Special Notations

Chapter I		$(\gamma)^{n}$	n-th component of a coded infinite sequence 11				
$\operatorname{Dm} \varphi$	domain of $\varphi \quad 7$	ZF (ZFC)	Zermelo-Fraenkel set theory				
$\operatorname{Im} \varphi$	image of $\varphi \quad 7$		(with axiom of choice) 11				
$\varphi(x) \downarrow$	$\varphi(x)$ is defined, $x \in \operatorname{Dm} \varphi 7$	AC	axiom of choice 11				
$\varphi(x) \uparrow$	$\varphi(x)$ is undefined, $x \notin \operatorname{Dm} \varphi$	DC	axiom of dependent choice 11				
	7	AC_{ω}	axiom of countable choice 11				
\simeq	strong equality 7	Or	class of ordinals 11				
$\varphi \mid X$	restriction of φ to $X \quad 7$	inf X	least element of $X \quad 11$				
$\varphi^{\prime \prime} X$	image of X under $\varphi \quad 7$	$\sup X$	least ordinal \geq all elements of				
$\varphi: X \rightarrow Y$	function from X into $Y \quad 7$		X 12				
${ }^{\boldsymbol{x}} \boldsymbol{Y}$	total functions $X \rightarrow Y \quad 7$	$\sup ^{+} X$	least ordinal $>$ all elements of				
$x \mapsto y_{x}$	function which assigns 8		X 12				
$\begin{aligned} & \lambda x \cdot y_{x} \\ & \left\langle y_{x}: x \in Z\right. \end{aligned}$	y_{x} to x for each $x \in Z$	$\operatorname{Lim} X$ Card (X)	limit points of $X \quad 12$ cardinal of $X \quad 13$				
ω	set of natural numbers 8	\boldsymbol{N}^{\prime}	σ-th infinite cardinal 13				
\lg	length of a finite sequence 8	$\mathbf{P}(X)$	power-set of $X \quad 13$				
$\mathbf{x} \subseteq \mathbf{y}$	y extends $x \quad 8$	$\operatorname{Fld}(Z), \operatorname{Fld}(\gamma)$	field of the relation $Z, \leqslant_{\gamma} \quad 13$,				
$\mathrm{x} * \mathrm{y}$	x concatenated with $y \quad 8$		15				
$\mathbf{x} * \varphi$	x concatenated with $\varphi 8$	$\\|\boldsymbol{Z}\\|,\\|\boldsymbol{\gamma}\\|$	order-type of the (pre-)wellor-				
$\mathbf{x} \in \boldsymbol{Z}$	$(\forall i<\lg (\mathbf{x})) x_{i} \in Z \quad 8$		dering $Z, \leqslant_{\gamma} \quad 14,15$				
$\varphi(\mathbf{x})$	$\left(\varphi\left(x_{0}\right), \ldots, \varphi\left(x_{k-1}\right)\right)$	$o(X)$	least ordinal not the type of a				
${ }^{k, 1} \omega$	$\left.{ }^{k} \omega \times{ }^{\prime}{ }^{\omega} \omega \omega^{\prime}\right) \quad 8$		pre-wellordering of $X \quad 14$				
$\mathrm{F}[\mathrm{m}, \boldsymbol{\alpha}]$	$\lambda p . \mathrm{F}(\mathrm{p}, \mathrm{m}, \mathrm{\alpha}) 8$	\leqslant_{γ}	binary relation coded by $\gamma \quad 14$				
$\sim \mathrm{R}$	complement 8	W	codes for well-orderings of				
K_{F}	characteristic functional		ω 15, 81				
$\mathrm{Gr}_{\mathbf{F}}, \mathrm{Gr}(\mathrm{F})$	graph 9	$\gamma \upharpoonright \rho$	code for initial segment of				
${ }^{k}, 1, l^{\prime} \omega$	${ }^{k} \omega \times{ }^{\prime}\left({ }^{\omega} \omega\right) \times{ }^{\prime}\left({ }^{\left(\omega_{\omega}\right)} \omega\right) \quad 9$		$\leqslant_{\gamma} \quad 15$				
\wedge, \vee, \neg,		$\|\boldsymbol{p}\|_{\gamma}$	ordinal represented by p in				
$\rightarrow, \leftrightarrow, \forall, \exists$	logical symbols 9		$\leqslant_{\gamma} 15$				
($\exists \mathrm{p}<\mathrm{m}$),		[m]	interval determined by m 16				
$(\forall \alpha \in \mathrm{A})$	bounded quantifier 10	BIr	binary irrationals 19, 160				
$\exists!x$	exists exactly one $x \quad 10$	mes $\bar{\Gamma}$	Lebesgue measure 20				
$\langle\mathbf{m}\rangle,\langle\boldsymbol{\alpha}\rangle$	codes for finite sequences 10		$\Gamma \quad 22$				
${ }_{\text {lg }}{ }^{\text {i }}$		$\Gamma^{(o)}, \Gamma^{\text {a }}$	stages of an inductive definition				
lg	concatenation 10, 11		22				
$\mathrm{Sq}, \mathrm{Sq}_{1}$	set of sequence codes 10,11	$\|\Gamma\|$	closure ordinal 23				

Chapter II			A 136	
		\leqslant	recursive dense linear ordering	
$\mathrm{sg}^{+}, \mathrm{sg}^{-}$	signum functions 29		of Sq 136	
"least" $q<p$	bounded search 30	$\leqslant_{\text {m, } \alpha}^{p}$	restriction of ≤ 136	
$\exists_{<}^{0}, \forall_{<}^{0}$	bounded number quantification 31	$\leqslant_{\Sigma},<_{\Sigma}, \leqslant_{11},<_{11}$	ordinal comparison on W 138, 144	
Pri	primitive recursive indices 34	$\mathrm{W}_{\text {o }}$	codes for ordinals $<\boldsymbol{\sigma} \quad 140$	
[a]	primitive recursive functional indexed by $a \in \operatorname{Pri} \quad 34$	W	(number) codes for recursive ordinals 140	
$\{a\}$	partial recursive functional indexed by a 38	$\omega_{1}[\beta]$	least ordinal not recursive in $\beta \quad 140$	
Ω	codes of recursive computations 39	$W[\beta]$	(number) codes for ordinals recursive in $\beta \quad 140$	
Sbi	substitution functions 41	$<_{\beta}$	reducible recursively in $\beta \quad 141$	
"least" q	unbounded search 42	<	reducible by a continuous	
T, T	normal form relations 46,49		functional 141	
\exists^{0}, \forall^{0}	type-0 (number) quantifica-	$\Sigma_{1}^{1 . \mathrm{Hyp}}$	$\left(\exists \beta \in \Delta_{i}^{\prime}[\boldsymbol{\alpha}]\right) \mathrm{P}(\mathbf{m}, \boldsymbol{\alpha}, \boldsymbol{\beta}) \quad 147$	
	tion 54	$A \leqslant 1$ B	$A \in \Delta_{1}^{1}[B] \quad 149$	
\exists^{1}, \forall^{1}	type-1 (function) quantifica-	$\operatorname{hydg}(\boldsymbol{A})$	hyperdegree of $A 149$	
	tion 57	$A^{\text {ns }}$	hyperjump 155	
$c X$	set of complements of members	$\boldsymbol{\Sigma}_{\rho}^{\boldsymbol{0}}, \boldsymbol{\Pi}_{\rho}^{\boldsymbol{o}}, \mathbf{\Delta}_{\boldsymbol{\rho}}^{0}$	Borel hierarchy 157	
	of $X \quad 59$	$\mathrm{U}_{\rho}^{\prime \prime}$	universal relations 159	
$\operatorname{dg}(\alpha)$	degree of $\alpha \quad 63$	$N^{k, 1}, N_{\rho}^{k, 1}$	indices for the effective Borel	
$\mathrm{R} \ll A$	R is (many-one) reducible to		hierarchy 163	
	A 65	$\Sigma_{\rho}^{0}, \Pi_{\rho}^{0}, \Delta_{\rho}^{0}$	effective Borel hierarchy 164	
$A^{\alpha}, \beta^{\omega}$	ordinary jump 65, 66	$\mathrm{O},<_{o}++_{o} \\|_{0}$	notations for recursive ordinals 173-174	
Chapter III		D_{u}	Hyperarithmetic hierarchy 173	
$\Sigma_{r}^{0}, \Pi_{r}^{0}, \Delta_{r}^{0}, \Delta_{(\omega)}^{0}$	arithmetical hierarchy 69, 77, 78	Chapter V		
$\mathrm{U}_{r}^{0}, U_{r}^{0}$	universal relations 73	$\leqslant{ }_{\underline{L}}^{w},<_{\Sigma}^{w}, \leqslant_{11}^{w}$,	new notations for $\leqslant_{\Sigma},<_{\Sigma}, \leqslant_{n}$,	
$\Sigma_{r}^{1}, \Pi_{r}^{1}, \Delta_{r}^{1}, \Delta_{(\omega)}^{1}$	analytical hierarchy $80,86,87$	$<_{\text {II }}^{w}$	$<_{11} 203$	
U_{r}^{1}, U_{r}^{1}	universal relations 84	$\boldsymbol{\delta}^{1}$	least non- $\mathbf{S}_{\text {+ }}{ }^{1}$ pre-wellorder	
$\Delta_{r}^{1}-\operatorname{dg}(\alpha)$	Δ_{r}^{\prime}-degree of $\alpha \quad 86$		type 208	
\mathscr{A}	Suslin operation/quantifier 88	$\mathscr{L}_{\text {zF }}$	language of set theory 214	
Z_{α}	zeros of $\alpha \quad 89$	$\mathfrak{M} \vDash \mathfrak{U}[\mathbf{u}]$	\mathfrak{A} is true at \mathbf{u} in $\mathfrak{P} 214$	
P_{r}	relation which represents $\Gamma 89$	L_{ρ}	ρ-th level of the hierarchy of	
$U_{(\omega)}^{0}$	universal set for $\Delta_{(\omega)}^{0} \quad 93$		constructible sets 215	
ω_{1}	least non-recursive ordinal 97	$\mathrm{V}=\mathrm{L}$	Hypothesis of Constructibility:	
δ^{1}	least non- $\Delta_{\text {, }}^{1}$ ordinal 97, 208		all sets are constructible 215	
\mathfrak{R}	standard model for arithmetic 114	$<_{\text {L }}$	well-ordering of constructible functions 215	
$\sigma[\mathbf{m}, \boldsymbol{\alpha}]$	value of σ at (m, $\boldsymbol{\alpha}$) in $\mathfrak{R} \quad 115$	$\varepsilon_{1}, \varepsilon_{\text {II }}$	sequence of moves of player I	
$\vDash \mathfrak{Y}[\mathbf{m}, \boldsymbol{\alpha}]$	\mathfrak{A} is true at ($\mathbf{m}, \boldsymbol{\alpha}$) in $\mathfrak{N} \quad 115$		(player II) 222	
$\exists_{r},{ }^{\mathbf{V}}{ }_{r}^{\text {i }}$	classes of arithmetic formulas 116	$\boldsymbol{\gamma} \boldsymbol{\#} \boldsymbol{\delta}$	play resulting from two strategies 222	
$\mathscr{T}+\mathfrak{A}$	\mathfrak{H} is a theorem of $\mathscr{T} 118$	$\operatorname{Det}(X)$	all sets in X are deter-	
$\mathscr{T} \vdash^{\boldsymbol{\omega}} \mathfrak{N}$	\mathfrak{A} is a theorem of $\mathscr{T}+\omega$ -	Det (X)	mined 222	
$11-\mathfrak{U}[\mathbf{m}, s]$	rule 121 \mathfrak{A} is forced at $(\mathrm{m}, \mathrm{s}) \quad 126$	PD	Hypothesis of Projective Determinacy: all projective sets are determined 222	
Chapter IV		$\Phi\left\langle\mathrm{P}_{p}: p \in \omega\right\rangle$,		
$\mathrm{R}<\mathrm{A}$	R is (many-one) reducible to	$\Phi\left\langle\mathrm{P}_{p}\right\rangle$	application of Φ to a countable family 237	

Θ_{B}	operation with base B 237	$\Sigma_{r}^{2}, \Pi_{r}^{2}, \Delta_{r}^{2}$	functional－quantifier hierarchy						
B（ Φ ）	canonical base of $\Phi \quad 237$		338						
Φ°	dual operation 238	$\mathbb{U}_{r}^{1}, \mathbb{U}_{r}^{2}$	universal relations 338						
$\nabla(\Phi)$	relations generated by $\Phi \quad 239$	$\leqslant_{1}, \mathbf{w},\\|!\\|$	codes for well－orderings of						
$\boldsymbol{\Sigma}_{\rho}^{\boldsymbol{\Phi}}, \boldsymbol{\Pi}_{\rho}^{\Phi}, \mathbf{\Delta}_{\rho}^{\Phi}$	Φ－hierarchy 240， 243		${ }^{\omega} \omega \quad 340$						
Φ^{*}	＂next＂operation after $\Phi \quad 240$								
$N^{\Phi . k}$	indices for the effective Φ－hierarchy 247	Chapter VII							
$\Sigma_{\rho}^{\Phi}, \Pi_{\rho}^{\Phi}, \Delta_{\rho}^{\Phi}$	effective Φ－hierarchy 247								
$\nabla(\Phi)$	relations effectively generated by $\Phi \quad 247$	$\Omega[0]$	codes of computations in $0 \quad 344$						
$O^{\prime},<^{s}, 11{ }^{\text {d }}$	notations for ordinals generated by J 249	E	with index a 344 function－quantifier functional						
D_{u}^{J}	set in the J－hierarchy 249		345						
$\nabla(\mathrm{J})$	relations generated by J 250	s	superjump functional 345						
		$U^{\prime}, U^{\prime}, U^{\prime}$	universal relations 351						
		II＇	length of a computation in						
Chapter VI			1351						
		$\omega_{1}[0], \omega_{1}[0]$	least ordinal not recursive in 0						
$\Omega[1]$	codes of computations in I 260		（and some function） 354						
$\{a\}^{\prime}$	functional partial recursive in 1	$s \mathscr{L}$	type－4 superjump 356， 364						
	with index $a 261$		type－3 jump operator associated						
E	number－quantifier functional 262	$O^{s},<^{s}, \\|$	notations for ordinals generated						
E_{1}	Suslin－quantifier functional 263		by J 361						
OJ	ordinary－jump functional 263	V（J）	relations generated by J 361						
E°	dual functional to E 266		functional－quantifier function						
s】	superjump 269								
Sbc	subcomputations 275	$\Omega[\mathscr{I}],\{a\}^{\mathscr{B}}$	recursion in $\mathscr{\Phi} 364$						
ω_{1}［1］	least ordinal not recursive in I 283	$\Sigma_{r}, \mathrm{H}_{r}, \Delta_{r}$	type－3－quantifier hierarchy 365						
$U^{\prime}, U_{\alpha}^{\prime}, U^{\prime}$	universal relations 285								
$\\|^{\prime}$	length of a computation in I 285	Chapter VIII							
Sel＇	selection functional 292								
$1 \\|_{0}^{1}$	norm induced on U^{\prime} by｜｜＇ 295	Pd	ordinal predecessor function 373						
κ^{\prime}	length of $\\|_{0}^{1}\left(=\omega_{1}[1]\right) 295$	λ－＂least＂	λ－search 374						
$\Sigma_{1}^{1,1}$	$(\exists \beta$ recursive in $\mathrm{I}, \boldsymbol{\alpha}) \mathrm{P}(\mathbf{m}, \boldsymbol{\alpha}, \boldsymbol{\beta})$	〈＞，lg，（ ）${ }_{\text {，}}$ ，	ordinal sequence coding 374－						
	300	＊，Sq	375						
I_{J}, I_{Φ}	functionals associated with	$\Omega_{\text {к入 }}$	codes of（ κ, λ ）－computations 376						
	J，$\Phi \quad 307$	$\{a\}_{\kappa},\{a\}_{\infty \lambda},\{a$	$\kappa-,(\infty, \lambda)$－，and ∞－partial recur－						
$\{a\}^{\text {S }}$	$\{a\}^{\prime \prime} \quad 307$		sive function with index a 377						
J_{1}	jump operator associated with	T_{0}, T	normal form relations 385－386						
	1314	$\\|\mathrm{m}\\|$	（ $\left\\|m_{0}\right\\|, \ldots,\left\\|m_{k-1}\right\\|$ ） 394						
Φ^{*}	extended functional correspond－	$\Omega_{\text {w }}$	codes for ω_{1}－computations 394						
	ing to $\Phi 317$	Ω_{γ}	codes for $\\|\gamma\\|$－computations 399						
E_{1}^{*}	extended Suslin－quantifier func－	\bigcirc	relation $u \in \Omega_{\gamma} 399$						
	tional 318	Om［1］	$\left\{\omega_{1}[\mathrm{H}]\right.$ ：I is recursive in H$\} \quad 409$						
M，M_{α}, \mathbf{M}	complete sets for recursion in	$\mathrm{Ef}_{d}[1]$	l is κ－effective with index $d 409$						
	$\mathrm{E}_{1}^{* *} 320$	τ_{ρ}	ρ－th recursively regular ordinal						
E，	$\mathrm{E}_{0}=\mathrm{E} ; \mathrm{E}_{r+1}=\left(\mathrm{E}_{r}\right)^{20} 326$		419						
Ω^{3}	codes of type－3 computa－	κ^{*}	projectum of $\kappa \quad 423$						
	tions 335	$\mathrm{st}_{\boldsymbol{\lambda}}$ ， st	next（ λ－）stable ordinal 424						
\exists^{2}, \forall^{2}	type－2（functional）quantifica－	Sqc	sequence closed 429，438						
	tion 337	TC	transitive closure 433						

$\begin{aligned} & o(M) \\ & \hat{v}_{i}^{\sigma} \mathfrak{H} \end{aligned}$	least ordinal not in M 433 abstraction term 435	$\begin{aligned} & X \text {-Ind, } X \text { - } \\ & \text { mon-Ind } \end{aligned}$	X-(montone-) inductively defin-
Val	value of a term 436	X-Hyp,	able 445
$\exists_{r}^{0}, \forall^{\mathbf{o}}$	classes of set-theoretic formulas	X-mon-Hyp	
	443	k-env	k-envelope 448
		k-sc	k-section 448
		\mathfrak{M}-pos-Ind	positive inductively definable over $\mathfrak{M} \quad 451$
		$\mathfrak{R}_{0}, \mathfrak{R}_{1}$	standard models for arithmetic 451
		HYP($\mathrm{M}_{\text {) }}$	smallest admissible set contain-
Epilogue			ing $\mathfrak{M} 452$
		HYP_{\Re}	smallest admissible set above
$\|\boldsymbol{X}\|, \mid \boldsymbol{X}$-mon \mid	sup of closure ordinals 445		M 456

