
Part A

Introduction, Basic Theory
and Examples

This part of the book provides a basic setting for the chapters that follow, by
isolating examples and concepts that have emerged as central and by presenting
some of the more basic methods and results. Chapter I discusses how the subject
of model-theoretic logics got started, both the parts that have to do with extended
logics, and the part having to do with abstract model theory. The chapter pre-
supposes familiarity with only the most basic parts of first-order model theory,
its syntax and semantics.

In Chapter II the basic concept of a logic is presented, with many examples,
as well as the concepts of elementary and projective class and compactness,
Lόwenheim-Skolem and definability properties. The notion of one logic being
stronger than another is introduced and studied. Examples discussed include
higher-order logics, logics with cardinality and cofinality quantifiers, infinitary
logics and other logics with generalized quantifiers and logical operations.

Given any particular logic <£ one central problem is that of understanding
when two structures are J^-equivalent, that is, satisfy the same if-sentences.
Among the basic results of Chapter II is a characterization of j^-equivalence
in terms of partial isomorphisms, for a wide range of &\ Here we have a good
example of a method borrowed from first-order logic which really comes into its
own only in the more general setting. Another important method presented in
Chapter II is the use of projective classes (PC) for establishing countable compact-
ness and recursive axiomatizability for a host of logics.

Chapter III begins with an exposition of Lindstrom's theorem, which shows
that first-order logic is the strongest logic (of ordinary structures) which satisfies
the compactness and Lόwenheim-Skolem properties. First-order logic is also
shown to be maximal with respect to other combinations of familiar properties.
The methods used are those of partial isomorphisms and projective classes.

Lindstrom's theorem has become a paradigm for characterizing other logics.
Among those discussed in Chapter III are certain infinitary logics and logics with
added quantifiers. Chapter III ends with an abstract characterization theorem
which covers Lindstrom's theorem as well as logics for other types of structures,
like topological structures. This connects with work in Chapter XV.

These chapters are meant to be accessible to anyone with a knowledge of basic
model theory for first-order logic. They provide the reader with the basic notions
and viewpoint needed to appreciate what follows.





Chapter I
Model-Theoretic Logics: Background and Aims

by J. BARWISE

Two aspects to the study of model-theoretic logics are represented in this volume.
First, there is the isolation and study of specific model-theoretic languages, or
logics as they are called here, for the study of various mathematical properties.
Second, there is the investigation into relations between these logics. These two
parts of the subject are called extended model theory and abstract model theory,
respectively, and are the two subjects of the two main sections of this chapter.

In writing this chapter I hope to give a perspective from which to view the
study of model-theoretic logics. First (in Section 1.2) I will contrast the view of
logic implicit in this endeavor with what I call the first-order thesis, a view of logic
and mathematics which claims that logic is first-order logic. Then (in the rest of
Sections 1 and 2) I will discuss some of the motivation, ideas, aims, and precon-
ceptions of early workers in the subject. The first is needed to appreciate the most
basic definitions. The second is needed to judge the progress made against those
early hopes and preconceptions. Where it is natural, I will point ahead to later
chapters, but more specific introductions to the chapters will be found at the
beginning of each part of the book.

1. Logics Embodying Mathematical
Concepts

In extended model theory one asks, "What is the logic of specific mathematical
concepts?" More explicitly, given a particular mathematical property (like being
a finite, infinite, countable, uncountable, or open set, or being a well-ordering or
a continuous function, or having probability greater than some real number r),
what is the logic implicit in the mathematician's use of the property? What sorts
of mathematical structures isolate the property most naturally? What sorts of
languages best mirror the mathematician's talk about the property? What forms
of reasoning about it are legitimate? Which other properties are implicit in it or
are presupposed by it?
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7.7. Logic, Structures and Logics

A word of explanation is in order about the way we are using the words "logic",
"structure" and "logics" here. For the person in the street, logic is the study of
valid forms of reasoning, from the most mundane uses in our day-to-day lives to
the most sophisticated uses in science and mathematics. If you and I are discussing
some topic, like fixing the roof, a law of genetics, or the solution to some partial
differential equation, and I say "The logic of that escapes me", what I mean is
that I do not see how the conclusion you have come to follows from our shared
assumptions and concepts, including the conception of the task at hand. How
does it follow from the properties of roofs, or the laws of genetics that we both
accept, or the concepts involved in differential equations? When I talk of logic as
I have above, I am referring to this common sense, person-in-the-street notion.

On the common sense view of logic, all the concepts we use to cope with and
organize our world have their own logic. As logicians, we are perfectly entitled to
delve into their logic. However, as mathematical logicians, or metamathematicians,
our interest is more specialized. What we seek to understand is the logic of precise
mathematical concepts. Extended model theory makes a frontal attack on this
problem by, where appropriate, building "logics" to get answers to some of the
questions listed above.

We assume that the reader of this volume is familiar with first-order logic, its
syntax, semantics and basic model theory, because first-order logic is the inspira-
tion for extended model theory. The basic idea of model theory, first-order and
beyond, is that one can profit by paying attention to the relationship between
some mathematical structures and some collection of expressions of a language
used to describe properties of such structures. The basic notion is that of satis-
faction: 5011= φ if the expression φ is true of, or satisfied by, the structure SCR.
First-order logic considers mathematical structures of a particularly algebraic
sort, domains of individuals with arbitrary sets and functions to serve as inter-
pretations for various predicate and function symbols. It allows expressions that
build in the concepts and, or, not, every and some, and concepts that can be ex-
pressed in terms of them, but nothing else.

First-order model theory is the study of the semantics of this language, and
it has become a very sophisticated branch of mathematics, full of its own concepts
and theorems, some of extraordinary beauty and complexity. These theorems give
insight into and enrichment for those parts of mathematics that happen to fit the
shoe of first-order logic. This includes a fairly extensive part of modern algebra.
The book Chang and Keisler [1973] provides an excellent introduction to the
model theory of first-order logic. In extended model theory, we take the basic
idea and expand it in various ways, by allowing richer mathematical structures or
richer expressive power in the language, or both.

As used in this book, then, a logic consists of a collection of mathematical
structures, a collection of formal expressions, and a relation of satisfaction between
the two. We are primarily interested in logics where the class of structures are
those where some important mathematical property is built in, and where the
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language gives us a convenient way of formalizing the mathematician's talk about
the property. We might say, then, that a logic is something we construct to study
the logic of some part of mathematics.

7.2. The First-Order Thesis

If first-order logic is the inspiration for much of extended model theory, it is also
its nemesis. The common sense, mathematician-in-the-street view of logic implicit
in this subject is at variance with what we teach our students in basic logic courses.
There we attempt to draw a line between "logical concepts", as embodied in the
so-called "logical constants", and all the rest of the concepts of mathematics. In
extended model theory we do not so much question the placement of this line,
as question whether there is such a line, or whether all mathematical concepts
have their own logic, something that can be investigated by the tools of mathe-
matics.

To give ourselves a foil, let us call the view that attempts to define logic as the
logic implicit in the "logical constants" the first-order thesis. (Among the numerous
past and present adherents to this thesis there is a slight disagreement as to whether
identity should be counted as a "logical constant".) Another way to state this
view is to claim that logic is first-order logic, so that anything that cannot be
defined in first-order logic is outside the domain of logic.

The reasons for the widespread, often uncritical, acceptance of the first-order
thesis are numerous. Partly it grew out of interest in and hopes for Hubert's
program. Partly is was spawned by the great success in the formalization of parts
of mathematics in first-order theories like Zermelo-Fraenkel set theory. And
partly, it grew out of a pervasive nominalism in the philosophy of science in the
mid-twentieth century, led by Quine, among others. As late as 1953, well after the
Gόdel incompleteness theorems, Quine wrote in his book From a Logical Point
of View.

The bulk of logical reasoning takes place on a level which does not presuppose
abstract entities. Such reasoning proceeds mostly by quantification theory, the laws of
which can be represented through schemata involving no quantification over class
variables. Much of what is commonly formulated in terms of classes, relations, and even
number, can easily be reformulated schematically within quantification theory plus
perhaps identity theory. Quine [1953, p. 116].

As logicians we do our subject a disservice by convincing others that logic is
first-order logic and then convincing them that almost none of the concepts of
modern mathematics can really be captured in first-order logic. Paging through
any modern mathematics book, one comes across concept after concept that
cannot be expressed in first-order logic. Concepts from set-theory (like infinite set,
countable set), from analysis (like set of measure 0 or having the Baire property),
from topology (like open set and continuous function), and from probability theory
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(like random variable and having probability greater than some real number r), are

central notions in mathematics which, on the mathematician-in-the-street view,
have their own logic. Yet none of them fit within the domain of first-order logic.
In some cases the basic presuppositions of first-order logic about the kinds of
mathematical structures one is studying are inappropriate (as the examples from
topology or analysis show). In other cases, the structures dealt with are of the
sort studied in first-order logic, but the concepts themselves cannot be defined in
terms of the "logical constants." For example, by the Lόwenheim-Skolem
theorem, any countable set of first-order sentences which is true in some structure
is true in some countable structure. This shows that the complementary concepts
of countable and uncountable cannot be defined in first-order logic. The compact-
ness theorem, stated below, shows that the concepts of finite and infinite cannot
be captured in first-order logic.

Extended model theory adds a new dimension and new tools to the study of
the logic of mathematics. The first-order thesis, by contrast, confuses the subject
matter of logic with one of its tools. First-order logic is just an artificial language
constructed to help investigate logic, much as the telescope is a tool constructed
to help study heavenly bodies. From the perspective of the mathematician in the
street, the first-order thesis is like the claim that astronomy is the study of the
telescope. Extended model theory attempts to take the experience gained in first-
order model theory and apply it in ever broader contexts, by allowing richer
structures and richer ways of building expressions. It attempts to build languages
similar to the first-order predicate calculus to study concepts that are banned
from logic by the first-order thesis.

It is not always straightforward to come up with the best language to
capture a given concept. For example, the "best" one for studying the concepts
of finite and infinite is not at all the one that first came to mind, as we shall see.
Similarly, finding the "best" logic of topological structures was a process of
successive approximations. In both cases the class of structures is clear: ordinary
structures in the first case, topological structures in the second; but the choice of
just the right language is difficult. In other cases, even finding just the right collec-
tion of structures has been problematic. Finding natural logics takes trial, error
and experience. Part of the accumulated experience is discussed in the section
on abstract model theory, below.

1.3. The Completeness Problem

Similarly, there is nothing straightforward about knowing the best questions to
ask about a given logic. They will depend, in general, on the concepts it captures.
But one question always suggests itself just by virtue of being a study of logic,
the completeness problem: is there any kind of completeness theorem that goes
with the logic, analogous to the completeness theorem for first-order logic?
That is, given a logic 5£, is there an effective list of axioms that are valid in all
structures of the logic and a list of valid rules of inference that, together with
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the axioms, generate all valid theorems of the logic, i.e., the set of sentences that
hold in all its structures?

Using the language of recursion theory, the completeness problem can be
phrased quite abstractly (or crudely, depending on one's point of view). For if
it has a positive solution, then the set of valid sentences is recursively enumerable.
And, conversely, if the set of valid sentences is recursively enumerable, then in
principle we can find such a completeness theorem. However, this does not give
one a simple set of axioms and rules of inference which generate the valid sen-
tences. Thus, up to aesthetic considerations, the first question about a logic J£f
that we usually ask is: Is the set of valid sentences recursively ennumerable? This
is sometimes called "abstract completeness."

The completeness problem ties up with the first-order thesis and an even
older view of logic, where it was seen as the study of axioms and rules of inference.
Of the logics studied here, some have a completeness theorem, some don't. If one
thinks of logic as limited to the study of axioms and rules of inference, then logics
without an abstract completeness theorem will not seem part of logic. But if you
think of logic as the mathematician in the street, then the logic in a given concept
is what it is, and if there is no set of rules which generate all the valid sentences,
well, that is just a fact about the complexity of the concept that has to be lived
with. It is this latter point of view that is implicit in the study of model-theoretic
logics.

IΛ. Compactness

A major theme in the early days of extended model theory was the search for
compact logics, logics which satisfied the following (1) or (2), or some appropriate
analogue of them where the concept of finite is replaced by a different notion of
small.

(1) (Strong Compactness Property.) If T is any set of sentences of the logic,
and if every finite subset of T has a model (i.e., is true in some structure
of the logic) then T has a model.

(2) (Countable Compactness Property.) Same as (1), but only for countable
sets T.

There are two reasons for interest in these results. One is closely related to
the completeness problem. Usually a completeness theorem establishes that if φ
is a logical consequence of some set (or perhaps countable set) T of assumptions,
then it is derivable from some finite subset of T. In particular, if T is inconsistent
and so has no models whatsoever, then some contradictory sentence is a con-
sequence of T, in which case some finite subset of T will be inconsistent. That is,
usually (1) or (2) fall out of a completeness theorem, if there is one.

Secondly, in first-order model theory, the compactness theorem is a ubiquitous
tool, applied at almost every turn. It was natural that it should have been deemed
a crucial property for a logic to have, if one wanted to exploit experience gained
in first-order model theory.
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For some logics, like the infinitary logics discussed below, it was realized that
finite was the wrong property, because proofs themselves could have infinitely
many hypotheses, so various analogues of compactness were sought where finite
was replaced by some other notion of small set. First attempts were in terms of
cardinality. Later, and more successful attempts brought in notions of small
from generalized recursion theory.

7.5. Mostowskfs Proposal and Generalized Quantifiers

One of the first explicit proposals for studying extensions of first-order logic by
the methods of model theory came in Mostowski [1957]. His idea was that since
various concepts like finitely many and countably many are not definable in
first-order logic but are important in modern mathematics, we should add quan-
tifiers embodying such concepts directly. He suggested having a new syntactic
rule:

if φ(x) is a formula, so is Qxφ(x\

where x is not free in the new formula. This formation rule is added in such a way
that it can be iterated along with "and", "or", "not", "everything" and "some-
thing". The meaning of Q depends on a new semantic rule. In fact, given any
cardinal number Kα one has a logic i?(βα) defined by giving the semantics:

Jί t=aQxφ(x) iff there are at least Kα elements
b such that J(t=aφφ).

In words, Qxφ(x) is true just in case there are at least Kα elements b such that φ{b)
is true. The logics if(βα) all have the very same syntax but have different semantics
assigning different meanings to the quantifier symbol Q.

The logic !£ (Qo) builds in the finite/infinite distinction missing from first-order
logic. It is a notion at the heart of much mathematics, especially in modern alge-
bra. Using it one can define notions like torsion group, finitely generated group,
finite-dimensional vector space, and one can define the natural numbers.

The logic J^iQi) on the other hand, builds in the countable/uncountable
distinction missing from first-order logic, but it does not include if (β0). Using it
one can define notions like countably generated groups, uncountable structures,
and the like.

One of the first surprises in extended model theory was the extent to which
^{Qi) is better behaved than the logic if(β o) For example, while there is no
completeness theorem for i?(β0) there is one for ^ ( g j . Vaught [1964] proved a
"two-cardinal theorem" of first-order model theory which had as a corollary an
abstract completeness theorem for i?(Qi). The problem of finding a concrete
completeness theorem for S£{Q^) was left open until a very elegant complete set
of axioms and rules was found by Keisler [1970]. Similarly, Fuhrken [1965] used
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the proof of Vaught's two-cardinal theorem to show that if(βi) is countably
compact if (Qo) is not. This is also an immediate consequence of Keisler's com-
pleteness theorem. To prove his result, Keisler had to develop much more refined
techniques of building uncountable models than had been available before,
techniques which have been incorporated into the heart of the subject. They are
discussed in Kaufmann's chapter in Part B.

A great deal of effort has gone into studying the logics if (Qα) in general, and
especially 3?(Qι\ as well as closely related logics. But cardinality is only one
rather crude distinction between sets. Mostowski's idea of imposing various
properties on definable sets has had a liberating effect on logic and has been ex-
tended in many different directions. Quantifiers based on measure theory, on
probability and on other measures of size have been studied, for example.
Lindstrom [1966a] proposed a very general definition of a quantifier, so that one
could use practically any class K of structures to define a new quantifier Qκ that
captures membership in that class. The notion of a Lindstrom quantifier is de-
fined in Chapter II. Adding quantifiers to first-order logic is a central theme of
extended model theory, and provides the focus of Part B of this book.

Most work in extended model theory assumes that one wants to study logics
that are stronger than first-order logic, stronger in the sense of containing first-
order logic. However, in investigating the logic of probability spaces, Keisler
realized that to get the right logic, one wants to have all definable sets measurable,
and that these measurability considerations dictate that the logic is strictly in-
comparable with first-order logic, since one cannot in general assume closure
under the ordinary quantifiers "everything" and "something". Instead one has
quantifiers of the form

(Px > r)φ(x)

meaning that the probability of φ is at least r. But this logic has a rather weak
expressive power unless one takes advantage of countable additivity by allowing
infinitary propositional operations, as had already been studied in the more
classical setting. (See the next subsection.) Besides the interesting applications,
such logics give us a new kind of testing ground for our basic ideas about what a
logic is and what, if anything, is so special about first-order logic.

1.6. Infinitary Logics

The logic if (Qo) embodying the finite/infinite distinction turned out to have less
than satisfactory properties. A number of logics more or less equivalent to if (β0)
(e.g. weak second-order logic, that allows quantification over finite sets, and
ω-logic, that allows quantification directly over the natural numbers) were worked
on until they were gradually replaced by the study of logics with infinitely long
formulas.
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Actually, the investigation of such languages is older than that dealing with
generalized quantifiers (see Zermelo [1931], Novikoff [1939, 1943], Bochvar
[1940]), but had fallen on hard times until the late 1950's and early 1960's, when
work of Tarski, Henkin, Karp, Scott, Lopez-Escobar, Hanf, and Keisler revitalized
the subject. Part C of this book is devoted to infinitary languages and their ap-
plications.

Early work on infinitary logics dealt with certain languages <£κ λ which were
generated by allowing conjunctions and disjunctions of size less than K and
homogeneous strings of quantifiers of length less than λ. The early work looked
for analogues of the compactness, completeness and Lόwenheim-Skolem theo-
rems. Initial results were discouraging, in that compactness was found to exist
only under the rarest of circumstances. Indeed, work of Hanf [1964] showed that
it required strong new set-theoretical assumptions to prove that there were any
logics <£κ λ that were compact in the hoped-for sense, of being ^-compact, where
"finite" is replaced by "size less than K" in the statement of compactness.

Completeness results were a little easier to come by. Building on work of
Scott and Tarski [1958], Karp [1964] gave a completeness theorem for the logic
ifωiω. Notice, though, that since the syntactic expressions are infinite, the re-
cursion-theoretic formulation in terms of recursively ennumerable sets had to be
abandoned—or better—generalized. What one wanted was a recursion theory
over infinitary objects to capture the sense in which one notion of proof might
be seen as appropriately effective, another not. Such generalized recursion theories
were being developed at about this time (by Takeuti, Levy and Machover, Kripke,
Kreisel and Sacks, and Platek) for independent reasons, but then led to a fruitful
interaction with the work on infinitary logics.

One of the reasons for favoring an infinitary language over if(β 0) had to do
with the failure of the Craig interpolation theorem and its consequence, the Beth
definability theorem. (The latter says that any notion that is implicitly definable
in first-order logic is also explicitly definable in first-order logic.) Mostowski
[1968] showed that there is a principled reason for the failure of these results in
logics like <&(Q0), weak second-order logic, and ω-logic. What he showed was
that any logic where the syntax is finite but where the notion of finite is definable
has sets that are implicitly definable but not explicitly definable. Hence the ob-
vious analogues of the Beth and Craig results fail. More to the point, though, his
results show that such logics fail to capture all that is implicit in the logic of
finiteness.

The moral is that if you want a logic where the notions of finite and infinite
are expressible, and if you want it to be closed under implicit definability, then
the syntax is going to have to be infinitary—in some sense. This is not the original
motivation for the study of infinitely long formulas, but it is a sound one. The logic
<Sfωiω studied by Karp, Scott, Lopez-Escobar is a different way of building the
notion of finite into a logic, one that does satisfy the obvious analogues of the
Beth and Craig theorems, as shown in Lopez-Escobar [1965b]. It allows arbitrary
countable conjunctions and disjunctions of formulas to be formulas. The logic

is a "sublogic", since "there exist infinitely many" can be defined by the
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following countable conjunction:

/ \ Vxx .... xn 3y(φ(y) Λ J / X ^ Λ ^ χn).
n>0

Lopez-Escobar gave a completeness proof for a Gentzen-style system for 5έ'ωiω,
from which he was able to derive an interpolation theorem, and an analogue of
the Beth definability theorem.

One of the notions that has emerged as central to logic is that of an inductive
definition, i.e., one of the form: the smallest relation R satisfying some closure
condition. The notion comes up in the very definition of the syntax and semantics
of specific logics, in recursion theory, and in various other branches of mathe-
matics. It is only natural that logicians would look for logics where such implicit
forms of definability were made explicit. Infinitely long formulas emerged again
in this connection. Moschovakis [1972] showed that any inductive definition
could be made explicit by using a formula with an infinite string of alternating
quantifiers:

V x i 3 ^ . . . V x π 3yn...f\ φn(xl9 yl9...,xn9 y n ) .
n

This generalized a theorem of Svenonius [1965] about PC-classes on countable
models. Various suggestions for logics admitting such infinite alternating strings
have been forthcoming. The most useful now appears to be the Vaught formulas
built into the logic S£ studied in Kolaitis's chapter. Such infinite strings also have
connections with work in game theory, higher recursion theory and descriptive
set theory.

7.7. Second-Order Logic

Actually, there was another extension of first-order logic that was around for a
long time before Mostowski's suggestion. Everyday mathematical experience
shows us that the concepts of arbitrary set and function are important and power-
ful. Notions like finite, infinite, countable, uncountable, well-ordering, the natural
and real numbers, are all definable in terms of these notions. Second-order logic
is the extension of first-order logic where these concepts are built in by allowing
quantifiers not just over individuals in the domain 9W, but also over subsets of that
domain and over relations and functions on the domain.

Judged by the standards of first-order logic, the model theory of second-order
logic was deemed unmanageable. None of the basic theorems of first-order logic
extended to second order logic. There were no completeness, compactness, inter-
polation or Lδwenheim-Skolem theorems. For many years the model-theory of
second-order logic was thus largely ignored. In fact, in the early days of extended
model theory, many of us saw ourselves as chipping away manageable fragments
of second-order logic. However, the way we judged what it was to be a manageable
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theory was by comparing it to first-order model theory. In retrospect, this seems
unimaginative, since there has turned out to be quite a rich model theory for
second-order logic, once the right questions started being asked.

Second-order logic permits quantification over arbitrary functions on the
domain of discourse as well as quantification over the elements in the domain of
discourse. Since sets and relations can be represented by their characteristic
functions, second-order logic embodies quantification over arbitrary sets and
relations, as well. There is an obvious equivalence between functions and relations,
but allowing quantification only over sets turns out to be weaker than full
second-order logic. It is called "monadic" second-order logic, and it is much
more expressive than first-order logic while being manageable enough to provide
many interesting decidability and undecidability results. Some of these are dis-
cussed in Gurevich's chapter. For example, he discusses a classification of ordered
abelian groups by means of properties definable in the monadic second-order
logic of such groups. He also presents a proof of the famous result due to Rabin
on the decidability of the monadic theory of the infinite binary tree.

Shelah [1973c] investigated what other types of restricted second-order quan-
tifiers there were, besides the restriction to monadic quantification, but where the
restrictions considered had to be first-order definable. He proved a striking and
difficult result: there are only four first-order definable second-order quantifiers.
Baldwin's chapter takes advantage of more recent work in model theory to give a
simplified presentation of the result. The structural results implicit in the proof of
the four definable second-order quantifiers theorem emphasize the importance of
studying three theories in monadic logic: (i) the monadic theory of order, (ii) the
monadic theory of the tree λ~ω, and (iii) the monadic theory of the tree λ<ω.

Both Baldwin's and Gurevich's chapters emphasize the importance for
monadic logic of a basic result for first-order logic which does extend to this
situation: the Feferman-Vaught theorem.

1.8. Applications to Mathematics

There are many kinds of applications of logic to mathematics. The most striking
(at least the ones that strike most people) are those where some specific theorem or
method from logic gives an outright solution to some open question in mathe-
matics. Eklof surveys a number of applications of this sort, of infinitary logics
within algebra. Keisler's chapter contains some applications of this sort to
probability theory.

A second kind of application of logic is in the realm of independence results
where it is shown that certain problems cannot be settled on the basis of the first-
order axioms of set-theory. These results are really about the limitations of first-
order logic, and so are outside the scope of this book, except to the extent that
they have an impact on extended model theory itself. (See Section 2.6 below.)

Most important in the long run, it seems, is where logic contributes to mathe-
matics by leading to the formation of concepts that allow the right questions to
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be asked and answered. A simple example of this sort stems from "back and forth
arguments" and leads to the concept of partially isomorphic structures, which
plays such an important role in extended model theory. For example, there is a
classical theorem of Erdos, Gillman and Henriksen; two real-closed fields of
order type ηγ and cardinality Kj are isomorphic. However, this way of stating
the theorem makes it vacuous unless the continuum hypothesis is true, since
without this hypothesis there are no fields which satisfy both hypotheses. But if
one looks at the proof, there is obviously something going on that is quite in-
dependent of the size of the continuum, something that needs a new concept to
express. This concept has emerged in the study of logic, first in the work of Ehren-
feucht and Fraisse in first-order logic, and then coming into its own with the study
of infinitary logic. And so in his chapter Dickmann shows that the theorem can
be reformulated using partial isomorphisms as: Any two real-closed fields of
order-type η1, of any cardinality whatsoever, are strongly partially isomorphic.
There are similar results in the theory of abelian torsion groups which place
Ulm's theorem in its natural setting.

Notice the shift of perspective here. While we started with the idea of taking
concepts that were already explicit in mathematics and studying their logic, we
now see the possibility of exploring concepts that are only implicit in existing
mathematics, making them explicit, and using them to go back and re-examine
and enrich mathematics itself. Isolating the notions of inductive definability
implicit in so much of mathematics is another example mentioned above. The
results mentioned from Keisler's and Gurevich's chapters are also of this nature,
bringing in new concepts with which the right questions can be asked and answered.
Similarly, much of Shelah's work in extended model theory can be seen in this
light, taking some important construction from mathematics or logic and building
the construction into a new logic. Extended model theory provides a framework
within which to understand existing mathematics and push it forward with new
concepts and tools.

2. Abstract Model Theory

Once there are lots of similar structures around one begins to study the relation-
ships that exist between them. And so it is with extended model theory. Once
there are lots of logics around, one begins to study their interrelationships. This
part of the subject is known as abstract model theory.

2.1. Lindstronΐs Theorem

One of the first equations that must be settled is, just what makes a logic natural?
What are the guiding principles which help one find interesting and useful logics?
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Here the experience built up with many examples suggests three principles:

(1) build into the semantics natural and important notions from some par-
ticular domain of mathematical activity;

(2) keep the semantics constrained so that it embodies just those notions
one intends to study, and notions implicit in them and

(3) find a syntax in which the basic notions of the logic find natural expression.

It was obvious from the start that there is a trade-off in the construction of
logics. You can't build in some concept that goes beyond first-order logic without
paying the piper. For example, if some particular theorem about first-order model
theory shows that adding a new quantifier is a genuine strengthening of first-order
logic, then the obvious analogue of that theorem will fail for the new logic. For
example, the countable compactness of first-order logic has as an easy corollary
that the quantifier "there exists at most finitely many" is not definable therein.
It follows from the proof that ^(Qo) and ^ωiω are not countably compact.
Similarly, the Lόwenheim-Skolem theorem (if a countable set of sentences has a
model, it has one that is at most countable) has as a corollary that "there exist
uncountably many" is not definable in first-order logic. Hence the analogous
statement will fail for the logic J5f(6i).

There is an important theorem lurking here, one discovered by Lindstrom
[1969]; it is a result that opened up a new aspect to the study of logic. What
Lindstrom showed is that what we have just observed in these two cases is in fact
quite general. Any attempt to build a logic that is more expressive than first-order
logic will fail to satisfy the obvious analogue of either the countable compactness
theorem or the Lόwenheim-Skolem theorem. Or, to state it more positively,
first-order logic can be characterized as the strongest logic satisfying the following
two properties:

(1) (Countable Compactness Property.) If a countable set of sentences has no
model then some finite subset has no model; and

(2) (Lόwenheim Property.) If a sentence has an infinite model, it has a count-
able model.

is countably compact; ifωiω satisfies the Lowenheim property. This
striking result has led to much important research after lying largely unnoticed
for several years. It was the rediscovery of the result and its widespread circulation
in Friedman [1970a] that in many ways woke logicians to the potential in abstract
model theory. A proof of Lindstrom's theorem is contained in Chapter III.

Characterizing a given logic if as the strongest logic with some property
presupposes an understanding of just what a logic is. What kinds of syntactic and
semantic closure conditions does one build into the notion of a logic? Obviously
the more one builds in, the fewer logics there are and so the weaker a characteriza-
tion theorem becomes. On the other hand, for the other aims of extended model
theory, one wants a notion that captures the important examples and systematizes
the common assumptions.

Lindstrom and Friedman managed to side-step this problem. To get around
the difficulties of saying just what a logic is, they dealt entirely with classes of
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structures and closure conditions on these classes, thinking of the classes definable
in some logic. That is, they avoided the problem of formulating a notion of a
logic in terms of syntax, semantics, and satisfaction, and dealt purely with their
semantic side. From the point of view of logic, this is at best a stop-gap measure,
to be replaced by an analysis of just what makes up a logic. But the task of coming
up with a general definition of just what constitutes a logic has been a large one,
one that may still be not entirely settled. The one given in this book has emerged
as fairly stable over time, and most useful for a variety of investigations.

2.2. Characterization Theorems

The compactness and Lόwenheim-Skolem theorems are two of the most striking
results in first-order model theory—and probably the most frequently used tools
of the first-order model-theorist. This made Lindstrom's characterization theorem
of first-order logic somewhat disheartening, initially at least, since it says that the
model-theorist interested in extensions of first-order logic is going to have to give
up at least one of his most cherished tools. Luckily, however, there had already
been enough success in the model theory of JS?X, ^{Qx\ ^ ω i ω , and some other
logics to whet the appetites of those interested in extensions of first-order logic
and to convince them that there was room to maneuver around the failures of
these results. And there was enough intrinsic interest in these logics that workers
attempted to find Lindstrom-style characterization theorems for them.

There have been some successes finding such characterizations, but they have
been few and far between. What there are can be found in the chapters by Flum
and Vaananen. But there are still no satisfactory characterizations of J5fωiω or
JS?(βi) Indeed, search for such results has led to the study of even stronger logics
that are based on the same sorts of mathematical concepts, but there is no satis-
factory characterization of these stronger logics either.

2.3. Uses of Abstract Model Theory

Abstract model theory has turned out to have more to say about the relations
between various properties of logics than about the characterization of logics by
their properties. In general, abstraction can serve many different masters. It can
be used to systematize a body of examples, notions and results, and in this or-
ganization, help us to understand more explicitly what we already know. This
usually leads to the emergence of new concepts for unifying properties of the
material, concepts which are overlooked in specific cases. And new problems and
theorems that can be formulated in terms of the new concepts that emerge.

Studying only the model theory of first-order logic would be analogous to the
study of real analysis never knowing of any but the polynomial functions: core
concepts like continuity, differentiability, analyticity, and their relations would
remain at best vaguely perceived. It is only in the study of more general functions
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that one sees the importance of these notions, and their different roles, even for
the simple case.

One of the aims of abstract model theory is develop an analogous classification
of logics by means of their most important properties. This entails understanding
the relationships between these properties. Properties of logics that are co-extensive
in the first-order case often have quite different extensions in the general setting.
For example, in first-order logic, the interpolation theorem and the Robinson
consistency theorem appear to be equivalent results. However, in general, the
latter is much more powerful than the former. ίfωiω, for example, has the inter-
polation property but not the Robinson consistency property. So too, the difference
between strong compactness and countable compactness is not too noticeable in
first-order logic, because of the Lowenheim-Skolem theorem. In general, however,
countable compactness is much weaker.

Like properties of logics, so too methods of proof that seem more or less
equivalent in the context of first-order model theory often split and come into
their own in abstract model theory. For example, the Ehrenfeucht-Fraisse partial
isomorphism method has come to the fore in two ways. First, it generalizes in
different ways to a host of model-theoretic logics. Second, it is used as a means
of classifying logics, into those that have and those that do not have the "Karp
property". In the next subsections, we discuss three particularly important links
that come up repeatedly in extended and abstract model theory, the Δ-closure of
a logic, and the least ordinal pinned down by a bounded logic, and the Hanf
number of a logic. In each we have a property of first-order logic that is largely
overlooked until put in the context of the more general theory.

2.4. The Interpolation Theorem and the ^-Closure

The interpolation theorem illustrates a number of the issues discussed above.
The Craig interpolation theorem (stated below) shows that first-order logic is
closed under a very general form of implicit definability, so that the concepts
embodied in first-order logic are all given explicitly. Closure under implicit de-
finability is obviously a highly desirable result from the perspective of defining
logics that embody a given mathematical notion. Craig's result was discovered
about the same time as the Robinson consistency theorem, and they were widely
perceived to be more or less the same result, one that implied the Beth definability
theorem.

As mentioned above, the Robinson consistency property turns out to be a
much stronger property of logics than the Craig interpolation property in the
context of extended model theory. In fact, as long as the number of symbols in
any single sentence is finite, or at all reasonable in size, one can say that a logic
has the Robinson consistency property just in case it satisfies both the compactness
property and the Craig interpolation property (see Chapter XVIII).

Neither J£?(β 0)n o r -Sf (61) satisfy the Craig interpolation theorem. But whereas
Mostowski found a principled reason for the failure of interpolation for
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there is no such explanation known for ^ ( d ) . (Keep in mind that ^ ( Q J is not
in any sense an extension of JSf(βo) The logic ^{Qγ) satisfies the countable
compactness property so "finite" is not definable in this logic.) Rather, the counter-
examples that were found to the Craig and Beth theorems for J^iQi) and related
logics have repeatedly suggested additional concepts that were in the constellation
of notions around countability but that were not definable in J^(βi). That is,
the counter-examples all suggested that we just did not yet have the right logic,
rather than that there was an essential obstacle. This is presumably part of the
reason there is no convincing characterization theorem for any of these logics.

The problem of finding a countably-compact logic extending ^£(Q^) with the
interpolation property has become known as Feferman's problem. It has led to
the study of many interesting and useful extensions of JSf(d)—extensions that
remedy various deficiencies in 5£(Q^) by building in other notions that seem still
in the spirit of the countable/uncountable distinction. Some of these extensions
are discussed in Kaufmann's chapter. Nevertheless, there is still no conclusive
solution to Feferman's problem either positively, or negatively by a result that
shows, under some reasonable assumption, that an essential obstacle exists.

Feferman's motivation in stating the problem goes back to the issue of com-
pleteness. For first-order logic, there are both model-theoretic and proof-theoretic
proofs of the interpolation theorem, the latter deriving the theorem from the
completeness of Gentzen's cut-free set of axioms and rules. (Gentzen's rule of
"cut" is the analogue of modus ponens for his system. He showed that this rule
is redundant in his system.) For J2?ωiω, it was this latter proof that Lopez-Escobar
managed to generalize. It was harder to find a purely model-theoretic proof. The
basic idea of the proof-theoretic proof is that if you are able to prove φ(R, T)
from φ(R, S), where R, S and T are relation symbols, and if the proof does not
use "cut", then there should be a proof that only uses the common symbol R in
an essential way, in that you should be able to isolate a sentence Θ(R) so that
both φ(R, S) -• Θ(R) and Θ(R) -> ψ(R, T) are provable.

One can use the interpolation property as a yardstick for measuring whether
there is a good proof theory. In the case of J£(Qι\ knowing that interpolation
fails shows that one is not going to have a good Gentzen style proof theory for
«^(6i) What Feferman was after was a richer logic that had a better completeness
theorem in this sense, and he was using the interpolation property as a model-
theoretic test for such a better theorem.

The proof theory of strong logics has not kept pace with their model theory,
partially due to the interests of the people working in the field, partially due to
the fact that proof theory is not seen as being particularly central to the subject
since many of the logics do not have an r.e. set of valid sentences. And from a
model-theoretic point of view, it has turned out that interpolation is not a par-
ticularly important or natural property for a logic to have. Interpolation is a
much stronger property than is needed for a logic to be closed under implicit de-
finability. The notion that has turned out to be more important in this respect is
that of a Δ-closed logic.

A class K of structures is called PC (or Σj) in a logic if if there is a class K
of structures that is definable in 5£ so that 9W e K if and only if some expansion
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W of 9Jί is in K'. The interpolation theorem can be restated as: If Ko and Kx are
disjoint PC classes then there is a definable class K containing one and disjoint
from the other. An obvious consequence is that if a class K is both PC and co-PC
(that is, its complement is PC) in ££ then K is definable in <έ'. A logic with this
property is called A-closed. Any logic satisfying the interpolation property is
automatically Δ-closed, but not conversely. And whereas there is no known way
to start with a logic $£ where interpolation fails and find a smallest extension
where it holds, there is a way to define a smallest logic Δ(if) containing <£ and
Δ-closed, called the A-closure of if. This operation on logics preserves many of
the nice properties of the original logic.

The Δ-closure is completely overlooked in first-order logic because we have
so much more. And Δ-closure, rather than the stronger interpolation property,
is really what shows us that we have a well-rounded logic.

A frequent use of the Δ-closure is to show that two logics i? and if' are really
the same up to implicit definability by showing that Δ(if) = Δ(j£?'). Several such
results appear in Chapters VI and XVII. For example, the various logics if (Qo),
weak second-order logic (where one quantifies over finite sets) and ω-logic are
the same up to implicit definability. Makowsky [1975a] and I (Barwise [1974a])
independently noticed that Mostowski's result, that no logic with finitary syntax
that can define finite and infinite has the interpolation property, could be turned
into a characterization of the common Δ-closure of these logics as a certain in-
finitary logic, the "hyperarithmetic" fragment of ifωiω (see Chapter XVII for a
proof of this result).

2.5. Pinning Down Ordinals

Another property of first-order logic that goes all but unnoticed in that setting,
but assumes a central place in the general theory, is the undefinability of well-
orderings. The distinction between logics where well-ordering is undefinable and
those where it is definable turns out to be an important one.

A logic if is said to be bounded by an ordinal α if α is greater than all ordinals
that can be "characterized" in the logic. Second-order-like logics are those where
the notion of well-ordering is definable and so are unbounded.

First-order logic is bounded by ω, the first infinite ordinal, as the (countable)
compactness theorem shows. Indeed, any extension of first-order logic that is
countably compact will be bounded by ω. For example, if(βi) is bounded by ω.
^(δo)> by contrast, is bounded not by ω but by a certain countable ordinal ωj,
the least non-recursive ordinal. i^ ω i ω is bounded by ωί9 the least uncountable
ordinal. On the other hand, second-order logics JSfωiC0l, and logic with the game
quantifier are not bounded.

For some applications, the failure of the compactness theorem can be cir-
cumvented in applications by knowing that the logic is bounded. For example,
first-order logic can be characterized in terms of the Lόwenheim-Skolem theorem
and the assumption that the logic is bounded by ω. Similarly, for many "Hanf
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number" calculations (see the next subsection) one needs to know a bound for the
logic.

In first-order logic, the fact that the logic is bounded by ω is such a simple
consequence of compactness, that we do not even notice that the property is
important. In more general logics, this notion assumes its rightful place in the web
of properties of logics.

2.6. Hanf Numbers

In elementary textbooks on logic one often finds the Lόwenheim-Skolem theorem
for first-order logic stated as: If a theory has an infinite model, then it has models
of all infinite cardinalities. The proof, however, when given, always breaks into
two parts. There is a "downward" half, that allows one to get smaller models from
bigger, and an "upward" half that allows one to get bigger from smaller. The
downward version uses some form of submodel argument, the upward a com-
pactness argument. Not surprisingly, these two arguments generalize quite
differently, to different logics.

Many logics have some form of downward Lδwenheim-Skolem theorem,
with a proof analogous to the usual one, with the difference being just how small
the submodel can be. But almost no logics have a simple analogue of the upward
version. In J?(Q0\ f° r example, one can define theories with model of quite large
infinite cardinalities, but without arbitrarily large models. Hanf observed, how-
ever, that as long as the expressions of a logic $£ form a set, as opposed to a proper
class, that one can show quite easily, though very non-constructively, that there
must be some cardinal K such that if a sentence φ of i f has a model of size at least
K, then it has arbitrarily large models. The least such cardinal has come to be
known as the Hanf number h(J?) of ££.

A fair amount of work has gone into calculating the Hanf number of various
logics. The reader can find a number of such calculations for infinitary logics in
Chapter IX. For bounded logics, the Hanf number is often related to the least
ordinal that cannot be pinned down in the following manner. Define

and, for limit ordinals A,

nλ = sup nα.
α < λ

Then for many logics if, like &(Q0), ^ ω i ω < ^κ,ω> ° n e has h{£e) = 2λ, where λ
is the least ordinal that cannot be pinned down by the logic. For logics that are
not bounded, there is very little that can be said about the size of the Hanf number.
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Shelah has suggested a structural explanation for the relation between the ease
of computing the Hanf number and the boundedness of the logic. The situation is
clearer if we consider the Hanf number h(T, L) of a countable theory T in a logic L,
the least K such that for any L -sentence φ if T u {φ} has a model of power K then
T u {φ} has arbitrarily large models. (Setting Tas the "empty" theory we specialize
to h(L).) Similarly, we can define T to be bounded or unbounded in the logic L.

The important structural distinction can be expressed by considering the class
of models of T. Each model of Tcan be decomposed as a "product" of countable
models if and only if Tis bounded if and only if the Hanf number of Tcan be easily
computed. The proof of this result for logics with definable second-order quantifiers,
a characterization of theories according to this classification, and an account of the
ensuing computation of Hanf numbers occurs in Chapter XII. Shelah has identified
a similar dichotomy between superstable theories with and without the dimensional
order property. The resulting structure theory also analyzes a model of power λ in
terms of countable models and subtrees of λ~ω.

2.7. Strong Logics and First-Order Set Theory

There is an older approach to the study of the relationship between logic and
concepts that lie outside of first-order logic, one subscribed to by those who
accept the first-order thesis. One gives a first-order approximation to one's
meta-theory T, something like Zermelo-Fraenkel set theory (ZF) in which all the
notions in question can be defined relative to the notion of set, or perhaps a weaker
or stronger metatheory. To the extent that one can view some branch of mathe-
matics as consequences of this theory, one has an account of that part of mathe-
matics.

This has become something like the orthodox position of remaining mathe-
matical formalists, those who see mathematics as the working out of consequences
of some formal first-order theory by means of the axioms and rules of first-order
logic. In particular, one can step back and look at extended model theory itself
from this perspective. We can define many of the logics discussed here relative to
the notion of set in ZF set theory. Hence, we can examine the relationship between
the properties of logics and their definitions in set theory. This is an approach
which I initiated in Barwise [1972a], motivated by an acceptance of the first-order
thesis. While it now seems to me that my motivations were misguided, the approach
has led to some very interesting work on the relationship between strong logics
and set theory, work that is discussed in Chapter XVII.

From the early days of infinitary logic there has been a close interplay between
strong logics and set-theoretic principles that go beyond ZF set-theory in various
ways, especially so called "large cardinal" assumptions. These are assumptions
that are not justified by clear-cut intuitions about sets, at least not by intuitions
shared by the silent mathematical majority. Weakly and strongly compact
cardinals K are defined in terms of the associated infinitary logic JSfκ>κ satisfying
an analogue of the countable or full compactness property, for example. The
assumption that there are such cardinals goes beyond the intuitions about sets
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built into ZF. Measurable cardinals come up in the discussion of the Robinson
consistency property. It, too, is a strong assumption that goes beyond ZF. An
even stronger assumption, Vopenka's principle, is equivalent to the statement that
every finitely generated logic has a strong compactness cardinal, that is, has a
cardinal K SO that any inconsistent theory T of the logic has a subset of size less
than K which is inconsistent. These and related results are discussed in Part F.

It is not clear what to make of results like these. Luckily, most of them have
to do with very abstract logics, or with abstract logic itself, not with the concrete
logics that arise from natural mathematical concepts.

2.8. Other Types of Structures

Lindstrom's theorem poses a dilemma: Give up either compactness or
Lόwenheim-Skolem. However, there is an escape from the horns of the dilemma
mentioned earlier. Implicit in the discussion in this section has been the assump-
tion that we were discussing logics that have the same basic sort of syntax and
semantics as first-order logic. There is always the possibility of violating one or
both of these assumptions by studying logics that have different sorts of structures,
or have syntactic rules that are stronger in some ways than first-order logic but
weaker in others.

Part E of the book is devoted to the study of some of the logics that have been
developed for different kinds of mathematical structures. The most extensively
studied class of structures is the class of topological models, models where there
is an underlying topology. In this setting there has been a great deal of effort that
has gone into discovering the analogue of first-order logic.

Harvey Friedman initiated the study of logic on the real numbers incorporating
the notions of measure and category, a topic pursued in Chapter XVI. Keisler,
on the other hand, initiated the investigation into the logic of probability spaces.
These logics are interesting not just for what they say about the logic of the reals
and the logic of probability, but also because they force us to examine additional
assumptions that are usually implicit in extended model theory, assumptions
that do not hold in these settings.

2.9. Unnatural Logics

We should give a word of warning about some of the logics one will meet in this
book. Recall that the aim of extended model theory is to discover natural logics
that embody important mathematical notions. This leads to abstract model-
theory and the study of the relationships between properties of logics. There are
a number of logics that have arisen simply as counterexamples to show that some
one property of logics does not imply some other, not with the real goals of ex-
tended model-theory in mind at all. And, too, some of the logics that seemed
superficially natural turned out not to be. JSf (β0) ^s o n e s u c h . Time will tell which



22 I. Model-Theoretic Logics: Background and Aims

logics are truly significant. There is no more point in getting bogged down in the
study of purely artificial and unnatural logics than there is in the study of hemi-
demi-semi-groups with chain conditions.

3. Conclusion

The reader of this volume will find many topics that have not been discussed
above, for the book, like the subject, is a large one. Even so, there are topics in the
field of extended model theory and abstract logics that could not be included in
this volume, for one reason or another. Beyond that, there are many topics that
fit under the general heading described by the title of this book, "model-theoretic
logics," but which are not usually considered part of extended model theory since
they do not fit so well under the general framework that has been developed in
abstract model theory. Consequently, we have not attempted to include this
work here.

The most glaring omission of this sort is work on the semantics and logic of
computer languages. This is a rich domain of research that would need a volume
of at least equal size to treat adequately. In the long run, it seems that a unified
view of logic and semantics will require us to come up with a framework that
encompasses both fields, but we are far from such a conception at present.

The semantics of computer languages, and the differences that emerge in that
work from more traditional model theory, points to a shortcoming in the latter,
namely its failure to come to grips with activity, as opposed to objects and static
relations between them. This same shortcoming causes problems with traditional
attempts to apply model theory to human languages, another topic not treated
here.

Traditional model theory focuses on truth (and satisfaction) of sentences, and
so leaves out the use of language to affect change. This is a shortcoming that has
been emphasized by Austin and other writers on natural language in the tradition
of "speech act" theory. This power of language to effect change (e.g., in so-called
"side effects") is one of the things that makes the semantics of computer languages
strikingly different.

Another area where work on computer and human languages makes the
traditional work in logic appear too static is in the treatment of inference. Infer-
ence, whether by man or machine, is an activity, a process of extracting informa-
tion, whereas the tradition attempts to reduce inference to objects (proofs, strings
of symbols). In another paper I have discussed the need to place the study of logic
within a setting where traditional inference is seen as just one form of information
preserving activity. I think such an approach has much to contribute to the
understanding of mathematical activity, and hence to mathematical logic, but the
development of these ideas will have to take place elsewhere. Even the traditional
approach to inference in logic has not made great inroads in extended model
theory. There are few genuine completeness theorems and even fewer extensions
of proof theory.
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Mathematicians often lose patience with logic simply because so many notions
from mathematics lie outside the scope of first-order logic, and they have been
told that that is logic. The study of model-theoretic logics should change that, by
getting at the logic of the concepts mathematicians actually use, by finding ap-
plications, and by the isolation of still new concepts that enrich mathematics and
logic. I do not know just how much of the work presented in this volume will find
a permanent place in mathematics, because it is, after all, a young and vigorous
subject. But whatever the fate of the particulars, one thing is certain. There is no
going back to the view that logic is first-order logic.






