties (or definability properties, see Section 7.3) fail if syntax and
semantics are not in an equilibrium. The counterexamples to interpolation that
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we have mentioned up to now (such as ifw2, being able to code its own truth, or
i f ω ω (β i ) , being able to characterize uncountability) are not astonishing if seen in
the light of these heuristics.

7.1.3 Further Counterexamples, (a) In the case of large infinitary languages, the
main fact is that i f o o ω does not allow interpolation for ifω2ω. For a proof we con-
sider the classes

#x 0 = {A\A Φ 0 , \A\ < No}, # K l = {A\\A\ > X J .

ΛNo and ΛKl are PC in ifω2£0 (for RX l we can use the sentence

But ΛNo and ft**1 cannot be separated by a class EC in i f „ „ , as all infinite sets
are partially isomorphic and, hence, 5£^-equivalent by Karp's theorem (4.3.2).
(For further results see Example IX.2.3.1 and Theorem IX.2.3.2.)

(b) For extensions of i f ω ω (β i ) , we find that i f ω ω ( β ΐ | n > 1) does not allow
interpolation for i f ω ω (β i ) , and if ω ω (aa) does not allow interpolation for i f ω ω (β i ) .
Hence, none of the logics ^ωω{Qn\) for n > 1, i f ω ω(aa) or i f ω ω(pos) has the inter-
polation property.

To argue for the first assertion, let Λ c f ω, Λcfβ>1 be the classes of orderings of
cofinality ω, ω l 5 respectively. Both are PC in i f ω ω ( β i ) : ftcfω via a sentence
φo( <, Uo) saying that < is an ordering of the universe without last element and
Uo of power < K 0 a cofinal subset, and ί t c f ω i via a sentence ψι{<, Uλ) saying
that < is an ordering of the universe and U ± & cofinal subset such that
< [ U1 x Uί is an Ki-like ordering. 5ic f ω and Λ c f ω i cannot be separated by a
class of orderings EC in JS?ωω(Q"|n > 1). For let 91 = ({R, < R ) be the ordering of
the reals and 93 = (93, < β ) the result of replacing each ordinal in Kx by a copy of
91. Then 91 e Λcfω and 93 e Λc f ω i. On the other hand, we have 91 =^ ω ω ( Q ?) 93 for
all n > 1, as (/)α<ω: 91 = ω , Q ? S, where / is the set of partial isomorphisms from
91 into 93 with finite domain. (For the second assertion and further material, see
Section IV.6.3).

(c) i f ω ω ( β c f ω ) , the fully compact extension of ̂ ωω, does not have the inter-
polation property (alas!). To sketch a counterexample, call a tree (T, <, E) with
an equivalence relation E on T whose equivalence classes are maximal antichains
("levelled tree") rankable by a linear ordering (R, < ) , if there exists a homomorph-
ism π from (T, < ) onto (R, < ) such that the equivalence classes of E are the pre-
images of π. Define ft0, ftx to be the class of levelled trees rankable by some ordering
of cofinality ω, > ωu respectively. Then ft0 and ί^ are disjoint and PC in i f ω ω (β c f ω ) .
Define Zo to be the set {t\t: {a e Q \a <Qb} -• {0, 1}, b e Q} ordered by inclusion
where two points are equivalent if they have the same domain, and define 3^
similarly, using a dense KΓlike end extension of (Q, < Q ) . Then Xt G Λf (i = 0, 1),
but ϊ 0 - < ^ ω ( β c f ω ) Xj. See also Mekler-Shelah [1983, Theorem 3.5].

(d) For a general class of counterexamples the reader can refer to Proposition

VI.2.3.1.
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In first order logic there is access to interpolation via Robinson's consistency
theorem. This possibility can be generalized.

7.1.4 Definition. <£ has the Robinson property iff for any vocabularies τ 0 , τx and

τ = x0 π τ x and for all classes (!) Φ c jgf [τ] and Φ, c jS?[τf] (ί = 0, 1), if
Φ is complete (i.e. all τ-models of Φ are if-equivalent) and if Φ u Φ, has a model
for i = 0, 1, then Φ U Φ Q U Φ J has a model.

7.1.5 Proposition. Let JS? be small {i.e. all JSf[τ] are sets). Then, if i f is compact,
$£ has the interpolation property iff i f has the Robinson property.

Proof. Let JSP be compact and τ 0 , τγ and τ be given as in Definition 7.1.4. Since
JS? is small, all classes of sentences defined below are sets so that the compactness
property is applicable. Assume first that i f has the Robinson property and let
ψi 6 &[τ[\ (ί = 0, 1) be given such that

(*) Ψo \= Φi

Setting Φ' = { φ e ^ [ τ ] | φ 0 |= φ}, we have Φ' \= φv (Otherwise, if 93 e Str[τ] has
an expansion satisfying Φ' u {~i<Pi}, then Th^(93) u {—icpx} has a model, and
by a compactness argument, so does Th^(33) u {φo) Hence the Robinson
property yields a model of {φ0, ~n<Pi}—a contradiction to (*).)

Now, by compactness, there is some finite subset of Φ', say Φ", such that
Φ" 1= <Pi Obviously, / \ Φ " is an interpolant for (*).

For the other direction let Φ, Φ o , Φ x be given as in Definition 7.1.4, Φ complete,
Φ υ Φ j satisfiable for ί = 0, 1 and without loss of generality Φ c φ 0 . As <£ is
compact it suffices to show that for any finite conjunction φt over Φt (i = 0, 1)
the set {φ0, φ j is satisfiable.

Assume for contradiction that {φ0, φx} has no model. Then the interpolation
property yields a sentence φ e ££\τ\ such that φo\= φ and φ\= Ί ^ . A S Φ U {<p0}
has a model and Φ is complete, we have Φ \= φ. But then Φ u { φ j has no model,
a contradiction to the satisfiability o f Φ u Φ j . D

Proposition 7.1.5 can be strengthened considerably: For logics with sufficiently
small occurrence number, the Robinson property yields compactness (see Theorem
XIX. 1.3 and Chapter XVIII).

7.2. /^-interpolation and A-closure

The following notions have proved to be very fruitful.

7.2.1 Definition. A class ft of τ-structures is said to be Δ in i f (in symbols SI e
iff ft and ft = Str[τ]\ft are (R)PC in 5£. A logic JSP has the ^-interpolation property
iff every Δ class of !£ is EC in 5£. A logic Ĵ f * has the /^-interpolation property

for & (or ̂  allows ^interpolation for &) iff every Δ class of ^ is EC in ^ .
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As we have already observed in Section 3.1, Δ-interpolation is a weakening of
interpolation. Moreover, Theorem 7.2.6 will show us that it is a strict one. For
several reasons, however, it is an interesting one, one that is able to compete
seriously with the perhaps too strong notion of interpolation:

(1) According to a remark after Example 7.1.2(b), Δ-interpolation is equivalent
to truth-maximality and thus, in a precise sense, embodying a balance
between syntax and semantics.

(2) Δ-interpolation is equivalent to a certain variant of Beth's definability
theorem, see Proposition 7.3.3.

(3) Δ-interpolation is by far not as rare as interpolation. This will become
clear from the notion of Δ-closure given below.

7.2.2 Examples and Counterexamples, (a) ifω ω((?i) does n o t allow Δ-interpolation
as the classes corresponding to Keisler's counterexample to interpolation (see
(*) in Example 1 of Section 2.2) are Δ in ££ωω(Q\).

(b) Even sharper: 5£ωω{Q\ \ n > 1) does not allow Δ-interpolation for <£ωω(Qi)
(For a proof see Theorem IV.6.3.3.)

(c) Similar to (a), the counterexample to interpolation for i f ω ω (β c f ω) as given
in 7.1.3(c) is also a counterexample to Δ-interpolation.

In contrast to the interpolation property, the Δ-interpolation property
guarantees the existence only of such elementary classes as are uniquely deter-
mined. Hence, unlike interpolation, Δ-interpolation leads to a natural closure
operation which we now examine.

7.2.3 Definition. The A-closure of if, Δ(if), is the logic that has as elementary
classes just the classes that are Δ in if. To develop a more precise description, let
Δ(if )[τ] consist of all pairs

φ = (3τoXtφ0> 3τi\τ<Piλ

where τ£ 2 τ, φt e JS?[τJ (ί = 0, 1), and Mod^(3 τ o X τφ 0) and M o d ] ^ ^ ^ ) are
complementary, and set

7.2.4 Theorem (Properties of the Δ-Closure). Assume that Occ(if) = Ko Then

(i) Δ(JSf) is a regular logic with occurrence number Ko.
(ii) Δ is a closure operation on the logics under consideration, that is,

(1) if < A(^);
(2) // JS? < j?*, then A(^) <
(3) Δ(Δ(J?)) = A(^).

(iii) A(J^) has the A-interpolation property and <£ = ( R ) P C

(iv) A{^) is modulo equality via elementary classes the strongest logic < ( R ) P C S£
and the smallest < {R)PC-extension of Ί£ having the A-interpolation property.
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Remarks. The first statement of (iv) says that if if* < ( R ) P c ^ , then <£* < Δ(if).

Thus it makes precise the range of (R)PC-reducibility: There is a unique borderline

realized by Δ(J^).
As the proof below will show the condition on Occ(if) is used for instance

to formulate τ-closedness of predicates. In infinitary languages this can be done
even for infinite vocabularies. Hence Theorem 7.2.4 is also valid for logics such

Sketch of Proof of Theorem 7.2.4. We show some parts of (i) and (ϋ)(3), confining
ourselves to the one-sorted case and considering typical examples. If S is, say,
unary and φ(c) = (3#φo(K, c), ISφ^S, c)), then one can take (ISφ^S, c),
3Rφo(R, c)) for ~i(p(c) and (3R 3cφo(R, c), 3S' Vcφ^λzS'cz, c)) for 3cφ(c) where
S' is a new binary relation symbol. To show the relativization property,
let χ = (3β { Λ σχ 0, 3σi\«Zi) G Δ(JSf)[σ] (with σ c σ ί? σf finite, χf G JSf[σJ and,
say, σ 0 = σx) and let θ = ( θ 0 , Sx) be some Δ(if)-sentence of meaning
Vc(Uc+^φ(c)), U new and, say, θ e Δ ( i ? ) [ τ u {£/}]. Then one can obtain a
Δ(if)-sentence of meaning χίcl^c» by suitably rephrasing the equivalent statement

(317 3σ ( Λ σ(θ 0 A Unclosed A χu

0\ 3U 3 σ o W (θ 0 Λ ( I Uσ0-closed v χ?))).

In order to prove Δ(Δ(if)) = Δ(JSf) one observes that a typical sentence of Δ(Δ(JSf))
such as

(3R(3Sφo(R, S,...),...), 3

has the same meaning as (3RSφo(R, S,...), 3R'S'φr

0(R', S\ ...)). D

Remark. Properties that are transferred from i f to Δ(if) include those which
are inherited by = ( R ) p C Therefore the Δ-closure preserves (K, Λ)-compactness,
well-ordering numbers, Lόwenheim numbers and boundedness. On the other
hand it does not necessarily preserve Hanf numbers in the many-sorted case. For
example, as shown in Vaananen [1983], it is consistent to assume in this case
that h{<£ωω(/)) < ft(Δ(JS?ωω(/))). However, if Δ classes and the Δ-closure are
defined via PC as in the one-sorted case, Hanf numbers are preserved also.

7.2.5 Proposition. The Δ-closure does not preserve the Karp property.

Proof. ifω2ω has the Karp property (see the remarks following Theorem 4.3.2).
According to Counterexample 7.1.3(a) the classes ΛKo = {A Φ 0\ \A | < Ko) a n d
ft*1 = {A\\A\ > K J are Δ in ifω2ω and so are EC in Δ(J5?ω2J. Therefore,
K o φ Δ ( J ? ω ω ) ^ i But on the other hand we have Ko = p K^ Thus, the Karp property
fails for Δ(JS?ω2ω). D

We can say even more. By the proof of Proposition 7.2.5 we have ϊ£ωω{Q\) ^
Δ(^ ω 2 C 0 ). Hence the classes S\c(ω and Λ c f ω i of orderings of cofinality ω, ω l 5 respec-
tively, which are PC in ££ωω(Q\) (compare the proof of Counterexample 7.1.3(b)),
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are PC in Δ(if ω 2 ω ) . Assume that there is some class ft, ft EC in Δ(ifω2C0), that
separates ftcfω and ftcfωi. Then for suitable τ 3 {<} and φ e i f ω 2 ω [ τ ] , we have
ft = Mod(φ) Γ {<}. Let <£ be the smallest fragment of ££ωτω containing φ. We
take some 91 e Str[τ] with (A, <**) an ordering of cofinality ω2 and^build into 91
a chain (9Iα)α<Kl, forming unions at limit points, such that for all α < N 1 ? 2Iα -<_̂
2l«+i < ^ 91, and < a-is not cofinal in <* α + 1 .Then9I ω Γ{<}eftiff9IN l f {<}eft .
This, however, is a contradiction. Thus we have proved

7.2.6 Theorem (H. Friedman). /^-interpolation is strictly weaker than interpolation.
For instance, Δ(i^ω 2 t 0) does not allow interpolation. D

The reader should consult Theorem IV.6.3.5 for another example.

Concluding Remarks, (a) Our definition of Δ(JS?) as sketched in Definition 7.2.3 is
useful for technical purposes. But it does have a remarkable disadvantage: even
the <£ωω-part of Δ(JSfωω)( = i? ω ω ( !)) is not effective, since for sufficiently rich τ
the Δ(if ωω)-sentences of the form (φ,3x x Φ x) (that is, those with φ e <¥ωω[τ]
and \= φ) do not form a recursive set. A more significant example illustrating the
task of giving an informative description of Δ-closures is due to Barwise [1974a]
(see Theorem XVΠ.3.2.2):

Δ(JS?w2) = A(^ωω(Q0)) = ifωcκω (for finite vocabularies).

(b) If i f = &ωω(Q%0,..., βSn) with Lindstrόm quantifiers Q% and if IK consists
of those classes which are Δ in i f and of finite vocabulary, then obviously Δ(if) =
if(Q^|ft e IK). Now, if IK0 is a finite subset of IK, then one can prove by a slight
variation of the technique used in the proof of Proposition 3.1.7 that, if i f is
recursively enumerable for consequence then so is i f(g^ | f t G (KO). It is in this
sense that the Δ-closure preserves axiomatizability locally.

7.3. Definability Properties

In Definition 1.2.4(ix) we formulated the Beth property by a natural translation of
Beth's definability theorem into the framework of abstract model theory. The
following definitions introduce some variants.

7.3.1 Definition. Assume § e τ and φ e £?[τ]. We say that φ defines § strongly
implicitly iff for each 9Ϊ e Str[τ\{§}] there is exactly one expansion (21, §*) of
91 which is a model of φ. The logic ^£ has the weak Beth property iff for each τ,
§ and φ as above, if φ defines § strongly implicitly, then § is explicitly definable
relative to φ.

Like Δ-interpolation which guarantees the existence of uniquely determined
elementary classes, the weak Beth property ensures the existence of uniquely
determined explicit definitions. Hence it induces a natural closure operation on
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logics yielding the so-called weak Beth closure WB(if) of a logic if (it is treated,
for example, in Sections XVII. 1.2 and 4.1). As can be shown by examples (see
Chapter XVIII, 4.2.2) the weak Beth property is strictly weaker than the Beth
property. According to H. Friedman [1973] and Badger [1980], &ωω(Q\) does
not have the Beth property for n > 1. It is open as to whether or not it has the
weak Beth property. (For n = 1 see also Mekler-Shelah [198?].)

Failure of the Weak Beth Property. We have already mentioned after Definition
2.1.2 that there is a fairly general method of disproving the (weak) Beth property
by a codification of truth. The method goes back to Craig [1965] and is explicitly
used in Mostowski [1968] and Lindstrόm [1969]. It applies to logics such as
ifωω(βo)> j£?w2, or J5fωω enlarged with finitely many Lindstrόm quantifiers in
which, for example, the standard model of arithmetic is characterizable
and which allow an arithmetization of their semantics. A systematic treatment
can be found in Section XVII. 11.2. For illustration we give an example for
the one-sorted case. We assume that if = ifωω(QΛ) with ft of vocabulary {JR},
R binary, and that for some finite τ ^ {+ , , <, 0, 1} and some φ e Sent^[τ] the
sentence 3τ χ { + . < 0 1 } φ characterizes the standard model of arithmetic.

For our procedure we use an effective Gόdel numbering

and we code assignments of finitely many variables over ω—the case we are
interested in—by elements of ω in some natural manner, identifying variables with
natural numbers. Then, with a binary relation symbol Sat, we construct a (τ u
{Sat})-sentence σ of if such that (abbreviating 1 + •• + 1 by m)

m- times

(*) Sat is defined strongly implicitly by the sentence

σ = (φ Λ σ) v (—\φ A Vxy ~Ί Sat xy).

(**) If (21, Sat21) \= φ A σ, then, for all m,neω, we have

21 \= Sat mV 1 iff m91 codes an assignment π over A the domain of
which contains all variables occurring free in
Ϋ{ή) such that γ{ή) is true under π in 2Ϊ.

To obtain σ, one describes the inductive definition of satisfaction for S£\τ\-
formulas. For example, the β-step can be treated as follows: Let/: ω3 -• ω be a
recursive function such that for all /, m, n e ω,
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Then, writing "Sat(x, y)n for "Sat xy'\ the following sentence becomes a conjunct
of σ:

Vx \fuvw (Sat(w, " /(w, v9 x)") <-• (" w assignment for f(u, v, x)n

A Qyz Sat("w Γ(dom(w)\{W, i;}) u {(ιι, JO, (i;, z)}", x))),

where the parts in quotation marks have to be replaced by an arithmetical de-
finition.

Proof of the Failure. Now, assume 5£ to have the weak Beth property. Then, by
(*), there is φ(vθ91^) e Form^[τ] defining Sat explicitly relative to <?. Let n be the
Gόdel number of -ι ψ(" {(0, υ0)}", v0) and assume 9ϊ to be a model of φ A σ. Then,
by (**), we obtain

9ϊ \= φ(" {(0, n)}", π) iff 911= -i ^ Γ {(0, n)}", n).

This is a contradiction. •

As the interpolation property yields the definability property, counterexamples
to the latter are, in effect, counterexamples to the former. Positive results concern-
ing the other direction are described in Chapter XVIII.4.

We conclude with a link between interpolation and definability which goes
back to Feferman [1974a]. For this purpose, we strengthen the weak Beth property
in a new direction.

7.3.2 Definition. The logic i f has the projective weak Beth property iff for all
τ, τ' with τ ^ τ' and for all § e τ and φ e S£\τ'\ if 3τΛτφ defines § strongly implicitly,
then § is explicitly definable relative to 3τΛτ φ.

7.3.3 Proposition, i f allows /^-interpolation iff i f has the projective weak Beth
property.

Proof. Assume first that i f has the projective weak Beth property, and let 5^ =
Mod(3 τ i Λ τφ f) (i = 0, 1) be two disjoint complementary classes of τ-structures.
With new unary P (in the many-sorted case this P will be equipped with some
sort symbol s e τ) we set

χ - (3τoχτφ0 Λ VxPx) v (^φ, Λ V X Π PX).

Obviously, χ strongly implicitly defines P and the projective weak Beth property
applies. Let φ be an explicit definition of P relative to χ. Then

{(91, a)\SΆ e Str[τ], 91 N 3 τ o X τ φ o , a e Λ(s)} = Mod(φ)

is EC in ^£ and hence, by particularization, so is ft0.
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For the other direction, assume S£ to allow Δ-interpolation and 3τ<Xτφ to
strongly implicitly define § e τ, say § = P, a unary relation symbol. Then

ft =

is (R)PC in S£. The complementary class ft can be written as

ft = m r (τ\{P}>, α)|8ϊ 1= 3τ Λ τφ, α £ P*}

and hence is (R)PC in if, too. Therefore, ft is EC in if. Now take φ such that
ft = ModO/O Then φ is an explicit definition of P relative to 3τ>Xτφ. D

Following the pattern of Definition 7.3.2, the reader may define the so-called
projective Beth property. For instance, suppose a sentence φ(R, 5, P) defines P
implicitly relative to S in the sense that, with new symbols R\ P',

φ(R, S, P) A φ(R\ 5, P') 1= Vx (Px ^> P'χ).

Then the projective Beth property implies that φ(R, S, P) admits an explicit
definition of P relative to 5, that is, a formula φ(S, x) such that

φ(R, S, P) N Vx(Px ++ φ(S, x)).

The usual proofs of Beth's definability theorem—including the original proof in
Beth [1953]—extend immediately to the projective Beth property. Even more: A
slight modification of the preceding argument shows that the interpolation property
and the projective Beth property are equivalent for all regular logics (Rowlands-
Hughes [1979]). Thus we get an alternative answer to the question about the
relationship between interpolation and definability as posed in the remarks
following Definition 1.2.5.




