
Ch apter VIII  
Recursion on Ordinals 

In the preceding two chapters we have put our attention on the generalized 
recursion theories which arise from ordinary recursion theory by the introduc- 
tion of functionals of types 2 and higher. As we saw in § VI.7, these theories can 
equally well be  viewed as theories of effective computability over domains which 
include such functionals. In this chapter, we shall study theories of effective 
computability over (initial segments of) the class of ordinal numbers. 

The intuitive notion of effective computability for functions from ordinals to  
ordinals is again based on an idealized computing machine M which is equipped 
to store and manipulate ordinals according to a given program and produce an 
ordinal as answer. Many features of the "language" in which the programs for M 
are to be written are unchanged from earlier notions of computability, but there 
are two new basic instructions. These ensure that if H is a partial computable 
functions, then so are F and G defined by: 

F(P, P = sup+,<, H(.rr, CL 1, 
and 

G ( p )  = "least" n-. H(T,  p )  = 0. 

The justification for including these schemes lies in a generalization of the notion 
of finiteness, which we call metafiniteness. 

In ordinary recursion theory an object is finite iff it is in a one-to-one 
correspondence with a natural number - that is, with an element of the 
fundamental domain. If this were the only property of finite objects considered, 
we might say that an object is metafinite iff it is in a one-to-one correspondence 
with an ordinal. Of course, given the Axiom of Choice, this would make every 
set metafinite! Instead, we observe that in addition, every finite set of natural 
numbers is computable and indeed is in a computable one-to-one correspon- 
dence with a natural number. Hence we shall call an object metafinite iff it is in a 
computable one-to-one relationship with an ordinal. 

Our  basic principle of intuitive calculability over the ordinals is that a 
metafinite sequence of computations may be regarded as a completed totality 
and an answer drawn from the sequence of results of these computations. Thus, 
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from the metafinite sequence of values (H(π,μ): π < p), we can compute the
least ordinal greater than all members of the sequence. Similarly, if for some v,
H(v,μ) — 0 but for all π < v, H(π,μ) is defined with a non-zero value, then
from the metafinite sequence (H(π,μ): π^i^)we can compute that G(μ) — v.

In fact, our main concern will be with various refinements of this notion of
computability. The most important of these consists simply in restricting
attention to ordinals less than some fixed K. For K = ω we get a new
characterization of ordinary recursion theory (on numbers) — in this case, the
two new schemes are superfluous. In general, we shall study the class of K -partial
recursive functions. Many of the simplest properties of ordinary recursion theory
are shared by K -recursion theory for all K, but it soon becomes evident that not
all K are equally well suited to support a recursion theory. Those that are suited
are called recursively regular or admissible and studied in § 2.

In § 3 we show, among other things, that the ω1-(semi-) recursive relations
over ω are exactly the (U\) Δ| relations, and the ^-(semi-) recursive relations
over ω are exactly the (1*1) Δ2 relations. From one point of view these results
reinforce the analogies and similarities of structure we have already observed;
from another, they support the naturalness of the definition of K -recursiveness.
Both of these conclusions are further confirmed in § 4, where we show that for
any type-2 functional I such that E is recursive in I, every ω1[l]-(semi-) recursive
relation on numbers is (semi-) recursive in I and, under certain conditions, which
are satisfied by E, E l5 E 2,..., the converse holds as well.

In the next two sections, we investigate the general structure of the ordinals
using measures of complexity defined in terms of ordinal recursion. Some of
these are closely analogous to so-called "large cardinals" of set theory. Here
again there are interesting connections with the analytical hierarchy and type-2
recursion. For example, the least stable ordinal is δ 2 , the least ordinal not the
order type of a Δ2 well-ordering of ω, and the least recursively inaccessible
ordinal is ωjfEJ.

In §7 we explore the close connection between ordinal recursion and the
hierarchy of constructible sets. Most of the recursion-theoretic properties of an
ordinal K correspond to model-theoretic properties of Lκ, the class of sets
constructible in fewer than K steps.

Some of our previous notational conventions are changed for this chapter.
The letters /, g, h and F, G, H, I now denote fc-ary partial functions from Or into
Or; R,S,T,... are /c-ary relations over Or.

1. Recursive Ordinal Functions

When we expand our fundamental domain from ω to a larger ordinal K or to
all of Or, some notions of ordinary recursion theory have obvious counterparts
whereas others may have either more or fewer than one natural version. Such
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things as the successor and projection functions need no explanation and we
assume that the reader is familiar with the operations of ordinal arithmetic: for
all ordinals μ and p,

μ + 0 = μ, μ + ( p + l) = (μ

and if p is a limit ordinal, μ + p = sup*<p(μ + π);

μ 0 = 0, μ «(p + l) = (μ p) + μ,

and if p is a limit ordinal, μ p = sup*<p(μ TΓ);
0 Λ p+ί p

μ = 1, μ = μ μ,
and if p is a limit ordinal, μp = sup^^μΛ);

!

least v{μ = p + v), if p ^ μ

0, otherwise.

We shall say that F arises from G, H, and / by Primitive Recursion iff for all
μ and p,

l,μ)-H(F(p,μ),p,μ);

and if p is a limit ordinal,

F(p, μ ) =« /(sup^<p F(ττ, μ ), p, μ ).

Ordinal addition, multiplication, and exponentiation are examples as is the
predecessor function:

Pd(0) = 0, Pd(p + 1) = p, and if p is a limit ordinal, Pd(ρ) = p.

The notions of expansion, bounded search, definition by cases, relational and
functional composition, and bounded quantification all have natural extensions
to functions and relations on ordinals; we encourage the reader to verify this for
himself. For example, F arises from G by bounded search iff

F(p,μ)-"least" TΓ < p. G ( π , μ ) - 0

Γπ, if G(τr,μ)-0 and (Vσ < π)(3v >0). G ( σ , μ ) - v\
- | p , if (Vπ<p)(3^>0).G(τr,μ)-^;

[ undefined, otherwise.

In ordinary recursion theory, by unbounded search we mean a search through all
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ordinals less than ω. In the present context it will be useful to provide for varying
"lengths" of searches. We say that F arises from G by λ-search and write

F(μ)-λ-"least"τr.G(τr,μ)-0

iff

ΓTΓ, if π <λ, G(τr,μ)^0, and (Vσ < π)(3v >0) G(σ,μ)=- v\
F(μ)« j

[undefined, if there is no such TΓ < λ.

Similarly, F arises from G by unbounded search,

F(μ)- "least" TΓ . G(ττ, μ ) - 0

when the same condition holds without the restriction to π < λ.
We shall need simple "coding" functions for finite sequences of ordinals.

Since ordinals do not have unique prime power decompositions (2ω = 3ω = ω),
we must use a different technique. Many approaches are possible here, but the
following is one of the simplest. We first define a coding function (( )) for pairs
of ordinals and then treat k -tuples by iterated pairing. Let

({μ,v)) = r + v + T.

Since for any μ and v, 3μ+v < T+v + T < 3μ+v+\ if we set

f{σ) =* least π < σ. σ < 37Γ+1,

then /(«μ, *») = μ + v. Let

(cr)° = /(o--3 / ( σ )) and (σ)1 = f{σ) - (<r)°.

Then

» ) = fVμ + 3μ)^3μv = f(3μ) = μ

and

It follows that (( )) is one-one. Now set

< >° = 1, and for all k and all μ = (μ0,..., μk\
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Clearly each ( )k is one-one. To see that the different ( )k have disjoint
images, let g be the function defined for p < ω by:

g(0,σ)=σ and g(p + 1, σ) = (g(p, cr))1.

Then if we set

lg(σ ) = least p < σ. g(p, σ) = 1,

then lg((μ0,.. . ,μk_i)k) = k. We may thus omit the superscript k without
ambiguity. In terms of g we have also decoding functions:

To define a concatenation function *, let, for p < ω,

h(0, σ, τ )= T, and

h(p + 1, or, r) = «(σ) l g ( σ )^ ( p + 1 ), Λ(p, σ, τ)».

Then if

σ*τ = Λ(lg(σ), σ, r),

we have easily

Finally, if we set

Sq(0,σ)<-»σ = 1;

Sq(p + 1, σr)~(3τr < σ)(3τ < σ)[Sq(p, r) Λ σ = «π,

Sq(p, σ)<r+0 = 1, if p is a limit ordinal;

and

then Sq(σ) iff for some μ, σ = (μ).
The formal definition of the classes of recursive ordinal functions that we

shall study proceeds similarly as in previous cases. For each K and λ we define a
set Ωκλ of sequences of the form (α, μ, v)9 where a is a natural number and
μ0,..., μk-ι, v are ordinals less than K (the role of λ is explained in the next



3 7 6 VIII. Recursion on Ordinals

paragraph). Clauses (0)-(2) of the definition are the natural extensions of the
corresponding clauses of Definition II.2.1 to ordinal arguments and values with
two exceptions. First, there is no clause for applying function arguments, as we
have none. Second, only the constant functions with natural number values are
included. This restriction is unavoidable if we want to preserve the property that
indices (programs) be finite objects.

Clauses (3) and (4) will introduce the operations of- sup+ and λ -search and we
shall have:

{(3, fc + 1, b)}κλ (p, μ ) - suP:<p{ί>}κλ (TΓ, μ ),

and

{(4, fc, b)}κλ ( μ ) - λ-"least" ττ.{ft}κλ (τr ,μ)-0.

To avoid uninteresting pathological cases, we shall always assume that K is a
limit ordinal.

1.1 Definition. For any K and λ,βκ λ is the smallest set such that for all fc, n E ω,
all i < fc, all μ E kκ, and all v, TΓ, p, σ, and τ < K,

(0) «0,fc,0,n>,μ,n)E/2κλ;
«0,k,l,i>,μ,μ ί)GΛ l c A;«0,k,l,i>,μ,μ ί)GΛ l c A;
((0,k,2,i>,μ,μi + l ) e β κ λ ;
«0, k + 4,4), TΓ, p, σ, r, μ, TΓ) E βκ Λ, if σ = τ;
((0, k + 4,4), TΓ,p,cr, r ,μ,p)E /2κλ, if σ ^ τ;
«0, k + 2,5), p, q, μ, Sbo(p, 4)) E flκλ for all p, 4 E ω

(1) for any k', ft, c 0 , . . . , ck,_x < ω and any £ 0 , . . . , £k,_! < K, if for all / < fc',
(cι5 μ, fi) E Ωκk and (ft, £ i>) E β κ λ , then «1, k, ft, c 0 , . . . , c^.,), μ, 1/) E Ωκλ

(2) for any ft, if (ft, μ, i>) E β κ λ, then

( )

(3) if v is the least ordinal such that (Vτr<p)(3£< v). (ft, TΓ, μ, £) E β κ λ,
then «3,fc + l,ft),p,μ,*>)Eβκ λ;

(4) if *> < λ, (ft, v, μ, 0) E ί2κλ, and (VTΓ < i;)(3f > 0). (ft, TΓ, μ, f) E ί2κλ, then
{(49k,b),μ9v)eΩκλ.

As in previous cases, the definition of Ωκλ may be interpreted as a closure
under certain functions. All of these functions have rank at most Card(p) for
some p < K and it follows that the closure ordinal of the inductive definition is at
most the least regular cardinal ^ K (this is what the reader was supposed to
discover in Exercise 1.3.10). We shall see that in general it is much smaller than
this.
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Since v in clause (4) is initially restricted to K, Ωκλ = Ωκκ for all λ ^ K. The
hypothesis of clause (4) is never satisfied if λ = 0 so Ωκ0 is in fact defined by
clauses (0)-(3) If K ̂  K' and λ ^ λ', then clearly Ωκλ C f l κ T .

1.2 Lemma. For all K, λ, α, and μ, there is at most one v such that (a, μ, v) G β κ λ .

Proof. Similar to that of Lemma II.2.2 with a transfinite induction replacing the
simple induction. D

Thus we may set

{a}κλ(μ) ~ v <-> (α, μ, v) G β κ λ .

In fact, we shall not be concerned with quite this degree of generality.

1.3 Definition. For all /c, λ, α, μ, and v,
(i) {a}κ (μ)^v±*(a, μ, v) G Ωκκ

(ii) {a}ooλ(μ)~v<+3κ.(a,μ,v)£Ωκλ;
(iii) {α}oo(μ)= v ^ 3 κ 3λ.(α,μ, *>)G ίiκ λ.

A partial function F:kκ^>κ is κ-partial recursive iff F = {α}κ for some
α G ω and K-recursive iff it is K-partial recursive and total (DmF = kκ). A
relation JR C kκ is K-recursive iff its characteristic function KR is K-recursive. R
is K-semi-recursive iff Λ is the domain of some K -partial recursive function and
K-co-semi-recursive iff (kκ ~ R) is K-semi-recursive. There is a slight technical
problem in making parallel definitions for the other two notions of Definition
1.3; for some α, {α}ocλ

 ar*d {a}x are not sets because their domains are proper
classes of ordinals. We shall in practice ignore this point and proceed as if they
were sets. The worried reader may either think of this chapter as formulated in a
set theory which admits proper classes or verify that each use of a symbol {α}^
or {α}oo may be replaced by its definition in terms of sets. Thus we say that a
partial function F :kOτ-*Or is (o°, λ)- partial recursive [^-partial recursive] iff
F = {α}ooλ [F = {a}*] fc>Γ some a G ω, etc.

In each of these cases we say that F is ^-partial recursive in parameters
iff for some *-partial recursive function G and some p, F(μ)— G(μ,p).
If F (but not necessarily G) is total, then F is ^-recursive in parameters.
When it is relevant, we say that F is *-(partial) recursive in the parameters p.
Similar terminology applies to relations. Since indices are natural numbers, the
constant function with value p is *-recursive for only denumerably many p, so
that in general allowing parameters properly enlarges the collection of *-
recursive functions (cf. Exercise 1.17).

The classes of K -partial recursive functions and (°o, K )-partial recursive
functions are closed under K -search and the class of oo-partial recursive functions
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is closed under unbounded search. If K ̂  λ, then {a}κ C {α}λ C {a}oaλ C {α}*,, so

each K-partial recursive function F has natural extensions to λ-, (°°,λ)-, and

oo-partial recursive functions. Of course, different indices for F lead in general to

different extensions. If {a}κ is total on kκ, then no new computations with

arguments less than K are added in the extensions, but this is not in general true

if {a}κ is partial. New computations with arguments and values from K may be

made possible by the availability to {α}λ, {α}^, and {α}*, of intermediate

arguments and values greater than K. The (<», O)-recursive functions will play

somewhat the role here of the primitive recursive functions of ordinary recursion

theory. They form a convenient class sufficient for many elementary calculations.

Although it is not in general true that the restriction of an (°°,0) recursive

function to arguments from K is K -recursive, this will be true whenever K is

recursively regular (Definition 2.1).

1.4 Theorem. For any k and any F:kω-+ω, F is ω-partial recursive iff F is

(ω, 0)-partial recursive iff F is (ordinary) partial recursive.

Proof. Exercise 1.15. D

In the following we shall use only the obvious part of this theoremiif F is

(ordinary) recursive, then F is (ω, 0)-recursive and thus has an (oo, 0)-partial

recursive extension.

1.5 Theorem. For all K and λ, the classes of K-partial recursive [(oo, λ)-partial

recursive, ^-partial recursive] functions and K-recursive [(<*>, λ)-recursive, oo-

recursive] relations are closed under definition by cases.

Proof. We shall prove the result for K-recursion. Suppose

for i<k'\fGtiμ), if Rt(μ)

F(μ) -
[Gk(μ), otherwise;

where the JR, (i < k') are pairwise disjoint K-recursive relations and the Gt

(i^kf) are K -partial recursive functions. We proceed by induction on fc\ If

k' = 0 there is nothing to prove, so suppose k' > 0 and the result is true for

smaller values of k'. Then there exists a K-partial recursive function H such that

if Ri(μ) forO</<fc ' ;

lGk(μ), otherwise;

so that
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(G0(μ), if R0(μ);
F(μ) « \

lH(μ), otherwise.

Let b and c be K -indices of Go and H, respectively. Then

F(μ ) - {{<0,4,4>}κ (b, c, K^μ ), 0)}κ (μ )

and is thus K-partial recursive. D

The equality relation on ordinals is (<», O)-recursive, since

K.(σ,τ) = {<0,4,4)}βBθ(0,l,σ,τ).

Then the functions sg+ and sg~ are (oo, O)-recursive and K -recursive for all K, and
it follows as in §11.1 that the classes of K -recursive, (<», λ )-recursive, and
oo-recursive relations are Boolean Algebras (the arithmetic operations used there
are applied only to natural numbers).

Suppose that R is K -recursive,

and

Then

KP (p, μ ) = (sup^<pXR (π, μ )) - 1

so P is also K -recursive. That Q is K -recursive follows by closure under
complementation. The same applies to (°°, Λ)- and ̂ -recursion. We now have

σ < τ ^ ( 3 π < τ)σ = π

so that the relations, < , ^ , >, and ^ are all (°o, O)-recursive.

1.6 Lemma. The following relations are (°°,0)-recursive:
(i) Lm(p)<-»ρ is a limit ordinal;

(ii) Suc(p)«-»p is a successor ordinal;
(iii) {p:p = ω};
(iv) {p:p<ω}.
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Proof. These are immediate from the preceding remarks and the following

relationships:

Lm(p)<-• pϊ 0 Λ (VTΓ < p)τr + 1< p

Suc(p)**(3τr < p)p = τr + 1;

p = ω «-> Lm(p) Λ (VTΓ < p) —I Lm(ττ);

p < ω <-> —i Lm(p) Λ (VTΓ < p) —ι Lm(τr). D

Note that we are not asserting that the constant function with value ω is

(oo, 0)-recursive — it is not (Corollary 2.3). However, for any K > ω,

ω = K-least 7r.Lm(τr)

so this function is K-recursive.

1.7 Lemma. The predecessor function Pd is (°°,0)-recursive.

Proof Let

f TΓ, if π + 1< p

0, otherwise.

Then / is (oo,0)-recursive and Pd(ρ) = sup1n<pf(π,ρ). D

1.8 Recursion Theorem. For any K and any K-partial recursive function F, there

exists an e < ω such that

{e}κ(μ)~F{e9μ).

The same holds for (oo, λ)- and oo-recursion.

Proof. As for Theorem Π.2.6. D

1.9 Theorem. For any K and λ, the classes of K-partial recursive, (oo, λ)-partial

recursive, and ̂ -partial recursive functions are closed under primitive recursion.

Proof. Suppose that F arises from K -partial recursive functions G, H, and / by

primitive recursion. Let / be defined by:

(G(μ), if p = 0;

JH({} (Pd(p),μ),Pd(p),μ), if Suc(p);

< p{e}κ(π,μ),p,μ), if Lm(p).
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Then / is K -partial recursive so by the K -Recursion Theorem there exists an

index e such that f(e,p,μ)=*{e}κ{p,μ). It is straightforward to prove by

induction that F = {e}κ. D

1.10 Corollary. The functions of ordinal addition, multiplication, and exponenti-

ation are all (°°,0)- recursive.

Proof The ordinal addition function -I- arises from three (<», 0)-recursive

functions G, H, and I by primitive recursion, where

G(p,μ) = μ, H(v,p,μ) = v + 1, and I(σ,p,μ)=σ.

It follows from Theorem 1.9 that + is (<», 0)-recursive. Similar arguments apply

to multiplication and exponentiation. D

1.11 Theorem. For all K and λ, the classes of K-partial recursive functions,

(°°, λ)-partial recursive functions, and ^-partial recursive functions are closed

under sup and inf.

Proof. Suppose H is K -partial recursive,

F(p, μ ) - sup7 r < p H(π, μ ),

and

Then F(p,μ)-Pd(supt<pH(ττ,μ)) and G(p,μ)~ H(I(p,μ),μ), where /

satisfies the primitive recursion:

fp, if H(p,μ)<H(I(p,μ),μy,
I(p + l,μ)-\

[l(ρ,μ), otherwise;

I(ρ,μ) — sup7Γ<pI(π,μ), if p is a limit ordinal. D

The K -partial recursive functions are closed under K -search and the oo.partial

recursive functions under unbounded search, so it follows that both classes are

closed under bounded search. The next theorem shows that this is also true for

the (oo, λ)-partial recursive functions, even when λ = 0.

1.12 Theorem. For all λ, the class of (<», λ)-partial recursive functions is closed

under bounded search.
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Proof. The proof is an extension of that of II.1.5 (ii). If G is (<», λ )-partial
recursive and

) ^ "least" π < p. G(π,μ)^ 0,

then F satisfies the primitive recursion:

F(0,μ)«0;

F(p,/i)= ;sup7r<pF(7r, μ), if p is a limit ordinal. D

1.13 Corollary. The ordinal subtraction function — and the sequence -
manipulation functions and relation, ( )k, ( ), *, and Sq are all (<», O)-recursix)e.

Proof. Immediate from the definitions and preceding results. D

1.14-1.17 Exercises

1.14. Describe the computation trees for (K, λ)-recursion.

1.15. Prove Theorem 1.4.

1.16. Compare the class of arithmetical relations on numbers with the class of
relations on numbers which are (°°, 0)-recursive in the parameter ω.

1.17. Show that there exists a countable ordinal K such that properly more
functions are K -recursive in parameters than are simply K -recursive.

1.18 Notes. The notion of recursiveness for functions on ordinals is a good
example of an idea whose time had come and was discovered independently in
one form or another by several people between 1960 and 1966. The idea was
natural from several points of view, and this is reflected in the variety of
motivations of those who made the key discoveries. From the side of set theory
we have Takeuti's work of the 1950's in reformulating GόdeΓs constructibility in
terms of a theory of ordinals. Takeuti [1960] and Kino-Takeuti [1962, - a]
develop a theory of recursive ordinal functions essentially equivalent to α>-
recursiveness as described above and show that it behaves nicely when restricted
to the ordinals less than any cardinal. Machover [1961] and Levy [1963] arrived
at essentially the same theory with the aim of using it to study the infinitary
languages 2Kk.

Meanwhile Kreisel [1961] observed that in the analogy of Π} to Σ?, the
appropriate counterpart of Δj is the class of finite sets, not the class of recursive
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sets. This is essentially because of the boundedness phenomenon — aΔJ subset
of W is bounded (metafinite) whereas a recursive subset of ω is not bounded
(finite). In a similar vein, Kreisel also proposed that the cardinality criteria, both
in recursion theories and infinitary languages, should be replaced by more
intrinsic definability criteria. These ideas led more or less directly to the
metarecursion theory of Kreisel-Sacks [1965] in which the fundamental domain
is the set of recursive ordinals as represented by a H1 set of unique notations for
them. This is equivalent to ωrrecursion as defined above.

The pieces were all fitted together independently by Kripke [1964, - a] and
Platek [1966], who approached the area with the aim of generalizing ordinary
recursion theory. Kripke expanded Kleene's equation calculus to serve for
defining recursive functions over any initial segment of the ordinals, whereas
Platek used an approach via primitive recursion and the search operator. These
theories include all of the others and are equivalent to each other and in almost
all respects to the one presented above.

Further discussion of some of these points may be found following Theorem
3.4 below and in the introduction to Barwise [1975]. The particular formulation
of the theory that we have used is new here, but similar formulations have been
used by several people in lectures.

2. Recursively Regular Ordinals

It is obvious that for many ordinals K, the class of K -partial recursive func-
tions is not a very natural class. If K is a successor ordinal, the successor
function on K is not total, hence not K -recursive. Similarly, if K is not closed
under ordinal addition, multiplication, etc., then the restrictions of these
functions to arguments from K are only K -partial recursive. Among other
difficulties, this means that the sequence coding functions may not be
everywhere defined. A natural "regularity" condition on K is that it be closed
under sufficiently many functions:

2.1 Definition. An ordinal K is recursively regular iff K is closed under all
(°o, κ)-partial recursive functions.

An apparently stronger condition is
(a) for all all a < ω, all μ < K, and all v

Since the values of /(-partial recursive functions are by definition less than K, (a)
implies that K is recursively regular. The converse is not obvious, however, since
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{a}κ is restricted to using ordinals from K in the middle of computations, while
{a}xκ may use larger ordinals even to arrive at a value less than K.

If we examine the schemas for computing (<», κ)-partial recursive functions, it
is intuitively clear that an (°°, K) computation with arguments less than K can
arrive at a value ^ K only by means of the sup+ schema (3). The first time this
happens, the function whose sup+ is ^ K is in fact K -partial recursive, and we are
led to the following condition:

(b) for all K-partial recursive functions F and all p, μ < K, if F(ττ, μ) is
defined for all π < p, then sup* < p F(π,μ)< K.

2.2 Theorem. For all K, K is recursively regular iff (a) iff (b).

Proof. Suppose first that K is recursively regular and let F be a K -partial
recursive function with K -index a. Then {α}ocκ is an (o°, K )-partial recursive
function which extends F, and the function G defined by

is likewise (o°, κ)-partial recursive. Then for p, μ < K, since K is closed under G,
if for all π < p, F(π, μ) is defined, then

supt<pF(τr,μ)= G(p,μ)<κ.

We have thus deduced that condition (b) holds.
We observed above that (a) implies that K is recursively regular, so it remains

to prove that (b) implies (a). Given (b), we first observe that K is a limit ordinal,
since if μ < K and F(τr, μ,)= μ for all π, then

μ + 1 = supl<1F(π,μ)< K.

We shall prove for all τ by induction over Ωrκ that for all a, μ, and r,

For α = (0, ίc,...) this is immediate (that K is a limit ordinal is needed for the
successor function). Suppose that α = (1, fc, fc, c 0 , . . . ,ck_,) and £ (i<fc') are
such that (Cj, μ, £)G ί2τκ and (6, £ */) G ΩTK. Since μ < κ9 the induction
hypothesis yields that each (ct, μ, ξt) G ί2κκ. Hence each f, < K, SO again by the
induction hypothesis, (b, ξ, v) G Ωκκ. Thus also (α, μ, ^) G /2KK.

The argument for clause (2) is even simpler and we omit it. Suppose that
a = (3, k + 1, b), p and μ < K, and (α, p, μ, î ) G Λτκ. Then v is the least ordinal
such that for every π < p there exists ξΊr<v such that (ft, π, μ, £,.) G ί}τκ. By the
induction hypothesis, for all π < p, (ft, π, μ, £„) G 17KK — that is, {ft}κ (TΓ, μ ) ̂  fff.
Then by (b),
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v = sup + {^ : π < p} = sup^<p{fc}κ(ττ, μ ) < K.

It follows that (α, p, μ, v) E ί2κ κ.

Finally, suppose that a = (4, fc, f>), μ < K, and (α, μ, i>) E ί2 τ κ. Then v < K,

(ft, *;, /A, 0) E f2TK, and for all π < v, (ft, π, μ, f f f) E ί2τ κ for some fff > 0. By the

induction hypothesis (since if π < v, also π < κ ) , (b, v, μ,0)E Ωκκ and all

(ft, 7Γ, μ, fw) E β κ κ . Hence also (α, μ, i/) E ί2 κ κ . D

The term "recursively regular" is derived from condition (b). Indeed, if the

modifier "K-partial recursive" is removed from (b), it becomes just the condition

that K be a regular cardinal. In particular, every regular cardinal is recursively

regular.

Of course, every recursively regular K is closed under all (o°, 0)-ρartial

recursive functions and the restriction of any (°o? 0)-partial recursive function to a

recursively regular K is K -partial recursive.

2.3 Corollary. The constant function with value ω is not (°°,0)-recursive. In fact,

no constant function with value ^ω is (°°,0)-recursive.

Proof. Suppose that F(μ)= v^ω for all μ and F is (α>,0)-recursive. ω is a

regular cardinal, hence recursively regular, so as 0 < ω, also F(0) < ω, a

contradiction. D

Although we have argued that some condition such as recursive regularity is

necessary for an ordinal K to support a reasonable recursion theory, we have not

as yet given any reason to believe that such a condition is sufficient. To establish

this, we shall show that there exists an (o°, 0)-recursive relation T such that for all

α, μ, and v, and any recursively regular K,

In other words, for recursively regular K, K -recursion theory has a normal form

very similar to that of § II.3 for ordinary recursion theory.

The proof is in two main steps. Let

Γ0(α, <μ >, v, K, λ, σ) <+• (α, μ, v) E Ωσ

κλ,

where, as usual, Ωσ

κλ denotes the σ-th stage of the inductive definition of Ωκk.

We show first that To is (<», 0)-recursive. Next we prove that for recursively

regular K,

It follows that if we set
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then T has the required property.
Let H be an (o°, O)-recursive function such that for all fc, K and all

μo, , μ k - i < κ > (μ)<H(k,κ), say H(k,κ) = (κo,...,κk_ί) with all K, = K.

2.4 Lemma. To w (°°,0)- recursive.

Proof. We shall define an (o°, O)-recursive function F and prove by induction that
for all σ,

fO, if ( α , μ , i / ) G Λ : A ;
(*) F(α, <μ >,*,*, A, σ) = j

[l, otherwise.

If σ = 0, we set

Γ0, if α=<0,k,...> and {α}κ λ(μ)-i^;
(0) G(α, <μ >,*,*, A, σ) = |

[l, otherwise.

If σ > 0, then F should satisfy the following conditions:
(1) F«l, k, ft, c 0 , . . . , <V-i>,<M>, v, K, λ, σ) = 0 iff for some f < H(k\ K),

(i) (V/<k')(3^<σ).F(c ί,<#£>,(f)i,κ,λ,τ) = 0,
and
(ii) (3τ<σ).F(ft,fei;,κ,λ,τ) = 0;

(2) F«2, fc + 1>, <fc, μ >, v, K, λ, σ) = 0 iff

(3τ<σ)F(fr,<μ>,i;,κ,λ,τ) = 0;

(3) F«3,fc + l,ft>,<p,μ>,i/,ιc,λ,σ) = 0 iff i/, p < κ9

(i) (VTΓ < p)(3f < i/)(3τ < σ). F(fc, <τr, μ>, fe K, λ, r) = 0,
and
(ii) - i (3 i ; '< ι ; ) (Vπ<p)(3f <i;')(3τ<σ).F(ft,<π,μ>,f,ιc,λ,τ) = 0;

(4) F«4, fc, ft),(μ>, i;, κ,λ,σ) = 0 i « K A,
(i) (Vπ<i;)(3f < κ ) ( 3 τ < σ ) [ f >0ΛF(ft,<π,μ>,feκ,λ,τ) = 0],
and
(ii) (3τ<σ).F(6,<i;,μ>,0,κ,λ,τ) = 0;

(5) in all other cases, F(a, (μ), v, K, A, σ) = 1.
It is clear that (*) holds if <τ = 0. We assume as induction hypothesis that

σ > 0 and (*) with σ replaced by r holds for all τ < σ, and prove that (*) itself
holds. If (a, μ, v) £ Ωσ

κk by virtue of being of the wrong form, then (*) holds by
(5); otherwise one of (l)-(4) applies. Suppose first that a = (1, fc, b, c 0 , . . . , ck,_λ).
Then by the induction hypothesis
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F(a, (μ >, v, κ,λ,σ) = 0*+ for some ξ0,..., ξk.-u

(i) (\fi<kf)(3τ<σ).(chμ,ξi)GΩτ

κλ,

and
(ii) (3τ<σ).(fr, ί , i/)e/2; A .

These are exactly the conditions which guarantee that (α, μ,v)E:Ωσ

κλ. The other

cases are similar. D

2.5 Lemma. For any recursively regular K and all α, μ, and v,

(a, μ, v)E Ω κκ+*(3λ < κ)(3fτ < K) .(a, μ, v)e Ωσ

λλ.

Proof. The implication (<—) is immediate from the monotonicity of Ωκλ with

respect to K and λ. For the implication (—>) we show that

{(α, μ, v): (3λ < κ)(3or < K) . (α, μ, v) G r2"λ}

is closed under the clauses (0)-(4) which define the monotone operator whose

closure is Ωκκ. Since K is a limit ordinal, this is trivial for clause (0).

(1) Suppose that for all / < fc', (ci? μ, £•) G i2jA .and (6, f, î ) G ί2^: λ | c . with all

λj, σ , < K. Since K is a limit ordinal, there exist λ and σ < K such that for all

i ^ k\ λ, < λ and σt < σ. But then clearly, ((1, fc, b, c 0 , . . . , ck,_x), μ, î ) G 12^.

(2) If for some λ, σ < K, (fc, μ, v) G 17£λ, then «2, fc + 1), b, μ, Ϊ^) G i2^ + 1 and

σ + 1 < K.

(3) Suppose that α = (3, fc + 1, f>) and

(VTΓ < p)(3λ < κ)(3or <

Then

By Theorem 2.4, the relation R defined by

is (^, 0)-recursive, hence K-recursive, and we have

(\/π<p)(3ζ<κ)R(ζ,τr,b,μ).

Let F be the K -recursive function such that

F(π,ft,μ)= ic-least ζ. R(ζ,π,b, μ).
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Because K is recursively regular,

τ = sup*<pF(π,b,μ)< K.

It follows that

(Vπ<p)(3λ<τ)(3σ<τ)(3ξ<λ).(b,π,μ,ξ)eΩ

and thus

(VTΓ < p)(3λ < τ)(3f < λ) . (6,7r, μ, f) G Ω(

T

T

T\

hence

(α,p,μ, v)GΩτ

τr,

where

Clause (4) is treated similarly. D

2.6 Theorem. For any recursively regular K and all a, μ, and v,

{a}κ(μ)=- v+*(3v < κ)[T(a, (μ), υ) A (υ)0 = i;].

Proof. The implication (<—) is immediate. Suppose that {a}κ(μ) — v. Then v < K
and by Lemma 2.5 there are σ, Λ < K such that (a, μ,v)E: Ωσ

λkAiυ = (v, λ, λ, σ),
then the recursive regularity of K implies that t> < K and clearly T(a, (μ),v) and
(V)0=P. D

We have a similar representation for (°°, λ)- and oo-partial recursive func-
tions:

2.7 Theorem. For all λ, a, μ, and v,

0) {ahcλίμ)^ v±*3υ [Γ(α,(μ),ϋ)Λ(ϋ)0= ^ Λ(U) 2 =A];

(ii) {α}oc(M)-^^3u[Γ(α,(μ),υ)Λ(ϋ)0=v]. D

The theory of κ-(partial)-recursive functions and K -(semi)-recursive relations
can now be developed according to the pattern of § II.4. We list the facts below
but omit proofs in most cases. For the next few paragraphs, K is a fixed
recursively regular ordinal.
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2.8 Normal Form Corollary. For any K-partial recursive function F, there exists

an a EL ω such that

F ( μ ) « (K-least υ. Γ(α, <μ >, υ))o •

From Theorem 2.6 it follows that a relation R is K -semi-recursive iff for some

a E ω

R(μ)«*(3v<κ)T(aΛμ),v).

Equivalently, R is K -semi-recursive iff for some K -recursive (or even (°°,0)-

recursive) relation 5,

R(μ)<*(3σ<κ)S(σ,μ).

One proves just as in § II.4 that the class of K -semi-recursive relations properly

includes the class of K -recursive relations and is closed under finite intersection,

bounded universal quantification, and relational composition with K -partial

recursive functions.

It is instructive to examine an alternative proof for closure under bounded

quantification (which is also available in ordinary recursion theory). Suppose

that R is K -semi-recursive and 5 is a K -recursive relation such that

R(Pjμ)**(3σ<κ)S(σ,p,μ).

Then

φπ < p)R(π, μ)+*(Vπ < p)(3σ < κ)S(σ, τr,μ).

Let

Then V is K-recursive and

The implication (<—) is obvious. On the other hand, if (VTΓ < ρ)R(π,μ), let

F(π, μ)— κ-least σ. S(σ, π, μ)

and
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By recursive regularity, τ<κ and clearly V(τ,p,μ). Thus (VTΓ < ρ)R(π,μ)

defines a K-semi-recursive relation. The reader versed in axiomatic set theory

will observe here a similarity with the axiom of replacement. This analogy forms

the basis for many of the results of § 7 (cf. Lemma 7.5).

2.9 Selection Theorem. There exists a K-partial recursive function Selκ such that

for all a and μ,

(i) 3π.{α} κ (π,μ)l iff Sel κ (α,<μ»| , and
(ii) i/3π.{ f l } κ (π,μ) | , then {a}κ(St\κ (α,<μ»,μ) 4 . D

2.10 Corollary. For any K-semi-recursive relation R, there exists a κ-partial

recursive function Se\R such that for all μ,

3πR(π,μ)*+R(SclR(μ),μ)++SelR(μ)l . D

2.11 Corollary. The class of K-semi-recursive relations is closed under bounded

quantification, finite union, and 3° (existential quantification over K). D

2.12 Corollary. The class of K-partial recursive functions and K-semi-recursive

relations is closed under definition by positive cases. D

2.13 Corollary. A relation is κ-recursive iff it is both K-semi-recursive and κ-co-

semi-recursive (complement of a K-semi-recursive relation). D

2.14 Corollary. For any partial function F : K —> K, F is K-partial recursive iff its

graph Gr F 15 K-semi-recursive and F is K-recursive iff F is total and G r F is

K-recursive. D

2.15 Corollary. For any non-empty set A QK, the following are equivalent:

(i) A is K- semi -recursive;

{ii) A = Im(F) for some κ-recursive function F ;

(iii) A = Im(F) for some K-partial recursive function F. D

2.16 Corollary, (i) The class of K-semi-recursive relations has the reduction

property but not the separation property

(ii) the class of K-co-semi-recursive relations has the separation property but

not the reduction property. D

If λ < K is also recursively regular, one would in general expect that

{α} λ£{α} κ . Hence, although every λ-partial recursive function has natural

K -partial recursive extensions, it is by no means obvious that every λ -partial

recursive function is itself K -partial recursive. Indeed, this cannot always be so.

Since every regular cardinal is recursively regular, there exists a recursively
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regular ordinal K such that there are uncountably many recursively regular λ < K

(by the results of §3 this is true for K = HX). For each such λ, let F λ be the

λ -recursive function with constant value 0 (and domain Λ). Since there are

uncountably many such F λ ' s , not all can be K -partial recursive.

2.17 Theorem. For any recursively regular λ < K, if {σ : σ < λ} is K-recursive,

then every λ -partial recursive function is also K-partial recursive and every Λ-

semi-recursive relation is K-recursive.

Proof. Under the condition given, for any λ-partial recursive G, if F is defined

by:

), if μ o , . . . , μ k _ , < λ ;

[ undefined, otherwise

then F = G and F is K -partial recursive.

The constant function with value λ is K -recursive since

λ = κ-least τ.τΆ λ.

Then if R is any λ-semi-recursive relation there is an a < ω such that

With respect to K, the quantifier is bounded and the relation T is (<», O)-recursive,

so R is K -recursive. •

We conclude this section with another characterization of the recursively

regular ordinals.

2.18 Theorem. For any K, the following are equivalent:

(i) K is recursively regular;

(ii) Ωκκ = U{Ωσ

λλ:λ,σ<κ};

(iii) ΩKK=Ω(

K

K

K\

Proof That (i)-» (ϋ) is Lemma 2.5. That (ii)—»(iii) is obvious. Suppose that K is

not recursively regular. Then by Lemma 2.2 there exists a K -partial recursive

function F and ordinals p and μ < K such that s u p ^ < p F ( π , μ ) = K. Let G be the

K -partial recursive function defined by

By the Recursion Theorem applied to a natural index for G, there exists an index

e such that
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O(e,a)~{e}K(<r)

and for all σ < K, ( e , σ , 0 ) e ί ! κ κ ~ Ω^J — that is, {e}κ(σ) requires at least σ

steps to compute its value 0. Let a be a natural index such that

Then (a, p, μ, 0) G Ω κκ ~ i2(

K

K

K

}, so condition (iii) fails. D

2.19 Corollary, {K : K is recursively regular} is (°°,0) recursive.

Proof. Let H be the (°°, 0)-recursive function defined just preceding Lemma 2.4

with the property that if μ E kκ, then (μ)<H(k,κ) and let G(κ) =

supfc<ω/ί(fc, K). Then G is (°°, 0)-recursive and for any K, K is recursively regular

iff

(Vα < ω)(\/ζ < G(κ))(V*> < K)

[T0(a, ζ, v, K, K, κ)+»(3σ < K) T0(a, ζ, v, K, K, σ)]. D

2.20-2.25 Exercises

2.20. Is condition (b) changed if the word "partial" is removed?

2.21. Show that for recursively regular K, the class of K -partial recursive

functions is the smallest class of partial functions from K to K which contains the

restriction of every (<», 0)-partial recursive function and is closed under composi-

tion and K-search.

2.22. Show that if K > ω is recursively regular and R C kω is K -recursive, then R

is also λ -recursive for some λ < K.

2.23. Show that K is recursively regular iff for every F: K -* K which is

K -recursive in parameters, there exists a λ < K which is closed under F — that

is, (Vτr<λ).F(τr)<λ.

2.24. A subset A of K is K-finite iff A is K -recursive and for some p < K, A C p.

Show that K is recursively regular iff the image of any K -finite set under a

K -recursive function is K -finite.

2.25. Under what conditions is the class of κ-(semi-) recursive relations closed
under 3^?

2.26 Notes. The term "recursively regular" is due to Platek [1966], who viewed
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the concept as a weakening of regularity. Kripke [1964] uses the term
"admissible" for the same notion, presumably to indicate that the ordinals so
named admit a recursion theory, and this term has become more widely used in
the literature. We have used "recursively regular" both because it seems to us a
more descriptive term and to save "admissible" for a different but closely related
meaning in §7.

The reader may be wondering why we have defined only recursive ordinal
functions rather than functionate. Certainly there is no difficulty in adjusting the
definition of Ωκλ to allow for functions from K to K as arguments and most of § 1
would go through unchanged. Things become more complicated, however, when
we come to discuss recursive regularity. It is not hard to see that the only
ordinals K which would satisfy the condition corresponding to Definition 2.1:

Vα(Vμ <κ)(Vf : ιc-> ιc) V i; [{α },κ (μ, f) « v-+v<κ]

are the regular cardinals. All would be well if the / were restricted to be
K -recursive, but then they could be replaced by their K -indices, and it is not clear
what would be gained. Recursive ordinal functionals are useful for some
purposes but not for any in this book.

3. Ordinal Recursion and the Analytical Hierarchy

To this point our only examples of recursively regular ordinals are the infinite
regular cardinals. The first goal of this section is to establish the recursive
regularity of many countable ordinals (uncountably many, in fact). The existence
of many recursively regular ordinals of each uncountable power will be
established in § 5. Our other objective here is to explore the intimate connection
between α^-recursion and the classes Uί and Δ l 5 on the one hand, and between
Nx-recursion and the classes Ί}2 and Δ2, on the other.

Recall that we observed following Lemma 1.6 that for any K > ω, the
constant function with value ω is K -recursive. It follows that operators such as
sup*< ω and (3ττ<ω) may be freely used in defining K-partial recursive
functions and K-recursive relations.

3.1 Lemma. For any recursively regular K > ω and any y E W, ify is K -recursive,

then \\y\\<κ.

Proof Suppose K > ω is recursively regular and there exists γ E W such that γ is
K -recursive and || y || ^ K. Without loss of generality we may assume || y || = K. By
use of the K -Recursion Theorem we may define a K -partial recursive function F
such that for all p E Fld(γ),
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F(p)- K-least π. (Vq < ω)[q <yp -* F(q)< TΓ],

and otherwise, F(p) = 0. For all p E Fld(γ), \p \γ < K and by induction on \p \γ it
follows that F(p) is defined for all p < ω. But then by the recursive regularity
of K,

K = | |γ | | = sup+{|p |Ύ :p E Fld(γ)} = sup+

p<ωF(p)< K,

a contradiction. D

It follows immediately that no ordinal K such that ω < K < ωx is recursively
regular, as for any such K there exists an (ordinary) recursive function γ E W
such that | | γ | | = K. γ is also K -recursive and if K were recursively regular, this
would contradict Lemma 3.1.

We show next that ω1 is recursively regular. We shall code ω^computations
using elements of W as notations for the ordinals less than ωί. The boundedness
property (IV.2.1 (iii)) is the main tool for completing the proof.

Recall that for m E W, \\m || is the order-type of the well-ordering {̂m> =
{(p,q):{m}((p,q)) = 0}, and for m £ W, Wm^H^ There are Σ} relations < Σ

and < Σ and U\ relations < π and < π such that whenever at least one of m and n
belongs to W,

m < x n <-> || m || ^ || n || <-> m < π n,

and

m < Σ n <r+1| m || < || n || «•* m < π n.

We shall write ||m|| for (| |mo | | ,..., | |m f c_1 | |). Let

Ωw = {(a, m,n):m,πGWA {α}βi(||m||) - || n ||}.

3.2 Lemma. ΩwGll\.

Proof. We shall indicate how to give a direct Πj monotone inductive character-
ization of Ωw — that is, we define a IlJ monotone operator Γ such that Γ = Ωw.
It follows by Theorem II.3.1 that ΩwEll\. The clauses which define Γ are
translations of those which occur in the inductive definition of ΩCύω with
ordinals less than ωλ (the only ordinals that occur) replaced by their codes from
W, and inequalities among these ordinals interpreted by < x , etc.

Thus, Ωw is the smallest set such that (a, m, n) 0. Ωw unless m and n beong
to W and for all k, n, i < k, and all m 0 , . . . , mk^1, p, r, 5, and t E W,

(0) «0,k,0,n),m,n'>Eί2w for all nf such that | n ' | | = n ;



3. Ordinal Recursion and the Analytical Hierarchy 395

((0, k, 1, i),m, Π)EL ΩW for all n such that n<nnti and wij<nn;
«0, fc,2, i),m, n)G Ωw for all n such that mi<nn and

etc.;

( D Ί
> Similarly;

(2) J
(3) if Vp[p<Σr-»3g(<7 <πn A(b,p,m,q)E Ωw)],

and -i 3n'(n' <xn Λ\/p[p <πr-+3q (q <xn' /\ (b, p,m,q)G Ωw)]),
then «3, k + 1, 6>, r, m, n) E ί2 w

(4) if V p [ p < Σ n - > 3 9 ( | | ί | | > θ Λ < i , p , m , 9 ) 6 Λ w ) ] ,
and 3q [\\q\\ = 0 Λ <6, n,m,^>G ί2w, then «4, k, ί>>,m, n)G ί2 w .

We leave it to the reader to verify that this is in fact a Π} monotone inductive
definition of Ωw. D

3.3 Theorem. ωι is the least recursively regular ordinal greater than ω.

Proof. If remains to show that ωι is recursively regular; we use criterion (b) of
Theorem 2.2. Let F be any ωrpartial recursive function and p and μ <ωλ

ordinals such that for all π < p, F(π, μ) is defined. We aim to show that
s u p ^ < p F ( π , μ ) < ω 1 . Let

Λ={n:(3π<p)F(π,μ) = \\n\\}.

Since sup^<pF(τr, μ) = sup+{||n | |: n E A}, it would suffice, by the Boundedness
Theorem IV.2.1(iii) to show that A E Σ}. This is not in general true, but we shall
find a Σj subset BQA such that

(*) sup+{||n||: n G Λ} = sup+{||n||: π E B).

Let α be an ωrindex for F and let r and m be fixed notations in W for p and
μ, respectively. Let JR be the ΓlJ relation defined by

R(n,p)++ (a,p,m, n)G Ωw.

Let SelR be the selection function with ΓtJ graph given by Lemma IV.2.5 and set

B = {n : 3p [p <x r Λ SelR (p) = n]}.

Since by the hypothesis, for each p <^r there exist n such that R(n,p), also
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Hence B E Σ j . That (*) holds is clear; B contains a unique notation for each

ordinal with a notation in A. D

3.4 Theorem. For all k and all R C kω,

(i) R is ωx-semi -recursive <->JR E Hι

(ii) R is ωx-recursiυe <-> R E Δ x .

Proof. Suppose first that R is ωrsemi-recursive, say with ωrsemi-index a. It is
easy to define a recursive function F such that for all m, F(m) E W and
|| F(m) | |= m (cf. Exercise I V.I.20). Then

jR(m)~3n. (α, F(m 0 ), . . . , F{mk_λ\ n) E β w .

Hence by Lemma 3.2, i? E Πj.
For the implication (<—) of (i), suppose that R is a U1 relation. By Theorem

ΠI.3.2 there exists a Πj monotone operator Γ such that R < Γ. It suffices to show
that .Γ is ωx-semi-recursive.

Let 5 be a recursive relation such that for all m and A,

meΓ(A)+*\/pS(m,KA(p)).

Consider the following pair of recursively defined functions:

G ( ) ( m , 0 ) = l ; for σ >0,

ίθ, if (3τr<σ-)G(m,7r) = 0;

1, otherwise;

fO, if (ip<ω)S(m,G()(p,σ)y,
G(m,σ)= I

[l, otherwise.

It is straightforward to prove by induction on σ that for all m,

G()(m,σ-) = 0«->m E Γ(σ\

and

We shall prove below that G ( } and G are ωrrecursive. Then since by Theorem
IV.2.15, | Γ | ^ ω x , we have

m
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By the remarks following Corollary 2.8, Γ is ωrsemi-recursive.

To see that G ( } and G are ωΓrecursive, let H be defined by:

H(e, p, m,σ)^<

1, if ρ = cr = 0;
inf7r<OΓ{e}ωi(l,m,τr), if p = 0 < c r ;

i

suP 7 Γ < ωK s(m,<{e}ω i(0,0, σ) , . . . , { 6 ^ ( 0 , π-1, σ)»,
if p > 0.

Clearly H is ωrρartial recursive, so by the Recursion Theorem there exists an e

such that

{e}ωi(P, rn, σ) - H(e, p, m, cr).

We leave to the reader the easy verification that

G( }(m, σ) ~ {e}ωi(0, m, or),

and

For (ii), we have by Corollary 2.13, Theorem 3.3, and the fact that

{π : π < ω} is ωrrecursive:

R is ωrrecursve *+ R and kω ~ R are ωj-semi-recursive

<-> i? and kω ~ R are Πj

It is interesting to compare the two recursion-theoretic characterizations of

the classes of Πj and Δj relations: (semi-) recursive in E and ωr(semi-) recursive.

The image of any function F : ω —> ω which is recursive in E is again recursive in

E because Δj is closed under existential number quantification (3^) However,

by Corollary 2.15 and the preceding theorem, every Πj set of numbers is the

image of some ωrrecursive function G : ω1—> ω. The difference, of course, lies

in the domains of the functions; G has a "longer time" to enumerate its image.

A Πj set is generable in ωλ steps in any of several ways — via inductive

definitions, reductions to recursive well-orderings, or o>rsemi-recursion — and it

is not surprising that it can be "effectively" enumerated in a sequence of length

ωx but not, in general, in one of length ω. In fact, in any natural sense of effective

enumeration, a set enumerable in fewer than ωλ steps is necessarily Δj.

Another striking contrast arises in the theory of relative α^-recursion. As this

topic is beyond the scope of this book, we shall merely sketch the facts and refer
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the reader to Shore [1977] or Simpson [1984?] for more details. Recall first the
following two facts:

(1) (Friedberg-Mucnik Theorem (§ II.5)) there exist semi-recursive sets A
and B Cω such that neither A is recursive in B nor B is recursive in A

(2) (Theorem IV.2.12) for every two ΓlJ sets A and B Cω, either A is Δj
(hyperarithmetic) in B or B is Δ| in A.
Combining (2) with a relativized version of Corollary I V.I.9, we have also

(3) for every two sets A and B Cω which are semi-recursive in E, either A
is recursive in B and E or B is recursive in A and E.

There are several possible generalizations of "recursive in" to "c^-recursive
in", but we shall mention only two. The most natural in the present context
arises by modifying the definition of Ω ω ω to allow for the introduction of a
parameter. For any F: ω1—> ωu let Ωajω[F] be the smallest set satisfying
clauses (0)-(4) as in the definition of Ωω ω and such that for all μ E ωl9

We then set {a}F

ω (μ) — v iff (a, μ,v)E.Ωωoi [F] and define the other notions
accordingly. We say that A is weakly ωx-computable from B iff for some a,
KA = {a}*B. From the foregoing it is not hard to deduce that for any A and
B Cω,

A is weakly ωrcomρutable from B «-> A is Δj in B.

Hence by (3) there is no pair of α^-semi-recursive sets A and B Cω such that
neither is weakly ω^computable from the other.

In general, the inductive definition of Ωω ω [F] will require more than ωx

stages, as there is no reason to expect that ω1 will be recursively-in-F regular —
that is, closed under all functions (o°, ω^-partial recursive in F. One natural
restriction on the reduction of A to B is to require that each computation of
KA(μ) from B take fewer than ωx steps. Accordingly, we set

and say that A is ωrcomputable from B iff for some α, KA = [a]^. It is proved
in Sacks [1971] that

(4) there exist ωrsemi-recursive sets A and B Cω such that neither A is
ωrcomputable from B nor B is ^-computable from A.

The intuitive explanation for the contrast between (3) and (4) is an extension
of that concerning enumerability discussed above. If A C ω is ΓlJ but not Δj,
then by Theorems IV.2.11-12, ωλ[A] > ωλ. Just as any set of numbers which is
"effectively" enumerable in fewer than ωλ steps is Δj, SO any set enumerable in
fewer than ω^Λ] steps is Δj in A. Every Πj set is enumerable in ωx steps and is
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thus Δj in A. The restriction in (4) to computations of length less than ωί

eliminates this possibility and permits the construction of incomparable sets.
If one relaxes the requirement that A and B be subsets of ω, then the results

are completely analogous to (1):
(5) there exist euj-semi-recursive sets A and B Cωι such that neither A is

weakly ωrcomputable from B nor B is weakly ωrcomputable from A.
Analogous results hold for every recursively regular K in place of ω1. A proof
may be found in Sacks-Simpson [1972].

Although we have formally established only the existence of one recursively
regular ordinal between ω and Hu we need almost no further work to show that
there are in fact uncountably many such ordinals, namely the ordinals ωx[β] for
arbitrary β E ωω (cf. Exercise 3.12). However it is not in general true that

R is ωΛ/31-recursive^K £Δ}[β].

To see this, note that there are only countably many β which are even
oo-recursive. If β is not o°-recursive, then β E Δj [β] but β is not ω^jSj-recursive.
The failure of the corresponding fact for semi-recursive relations will be shown
in §5.

We turn now to the second level of the analytical hierarchy. The relevant
ordinal K here is not, as might be expected, the next recursively regular ordinal
greater than ωu but N b the first regular ordinal greater than ω. In fact, however,
we shall see in § 5 that for relations and functions on numbers, the same results
are obtained ith K = δ\, the least ordinal not the order-type of a Δ2 well-ordering
of ω.

For any y E W, let

Ωy = {(a, m, n): {a}M(\ mo\y,..., | mk_λ \y)^\n | y },

and

O ( w , y ) β γ G W Λ u 6 f l r

3.5 Lemma. O is Π}.

Proof. For each γ E W, Ωy is the closure Γy of a monotone Πj operator. Γy is
defined as in the proof of Lemma 3.2 with the relations < Σ and < π b ° t n replaced
by ^ 7 . For γ £ W, set Γy(A) = 0 for all Λ. Then O is inductively defined by the
family {Γy:yE ωω} and is thus Π\ by Theorem IΠ.3.15. D

3 6 Lemma. For any R and S, if S is H^recursive and for all p and μ,

then also R is H^recursive.
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Proof. For each p, let Γp be the monotone operator defined by:

( μ , σ ) e Γ p ( B ) « σ < p Λ [ ~ S ( σ , μ ) v ( V f < p ) ( μ , σ * < ί ) ) ε B ] ,

where for each p, p is an ordinal larger than all (π) with all TΓ, < p
(p = supfc<ω(p0,... ,pk) with all py = p). Exactly as in the proof of Theorem
III.3.2 one may show that

<μ, cr> G fp~ Vg (3p < ω)[p ̂  g(/>) v ~S(or * g(p), μ)],

and hence that

Let

P (μ, σ, T, p)«-»(μ, σ> G Γp.

It is straightforward to verify as in the proof of Theorem 3.4 that P is
MΓrecursive, in fact, (<», 0)-recursive. Let

, μ) - Mrleast τ(Vσ < p)[<μ, σ) G Γ ^ <μ, σ> G Γ(

p

τ)]

- Mrleast τ(Vσ < p)[P(μ, σ, T, p)^>(3^ < τ)P(μ, σ, ί, p)].

Clearly F is Nj-partial recursive. For a fixed μ and p, Γp may be thought of as an
operator over the countable set p and as such has a countable closure ordinal. In
particular, for each σ < p, there is a τ < Hx such that

Since p < M, we have

F(p, μ) - supσ<p- (H,-least τ)[(μ, σ) G Γ ^ ( μ , σ> G Γ(

p

τ)]

and thus F is total, hence Mrrecursive.
Finally,

so that
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Λ(p,μ)«~P(μ,< ),F(p9μ),p).

Thus R is Hrrecursive. D

3.7 Theorem. For all k and all R C kω,
(i) R is Hrsemi-recursive *+ R eΣ^j

(ii) R is HΓrecursive <->R EΔ\.

Proof. Part (ii) follows immediately from (i) and the fact that Hι is recursively
regular. Suppose first that R is Krsemi-recursive, say with Nj-semi-index a. It is
easy to define an arithmetical functional F such that for γ G W, F(m, γ) is
defined for all m and |F(ra, y)\y = m. Then

3ι>.{a}Hι(m)=- v

> 3 Ϊ / ( 3 K <N1).{α}κ(m)^ v

~ 3 γ [γ G W Λ 3n. (α, F(m0, γ ) , . . . , Fίm^i, γ), n> G Ωγ].

The second equivalence follows from Lemma 2.5 and the recursive regularity of
H1. R is Σ2 by Lemma 3.5.

For the converse, suppose R GΣ2, say

R(m)+*3a\/β3nP(ά(n),β(n),m)

for some recursive relation P. As in the proof of Theorem IV. 1.1, for each m and
α, there exists a linear ordering ^m,« s u c n t n a t

JR(m)<^3α [^m,α is a well-ordering].

Of course, =̂ m,« is a countable ordering, hence is well-ordered just in case it is
isomorphic to the usual ^ on some ordinal π <HX. Hence

For 5 and t less than any given p, the relation in brackets depends only on values
of a and / for arguments less than p. Hence, there exist (00,0)-recursive relations
U and V such that

3/Vp [f(p)< π Λ

(Vs < p)(Vί < p) (7(ά(p), /(p), s, ί, m)]

PΛ V(g(p),m)].
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In the second implication (-^)we intend that g(p) = (a(p),/(/?)) and a = (ω, TΓ).
Then R is 81-semi-recursive by Lemma 3.6 and Corollary 2.11. D

3.8-3.18 Exercises

3.8. Give another proof of Theorem 3.4 by showing directly that W is
ωrsemi-recursive.

3.9. Show that
(i) there exists an ωΓpartial recursive function F such that for all c E W,

F(c) = || c ||;
(ii) there exists an ωrrecursive function G such that for all p < ωu

G ( p ) E W a n d | | G ( p ) | | = p.

3.10. Let / be any ωrrecursive function.
(i) Show that there exists a function g recursive in E such that for any

c e W,g(c)e Wand ||g(c)|| = /(]|c ||).
(ii) Show that there exists a primitive recursive function h such that for any

cEW, Λ(c)EW and | | fc(c)| |^/(| |c | |).

3.11. For any R Ckωu let

R w ( m ) * * m 0 , . . . , m k _ 1 e W and Λ(||m||).

Show that

(i) JR is ωrsemi-recursive«-»i?w E ΓlJ;
(ii) R is ωpfinite** Rw E ΔJ.

3.12. Show that for every β E ωω, ω^jS] is recursively regular, and if β is
ω^βj-recursive, then for any JR C kω,

R is ω^βj-semi-recursive^^ i? GΠJiS],

and

R is ω^βj-recursive^i? EΔj[jS].

3.13. Characterize the least recursively regular ordinal > ω1.

3.14. Show that
(i) For all σ < ωu the constant function with value σ is ωrrecursive;

(ii) for all σ < δ],, the constant function with value σ is Krrecursive.
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3.15. Show that if K is recursively regular, a is K-recursive and R C kω is Πj[α],

then R is K -semi-recursive.

3.16. Suppose that K is both recursively regular and a limit of recursively regular

ordinals (recursively inaccessible — cf. § 6). Show

(i) if a is /c-recursive and R C kω is Πj[α], then R is K-recursive;

(ii) if α 0 , . . , ak-\ are K-recursive and R is an arithmetical relation such that

3/3 R(m, α, β), then 3β [β is K-recursive Λ R(m, α, β)] (use a relativized version

of Theorem III.4.7);

(iii) if 5 C kω is defined by

S(m)<-»(3κ-recursive α)(Vκ-recursive β)R(m, α, β)

with R arithmetical, then S is K -semi-recursive;

(iv) {a : a is K -recursive} is a model of the Δ^-Comprehensioiv schema.

3.17. Show that for any R C kω,

R is Nr(semi-) recursive«-># is δ^semi-) recursive

(use the Basis Theorem IV.7.9).

3.18. Show that for any A C ω and any JR C kω, if A is Krrecursive in

parameters and R G Δ2[A], then also R is Nj-recursive in parameters (relativize

the proof of Theorem 3.7).

3.19 Notes. The results here are first stated explicitly in Kripke [1964 a], but

some of the ideas are present in Kino-Takeuti [1962, - a].

The various possible notions of relative ωx- (or K-) semi-recursiveness are

discussed in Kreisel-Sacks [1965]. Simpson [1974] is another good survey of the

(then) current state of knowledge about relative ordinal recursion.

4. Ordinal Recursion and Type-2 Functionals

We shall see in §5 that the results of the preceding section cannot be ex-

tended to higher levels of the analytical hierarchy. They do, however, have

some natural extensions to classes of relations (semi-) recursive in a type-2

functional I. In view of Theorems VI.1.8-9 and the fact that ω,[E] = ωu

Theorem 3.4 may be phrased as: for all R C kω,

R is ω![E]-(semi-) recursive <-» R is (semi-) recursive in E.
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The primary goal of this section is to establish conditions under which this
equivalence holds with E replaced by other functionals. In the process we shall
also develop some machinery which will be useful in § 6.

It is easy to see that the equivalence cannot hold for arbitrary I, even
assuming that E is recursive in I. There are only countably many o°-recursive
relations on ω and if R is any non-°°-recursive relation, there exist I such that R
and E are recursive in I (take I to code R and E), but clearly R is not
ω^lj-recursive.

For this section I is a fixed functional such that E is recursive in I. The proofs
below depend heavily on the results and techniques of §§VI.2-4 and the
constructions are in many cases similar to ones which appear there. We shall
omit much of the tedious detail and hope that the reader who has followed the
proofs of these earlier sections will feel confident that he could fill in these
details.

We first recall from § VI.4 that

U] = {(α, m): {a}\m) is defined}

and that there exist relations <+ and <+ semi-recursive in I and <_ and <_ co-
semi-recursive in I such that whenever at least one of u and v belongs to Jj\

u <+ v <r+1 u |' ^ I υ |'<-> u <_ υy

and

u <+ v « - > | M | ' < \υ\ι++u < _ v.

By Theorem VI.4.17, the ordinals \u |' for u E t/1 are exactly the ordinals less
than ω,[l]. We shall write |m| ' for (\mQ\\ .. .,\mk,λ\) and omit the superscript in
most cases.

4.1 Lemma. There exist functions F, G, and H partial recursive in I such that for
all u, m, p, and q,

(0 F(m)E & and |F(m)| = m;
(ii) if mE U\ then G(m)E & and \ G(m)\ = \m \ + 1;

(iii) H(p, q) is defined iff |p |, \q\< ω, and if so,

Proof. Exercise 4.17. D

4.2 Lemma. There exists a primitive recursive function f such that for all a and all
mE U\
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(i) {/(α)}'(m) is defined iff {αL i W ( |m|) is defined;
(ii) {a}ωι[ι](\m\)~\{f(a)}ϊm)\.

Proof. We define / via the Primitive Recursion Theorem to satisfy the following
conditions:

(0) if a = <0, k,0, n>, then {f(a)}\m)~ F(n) ;
if a = (0, k, l,i), then {/(α)}'(m) - m,
if α = (0, fc,2, ί>, then {/(α)}'(m)^ G(m,);
if α =<0,fc +4,4), then

(p, if r<+s and s < + r ;

q, if r < + s or s <+ r;

if α = (0, k + 2,5), then {/(α)}'(p, 9 , m) - H(p, <?);
(1) if for some /c', b, c0,..., <v_1? α = (1, k, fc, c 0 , . . . , ck>_ί), then f(a) =

(2) if α = <2, k + 1), then f(a) is defined as in case (2) of Lemma VI.2.2;
(3) if for some b, a = (3, k + 1, b), let R be the relation semi-recursive in I

defined by:

R(n, r,m)^Vp [p <_r^3q(q<+nA {/(f>)}'(p,m)- q)]

Λ -« 3nf (nf <_ n Λ Vp [p < + r -> 3q (9 <_ n' Λ {/(ί>)}'(p, m)

then choose /(α) to be an index such that
(a) {/(α)}l(r,m)-SelR(r,m), and
(b) for any r, m, and n such that {f(a)}\r, m) — n, the set of subcomputations

of (/(α), r, m, rc) contains an element of the form (f(b),p,m,q) for each p such
that | p | < | r | ;

(4) if for some b, a = (4, k, 6), let S be the relation semi-recursive in I defined,
by:

then choose f{a) such that
(a) {/(α)}'(m)=Sels(in), and
(b) for any m and n such that {/(α)}'(m)= n, the set of subcomputations of

{f(a),m, n) includes an element of the form (J(b),p,m,q) for each p such that

(5) if a is of none of these forms, /(α) = 0.
We leave to the reader the straightforward proof that / has the desired
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properties. The proof of the implication (<—) of (i) does not use clause (b) of

cases (3) and (4) but for the implication (—>) these conditions are just what is

needed to carry out an induction on subcomputations as in the proof of Theorem

VI.2.8. •

4.3 Corollary. For any k and any R C kω,

(i) R is ω i[\]-semi-recursive -+ R is semi-recursive in I;

(ii) R is ωx[\]-recursive —> R is recursive in I.

Proof. For (i), let F and / be as in 4.1 and 4.2, respectively. Then if R is ωx[\]-

semi-recursive, say with α^lj-semi-index a,

R(m)*+{f(a)}XF(mo),...,F(mk_1)) is denned

so R is semi-recursive in I. (ii) follows immediately by Corollary VI.4.5. D

4.4 Theorem. ω{[\] is recursively regular

Proof. The proof is similar to that of Theorem 3.3. Let F be any ω^lj-partial

recursive function and p and μ ordinals less than ωt[\] such that for all π < p,

F(ττ, μ) is defined. We aim to show that sup^<pF(π, μ)< ωx[\\. Let

Λ={n:(3π<p)F(π,μ)=\n\}.

Choose r and m, fixed elements of ϋ\ such that \r\ = p and each |m, | = μh and

set

It follows from Lemma 4.2 that R is semi-recursive in I. Let SelR be a selection

function fβr R partial recursive in I (Corollary VI.4.2) and set

B = {n : 3p [p <_ r Λ Vn' (n V n -+ SelR (p) ̂  n')]}.

Clearly B C A, B is co-semi-recursive in I, and

sup+{| n \:nEB} = sup+{| n | : n G Λ } .

Hence by the Boundedness Theorem VI.4.10 and Theorem VI.4.17,

sup^ < p F(τr, μ) = sup+{| n | : n G B} < K ' = ω,[\]. D

We consider next under what conditions the converse of Corollary 4.3 holds.
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A natural requirement is suggested by Exercise 3.12. We want in some sense to

require that I be ω,[l]-recursive. Of course, this is not literally possible in our

current formulation, but a weaker version of this condition, which asserts that I is

ω,[l] computable on ω,[l]-recursive functions, is both possible and sufficient.

We denote by {a}™ the-restriction of {a}κ to arguments from ω.

4.5 Definition. For any K, I is K -effective iff there exists a K -partial recursive

function / such that for all a such that {a^E^ω,

A κ-index for / is also called a κ-index for I.

4.6 Example. For any K > ω, let

Then E is K-partial recursive and if {α}"Eωω, E(a) — E({α}"). Hence E is

K -effective for all K > ω.

4.7 Theorem. There exists a primitυe recursive function g such that for any d and

any K > ω, // I is K-effective with K-index d, then for all a, m < ω,

{g(α,d)}κ(m) = {«}'(•«)•

Proof. The proof is quite similar to that of Theorem VI.2.14. We define g via the

Primitive Recursion Theorem to satisfy the following conditions:

(0) if a =<0,fc,0,...>, then g( f l, d) = (0, k , . . . ) ;

(1) if for some fc\ b, c ( ),. . . , c k _ ! , a = (1, k, 0, b, c 0 , . . . , ck._λ), then g(a, d) =

(2) if a = (2, k + 1,0), then g(α, d) is defined as in the corresponding case of

the proof of Lemma VI.2.2;

(3) if for some b, a = (3, k, 0, b), then g(α, d) is the natural index such that

where c is an index such that {c}κ(ττ) — {g(ί>, d)}κ(π, m); such a c may be

computed from m and an index for g

(4) if a is of none of these forms, g(a, d) = 0.

The proof that g has the required property also goes much as in Theorem

VI.2.14 and we make only a few remarks on the differences. In case (3) of the

proof that

{α}'(m) - n -+ {g(α, d)}κ (m) - n,
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we have as induction hypothesis that for some β and all p,

{b}\p,m)~{g(b,d)Up,m)~ β(p).

Then with c as in case (3) of the definition, {c}™= β, so

For the converse implication we need to define a notion of subcomputation
for Ωκκ and prove an analogue of Theorem VI.2.5. This presents no problems,
technical or otherwise, and cases (0)-(2) of the proof proceed as before. In case
(3), if a = (3, fc,0, b) and {g(α, d)}κ(m)— n, we have in particular that

sup7 r < ω {g(b, d)}κ(π,m) is defined

so that for some β G ωω and all p, {g(fe, d)}κ(p,m)=- 0(p) and {c}" = β. Then by
the induction hypothesis, β = λp.{b}\p,m), so

- l({cD

-{d}κ(c)-n. D

4.8 Corollary. For any K such that I is K-effective and any R C ω,
(i) i? ί5 semi-recursive in \—>R is K-semi-recursive;

(ii) 1? is recursive in \-^> R is K-recursive. D

4.9 Corollary. For any recursively regular K, if I is κ-effective, then ωj[l] ̂  K.

Proo/. Suppose that I is K-effective and σ < ωλ[\]. Choose γ recursive in I such
that | |γ | |=cr. By Corollary 4.8, γ is ^-recursive and thus by Lemma 3.1,
σ< K. D

4.10 Corollary. // I ΐs ω^]-effective, then for all R C kω,
(i) R is ωλ\\\-semi-recursive +* R is semi-recursive in I;

(ii) R is ω^]]-recursive *+R is recursive in I.

Proof. Immediate from Corollaries 4.3 and 4.8. D

Of course, we already knew this for I = E and to this point we have no other
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examples of functionals I which are ω1[l]-effective. The rest of this section is

devoted to finding some.

4.11 Definition. For any d G ω ,

(i) Om[l] = {ω^H]: I is recursive in H};

(ii) Efd [I] = {K : K is recursively regular and I is K-effective with index d}\

(iii) I is effective with index d iff Om[l] CEf d [ l ] ;

(iv) I is effective iff it is effective with some index.

Of course, E is effective and the conclusions of Corollary 4.10 hold for any

effective I. Our main technique for finding other effective functionals is to show

that if I is effective, so is its superjump lsJ, which we recall is the functional such

that

(0, if {α}'(m, α) is defined;

1, otherwise.

Recall also that for any set A of ordinals,

Lim(Λ) = {κ :κGA A ( V C T < K ) ( 3 A G A ) . σ < A < K}.

4.12 Lemma. Om[lSJ] C Lim(Om[l]).

Proof. Since I is recursive in ISJ, Om[lSJ] C Om[l]. Suppose K E Om[lSJ]. It

suffices to show that for any σ < K there exists a λ G Om[l] such that σ < λ < K.

By definition, K = ωt[H] for some H such that ISJ is recursive in H. Then for any

σ < K, there exists a γ recursive in H such that \\y\\= σ. Then clearly,

σ < ωj[γ] ^ ω^l, γ ] .

Let G be a functional which codes I and γ, say G(α) = (γ(α(0)), l(α)>, and set

λ = ω 1[l,γ] = ω1[G].

Then λ G Om[l] and σ < λ, so it remains to show that λ < K.

By the techniques of Theorem VI.4.17 there exists a relation R semi-

recursive in I and γ which well-orders a subset of U\ in type λ. By Theorem

VI.1.11, R is recursive in l s J and y and thus recursive in H. Hence λ < ωx[H] =

K. •

We next need a slight generalization of Theorem 4.7:

4.13 Lemma. There exists a primitive recursive function g such that for any d and
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any K > ω, if I is K-effective with K -index d, then for all a, e, and m < ω such that

Proof We need make only a few minor changes in the proof of Theorem 4.7.
First, each case hypothesis should be changed from a = (i, fc,0,...) to a =
(i, fc, 1,...) to take account of the fact that {a} now has one function argument.
The function g is defined exactly as before in cases (l)-(4) and in case (0) as long
as a7^ (0, fc, 1,3, i, 0) for some i < fc. For such a we choose g(a, d, e) to be an
index such that

{g(α,d,e)L(m)-{β}κ(m i)-{α} l(in,{eD. D

4.14 Theorem. For any d, there exists a d' such that

Lim(Efd[l])CEfd.[lSJ].

Proof Suppose K G Lim(Efd [I]). We shall need the following two facts:

(a) Efd[l]Π/c is K-recursive;
(b) for any e, if {e}^Gωω, then there exists a λGEf d [ l]Πκ such that

{e}:={eC
Suppose for now that (a) and (b) are true. Note that under the conditions of

(b), for any λ, {e}™ = {e}™ just in case Όm{e}^= ω. Set

ft(e)~κ-least λ[λ G Efd[l] Λ (Vp < ω)(3υ < λ)T(e,(p>, u)],

where T is as defined in §2. By (a), ft is K -partial recursive and by (b), if
W : ^ V then h(e) is defined, Λ(β)EEfd[l], and {e}ω

h{e) = {e}ω

κ.
Now if g is the function of Lemma 4.13, we have for any e such that {e}^G ωω

and all a and m,

lS J«α,m))*{eO-0^{α} l(m,{6D is defined

*+{a}ι(m,{e}"ie)) is defined

«*{g(α, d, e)}h(e)(m) is defined.

Hence if

ΓO, if ft(β)lΛ(3υ<ft(β))T(g(α,d,β),<m),ϋ);
j l , if h(β)lΛπ(3ϋ<fc(β))Γ(g(α,d,0,<m),ϋ);

undefined, otherwise

and {e*}κ(m) — {e}κ(m + 1), then F is K-partial recursive and
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ΓJ«eD- Γ\({eU0))*{e+Ό^ F({e}κ(0),e+).

Thus it suffices to choose d' so that

{d'}K(e) = F({e}K(0\e+l

as then κ G E ^ [ l S J ] .

To establish (a), note that for λ < K,

λ E Efd [I] <-> λ is recursively regular Λ

(Vfl<ω)({α}ΓGωω^{d}λ(α) is defined).

The implication (—•) is immediate from the definition. Conversely, if the
right-hand side holds and {a}™G ωω, then {a}"= {a}™ and as {d}λ{a) is defined,
we have

Thus

λ E Efd [I] <-» λ is recursively regular Λ

(Vfl < ω)((Vp < ω)(3o < λ)[T(a, <p>, υ) Λ ( u ) 0 < ω ] ^ ( 3 u < λ) Γ(d, <α>, υ)),

which, with Corollary 2.19, implies (a).

For (b), suppose that {e}^Eωω and define a function G by

G(e,p)=- K-least υ. Γ(e, <p>, υ).

As K is recursively regular and K > ω,

sup
p < ω

By the assumption that K E Lim(Efd [I]), there exists a λ E Efd [I] such that
suPp<ωG(e,p)< λ < K. Then {eΓλ = {eΓκ. D

4.15 Corollary. // I is effective, then also ISJ is effective.

Proof. Immediate from 4.12 and 4.14. D

We recall the sequence of functionals defined following Theorem VI.6.11:

Eo=E and E r + 1 = (E r)
8 j.
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4.16 Corollary. For all r and all R C ω,

(i) R is ωi[EΓ]-semi-recursive <-» R is semi-recursive in E r

(ii) JR is ωi[Er]-recursive <r> R is recursive in Er.

Proof. It is immediate by induction on r that each Er is effective, hence

^[EJ-effective. The result follows from Corollary 4.10. D

4.17-4.20 Exercises

4.17. Prove Lemma 4.1.

4.18. Show that if K is recursively regular, a is K -recursive, I is K -effective, and
. k

R C ω is semi-recursive in I and a, then R is K -semi-recursive. (This extends

Exercise 3.15).

4.19 (Grilliot). Show that even if E is not recursive in I, ω^l] is still recursively

regular. (Use the result of Exercise VI.2.29.)

4.20. Show that if E is recursive in I and I is ω^lj-effective, then there exists an

ω^lj-recursive function G such that for all p < ω^l], G(p) E I/1 and | G ( p ) | = p.

(cf. Exercise 3.9)

4.21 Notes. The results of this section had the status of folklore already in the

late 1960's and were probably known to Kripke and Platek even earlier, but we

know of no published exposition prior to Aczel-Hinman [1974, §2].

5. Stability

The fundamental definitions for this section are:

5.1 Definition. For any K and λ,

(i) K is stable iff K is closed under all oo-partial recursive functions;

(ii) K is λ -stable iff K is closed under all (°°, λ )-partial recursive functions;

(iii) K is weakly stable iff K is λ-stable for some λ > K.

Note that K is recursively regular iff K is K -stable. Then it is immediate from

the definitions that

K is stable <-> K is Λ-stable for all λ -» K is weakly stable —•

K is recursively regular.

We shall see that weak stability is a much stronger property than recursive

regularity and that stability is also much stronger than weak stability.
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The main result we prove in this section is that for every uncountable
cardinal p, there are p stable ordinals less than p, hence also p recursively
regular ordinals less than p. For p = Hu the last assertion follows from Exercise
3.12. The technique of the proof is an adaptation of the downward
Lόwenheim-Skolem Theorem of first-order logc. Suppose λ is recursively
regular, σ < λ, and

A = {F(μ): μ ^ σ Λ F is (oo, λ)-partial recursive}.

As λ is recursively regular, A C Λ. Furthermore, as the (°°, λ)-partial recursive
functions are closed under composition, A is closed under all (o°, λ)-partial
recursive functions. Hence if it should happen that A is in fact an ordinal K, K
would be λ -stable. Since the projection functions are (o°, λ)-ρartial recursive,
K > σ. Of course, if K = λ, this would be of no interest, but we shall see.that if λ
is chosen sufficiently large (for example, if Card(λ)>Card(σ)), then A will
indeed turn out to be a λ -stable ordinal K < λ. If we use all o°-partial recursive
functions to form A, then K will be stable.

To show that A is an ordinal, that is, that A is transitive, we show that it
cannot be collapsed. The reader should review that part of 1.1.5 which deals with
the collapsing function φA and its properties (l)-(5), which will be used in the
following proof. We write φA (μ) for {φA (μo% ...,φA (μk-i))

5.2 Lemma. For any λ and any A C λ [any A C Or], // A is closed under all
(oo, λ)-partial recursive functions [all ^-partial recursive functions], then for all μ
and v in A and all (o°,λ)-partial recursive functions F [all ^-partial recursive
functions F],

Proof. Let A be a fixed subset of λ which is closed under all (<», λ )-ρartial
recursive functions. To improve legibility we shall write μ instead of φA (μ).
Then we need to prove that for all μ and v E. A and all α,

^ v.

Formally, this is a proof by induction over Ωκλ, simultaneously for all K ̂  λ, that

(α, μ, v) E Ωκλ -+ (a, μ, v) G Ωκλ,

but we shall state matters directly in terms of (<», λ)-computations.

We consider cases (0)-(4). If A = 0, the result is vacuous and we assume
otherwise.

(0) If a = <0, fc,0, n) and {aUλ(μ)~ "> then {a}aok(β)^n = n by (4) of 1.1.5
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(n C ω C A because all constant functions with natural number values are
(oo,λ)-recursive); if α = <0, fc, 1, i> and {aU^μ)^ μh then {aUJβ) =* μ{ if
a = (0, fc,2, i) and {α}ooA(μ)- μ, + 1, then {a}»k(β)~ βt + 1 = μ, + 1 by (3) of
1.1.5; if a = (0, k +4,4) and {αK^π, p, σ, τ,μ)~π, then cr = r so σ = f and
{α}ooλ(w »P,σ , f , μ ) ^ π ; if α = (0, k + 4,4) and { α j ^ ^ p , σ, τ , μ ) ^ p, then
σ^ r, so by (1) of 1.1.5, σ^ f and thus {α}ooλ(τr, p, σ, r, μ ) - p; if α = (0, k +2,5)
and {α}^ (p, q, μ) - Sbo(p, q), then {a}βλ (p, q, μ) - {αl^ (p, ̂  μ) - Sbo(p, q) -
Sbo(p,<7).

(1) If a =<l,fc, 6, c 0 , . . . , <*,_!> and {αjβoλίμj^ίfrjoβλίί)258 ^ where for i <
fe;> {cjocλίμ)— ίi j then the closure property of A ensures that all ξt E Λ, so by
the induction hypothesis, { c j ^ ί μ ) — ϋ and {£}ooλ(ί)— ^ Hence

(2) If α=(2,k + l) and { a U ( ^ ) - { f c U ( M ) - . , then {a}Mλ(ϊ,μ)
{ί>}ooλ(μ)— i5 by the induction hypothesis and the fact that b = b.

(3) If a =<3, fc + 1,6) and { α j ^ f o μ ) ^ sup^pίftlooΛί^μ)^ ^ then

This second equality follows from (2) of 1.1.5 and the third from the induction
hypothesis. Let this value be ζ; we aim to show that ζ = v.

Since for π < p and π E Λ, {ί)}xλ(τr,/i)GA and {b}Oΰλ{p,μ)<v, also
{fc}ooλ (TΓ, μ) < i>. Hence f ^ K Suppose for a contradiction that £ < K Then by (2)
of 1.1.5, ζ = f0 for some τ0 such that τo< v and τ0 E Λ. Since τ0 < v, there exists
a τ r < p such that τ^{b}^k(ττ,μ). Let

fi is (oo? λ)-partial recursive and as λ > p, h(τo,μ) is defined, say with value τr0.
Since τ0 and μ are elements of Λ, also ττ0 E A by the closure property of A. But

so

a contradiction.
(4) Suppose a = (4, k, fe) and
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= (λ-"least" ir.{ft}.A(π,#O = 0)« v.

For any σ < v there exists by (2) of 1.1.5 a π < v such that π G A and σ = π.
Then by the induction hypothesis,

On the other hand,

Hence

v - λ --least" σ[{b}xλ (σ, μ) - 0] - {α}eA (μ ).

The proof of the alternate version in brackets is exactly the same with all
references to λ removed. D

5.3 Theorem. For any σ ^ ω,

(i) for any recursively regular λ > σ, there exists an ordinal K such that

σ < K ̂  λ, Card(κ) = Card(σ), and K is λ -stable
(ii) there exists an ordinal K such that σ < K, Card(κ) = Card(σ), and K is

stable.

Proof. For (i), suppose λ is recursively regular and σ < λ, and set

A - {F(μ): μ ^ σ Λ F is (°°, λ)-partial recursive}.

As we noted above, A is closed under all (<*>, λ )-partial recursive functions.
Because λ is recursively regular, A C λ. Since the projection functions are
(°o, Λ)- recursive, σ C A so by (4) of 1.1.5, φA(μ) = μ for all μ ^ σ.

For any y E A there exists μ ^ σ and an (<», λ)-partial recursive function F
such that F(μ)— v. By Lemma 5.2,

It follows from (5) of 1.1.5 that A is an ordinal K ̂  λ.
Clearly K is λ -stable. Since there are only countably many (<», λ )-ρartial

recursive functions,

Card(κ) = Card(Λ) = Card(σ) Ho = Card(σ).
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The proof of (ii) is obtained similarly from the bracketed portion of Lemma

5.2. D

5.4 Corollary. For any cardinal p > ω,

{K : K < p A K is stable} and {K : K < p A K is recursively regular}

both have cardinality p.

Proof. If p is an uncountable cardinal and σ < p, then by Theorem 5.3 there

exists a stable K such that Card(κ) = Card(σ) and σ < K, hence σ < K < p. Thus

the set of stable K is cofinal in p. If p is regular, it follows that this set has

cardinality p. The result for singular p is then immediate. Since a stable ordinal is

recursively regular, there are also p recursively regular ordinals less than p. D

5.5 Lemma. For any λ and p, if p is a limit of λ -stable ordinals [of stable

ordinals], then p is λ-stable [stable].

Proof. Suppose p is a limit of λ-stable ordinals. For any μ < p there exists a K

such that μ<κ<ρ and K is λ-stable. Then for any (<*>,λ)-partial recursive

function F, F(μ)< K < p. Hence p is λ-stable. The proof for stability is

identical. G

5.6 Corollary. Every uncountable cardinal is stable and therefore recursively

regular.

Proof. It follows from Corollary 5.4 (or directly from 5.3) that any uncountable

cardinal is a limit of stable ordinals, hence is stable by Lemma 5.5. D

We conclude this section by showing that the least stable ordinal is 8ι

2, the

least ordinal not the order-type of a Δ2 wellordering of ω. First we prove a

generalization of Theorem 2.2.

5.7 Theorem. For all K and all λ ^ K, the following are equivalent:

(i) K is λ-stable;

(ii) for all a E ω, all μ < K, and all v,

v\

and if λ is recursively regular, also

(iii) for all a E ω, all μ < K and all v,

v.
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Proof For recursively regular λ, the equivalence of (ii) and (iii) follows

immediately from Theorem 2.2. From (ii) we may conclude that any (°°, λ)-

partial recursive function applied to arguments from K has the same value as

some K -partial recursive function, hence has value less than K. Thus K is

λ -stable.

Suppose now that K is λ-stable. Then an argument very similar to that used

for the implication ((b)-» (a)) of Theorem 2.2 will show that for all r, α, μ, and v,

μ < K Λ (α, μ, v) E Ωτλ -+ (α, μ, v) E Ωκκ.

Cases (0)-(2) are done in exactly the same way. For case (3) we use the fact that K

is recursively regular. For case (4), if (α,μ, i>)G Ωτλ, then {a}ooλ{μ)— v and

because K is closed under (<», λ )-partial recursive functions, v < K and the proof

proceeds as before. D

5.8 Theorem. For all K, the following are equivalent:

(i) K is stable

(ii) for all a E ω, all μ < K, and all v,

Proof As for Theorem 5.7. D

5.9 Theorem. δ2 is the least stable ordinal.

Proof. We show first that no K < δl is stable. For any such K there exists a

y G W Π A j such that | | γ | | = K. By Theorem 3.7, γ is K^recursive. If K were

stable, hence M rstable, then by the preceding theorem, γ would be K -recursive.

This contradicts Lemma 3.1.

To prove that δ\ is stable, suppose μ < δι

2 and {<z}oo(μ) — (v). It suffices to

show that v < δ\. Since Ht is stable by Corollary 5.6, also {a}Hι(μ)— v. Let

ε - ( ε 0 , . . . , εk-ι) be a sequence of elements of W Π Δ j such that for i < fc,

|| εj || = μ(. Then

3 γ 3 m 3 n [ |m| y = \\ε \\ Λ O((α,m, n), γ)].

By Lemma 3.5, the expression in brackets defines a Δ2 relation. Then by the

Basis Theorem (IV.7.9).

E Δ l )3m3n [ |m| y = \\ε \\ Λ O((α, m, n), γ)].

But then v = \n\Ύ for some y E.\N Γ) Δ\ so v <\\y\\< δ\. D
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5.10 Corollary. For any R C kω, the following are equivalent:
(i) REAl(t2);

(ii) R is δ\-(semi-) recursive',

(iii) R is κ-(semi-) recursive for any κ^δ\\

(iv) R is M'(semi-) recursive.

Proof. Immediate from Theorem 3.7 and the preceding two results. D

It follows, of course, that there is no analogue of Theorem 3.7 for higher
levels of the analytical hierarchy. The equivalence of (i) and (ii) provides another
hierarchy of length δ^ for the Δ2 relations on numbers (cf. V.6.8-9).

5.11 Corollary. For any ^-recursive set A of ordinals, and any stable ordinal κ9

(i) if A/0, then A Π δ ^ 0 ;
(ii) if A<£κ, then A Π K is cofinal in K

(iii) // K is a cardinal and A£κ, then Card(Λ Π K) = K.

Proof. Let A be oo-recursive and set

=* least μ.μ GA.

F is oo-partial recursive and total if A / 0 . Since 0 < δl, F(0) < δ], and F(0) G A.
Similarly, set

G(p, σ) — least μ [μ E A Λ μ > σ].

If A <£. K, then for any σ < K, G(ρ, σ) is defined for all p. Hence σ < G(0, σ) < K
and G(0,σ)EA. (iii) is immediate from (ii). D

5.12-5.24 Exercises

5.12. Show that if K < λ and λ is stable, then K is stable iff K is λ -stable.

5.13. Show that ωx is not weakly stable.

5.14. Do there exist 0-stable ordinals K such that ω < K < ωxΊ

5.15. Show that the least weakly stable ordinal is less than the least stable
ordinal.

5.16. Suppose that both K and λ > K are recursively regular. Show that K is
λ-stable iff for all λ-recursive relations R and all μ < K,
(3TΓ < λ)K(τr,μ)*->(37Γ < κ)R(π,μ).
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5.17. Show that if K is a limit of stable ordinals, then for any R C ω, if R is K-
semi-recursive in parameters, then JR is in fact K -recursive in parameters.

5.18. Show that for any A C ω, b\ [A] is stable.

5.19. Show that for all r ^ 3 , δ) is a limit of stable ordinals, hence is stable.

5.20. Show that for all r ^ 1 and all R Q ω, if i? is δj-recursive in parameters,
then R G Δj.

5.21. Prove the following extension of Corollary 5.10: for any R Ckω, R is <»-
(semi-) recursive in parameters iff R is δ^jRHsemi-) recursive in parameters.
(Suppose R is oo-recursive in the parameters p = (p 0 , . . . , pn-λ). Apply Theorem
5.2 to the set A = {F(μ): μ E ω U {p0,..., pn_J Λ F is oo-partial recursive} to
show that R is NΓrecursive in parameters. Then apply a relativized version of
the technique used in the proof of Theorem 5.9.)

5.22. Show that for any A C ω, if A is oo-recursive in parameters, then for all
R Ckω,

(i) R is δ^Aj-semi-recursive in parameters ++R e Σ ^ A ] ;
(ii) R is δ^AJ-recursive in parameters *+R E Δ\[A].

(Use the preceding exercise and Exercise 3.18.)

5.23. Suppose that every R C ω is oo-recursive in parameters (this follows from
the hypothesis V = L). Show that for all r ^ 1 and all R C kω,

R is δj-recursive in parameters <-» Λ EΔj.

5.24. Let Γ be an arithmetical inductive operator (not necessarily monotone)
over ω. Show that | Γ | is less than or equal to the least weakly stable ordinal.

5.25 Notes. The notion of stability is implicit already in Takeuti [1960] — he
shows that uncountable cardinals are stable. Most of the other results are due to
Kripke [1964] and Platek [1966].

6. Recursively Large Ordinals

The recursively regular ordinals are, of course, analogous to the regular
cardinals of set theory. Furthermore, we know from Corollary 5.4 that every
uncountable cardinal p is the p-th recursively regular ordinal. In particular, the
recursively regular ordinals form a proper class. Let τp denote the p-th
recursively regular ordinal — that is,
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τp = least σ[σ is recursively regular Λ (VTΓ < p)σ> τπ].

Then τ 0 = ω, τλ = ωx and for all π and p, p ^ τp and π < p —> r^ < τp. The fact

mentioned above may now be stated: for any uncountable cardinal p, τp = p. In

set theory a fixed point in the enumeration of the regular cardinals is called

(weakly) inaccessible. Accordingly, we say

6.1 Definition. For any K, K is recursively inaccessible iff K = τκ.

Thus every uncountable cardinal is recursively inaccessible, but these are by

no means the only recursively inaccessible ordinals.

6.2 Lemma. The function F such that F(p) — τp is ^-recursive. For any K, the

partial function Fκ such that Fκ(p)— τp iff τp< K is (<», κ)-partial recursive and

K-recursive if K is recursively regular.

Proof This follows from Theorem 1.9, Corollary 2.19, and the fact that the

sequence τp is defined by the following primitive recursion:

τ o = ω;

τp+1 = least σ[σ is recursively regular Λ σ > τ p ] ;

τp = least σ[σ is recursively regular Λ σ

if p is a limit ordinal. D

6.3 Corollary. For any K, if K is stable or even weakly stable, then K is recursively

inaccessible.

Proof Suppose first that K is stable. Since the function F of the Lemma is

oo-recursive, K is closed under F — that is, p < K —> τp < K. Since K is itself

recursively regular, τκ ^ K. But always K ^ τκ so in fact K = τκ.

If K is λ-stable for some λ > K, then K is closed under F λ . Hence, for all

p < K, if Fλ(ρ) is defined (i.e., if rp < λ), then τp < K. AS in the previous case it

suffices to show that p < K —» τp < K. Suppose otherwise and let p 0 be the least

p < K such that τ p ^ K. Then as K is itself recursively regular, τ p = K < λ. But

then τ p < K, a contradiction. D

6.4 Corollary. The least recursively inaccessible ordinal is less than the least

stable ordinal.

Proof This is immediate from Corollary 6.3 and Exercise 5.15, but we also give a

direct proof. Let τ ρ denote the p-th recursively inaccessible ordinal:
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τ ρ = least σ[τσ = σ Λ (VTΓ < p)σ > τl].

By a proof similar to that of Lemma 6.2, the function F 1 such that F1^) = τ ρ is

oo-recursive. Hence δ\ is closed under F 1 so in particular, F1(0)<δ\. D

The proof of this corollary suggests that these ideas may be carried much

further. Again by analogy with set-theoretic terminology we call ordinals K such

that K = τ\ recursively hyper-inaccessible. Then every (weakly) stable K is also

recursively hyper-inaccessible and the least such ordinal is less than δ\. If τ p

enumerates the recursively hyper-inaccessible ordinals, then an ordinal K such

that K = τ2

κ is recursively hyper-hyper-inaccessible, etc. (cf. Exercise 6.23).

Clearly the first recursively regular ordinals τ0, τu ..., τω, — , τT ω,.. . are all

less than the least recursively inaccessible. The next two results give character-

izations of this ordinal.

6.5 Theorem. For all K, K is recursively inaccessible iff K is recursively regular and

a limit of recursively regular ordinals.

Proof. Suppose first that K is recursively inaccessible. Thus K = τκ so K is

recursively regular. Furthermore, for any σ < κ , σ ^ τ σ < τ κ = κ,so/( is also a

limit of recursively regular ordinals.

Conversely, suppose K is recursively regular and a limit of recursively regular

ordinals. Suppose further that K is not recursively inaccessible so that K < τκ.

The sequence τp is increasing so K = τp for some p < K. Then because K is a limit

of the recursively regular ordinals less than κy K = sup^p j^ . Since the sequence

r,,. for 7r < p is K -partial recursive, this contradicts the recursive regularity of

K. D

6.6 Theorem. The least recursively inaccessible ordinal is ω^EJ.

Proof. By Lemma 4.12, Exercise VI.1.20, and the preceding theorem,

ω^EJ 6Ξ Om[EJ C Lim(Om[E]) C Lim{κ : K is recursively regular}

C {K : K is recursively inaccessible}.

Hence ω^EJ is recursively inaccessible. To see that it is the least such, let K be

any recursively inaccessible ordinal. By Example 4.6 there is an index d such

that for every λ > ω, E is λ-effective with index d. Hence by Theorem 4:14 and

the preceding theorem, there is an index d' such that

K GLimjλ :λ is recursively regular} CLim(Efd[E])CEfd,[E1].

In particular, Ex is κ-effective so that by Corollary 4.9, ω^E^^K. D
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Next in the galaxy of "large cardinals" of set theory are the Mahlo cardinals;
these also have their "recursive analogue".

6.7 Definition. For any K, K is recursively Mahlo iff for any F: K —* K which is
K -recursive in parameters, there exists a recursively regular ordinal λ < K which
is closed under F — that is, (VTΓ < λ)F(τr)< λ.

Compare Definition 6.7 with Exercise 2.23. Analogously as in set theory, we
have

6.8 Lemma. For any K, if K is recursively Mahlo, then K is recursively regular,
recursively inaccessible, recursively hyper-inaccessible, etc.

Proof. Suppose that K is recursively Mahlo. Let F be /(-partial recursive and let
p, μ < K be such that F(π,μ) is defined for all π < p. Let G be the function
K -partial recursive in parameters defined by:

G(0)^p, and for τr>0,

( F(π,μ), if ττ<p;

0, otherwise.

There exists a recursively regular λ < K which is closed under G. In particular,
p = G(0)<λ so also

t<pF(π, μ ) = sup^< p G(π) < λ < K.

Thus K is recursively regular.
To show that K is recursively inaccessible, it suffices by Theorem 6.5 to show

that K is a limit of recursively regular ordinals. For any σ < K, set H(π) = σ for
all π < KP Then H is K-recursive in parameters so there exists a recursively
regular ordinal λ < K which is closed under H. In particular, σ = H(0) < λ.

We leave to the reader (Exercise 6.24) the proof that K is recursively
hyper-inaccessible, etc. D

6.9 Theorem. For any K, if K is stable or even weakly stable, then K is recursively
Mahlo.

Proof. Suppose first that K is stable and F is K -recursive in parameters, say
F(π) - {a}κ(π, μ) with μ < K. Since K is recursively regular and F(τr) is defined
for all π < K, we have by Theorem 2.6

ϋ <κ)T(a,(π,μ), υ).
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Let G be the function defined by, for any p,

G(p) — least λ[Λ is recursively regular Λ

Clearly G is °°-recursive and G(μ) is defined. Since K is stable and μ < K, also
G(μ)< K. Then G(μ) is a recursively regular ordinal less than K which is closed
under F.

The argument in case K is only weakly stable is nearly identical. D

The least recursively Mahlo ordinal is ω^sJ], but the proof of this fact is
beyond the scope of this book (Harrington [1974]). It is not difficult to verify
directly that this ordinal is less than δι

2', this also follows from Corollaries 6.12
and 6.19 below or from Corollary VII.1.9.

We next consider the notion of projectibility. Recursive regularity is an
effective analogue of the set-theoretic property of being a regular cardinal.
Nonprojectibility is in a sense an effective analogue of the property of being a
cardinal, but the logical relationship between the notions is lost in the transla-
tion.

6.10 Definition. For any K and λ,
(i) K is projectible to λ iff there exists a one-one function F κ-recursive in

parameters such that I m F C λ ;
(ii) K*, the projectum of K, is the least λ such that K is projectible to λ;

(iii) K is projectible iff K * < K otherwise K is nonprojectible.

We have already encountered numerous examples of ordinals which are
projectible. In Exercise 3.9 is constructed an ω1-recursive function G such that
for all p < ω,,

G(p)(ΞW and | |G(p)| | = p.

Clearly G is one-one and thus it establishes that ωx is projectible to ω. Hence
ω* = ω. Similarly, the ω,[l]-recursive function G of Exercise 4.20 such that for
all p<ω,[l],

G{p)EUι and |G(p)| ' = p

shows that when E is recursive in I and I is o>i[l]-effective, ωt[\] is projectible to ω.
In particular, for all n, ω^EJ* = ω. We could also show by similar means from
the results at the end of § 3 that δ\ is projectible to ω, but we shall have a simpler
proof of this fact below (Corollary 6.15).



424 VIII. Recursion on Ordinals

Of course, every infinite cardinal is nonprojectible, but there are many more

nonprojectible ordinals.

6.11 Lemma, {K : K is recursively regular and nonprojectible} is (°°,0)-recursive.

Proof. By Corollary 2.19, {K : K is recursively regular} is (°°, O)-recursive. Let

R(a,κ,λ,(μ))«+μ<κ A (Vp < κ)(3v < κ)[Γ(α,<p, μ>, v) A (V)0< λ]

and

S(α,κ,λ,<μ>)<H>(VppW<κ)[Γ(α,<p,μ>,u)Λ

T(a, <p', μ>, υ') Λ (ϋ)0 = (υ%-» p = p'].

#(α, K, λ, (μ)) holds whenever the index a defines a function F K -recursive in

parameters μ <κ such that ImFCλ. 5(α, K, λ, (μ)) holds in addition just in

case this function is 1-1. Hence if K is recursively regular,

K is projectible <•» (3a < ω)(3λ < κ)(3μ < K)

[i?(α,κ,λ,(μ»ΛS(α,κ,λ,(μ»].

Since R and S are obviously (°o, O)-recursive, this proves the Lemma. D

6.12 Corollary. The least recursively regular nonprojectible ordinal is less than δ\.

There are K recursively regular nonprojectible ordinals less than every uncountable

cardinal K.

Proof. By Corollary 5.11. D

Although it is by no means obvious from the definitions, the least recursively

regular nonprojectible ordinal is a quite large ordinal. We show this by use of

techniques from §5. For any σ and λ, let

stλ(cr) = {F(μ) : μ ^ σ Λ F is (o°, λ )-partial recursive}

and

st(σ ) = {F(μ) : μ ^ σ A F is oo.partial recursive}.

In the proof of Theorem 5.3, we essentially showed:

6.13 Lemma. For any σ ^ ω and any recursively regular λ,
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(i) stλ(cr) is the least λ-stable ordinal greater than σ\ s t λ (cr)^λ and

Card(σ) = Card(stλ(σ-));

(ii) st(σ) is the least stable ordinal greater than σ Card(σ ) = Card(st(cr)). D

For example, st(ω) = δ\, the least stable ordinal. If K is recursively regular,

σ < K, and there is no recursively regular λ such that σ < λ < K, then stκ(σ) = K.

In particular, stω (ω) = ωλ.

We shall call an ordinal σ sequence closed iff for all μ < σ, also (μ > < σ. For

the most part we shall use only the obvious fact that if σ is either recursively

regular or a limit of recursively regular ordinals, then σ is sequence closed.

6.14 Theorem. For any recursively regular λ and any sequence closed ordinal σ

such that ω ̂  σ < λ, stλ (σ) and st(cr) are both projectible to σ.

Proof. Let λ and σ be as stated and set K = stλ(<7). Since K is λ-stable, for all

v.

Furthermore, if {a}ooλ(μ) — v with μ ^ σ, it is not hard to see that there exist a'

and μ' such that μ'< σ and {<2'}OOA(M'> σ)— v. Hence

K = {F(μ, σ): μ < σ Λ F is K-partial recursive}.

By Theorem 2.6, for all p,

(*) p < K -* (3a < ω)(3μ < σ)(3v < κ)[T(a, (μ, σ)9 υ) Λ (υ)0 = p].

Let G(p) be the least ((α, μ), v) for which the inside part holds — that is,

G(p) - (κ-least τr[(τr)0 < σ A Γ((π)0 > 0, (π) O j l * (σ), (π)α) Λ (TΓ)1>0 = p])o

Then G is K -partial recursive in the parameter σ and by the definition of G,

I m G C σ . By (*) and the assumption that σ is sequence closed, G is total.

Furthermore, if G(p)^ v, then there exist TΓ, α, μ, and v such that π = (i>, ι>) =

((α, (μ», υ) and {α}κ(μ, σ) = p. It follows that G is 1-1 and is thus a projection

of K to σ.

The proof for st(σ) is nearly identical. D

6.15 Corollary. δ\ is projectible to ω. For any K, the least stable or recursively

regular ordinal greater than K is projectible to K.

Proof. We noted above that δ\ = st(ω) and ω is sequence closed. Since a limit of
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sequence closed ordinals is sequence closed, for any K there exists a largest

sequence closed ordinal σ ^ K. Then the least stable ordinal greater than K is

st(σ) and if λ is the least recursively regular ordinal greater than K, then

λ = st λ (κ). By Theorem 6.14, st(σ) and s t λ (σ) are projectible to σ, hence also to

K. •

This result yields yet another construction of a Σ2 well-ordering R of

order-type δ\ — namely, if F is a δ^-recursive function which projects δ\ to ω,

let

R(m, n) <-> m, n E Im(F) Λ F~\m) < F~\n)

(cf. Exercises V.I.30, 33).

The key to the "largeness" properties of nonprojectible ordinals is:

6.16 Theorem. For any recursively regular K, if K* > ω, then K* is a limit of

K-stable ordinals.

Proof Suppose K is recursively regular and κ*> ω. Let

σ = sup{λ : Λ < K * Λ (Λ is K-stable v Λ = ω)}.

Clearly σ ^ K *. Suppose, for a contradiction, that σ < K *. Then either σ = ω o r

σ is the largest K -stable ordinal less than K * (because a limit of K -stable ordinals

is itself K-stable by Lemma 5.5). In either case σ is sequence closed so by

Theorem 6.14, stκ(cr) is projectible to σ. But st κ (σ) is a K-stable ordinal greater

than σ so s t κ ( σ ) ^ κ * . Thus K is projectible to stκ(er) and composing these

projections yields a projection of K to σ, a contradiction. Hence σ = K*, and

since K* > ω, K* is a limit of the K-stable ordinals λ < K*. D

6.17 Corollary. For any recursively regular K, K* is also recursively regular, and if

K * > ω, then K * is K-stable.

Proof If K * = ω, then it is certainly recursively regular. Otherwise, K * is a limit

of K -stable ordinals, hence is itself K -stable and recursively regular. D

6.18 Corollary. For any recursively regular K > ω, if K is nonprojectible, then K is

a limit of smaller K-stable ordinals. D

6.19 Corollary. For any recursively regular K > ω, if K is nonprojectible, then K is

recursively Mahlo, recursively inaccessible, recursively hyper-inaccessible, etc.

Proof. Suppose that K is recursively regular and nonprojectible, and let F be any
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(oo, κ)-partial recursive function and μ<κ such that (V TΓ < κ)F(π,μ) is

defined. By Corollary 6.18 there exists A < K such that μ < A and λ is K -stable.

Then (VTΓ < λ ) F ( π , μ ) < A. Hence K is recursively Mahlo. The other conclu-

sions follow from Lemma 6.8. D

A concept closely related to projectibility is the following:

6.20 Definition. For any recursively regular K and any λ and p < K,

(i) λ is K-projectible to p iff there exists a 1-1 function F which is K -partial

recursive in parameters such that Dm F = λ and I m F C p ;

(ii) λ is a K-cardinal iff λ is not /c-projectible to any p < A.

We shall show in the next section that A is a K-cardinal iff "A is a cardinal" is

true in L κ , the class of sets constructible before K. The proof of the following is

left as Exercise 6.41.

6.21 Theorem. For any recursively regular K > ω,

(i) ω is a K -cardinal

(ii) for any K-cardinal A > ω, A is a limit of K-stable ordinals and is thus

K-stable;

(Hi) if K* < K, then K* is the greatest K-cardinal. D

6.22-6.42 Exercises

6.22. Let σp denote the p-th ordinal which is either recursively regular or a limit

of recursively regular ordinals. Show that there exist p such that p = σp but p is

not recursively inaccessible.

6.23. Let T p = τ p , τv

p

+ι = p-th ordinal K such that τv

κ= /c, and for limit v,

Tp=p-th ordinal K such that τ"= K for all π < v. λρ.τv

p enumerates the

ordinals which are v-recursively inaccessible. Show that

(i) if K is recursively Mahlo and p,v<κ, then also τv

p< K

(ii) for all n < ω, τ£ = ω x [E n ] ;

(iii) the least ordinal K such that TQ= K is less than the least recursively

Mahlo ordinal.

6.24. Show that if K is recursively Mahlo, then K is recursively hyper-

inaccessible.

6.25. For any recursively regular K and any λ < K such that K is projectible to A,

K = sup+{σ : σ is the order-type of a K-recursive well-ordering of A}.

6.26. Show that for any recursively regular K and any A ^ K, the following are

equivalent:
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(i) K is projectible to λ

(ii) there exists a set Λ C λ and a function G K-partial recursive in

parameters such that A CDm G and G"A = κ;

(iii) there exists a set Λ C λ and a function H λ-partial recursive in

parameters such that A C Dm H and sup+ H"A = K

(iv) there exists a set B C λ such that B is K -semi-recursive in parameters

but not K -recursive in parameters.

6.27. Show that if K is recursively regular and not projectible to ω, then {a : a is

K-recursive} is a model of the ^-Comprehension schema (use Exercise 3.16).

6.28. Suppose that A C ω ω has the following property: for any arithmetical

relation R and any a0,..., aι_1 E A,

3/3 R(m, α, j3)-» (3/3 G A) R(m, α, β);

(A is said to be a β-model). Let

Show that

(i) if A is a model of Δo-Comprehension, then ωx(A) is either recursively

regular or a limit of recursively regular ordinals;

(ii) if A is a model of Π}-Comprehension, then ωt(A) is a limit of recursively

regular ordinals;

(iii) if A is a model of Δ^-Comprehension, then ωx(A) is recursively

inaccessible;

(iv) if A is a model of ΣrComprehension, then ω^A) is not projectible to ω.

For (iii) use Lemma 3.5 and the result of Exercise IV.7.18 that Δj-

Comprehension implies Σ^-Choice.

6.29. In the notation of the preceding exercise, let ω^= ωλ{{a : a is K-recursive

in parameters}). Show that for K > ω,

(i) if K is recursively regular, then ω"^ κ;

(ii) there exist K such that ω"<κ;

(iii) if K is recursively regular and projectible to ω, then ω^= κ;

6.30. Show that

(i) if K is projectible to ω and {a : a is K-recursive in parameters} is a

β -model and satisfies the Δ^-Comprehension schema, then K is recursively

inaccessible;

(ii) if {a : a is K -recursive in parameters} is a β -model and satisfies the

Σ2-Comprehension schema, then K is not projectible to ω.
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6.31. Show that for any recursively regular K and any R C kω, if R is κ-(semi-)
recursive in parameters, then JR is also α>i-(semi-) recursive in parameters. (Cf.
Exercise 5.21. Use the same technique as there but now show that A collapses to
some ordinal λ ^ ω\ and that R is Λ-recursive in parameters.)

6.32. Show that if K is recursively regular, then ω" is recursively regular (cf.
Exercise 6.28 (i)).

6.33. Show that for any K, if Ex is K-effective, then ω " is recursively inaccessible,
hence for K projectible to ω, Ex is K -effective iff K is recursively inaccessible.

6.34. Is δ\ projectible?

6.35. Show that the class of sequence-closed ordinals is (<», O)-recursive and if
Sqc(σ) denotes the σ-th sequence-closed ordinal, then the function Sqc is
(°°, O)-recursive.

6.36. Show that every stable ordinal is a limit of recursively regular nonprojecti-
ble ordinals.

6.37. Prove the converse of Corollary 6.18: if K is a limit of smaller K -stable
ordinals, then K is nonprojectible.

6.38. Say that K is projectible onto λ iff there exists a one-one function F
K-recursive in parameters such that ImF = Λ — that is, there is a one-one
corrQSpondence between K and Λ that is K -recursive in parameters, K is strongly
projectible iff K is projectible onto some λ < K. Show

(i) if K is nonprojectible or recursively regular, then K is not strongly
projectible;

(ii) if K is a limit of sequence-closed ordinals but is not recursively regular,
then K is strongly projectible;

(iii) if K is nonprojectible and a limit of sequence-closed ordinals, then K is
recursively regular.

6.39. Let K = sup+{τn : n < ω}. What is **?

6.40. Show that for any recursively regular K and any Λ < K, λ is a K -cardinal iff
there is no one-one function F partial K -recursive in parameters such that
DmF = Λ and ImF is an ordinal p < λ.

6.41. Prove Theorem 6.21.

6.42. A K-cardinal Λ is κ-regular iff there is no p < λ and no F which is
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K-partial recursive in parameters such that Λ = suρ7 r < pF(τr). Show that if λ is
the least K -cardinal greater than ω, then λ is K -regular.

7. Ordinal Recursion and Constructible Sets

The perspective of this book has been recursion-theoretic. When several
treatments of a topic were possible, we have chosen the one which seemed most
in the spirit of recursion theory. This is particularly true of the present chapter
where we have developed the theory of recursion on ordinals as a natural
generalization of ordinary recursion theory and completely neglected an alterna-
tive and quite distinct set-theoretic description of the theory. In this section we
present this description and prove its equivalence with ordinal recursion theory
as given above.

In a nutshell, the point is that the theory of recursion on ordinals may equally
well be viewed as a theory of definability over the universe L of constructible sets
(introduced in § V.2). The foundation of this correspondence lies in the results of
§ III.5 where we see that ordinary recursion theory may be described in terms of
definability over 9ί, the standard model of arithmetic. If we add to this the facts
that (1) there is a "simple" one-one correspondence between ω and Lω, the class
of sets constructible at finite levels, and (2) ordinary recursion theory is
equivalent with ω -recursion theory (Theorem 1.4), we arrive at the conclusion
that ω-recursion theory may be described in terms of definability over Lω. The
results below show that the same is true for any recursively regular ordinal K in
place of ω.

To provide ourselves with ample symbols, we shall need to adopt some new
notational conventions for this section. In particular we shall use letters

α, b, c, d, t, u, υ, w, x, y, z, M, and N for arbitrary sets

and

/, g, and h for functions from fc-tuples of sets to sets.

These variables are used both in the metatheory and the formal theory. To the
language £ZF of set theory as described in § V.2 we add also v (or) as a logical
symbol.

7.1 Definition. The class of Δo formulas of J?ZF is the smallest class X such that
(i) all atomic formulas of cS?ZF and their negations belong to X;

(ii) for any 21, 93 E X, both 31 Λ 93 and SI v 93 belong to X;
(iii) for any 91E X and any variables x and y, both (3xGy)2ί and

(VjcGy)2I belong to X.
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Of course, (3JC E y)9l is an abbreviation for 3x (x E y Λ 91), but we think of
this bounded quantifier as a primitive symbol. The point of Δo formulas is that no
quantifiers occur without bounds. Note that the negation of a Δo formula is
logically equivalent to a Δo formula.

Many of the elementary concepts of set theory are definable using only Δo

formulas. Among these are: 0 (the empty set), the Boolean operations, ordered
pair, cartesian product, relation and function, domain and range, ordinal, ordinal
successor, finite ordinal, and supremum of a set of ordinals. As an example,

a = Dm/<-»(Vjc Gα)(3z E/)(3w Ez)(3y Ew).z = (x,y)

Λ(VZ E/)(VW GZ)(VXG w)(Vy E w). z = <x,y)->jc E a.

For a more detailed exposition of these facts see Barwise [1975].
The other important feature of Δo formulas is that they are absolute for

transitive E -models. That is, for any transitive sets M C N , any Δo formula 91
with free variables included among x0,..., xk_x and any u0,..., uk_λ E M,

(M, E)N9l[u] iff (N, E)N9ί[u].

This is easily proved by induction on the class of Δo formulas. In particular, this is
true when N is the "real world" so that, for example, if ® is the Δo formula given
above that defines "domain," then for a,fE.M,

J] iff a = Όmf.

Similarly,

(M, E ) h " α is an ordinal" iff a is an ordinal.

These and similar facts are used repeatedly below without special mention.

7.2 Definition. The class of Σ formulas of i?Z F is the smallest class X such that
(i)-(iii) as in Definition 7.1 and

(iv)Σ for any 91 E X and any variable x, 3x 91 belongs to X.

The class of Π formulas of =S?ZF is the smallest class X such that (i)-(iii) a s m

Definition 7.1 and

(iv)π for any 91 E X and any variable x, Vx 9ί belongs to X.

Clearly every Δo formula is both a Σ formula and a Π formula. The negation
of a Σ formula is logically equivalent to a Π formula and vice versa.
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For any set M, a relation R C kM is called Σ (U)-definable over M iff for

some Σ (Π) formula 91 and some w0,..., W/_, E M,

# is Δ-definable over M iff /? is both Σ-definable and Π-definable over M. Note

that any total function / : kM -> M is Δ-definable over M iff it is Σ-definable over

M because

To state the main results of this section we need one more concept,

admissibility. The theory of admissible sets and its generalizations have proved

of enormous importance in set theory, generalized recursion theory, and even

model theory. We shall not be able here even to touch upon any aspect of this

theory except its relationship to ordinal recursion theory, but we recommend

most strongly that any reader of this section take time to read at least the

beginning of Barwise [1975].

7.3 Definition. For any set M, M is admissible iff M is transitive and (M, E )

satisfies the universal closures of the following formulas:

(i) (Pair) 3a (x E a Λ y E α);

(ii) (Union) 3fe(Vy6α)(Vjc E y ) . j c E ί > ;

(iii) (Δ(>-Separation) 3b VJC (JC E b <-> x E a Λ 91) for all Δ(, formulas 91 in

which b does not occur free;

(iv) (^-Collection) (VJC E a)3y 9 1 ^ 3b (VJC E a)(3y E fr)« for all Δ() for-

mulas 91 in which b does not occur free.

We shall prove that for any ordinal K,

(1) Lκ is admissible iff K is recursively regular;

(2) if Lκ is admissible, then for any relation R C K,

(i) R is K-semi-recursive in parameters iff R is Σ-definable over Lκ

(ii) i? is K-recursive in parameters iff R is Δ-definable over Lκ

We proceed first towards the implications (—>). We shall need a number of

facts about admissible sets. To give proofs for them all would take us too far

from our topic, so we shall merely state the results and again refer the reader to

Barwise [1975].

7.4 Theorem. For any admissible set M,

(i) (Δ-Separation) for any ^-definable set a C M and any b E M, also

aΠbE M;

(ii) (Σ-Collection) (M, E ) satisfies the universal closure of

(VJC E a)3y 9l^3fc (VJC E a)(3y E b)9l
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for all Σ formulas 91 in which b does not occur free;

(iii) (Transitive Closure) for any a E M, TC(α), ίne smallest transitive set b

such that a E b, also belongs to M;

(iv) (Σ-Recursion) for any function g : M —» M which is ^-definable over

M, ίne (unique) function f : + 1 M —» M sucn ί/iαί /or α// JC0, . . . , xk-ly y E Λί

/(χ,y) = g(χ,y,/ΓTC(y))

= {(z,/(x,2)):zeTC(y)},

is α/so Σ-definable over M. D

Let 0(M) denote the least ordinal not in M. If Λf is transitive, then o(M) is

exactly the set of ordinals in M. Note that o(Lκ)= K.

7.5 Lemma. For any K, any admissible set M with K = o(M), any p, μ < K, and

any partial function F from kκ into K, if F is ^-definable over M and F(π, μ) is

defined for all π < p, then sup^< pF(τr, μ)< K.

Proof Let F be defined over M by the Σ formula ?t and the parameters u:

F(π,μ)=* v*+(M, E )l= 9ϊ[π, μ, i/,u].

Then by assumption we have

(M, E ) h ( V τ τ E p ) 3 ^ ? I

and thus by Σ-Collection

(M, E ) h 3/? (VTΓ E p)(3i/ E 6)91

For such α, b EL M,

sup^ < p F(ττ,μ)^sup + {i/: ^ e ί ) } ^ U{*> : i E 6 } + l < κ . D

For any K, let

T κ ( α , ( μ ) , v , κ ' , λ , σ ) < r * κ ' , λ , σ < κ Λ (a, μ , v ) E Ω ° > λ .

7 . 6 Theorem. For any K and any admissible set M with K = o(M), Tκ is

Δ-definable over M.
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Proof. The proof of Lemma 2.4 gives a recursive definition of the characteristic

function F of Tκ in the form

F(α, <μ>, v, *', λ, σ) = G(a, <μ>, v, *', λ, σ, F f σ).

If we establish that G is Σ-definable over M, then it follows by Σ-recursion that
also F is Σ definable over M. Then since

<->F(α,(μ), v, κ\ λ, cr)^ 1,

it follows that Tκ is Δ-definable over M.
The class of Σ-definable functions is clearly closed under definition by Σ

cases. By inspection we see that the functions of ordinal arithmetic are
introduced by Σ-recursion, and hence that their restrictions to ordinals < K are
Σ-definable over M. The coding functions for finite sequences of natural
numbers and ordinals are defined recursively from ordinal exponentiation,
hence they are Σ-definable. The decoding functions use in addition the bounded
search operation. If f(σ,x) = least π < σ. g(ττ,x) = 0, then

/(or, x ) = y β [ y G σ Λ g(y,x) = 0 Λ ( V M 6 y ) ( 3 z ^ 0)g(ιι,x) = z]

v [y = σ Λ (Vy G σ)(3zμ 0). g(y,x) = z].

Hence if g is Σ-definable over Af, so is /. Finally, the equivalence,

/(x,g(x))= y ^ 3 z [g(x)= z Λ / ( X , Z ) = y]

shows that the class of Σ-definable functions is closed under composition.
With these facts in mind, it is straightforward to check that G is Σ-definable.

The cases depend on Σ conditions concerning the indices. The five subclauses of
clause (0) which concern the constant, projection, and successor functions, and
the characteristic function of equality are Δo by the remarks following Definition
7.2; the last subclause involving the sequence coding functions is Σ by the
preceding remarks. In the remaining clauses, all quantifiers are bounded and the
conditions under which F has value 0 are thus Δ. In clause (1) we need to observe
that the function H is defined by recursion from the sequence coding functions
and is thus Σ-definable. It follows that the (complementary) conditions under
which F has value 1 are also Δ. D

7.7 Theorem. For any K, any admissible set M with K = o(M), and all
α, μ, and v,
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Proof. We proceed almost exactly as in the proof of Lemma 2.5. The admissibil-
ity of M easily implies that K is a limit ordinal. In clause (3), the relation R is
Δ-definable over M by Theorem 7.6. Hence the function F is Σ-definable and
Lemma 7.5 gives the inequality τ < K. The condition of recursive regularity may
similarly be replaced by admissibility in clause (4). D

7.8 Corollary. For any K and any admissible set M with K = o (M), the relation

is ^-definable over M. Every function K-partial recursive in parameters has graph

^-definable over M. Every relation K- semi -recursive in parameters is ^-definable

over M. Every relation ^-recursive in parameters is Δ-definable over M.

Proof. These are all immediate from Theorems 7.6 and 7.7. D

7.9 Corollary. For any K, if there exists an admissible set M such that K = o(M),

then K is recursively regular.

Proof Immediate from Corollary 7.8, Lemma 7.5 and Theorem 2.2. D

The implications (—») of (1) and (2) now follow by taking M = Lκ in
Corollaries 7.8 and 7.9. To establish the converse implications we shall assign
ordinals to the members of Lκ in such a way that Δ-definability over Lκ

corresponds to recursiveness of the associated relations of ordinals. The
assignment takes place in two steps: we first construct a language ££ in which
every constructible set has a name and then "Gόdel number" the language in
such a way that whenever K is recursively regular, names for elements of Lκ are
assigned ordinals less than K.

The symbols of !£ are G , = , —ι, v, 3, a variable vσ

x for each ordinal σ and
each i < ω, and a constant symbol σ for each ordinal σ. The syntax of 5£ is
designed to imitate the process by which the levels of the hierarchy of
constructible sets are defined. The variables υ" intuitively range over Lσ. The
terms of ££ include, in addition to the variables and constant symbols, abstraction
terms ί^Sl. ϋ^Sl is intended as a name for the element of L σ + 1 defined over Lσ

by the formula SI. To make this work, 21 should contain names only for elements
of Lσ. This requirement leads us to define the classes of terms and formulas of if
simultaneously by induction along with a notion of degree. The intention is that
terms of degree ^ σ, other than variables, are names for elements of Lσ.

For all i < ω and all ordinals σ,
(i) v° is a term of degree σ;

(ii) σ is a term of degree σ 4-1;
(iii) for any terms t and «, ί έ « and t= u are formulas of degree

max{deg(r),deg(u)};
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(iv) for any formula 31, —i3I is a formula of degree deg(3ί);
(v) for any formulas 91 and 93, 31 v 93 is a formula of degree

max{deg(9l),deg(93)};
(vi) for any formula 31 of degree ^ σ, Su^Sl is a formula of degree σ\

(vii) for any formula 31 of degree ^ σ with no free variables other than υf,
υf SI is a term of degree σ + 1;

(viii) an expression is a formula or term only if it is by virtue of (i)-(vii).
A term of if is called closed iff it is not a variable; a formula of 5£ is closed iff

it has no free variables. The intended interpretation of 5£ is given by means of a
function Val defined on closed terms and a predicate h= defined on closed
formulas. Val(ί) is the set named by t and f= 31 holds just in case 31 is true under
the interpretation. The definition is by a simultaneous recursion on degree with a
subsidiary recursion on formulas at each level.

For all i < ω and all ordinals σy

(i) Val(σ)=cr;
(ii) for any closed terms t and u, h ί έ w iff Val(ί)E Val(w) and h= t= u iff

Val(ί) = Val(iι);
(iii) for any closed formula 31, N —ιSI iff not f=Sl;
(iv) for any closed formulas 31 and 93, N 31 v 93 iff H 31 or f= 93;

(v) for any closed formula 3υf3l, h3υf3l iff for some closed term t of

degree ^ σ, h«(r/uf);
(vi) for any term u^St,

Val(ί3T3ί) = {Val(ί): t is a closed term

of degree =SΞ σ such that h3l(ί/ϋf)}

7.10 Theorem. For all K,

Lκ = {Val(f): t is a closed term of degree ^ K}.

Proof. We proceed by induction on K. For K = 0, there are no closed terms of
degree 0 and both sides are empty. Assume as induction hypothesis that the
result holds for any σ < K in place of K. It K is a limit ordinal, the result is
immediate from the fact that the degree of a closed term is always a successor
ordinal.

Suppose that K = σ + 1. Clearly Val(σ) = σ E Lκ. We need to show that a
subset of Lσ is definable over (Lσ, E) (by a formula of i^p) just in case it is of
the form Val(ί5^3ί) for some formula 31 of X of degree ^ σ with no free
variables other than υf.

Let J£* be a language obtained from J£ZF by adding names ά for each a GLσ

and variables x[ for each / < ω and τ < σ. (Lσ, E )* denotes the corresponding
expansion of (Lσ, E ) in which each name ά is intepreted as α. Clearly the same
subsets of Lσ are definable over (Lσ, E )* by formulas of ££*σ as are definable
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over (Lσ, G ) by formulas of i£ZF Note that over (Lσ, G )* we have no need of
parameters in the definitions as these are already built into the language Z£*σ. To
each term t and formula 21 of !£ of degree ^ σ we assign a term t* and a
formula 21* of 5£%, respectively, as follows: for all / < ω and all ordinals τ < σ,

(i) (uj)* is x]\ (υT)* is *, ;
(ii) if Val(ί)=fl, then t* = ά\

(iii) (ίGw)* is (ί*G u*) and (ί= w)* is (t* = M*);
(iv) (-»«)* is (-»«•) and (21 v 93)* is 21* v 93*;
(v) (3ϋTa)*is(3jcTEL τ)a*;

(vi) (3ι>Γ2l)* is 3xf2ί*.
We claim that for all closed formulas 21 of =S? of degree ^ σ,

H 21 iff (Lσ, G)*H 21*.

The proof is by induction on closed formulas. For atomic formulas, the claim is
obvious and the steps corresponding to —ι and v are trivial. We have then for
τ < σ,

f=3υ[2l iff for some closed term t of degree ^ r, 1= 2ϊ(r/t> J)

iff for some closed term t of degree ^ r, (Lσ, G)*N«*(Val(O/*I)

iff for some α 6 L τ , (Lσ, G )*(= 2ί*(ά/xJ)

iff (Lσ, G ) * N ( 3 J C [ G L T ) 2 1 * .

The second equivalence uses the easily proved fact that

and the induction hypothesis on 21. The third equivalence uses the induction
hypothesis on r. The step for 3i;^2l is similar.

Now we have for any closed formula 21 of degree ^ σ with at most v° free,
and any a G Lσ,

a G Val(ί3f2ί) iff for some closed term t of degree ^ or,

α=Val(ί) and H2I(ί/uΓ)

iff (Lσ, G)*h2ί*(ά/jcι).

It follows that Val(ί3f2l) is definable over (Lσ, G )* and thus belongs to

For the converse inclusion suppose b G Lκ, so for some closed formula 93 of
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We may clearly assume that neither the symbol Λ nor any of the variables x]
occur in 93. By the induction hypothesis, for every symbol ά which occurs in 93,
there is a closed term t of i? such that ί* = ά. It follows that there is a formula 21
of £ of degree ^ σ with no free variables other than ι;fsuch that 21* = 93. Thus

l). •

We now proceed to assign Gόdel numbers to the terms and formulas of X.
The assignment is routine except for one trick in the choice of gn(υf). Let Sqc(σ)
denote the σ -th sequence closed ordinal. Exercise 6.35 established that the
function Sqc is (o°, O)-recursive. In particular, if K is recursively regular and
σ < K, then also Sqc(σ) < K. We set

=iι) = (3,gn(0,gn(iι));

iι) = <4,gn(ί),gn(iO>;

gn(2tv93) = (6,gn(2ί),gn(93)>;

7.11 Lemma. For all σ
(i) for any formula 21 of X of degree < σ, gn(2l) < Sqc(σ);

(ii) for any closed term t of X of degree ^ σ, gn(ί) < Sqc(cr).

Proof. We proceed by induction on σ and assume as induction hypothesis that
(i) and (ii) hold with r in place of σ for all τ <σ. First, if 21 is of degree < σ, then
any term t occurring in 21 is of degree some τ < σ. If t is closed, then
gn(ί)<Sqc(τ)<Sqc(σ) by (ii) of the induction hypothesis. If t is v], then
gn(ί) = <l,ϊ, Sqc(τ)) < Sqc(σ) because Sqc(cr) is sequence-closed. It follows in
turn by induction on the subformulas of 21 that gn(2ί) < σ.

Now if t is a closed term of degree σ, then necessarily σ is a successor
ordinal, say T + 1, and either ί = for for some i and some formula 21 of degree
^ r with at most υ] free, t = υ[2l. In the first case, gn(ί) = (0, τ}< Sqc(σ)
because r ^ Sqc(τ) < Sqc(σ-). In the second case, gn(2l) < Sqc(cr) by (i), so
gn(ί) = (2, (1, i, Sqc(τ)>, gn(2l)> < Sqc(cr). D

7.12 Corollary. For any σ, any formula 21 of 3? of degree ^ σ, and any closed
term t of degree ^ σ,
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(i) gnH(r/O<gn(fGϋΓ«
(ii) for any a G Val(ί), tfiere ejcϊ5ίs α term u such that α=Val(w) and

gn(u)<gn(ί).

Proof, (i) follows easily from the fact that under the given conditions, gn(ί)<
Sqc(σ) < gn(i)Γ), so that gn 2l(f/υf) ^ gn(2l). For (ii), if t is r with r < σ, then a
is an ordinal < τ and gn(ά) = (0, a) < (0, r) = gn(ί). Otherwise, t is of the form
£[21 with T < <x and 91 a formula of degree =^τ with at most υ] free. If
α G Val(ί), then a=Va\(u) for some closed term u of degree ^ T, and
gn(M) < Sqc(τ) < gn(ι;Π < gn(f). D

7.13 Lemma. There exist (oo, 0)-recursive functions and relations which satisfy the
following conditions for any terms t and u and formula 21 of ££:

(i) Ord(μ)**3σ\μ = gn(σ-);
(ii) Var(μ)^3or3/.μ = gn(v°);

(iii) Dg(gn(0) = deg(0;

(iv) Fr(gn(υT), gn(Sϊ))^^ v" occurs free in SI;
(v) Te(μ)<-> μ, is ί/ie Gδdel number of some term of S6\

(vi) Fm(μ)<^μ ί5 the Gδdel number of some formula of 5£\
(vii) Sb(gn(0, gm> Γ), gn(«)) = gn(«(ί/ϋ Γ))

Proof. The calculations are routine and we leave them as Exercise 7.23. D

7.14 Theorem. The relation Tr defined by

Tr(μ)<-» μ is the Gδdel number of a closed formula SI of J£ such that h 21

is (°°,0)-recursive.

Proof. We give a few of the conditions which Tr must satisfy and leave it to the
reader to supply the remainder. The existence of Tr follows by application of the
Recursion Theorem.

Tr«4,(0,σ>,<0,τ»)«σ<τ;

Tr«4,<0, cr),gn(t);23)»~σ < r Λ Tτ(gn(S8(σ/v]))y,

Tr«4,gn(ί Γ2Ϊ),gn(θy

τ93)»«(3μ < Sqc(τ))

μ is the Godel number of a closed term t of degree ^ T,

Tr(gn 95(r/ι?J)), and (Vι̂  < Sqc(σ-)) if ι̂  is the Gόdel number

of a closed term u of degree ^ σ, then Tr(gn(2l(u/υf))) iff

Tr(gn(MGί));
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Tr(gn(?ί v 93))«Tr(gn(9)) or Tr(gn(93));

Tr(gn(3ι;Γ?I))<e*(3μ < Sqc(σ)) μ is the Gόdel number of a closed

term t of degree ^ σ and Tτ(ΪH(t/v°)).

In several cases we rely on Corollary 7.12 to ensure that the Gόdel numbers on
the right-hand side of each equivalence are less than those on the left. D

7.15 Corollary. Every constructible set A of ordinals is (o°,0)-recursive in
parameters. For every recursively regular K, if A G L K , then A is K-recursive in
parameters.

Proof. If A E Lκ, then by Theorem 7.10 there exists a closed term t of degree
^ K such that A = Val(ί). Then for any σ,

σ G Λ ^ N σ E / ^ Tr«4, (0, σ>, gn(ί)».

Thus A is (°c, 0) recursive in the parameter gn(t). If K is recursively regular, then
gn(ί)< Sqc(κ) = K and by Theorem 2.2, A is K -recursive in the parameter
gn(f). D

For any μ, let

ΓVal(ί), if μ is the Gόdel number of a closed term t;
°μ = \

10, otherwise.

7.16 Lemma. For any recursively regular K,

Proof As in the preceding proof, if A E Lκ, then A = Val(ί) for some / with
gn(t)< K. Thus A = °gn(t). On the other hand, it is easy to prove that for all
terms, dg(/)^gn(0 so that for any μ < K, if μ = gn(ί), then dg(ί)< K and by
Theorem 7.10, °μ = Val(ί)ELκ. D

For any formula ?l of i?Z F with free variables among JC0, . . . , xk_λ and any

S a t « i K ( μ ) « ( L κ , G ) h ? ! [ > ] .

7.17 Theorem. For any recursively regular K and any ΔQ-formula 91 o/
Satfl κ is K-recursive.
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Proof. We proceed by induction on Δo formulas. For atomic formulas, the result

is immediate from Theorem 7.14. The —ι, Λ, and v steps are trivial and we

consider only bounded quantification. Suppose that 31 is a Δo formula and that

Sats?ι κ is K -recursive. Then for p, μ < K

~ ( 3 α e ° p ) . ( L κ , e ) h 2 l [ α , ° μ ]

<-> (3ττ < p) .Tr«4, π, p» Λ Sat«>κ(π, μ).

The second equivalence depends on Corollary 7.12 (ii). D

7.18 Corollary. For any recursively regular K and any R C kκ,

(i) if R is ^-definable over Lκ, then R is K- semi -recursive in parameters

(ii) if R is ^-definable over L κ , ί/ien R is K-recursive in parameters.

Proof It clearly suffices to prove (i), so suppose 21 is a Δo formula and R is

defined by

Let p 0 , . . . , p/_! be ordinals < K such that (V; < /). °p7 = br Then

flc(i/, (0, μ 0 ) , . . . , (0, μk_ι), p 0 , . . . , p , . ^ .

Thus i? is /c-semi-recursive in the parameters p0,..., ρι_ί. D

7.19 Corollary. For any K, if K is recursively regular, then Lκ is admissible.

Proof. It is trivial to check that for any limit ordinal K, (LK, E ) satisfies the pair,

union, and Δ0-Separation axioms. Suppose that K is recursively regular, that 31 is

a Δo formula in which b does not occur free, and that for some μ, p < K,

(Lκ,G)h(VxGα)3y3l[op,°μ].

Then

(Vxε°p)(3<x<κ).(Lκ, e)NSI[V,°μ]

and

(Vir<p)(3σ<κ)[Tr«4,π,p»-»Satβ > l t(σ,|t)].
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By the recursive regularity of K and Theorem 7.14 and 7.17, if

r = supt<p. least σ[Tr«4, π, p»-> Sat^κ (σ, μ)],

then τ < K, and if

λ =sup^< τDg(σ),

then also λ < K. Furthermore,

(VxG°p)3σ(°σGL λ and (Lκ, E )h 3I[V,>]),

so

(Lκ,E)h(Vxeα)(3yGfr)«[LA,op,°μ],

where b is interpreted as Lλ. Thus we have the conclusion of Δ0-Collection. D

Finally we draw some interesting conclusions about relations on numbers.

7.20 Theorem. For all R C kω, the following are equivalent:

(i) R is oo- recursive

(ii) R is δ\-recursive

(iii) R is Δ2;

(iv) « E L δ .

Proof. The equivalence of (i), (ii), and (iii) is Corollary 5.10. If R is δ2-recursive,

then by Corollary 7.8, R is Δ-definable over Lθ». Since δ\ is recursively regular,

Lδ^ is admissible and satisfies Δ-Separation. Hence Λ 6 L δ . On the other hand,

if R G L δ ; , then by Corollary 7.15, R is δ^-recursive in parameters. But by

Exercise 3.14 (ii), R is then δ^-recursive. D

7.21 Theorem. For all R C kω, the following are equivalent:

(i) R is 00.recursive in parameters;

(ii) R is Hx-recursive in parameters

(iii) R is constructible

(iv) Λ G L H l .

Proo/. We prove that (ii)-» (iv)—* (iii)—> (i)—> (ii). If # is ̂ -recursive in parame-

ters, then R is Δ-definable over LN] and hence by Δ-Separation, R E LMl. That

(iv) —> (iϋ) is trivial. That (iii)->(i) is immediate from Corollary 7.15. The

implication (i)—»(ii) is a weak version of Exercise 5.21. D
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Note that using the full strength of Exercise 5.21 we could replace (ii) and (iv)
by:

(ii)' R is δ2[i?] recursive in parameters;
(ivy ΛeL β J [ J I , .

Note also that the equivalence of (ii) and (iii) implies that there are at most Hί

constructible subsets of ω. Hence if V = L then the Continuum Hypothesis
holds.

7.22-7.29 Exercises

7.22. Prove Lemma 7.13.

7.23. X-Separation is the set of axioms

for all X formulas 91 in which b does not occur free. Show that for any admissible
set M, (M, E ) satisfies X-separation iff (M, E ) satisfies the following schema of
strong Δ()-Collection:

3b (Vx E α)[3y 2l-> (3y E

for all Δ() formulas ?ί in which b does not occur free.

7.24. Show that for any recursively regular K, K is non-projectible iff (Lκ, E)
satisfies X-Separation.

7.25. Show that for any recursively regular ordinal λ and any K ̂  λ, K is
λ-stable iff (Lκ, E ) is a X-substructure of (Lλ, E ) — that is, for any X formula 21
with free variables among x{),..., jck_, and any α 0 , . . . , ak_x E Lκ,

(Lκ, ε ) h « [ « ] iff (Lλ, 6 ) 1 - % ]

(cf. Exercise 5.16).

7.26. Show that the special names σ in ££ are superfluous. Specifically, let S£~ be
the language obtained from 5£ by omitting the names σ. Show that for each
ordinal σ there is a closed term tσ of if" of degree σ + 1 such that Val(ίσ) = σ.
Describe an assignment of Gόdel numbers to 5£~ which makes λcr.gn^) an
(oc, O)-recursive function and check that all of the remaining results go through.
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7.27. Define the classes of 3°r and V? formulas of i?Z F as in Definition III.5.3,
with 3Q = VQ = Δo. Note that if M is admissible, then every Σ formula is
equivalent in M to an 3j formula. Show that for any K,

(i) K is recursively regular iff Lκ is V°-reflecting — that is, for any V2 formula
21 and any u E L κ , if (Lκ, G)l=2l[u], then (3λ <κ) . (L λ , G)h2l[u];

(ii) K is recursively Mahlo iff Lκ is ^-reflecting on the class of recursively

regular ordinals — that is, as above except that λ is required to be recursively
regular.

7.28. Show that the Hypothesis of Constructibility is equivalent to: for all
infinite cardinals K, for any λ < K, every subset of λ is K -recursive in parameters.

7.29 (Shoenfield [1961]). Show that every %\ relation R C kω is constructible.

7.30 Notes. The concepts and results of §§6 and 7 are again due to Kripke
[1964] and Platek [1966]. Levy [1965] first isolated the classes of Δo and Σ
formulas.




