
Chapter VII
Recursion in a Type-3 Functional

We first hasten to assure the reader that this chapter is not the second in an
infinite sequence. Although there are several important differences between the
theories of recursion relative to functionals of types 2 and 3, most of the theory
of recursion relative to functionals of types greater than 3 can be obtained from
type-3 theory with essentially only notational changes. This is discussed in § 4.

In § 1 we consider the basic definitions and facts about recursion in a type-3
functional and examples which illustrate the differences between types 2 and 3.
For example, although E and oJ are each recursive in the other, the same is not
true of their type-3 analogues E and sJ. In §2 we see that although the basic
structure of the class of relations semi-recursive in a type-3 functional is
superficially similar to the corresponding structure of type-2, the differences
begin to be more important. Finally in § 3 we see that with respect to hierarchies
the situation for recursion in a type-3 functional is very different from that for
type-2.

1. Basic Properties

We shall consider in detail only the notion of recursion relative to a single
fixed total type-3 functional D: ( ω )ω —> ω. From this may easily be derived, by the
usual sorts of coding, notions of recursion relative to several type-3 functionals
and, as in § VI.7, the notion of a recursive type-4 functional. Although we are
still primarily interested in the properties of relations and functionals over M ω ,
we shall also need the notion of relative recursiveness among tyρe-3 functionals.
For this reason we state the basic definitions in terms of functionals and relations
over k U ' ω .

Consider first the intuitive notion of a functional F being calculable relative to
0. We must stretch our imagination one step further to conceive of an idealized
computer prepared to receive inputs of the form (m, α, I) and connected to a
memory device M which contains the graph of 0. The inputs are considered to be
stored before the beginning of the computation in infinite memory devices,



3 4 4 VII. Recursion in a Type-3 Functional

which may be consulted at any time during the computation. Arguments β are
presented to one of the \r just as before via a subsidiary infinite memory unit M'
which is "loaded" with the graph of β. To apply D, the computer requires another
memory unit M" which can be "loaded" with the graph of a functional F in order
to obtain the value of D(F). As before, the "loading" of M' and M" is considered
to occur during the computation, which is in general therefore infinite in length.
In fact, since it takes at least 2M° "steps" to load M" with the graph of a
functional F, computations relative to 0 are generally uncountable. Clearly, the
value of a computation depends on values 0(F) only for F which are themselves
computable from D, I, and a.

The precise definition is obtained from Definition VI.7.1 by adding a clause
which insures that

{(4, k, /, /' b)}\m, α, I) - B(λ/B. {b}\m, α, β, I)).

1.1 Definition. For any total functional D: r<o)ω -> ω, β[0] is the smallest set such
that for all k, /, /', n, p, q, r, and s, all i < k, j < k, and / ' < / ' , and all
( m , « , l ) E k ' u ω ,

identical to the corresponding clauses of Definition VI. 7.1;

(0)

(1)

(2)

(3) J

(4) for any b and any F, if for all β, (b,m, a, β, I, F(/3))e ί2[D], then

The definition of Ω[ti\ is easily interpreted as a closure under functions of
rank 2M° so that the closure ordinal is at most the least cardinal greater than 2M°.
Without the Axiom of Choice we can conclude that the closure ordinal is at most
o(°ω). The reader should be now find it obvious that for all α, m, α, and I, there
is at most one n such that (α, m, α, I, n)E β[0]. We set

{a}\m, α, l )-n iff (α,m, α, I, n)E β[D].

A functional F is partial recursive in D iff F = {a}1 for some a E ω, etc. Since
β 3 Cβ[D], every recursive functional F is recursive in D. The D-Recursion
Theorem is proved exactly as in all other cases and it follows that the class of
functionals partial recursive in 0 is closed under primitive and course-of-values
recursion and unbounded search. It follows from Corollary II.3.3 that every
partial recursive type-2 functional F is also partial recursive in 0 and by a slightly
more complicated proof that the same is true for type-3 functionals F. Definition
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by cases with relations recursive in 0 and functionals partial recursive in D is
established as is Theorem II.2.12. The class of relations recursive in D is a
Boolean algebra closed under composition with functionals recursive in D.

Computations relative to 0 may be thought of as arranged in labeled trees.
Nodes corresponding to clauses (0)-(3) are as before, while for clause*(4) we have
nodes of the form:

(fc,m, α, ft I)

where ft β\ ... includes all members of ωω. Of course, it is not necessary that the
successor nodes be arranged in a well-ordered sequence.

Every relation recursive in 0 is also semi-recursive in D but not conversely. The
class of relations semi-recursive in D is closed under finite intersection and
bounded universal number quantification. Analogously to Lemma VI.1.2, the
class of relations semi-recursive in D is seen to be closed under universal function
quantification (V1) and hence also under universal number quantification (V°).

To illustrate the theory, we consider the type-3 analogues of the functionals E
and oJ:

ΓO, if 3α.l(α) = 0;
E(l) =

U, otherwise;

ΓO, if {a}'(m,a) is defined;
sJ((a,m,a)*l)= j

[l, otherwise;

where (a,m, a ) * I is the functional F such that for any γ, F((0)* γ) = l(γ),
F((l)*γ) = (α,m), and for all p, F((/? + 2 ) * γ ) = a(p). Of course, sJ is just the
natural encoding of the superjump:

sJ((α,m,α)*l)=lS J(«α,m»*α).

1.2 Lemma. For all U, if R is analytical, then U is recursive in E.

Proof. For any U,

0«3iR(m, α, I) = E(λβ . tt<R(m, α, ft I))
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so that the class of relations recursive in E is closed under 3 . It follows by
complementation that it is closed under V1, hence also under 3° and V°. Since
this class contans all recursive relations, it contains all arithmetical relations and
hence all analytical relations. D

1.3 Corollary. sJ is recursive in E.

Proof. It suffices to show that (the graph of) sJ is analytical. For each I, let Γa , be
a monotone operator defined as in the proof of Theorem VI.1.5 such that

{α}'(m, a) =* n +*(a,(m>, n)GΓaf].

From the definition it is clear that the relation

is analytical. Since

also the relation

is analytical. Finally,

sJ((α, m, α)*l)= Γ ^ [ Γ = 0Λ 3n.(α,(m), n)E ΓaJ] v

[r = l Λ V n . ( α , ( m ) , n ) ( ί f J

and thus sJ is analytical. D

The analogy with the results of § VI. 1 suggests that we should expect also that
E is recursive in sJ and that the class of relations recursive in either is Δj. This is,
however, far from the case, and we show this next. For any 0, let

1.4 Theorem. For any 0 and any r ^ l , if QGΔ,, then V°GΔ^.

Proof. For each I we define operators Γt 0 , . . . , Γ, 4 and Ax 4 much as in the proof
of Theorem VI.1.5 but "one type up". For any R C ω x ωω,
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Γ|,0(R) = {(«0, k, /, /', 0, n>, <m>, n), <α» : (m, a) E M ω }

U U {(((0, k + 2, /, /', 5>, <p, 9 , m>, Sbo(p, <?)>, <α» :

k,p,q£ί ω Λ (m, α ) E k Zω}

Γ| j ϊ defined by similar modifications of the corresponding

Γ, 2 J clauses of Theorem VI. 1.5;

> k> '> Γ > Λ *>>> <m>> ">> < α » : /" < V Λ

3 β [Vp R«fr,<p,m),i8(p)>,<α»Λ l r(/8)= n]};

3F[V/3R((ί>,<m),F(jβ

[4,k,l,l',b),(m),n),(<

VF[VjSVa(R«ί>,(m)

))Λat,β):

α)):Vj8;

,q),{a,β

)Λl(F)=n]};

lqR((b,(m),q)Λa

l»-*F(/8) = fl)-l

ί,/3»Λ

l(F)=n]}.

Defining Γ^ and Λ<(> as in VI. 1.5, one can prove as before that

If D E Δ ,̂ then clearly the decomposable operator Γ is Σ, and Λ is U2

r. It then

follows from VI.7.10 and VI.7.15 that V°E A2

r. D

This proof depends essentially on the fact that the subcomputations of a

computation {α}"(m, α, I) all have the same list I of type-2 arguments, so that I

may be treated as a parameter. The type-1 arguments may not be so treated, as

subcomputations of {α}'(m, α, I) will in general involve longer lists α, β of type-1

arguments. Of course, Theorem VI. 1.5 works exactly because for computations

relative to a tyρe-2 functional I, the type-1 arguments do behave as parameters.

1.5 C o r o l l a r y . For a n y r^l a n d a n y 0 E Δ , ,

(i) // R is semi-recursive in 0, then REΔ^;

(ii) {R : R is recursive in D} is a proper subset of Δ2

r. D

In particular, the class of relations recursive in E is a proper subset of Δj.

Before we consider further the relationship between E and sJ, we discuss the

substitution properties of recursion in a type-3 functional. The basic results are

the following:

1.6 Theorem. There exist primitive recursive functions /, g, and h such that for all

D, α, d, m, α, and I,
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(i) {/(α, d)}\m, α, I) - {a}\m, a, λp. {d}\p, m, α, I), I);
(ii) {g(a, d)}\m, α, I) - {α}°(m, α, I, λβ. {d}'(m, α, β, I));

(Hi) if λG.{d}\G) is a total type-3 functional H, then

Proof The proof of (i) is very similar to that of Theorem VI.2.10. (ii) should be

seen as a uniform version of Theorem VI.2.14; we first define a function gj which

works if λβ.{d}\m, α, β, I) is total and then choose g such that

{g(α, d)}\m, α, I ) « 0 0(λβ. {d}'(m, α, β, I)) + {g l(α, d)}'(m, α, I),

(iii) is related to (ii) as is VI.2.14 to VI.2.10. D

1.7. Corollary. For any F, H, D, β, and I, // F is partial recursive in β, I, and H,

and β, I, ana1 H are recursive in 0, ί/ien F is partial recursive in 0. In particular, the

relation "recursive in" is transitive among objects of type-3. D

Our next aim is to show that sJ is recursive in Ef. We have not in fact defined

the notion of a type-3 functional being recursive in an extended type-2

functional. What is needed, of course, is a set Ω3[Ef ] defined exactly as in VI.7.1

but with an extra clause to handle application of Ef. We leave it to the reader to

formulate explicitly these definitions and convince him- or herself that this

notion has all of the usual properties. In particular, we shall need that if a

functional F is recursive in (HI and HI is recursive in E j , then F is recursive in E1.

1.8 Theorem. sJ is recursive in Ef.

Proof The proof is essentially a uniform version of that of Theorem VI.6.11.

First, the theory of recursion in Ef must be extended to allow for type-2

arguments. In particular, there are sets Ma , and a primitive recursive function /

similar to that of Corollary VI.6.8 such that for all α, m, α, I and n,

{α}El(m, α, I) is defined <-> /(α, <m))E M α ,.

Corresponding to the ordinal comparison functional H of Theorem VI.6.9, there

is a functional 0-0 partial recursive in Ef such that for all u, V, α, and I,

(i) if M G Maj and | u | * ,=^ | v |* , , then H(M, v,(a), 1)^0;

(ii) if vEMa^ and | u | * , < | κ | £ , , then H(iι, υ,<α),l)=* 1.

Now, by the methods of Theorem VI.6.11, construct primitive recursive

functions g and ή such that

{α}'(m, α ) is defined <-• {g(α)}El(m, α, I) is defined,
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and

{α}'(m, a) is undefined <-> {/t(α)}El(m, α, I) is defined.

Then we claim that

sJ((α, m, a) * I) = H(/(g(α), <m», /(ft (α), <m», <α >, I).

If {α}'(m,α) is defined, then /(g(α),<m»e M α J and /(Λ(α),<m» £ M α J , so

and thus H(/(g(α), <m», /(Λ (α), <m», (a>, I) = 0. If {α }'(m, α) is undefined, then
the inequality is reversed and the value is 1, as required. Ill

1.9 Corollary.

(i) The class of relations recursive in sJ is a proper subset of Δ\

(ii) E is not recursive in sJ.

Proof Since the graph of Ef is Δ2, there is a Δ2 decomposable operator Γ such
that for all α, m, α, and n

<α,m, n ) G f α β { f l } E l ( m , α ) ^ n

(cf. Exercise VI.6.20). In particular every relation semi-recursive in E! is Δ2 and
the class of relations recursive in Ef is a proper subclass of Δ2. (i) follows by
Theorem 1.8 and the remarks preceding it. Then (ii) is immediate from Lemma
1.2 and Corollary 1.7. D

Note that it is not true that every relation semi-recursive in sJ is semi-
recursive in Ef. Ej is equivalent to ESJ (Exercise VI.1.20), hence Ej is recursive in
sJ and thus every Σj relation is recursive in sJ. Since the class of relations
semi-recursive in sJ is closed under V , every Π2 relation is semi-recursive in sJ.
From this we can also conclude that there are relations R such that both R and
— R are semi-recursive in sJ, but R is not recursive in sJ. We shall see in the next
section that a functional in which E is recursive does not exhibit this pathological
behavior.

1.10-1.13 Exercises

1.10. Show that any partial recursive type-3 functional F is partial recursive in
any type-3 0.

1.11. Show in set theory without the Axiom of Choice that the closure ordinal of
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the monotone operator which defines ί2[D] is at most o(°ω), the least ordinal not
the type of a pre-wellordering of ωω.

1.12. Fill in some of the details in the proof of Theorem 1.6.

1.13. Define bE, the bounded ΐype-3 quantifier functional by:

(0, if 3a [a recursive in E, I Λ l(α) = 0];

1, otherwise.

Show that bE and sJ are each recursive in the other. (That bE is recursive in sJ is
easy. For the converse let P be defined as in the proof of Lemma VI.6.1 and <a

the transitive closure of the relation <'a defined by:

(cf. Exercise VI.6.26). For any (α,m>G C/'a, let 8ama be the characteristic
function of < α restricted to u < α (α,m); otherwise, δama = λp.O. Show that
Ca= {8: for some (a,m)E [/'„, δ = δamc} is recursive in Ej and I, uniformly in
a. Let

fO, if δ e C L and δ = δ α m α ;
Um,«(S) = ] 1, if δ e C L and δ ^ δ α , m , α ;

[2, otherwise.

Show that every function recursive in E and I is recursive in lα > m α and that

1.14. Notes. The basic definition here is again due to Kleene [1959]. Theorem
1.4 for E was announced in Hinman [1964] and proved in Hinman [1966] but
never published. The substitution theorems (1.6) are again due to Kleene [1963]
with improvements from Hinman [1966]. Theorem 1.8 appears in Aczel [1970]
where it is attributed to Gandy. Corollary 1.9 and Exercise 1.13 are due to
Gandy [1967a]. Some variations on Exercise 1.13 appear in Aczel-Hinman
[1974].

2. Relations Semi-Recursive in a Type-3 Functional

When E is recursive in 0, the class of functional semi-recursive in 0 is similar
in structure to the class of relations semi-recursive in a type-2 functional. In most
instances, E plays a role analogous to that of E. This analogy fails at one point —
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it is not in general true that the class of relations semi-recursive in D is closed
under 3 1 . This fact is closely related to the considerations of § VI.6.

For any D, we set

v\a,(m),(a)9(l))*+{a}Xm,a,l) is defined;

Of course, ϋD is universal for the class of relations semi-recursive in D. To each
element of UD we assign an ordinal which measures the "length" of the
corresponding computation:

I α, m, α, I f = least σ. (α, m, α, I, {a}\m, α, I)) G Ω[ti]σ.

If ~-UD(α, (m), (a), (I)), we set | α, m, α, I f = o(ωω). Then an appropriate modifica-
tion of Lemma VI.3.2 holds with the additional clause:

(4) if for some b, a = (4, fc, /, /', b) and {α}'(m, α, I) is defined, then
I a, m, α, IΓ = sup+{| 6, m, α, ft I f: β 6 ωω}.

In the following we shall write (as in several earlier sections) xι for

(a Um1'>, <«' >) and H(Λ Λ <l>) to ^
to be a fixed type-3 functional such that E is recursive in D, and write | x \\ for | x, I |\

2.1 Ordinal Comparison Theorem. There exists a functional H partial recursive

in 0 such that for all JC°, JC1, and I,

(i) i/jc°eU! and \x°\\^\xι\\, then H ( X O , J C \ < I » ~ 0 ;

(ii) ifxιEV\ and \x \\< |x°|i, ίnen H(x°, J C 1 ^ ! ) ) - 1 .

Proo/. We shall not give many details here as the reader may easily supply most
of them by translating the proof of Theorem VI.3.3, the Ordinal Comparison
Theorem for recursion relative to a type-2 functional. For simplicity let 1 = 0
and write IHKx0,*1) for H(x°,x\( )). H is defined by effective transfinite
recursion via the D-Recursion Theorem and a functional F partial recursive in D. F
is defined in 25 cases labeled (r, 5) for 0 ̂  r, 5 ̂  4 plus two "otherwise" cases. In
all cases except those in which r = 4 or 5 = 4, the definition is almost exactly as
before. We shall consider cases (2,4) and (3,4) and leave the remainder to the
reader.

(2,4). Suppose x° = ((2, fc°+ 1, /°,0>, (b°,m°>, <a°» and x1 =
((4, k\ /\θ, b),(m1),(a1)). We define F in such a way as to ensure that

H(JC°, xι) - E(λβ. H((ί>°, <m°>, (α°», (b\ (m\ (a\ β)))).
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If J C ° E U° a n d | j c ° | B ^ \xl\\ t h e n for s o m e β,

1 , 0 0 OiD _ i , 1 1 1 Λ it

I b , m , a I ̂  I b , m , α , β |

and thus H O c 0 , * 1 ) ^ . If J C ' G U 0 and | JC* |β <: | jc°|\ then for all β,
i t l 1 1 Λ | l ^ i t 0 0 O i ί

\b , m , α , β | < |fe ,m , α |

and 0 1

(3,4). Suppose JC° = «3, fc°, /°,0, f>°>, (m°), <α°» and χι =

«4, fc1,/1^,^1),^1),^1)). We define F in such a way that

where E° is the "dual" of E, which is, of course, recursive in E and hence in 0. If

x E U° and | jc° | 0^ | JC ! f, then for all p there exists a β such that

ι , 0 0 0 ιθ I » 1 1 1 n ι l

\b , p , m , α I ^ I fe , m , α , β |

and thus H(JC°, J C ^ ^ O . If J C ! E U ° and | J C ! | ' < |JC°|D, then for some p and all β,

1 1 1 1 I n ιl ^ i i 0 0 Oifl

\b , m , α , β | <\b , p , m , α |

ίΛx1)*!. •2.2 Selection Theorem. Γftere ejc/sίs a function Sel" partial recursive in 0 SMC/I ί/iαί

/or all α, m, α, and I, the following are equivalent:

(i) 3p.{a}'(/?, m, a, I) is defined

(ii) {fl}'(Sel'(fl, (m), <a>, <l», m, a, I) is de/Snei

Proo/. Exactly as for Theorem VI.4.1. D

2.3 Corollary. For any relation R semi-recursive in 0, there exists a functional

SelR partial recursive in 0 inch that for all m, α, and I,

3p JR (p, m, α, I) ̂ > R(SelR (m, α, I), m, α, I). D

We may now derive corollaries corresponding to VI.4.3-6, 8-9 with very

similar proofs, which we leave to the reader. The boundedness and hierarchy

results take a little more care. Let

κB = sup+{|jcΓ:jcEU0}.
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Since U° is of power 2N° there is no reason to expect that K° is a countable ordinal

(cf. Exercise 2.15). As in § V.I it will be useful to consider the ordinals associated

with the "countable part" of U°. Let

The pre-wellordering on U° associated with the norm | f induces a pre-

wellordering on (7° in an obvious way. We denote by | |J> the norm associated

with this pre-wellordering and set

Note that L/D is not an initial segment of U° (Exercise 2.18) so | \*0 is not simply

the restriction of | f to U\ We use the notations Uj, and U\ as in § V.I.

2.4 Boundedness Theorem, (i) for any A co-semi-recursive in 0, if A C U\ then

sup + { | U\Q: U G A}< KB;

(ii) for any β and any R co~ semi -recursive in 0 and β, if RCU°, then

sup+{|x |°: x G R}< #c°.

Proof. The proof of Theorem V.I.5 applies because the class of relations co-

semi-recursive in D is closed under both 3° and 3 1 . D

2.5 Hierarchy Theorem, (i) for all relations R on numbers, R is recursive in 0 iff

R < L/p for some p < κB;

(ii) for all relations R, R /s recursive in 0 and some β iff R < U p for some

p<κ\ D

Part (ii) of this theorem of course also provides a hierarchy for the relations R

which are recursive in 0 alone, but it is somewhat unnatural in that although there

are only countably many such R, the hierarchy is indexed by uncountably many

ordinals, so that "most" of the levels are empty. The same phenomenon occurs

at the odd levels beyond the first of the analytical hierarchy under the hypothesis

PD (cf. Theorems V.1.6 and V.3.3 (iv)(b)). At the first level, of course, there is a

natural hierarchy of length ωx for the class of Δj relations of types 1 and 2

(Theorem IV.2.2); the situation is similar here. For each p < κ\ let p be the

unique ordinal such that for some u G U\ \ u β = p and | u f = p.

2.6 Theorem. For all relations R, R is recursive in D iff R <̂  U^ for some p < κ\

Proof For any p < K and any u such that | u | 0 = p,

; ' Γ » ) = O,
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where 0-0 is the ordinal comparison functional of Theorem 2.1. Hence Û  is
recursive in D and thus so is any R reducible to it.

For the implication (—»), let R be recursive in D, say with index a from D, and
let b and c be indices such that

{b}\m) - 0(λαo . B(Aa!

{c}\ ) - D(λ (ft,

Clearly for each m and a,

Let d be an index such that

fO, if {α}'(m>«) = 0;

{d}B(m,«)-|
[undefined, otherwise;

and there exists a number q such that if {α}B(m, α) = 0, then |d, m, α | ' <
|α, m, α | '+ <jf (i.e., d is a natural index). Then if p = |c, 0 |o+ ^, p < κ° and

R(m, α)^( ί ί ,m, α)E(JD

<->|d, m, a | '< |JC,0, 0|°+ ^ ^ p

β ( ί l , m , α ) E U ; . D

Of course, it is not true in general that if p < σ then strictly more relations
are reducible to Û  for r ^ σ than for τ ^ p (cf. Exercise 2.16).

2.7 Upper Classification Theorem, {a : α is recursive in 0} is semi-recursive in D.

Froo/. As for Theorem VIA 12. D

We leave to the reader the formulation and proof of choice principles parallel
to Theorem VIA 15 (cf. Exercise 2.17).

The ordinals K" and #c" may be evaluated much as in previous similar cases.
Let ωj[0] be the least ordinal not recursive in D and ωt[ί\ the least ordinal not the
order-type of a pre-wellordering of ωω recursive in D and some β.

2.8 Theorem. κ°= ω̂ Q] and κι = ωjD].

Proof. Similar to that of Theorem VI.4.17 (cf. Exercise 2.19). D
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To this point there has been a close analogy between the roles played by E

and E in recursion relative to functional of types 2 and 3, respectively. The

remaining results of this section indicate some differences. One that we have

already seen is that in contrast with the fact that the relations recursive in E are

exactly the Δx relations, those recursive in E form a proper subclass of Δj. The

basis for this discrepancy is that the property of well-foundedness for type-2

relations is Δ* (in fact Δ(ω), Lemma VI.7.11), whereas well-foundedness for

type-1 relations is ΓlJ but not Δj. We now exploit the same fact in a different way

to show that the class of relations semi-recursive in a type-3 functional 0 is not

closed under existential function quantification ( 3 ) (cf. discussion at the

beginning of § VI.6).

2.9 Lemma. There exists a relation PD semi-recursive in 0 such that for all w, υ, α,

and β,

(i) ( M , (α»GU D ΛP°(M,ι ; , (α>,(p))^ | ι ; ,/3f< | M ,α | B ;

(ii) (M,<α» fί U'-^Bv 3β [(vΛβ)) £ UDΛ P°(w, ι>,<α

Proof. Much as in the proof of Lemma VI.6.1, we define P'(w, V, (a), (β)) to hold

just in case one of the following holds for some fc, m E ω, and / = lg(αr):

(1) for some fc, c 0 , . . . , ck^u u = ((1, fc, /, 0, b, c 0 , . . . , ck>_x), m), β = a, and

either v = (c,,m) for some i < k' or there exist q0,.. .,qk-ι such that for all

(2) for some b, u = «2, fc + 1, /, 0), b, m), β = a, and v = (b, m>;

(4) for some b, u = ((4, fc, Z, 0, ft), m), v = (ft, m), and for some γ, β = a * (γ);

(5) u is of none of these forms, | u, a | V 0, β = α, and υ = 0.

Because we are (for simplicity) omitting type-2 parameters (/' = 0), there is

no need for a clause (3).

The proof that P° satisfies (i) and (ii) is essentially as before. D

2.10 Theorem For all a, m, and α,

{α}°(m, a) is defined *+~i3δ3ε Vp [P\δ(p), δ(p + 1),(ε)p,(ε)p+1) Λ

Proof. This follows from Lemma 2.9 in very much the same way that Theorem

VI.6.2 follows from Lemma VI.6.1. The difference is that the descending

sequence of undefined computations can no longer be described by a Suslin

quantifier (si) as the type-1 function arguments may vary. D

2.11 Corollary. The class of relations semi-recursive in D is not closed under

existential function quantification ( 3 ). D

As in § VI.6, this part of the analogy between E and E can be repaired by
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replacing E by an extended type-3 functional E# defined by: for any partial
functional F : ωω —> ω,

ΓO, if 3 α . F ( α ) - 0 ;
E # ( F ) - | l , if V α ( 3 n > 0 ) . F ( α ) « n ;

[undefined, otherwise.

The theory of recursion relative to E# may be developed in a way closely parallel
with the theory of recursion relative to Ef in § VI.6. It is clear that the class of
relations semi-recursive in E* is closed under 3 1 . That every relation semi-

.#recursive in E is also semi-recursive in E may be proved as in VI.6.6 and thus
both UE and ~UE are semi-recursive in E#. To establish an ordinal comparison
theorem for E we define inductively a relation M as follows: M is the smallest
relation such that for all d E Pri and all a,

(i) (0,(α»εM;
(ii) if 3β ([</](«,/3),<α,j3» EM, then «0,d>,<α»eM;

(iii) if V|8([d](α,j8),<«,£»EM, then «l,d>,<α»EM.
The analogues of Theorems VI.6.7-9 all hold with very similar proofs, and we
conclude in particular that (JE is recursive in E#.

If we include type-2 parameters everywhere, we can similarly prove that UE is
recursive in E#. Let sβ be the type-4 jump operator defined by:

(0, if {α}"(m, α, I) is defined;

1, otherwise.

Then the same argument shows that if D is recursive in E#, so is 5/(0). Thus if
we set

Eo = E and EΓ+1 = sβ(Er),

then Er is recursive in Es iff r ̂  s and all EΓ are recursive in E#. The relations
recursive in E are called hyperanalytical while those recursive in E# are called
hyperprojectiυe. Note that it follows from Corollary VI.7.13 that the relations
semi-recursive in E# {semi-hyperprojectiυe) still form a subset of Δj. The subset is
proper because it is not closed under complementation.

We conclude this section by establishing an analogue of the Spector-Gandy
Theorem (VI.4.18) for recursion in 0. The proof is a modification of that sketched
in Exercise VI.6.26 and is substantially simpler than that of VIA 18. We denote
by Σf ° the class of relations R such that for some § recursive in 0,

R(m, α, I)<->(3F recursive in α, I, and 0)§(m, α, I, F).

2.12 Theorem. For all R, R E Σ ^ ' iff R is semi-recursive in 0.
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Proof. The implication (—») is an immediate consequence of the Substitution

Theorem (1.6): if U and § are as above, then

R(m, α, \)*+3a. §(m, a, I, λβ.{a}\a, β, I)).

For simplicity, we shall prove the implication (<—) only for relations with

arguments of types 0 and 1; the general case follows by an obvious modification.

It will suffice to show that U°E Σf'. The method is analogous to that of Exercise

VI.6.26. Let P be a relation such that P(M, v, (a), (β), G) holds under exactly the

same conditions as does P°(M, υ,(a),(β)) in Lemma 2.9 except that in clause (1)

we replace the condition

Clearly P is recursive in D. Let < G denote the transitive closure of the relation < G

defined by

We say that a functional H is closed for G iff for all M, υ, α, and β,

H is well-founded for G iff

), (γ) p ) = 0 Λ (β(p + 1), ( γ ) p + 1 ) < G

Finally, we shall say that G is locally correct for H iff for all fe, /, and

( m , α ) G k > l ω and all u such that H(H,(α)) = 0:

(0) if M = ((0, k, /, 0,. . . >, m) and (0, k, /, 0,. . .) is an index of the proper form

for (m, α ) , then G(M, <α» = {(0, k, /, 0, . . . >}'(m, α ) ;

(1) if for some b, c 0 , . . . , ck._u u = «1, fc, /, 0, ί), c 0 , . . . , ck,_λ), m), then

G(M,<α» = G«6,G«Co,m),<α», . . . ,G«c k w ,m),<α»>,<α»;

(2) if for some fe, M = «2, fc -f 1, Z,0), fc,m), then

(4) if for some b, u = ((4, fc, /, 0, f>), m), then
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We now claim that for all d, n, and β,

, H recursive in 0, β)[G is locally correct for H Λ

H((d, n>, (β)) = 0 Λ H is closed for G Λ H is well-founded for G].

For the implication (—>), suppose that U0(d,(n),(β)) holds and let

Γ{α}a(m,α), if |α,m, a |'*s \d,n, β |°;
G«α,m>,<α» = |

[o, otherwise;

fO, if |a,m,αΓ^|d,n,βΓ;
H«α,m>,<α» =

[l, otherwise.

It follows from the Ordinal Comparison Theorem (2.1) that G and H are
recursive in D, 0, and it is straightforward to check that they satisfy the other
conditions.

Suppose now that for some fixed d, n, and 0, G and H are functionals
recursive in D, β which satisfy the condition in brackets. Let < denote the
restriction of < G to {(w,(a)): H(w,(a)) = 0}. Then < is a well-founded partial
order whose field contains ((d, n), (β)) and it will suffice to prove by induction on
< that for all pairs ((α, m), (a)) in its field,

By the definition of P, the proof breaks into four cases where m E ω and
/ = Ig(α).

(1) if for some b, c 0,.., <V_1? a = (1, k, /, 0, f>, c 0 , . . . , ck^λ), then because H is
closed for G, for all i < k'

α » and «fr,q),<α»

where q{•, = G((c;,m),(α)). Then by the induction hypothesis, for all i < k\
{cj'ίm, α) — <7, and thus by the induction hypothesis again and the local
correctness of G,

G«α, m>, <α» = G«f>, q>, <α» - {6}'(q, α) - {a}\m, a).

(2) ]
> Similarly.

(4) J
(5) If (a, m) is of none of the preceding forms, then necessarily
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|(α, m),(α}|° = 0 — that is, a = (0, fc, /,0,...) and is an index. Otherwise,

((a,m),(α»,(0,(α»,(0,(α»... would be a descending <-chain. Hence (*) is

satisfied by clause (0) of the definition of local correctness. D

2.13-2.21 Exercises

2.13. Show that if H and 0 are two tyρe-3 functional such that H(G) = 0(G) for all

G recursive in 0 and some β E ωcυ, then for all R, R is (semi-) recursive in 0 iff R is

(semi-) recursive in H. (cf. Exercise VI.1.13).

2.14. Show that s/(sJ) and E are each recursive in the other.

2.15. For any D such that E is recursive in D, κt>Hί.

2.16. Formulate and prove the analogue of Exercise VI.4.29 for the hierarchies

of Theorems 2.5 and 2.6.

2.17. Formulate and prove choice principles for recursion in a type-3 functional D

parallel to those of Theorem VI.4.15.

2.18. Show that Uι is not an initial segment of UB — that is, there exists w G ί / 1

and σ < | u |" such that σ^ \ v |° for any υ E U\

2.19. Prove Theorem 2.8.

2.20. Show that there exists a type-3 functional D such that E is recursive in 0 and

{I: I is recursive in 0 and some β E ωω} is recursive in 0 (cf. Theorem VIA 15). Is

this true without the reference to βl

2.21. Show that for all R, the following are equivalent:

(i) R is semi-recursive in E#;

(ii) R is reducible to the closure Γ of a Δ2 monotone operator Γ over ωω

(iii) for some recursive relation P,

2.22 Notes. The basic theory here was worked out by Moschovakis [1967]. The

functional E# and the (semi-) hyperprojective relations are studied in Hinman-

Moschovakis [1971].
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3. Hierarchies of Relations Recursive in a Type-3
Functional

In Theorem 2.6 of the preceding section we showed that when E is recursive
in a type-3 functional 0, there is a natural hierarchy of (countable) length κι on
the type-2 relations recursive in D. It results from the previous construction of a
hierarchy of uncountable length and the observation that there is a natural way
of picking out a countable "cofinaΓ subhierarchy. Since there are only countably
many relations recursive in 0, it seems somewhat unnatural that such a
roundabout procedure should be necessary. In the case of recursion relative to a
type-2 functional I there was an alternative method of generating inductively the
type-1 relations recursive in I, that of iterating the jump operator J, over a set of
notations for ordinals less than ω,[l] (cf. Corollary VI.5.6). The aim of this
section is to show that if sJ is recursive in D, then a similar construction for a
type-3 0 breaks down before ω,[D] and classifies only a (small!) subclass of the
relations recursive in 0.

For any type-3 functional 0, let J o : ( ω)ω—»( ω )ω be defined by:

fO, if l(λβ.{a}F(a,β))~n;
J 0(F)(«α,n»*α) = J

[l, otherwise.

3.1 Lemma. There exists an index d and a primitive recursive function h such that
for all c, F, G, and 0,

(i) sJ(F) is recursive in J,(F) with index d\
(ii) if F is recursive in G with index c, then Jβ(F) is recursive in J((G) with

index h(c).
(cf Definition V.5.4).

Proof Let n0 = D(λβ. 0) and let / be a primitive recursive function such that for
all α, m, α, and β,

{/(α,<m»}F(α,)S)-0 {α}F(m,«).

Then

sJ(F)(«α,m»*α) = O^{α}F(m,α) is defined

for an appropriate d.
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For (ii), suppose that for all γ, F(γ) = {c} (γ) and let g be the primitive
recursive function of Theorem VI.2.14 such that for any a, a, and β,

{g(a,c)}Q(a,β)~{a}\a,β).

Then

J,(F)(«α, n» * a) = 0<->0(λβ. {α}F(α, β)) = n

and from this it is easy to define an appropriate h. D

For the remainder of this section, let ϋ be a fixed tyρe-3 functional such that
sJ is recursive in 0. We write simply J for Jo and construct a hierarchy in a way
entirely analgous to that of § VI.5. For a minor convenience we use functionals
instead of sets as the "backbone" of the hierarchy.

3.2 Definition. < J is the smallest subset of ω x ω such that for all w in the field
of < J there exist functionals H^ which satisfy the following conditions:

(i) 1 < J 2, Hi = λβ. 0, and H; = J(HΪ);
(ii) if u <Jυ, then v < J 2 ϋ and H^= J(Hj);

(iii) if u GFld(< J), for all p {a}(p,HJ

u)<J{a}(p + 1,H^, and {α}(0,Hj)« u,
then for all p,

W ( p , H J J < J 3 α 5 " and H£5-((p) α) = H (

J

α H p,H i )(α);

(iv) if u < v and υ < w, then u < w.
We write OJ for the field of < J , assign ordinals | u | J to u E O J as in § IV.4,

and set

V(J) = {R : R is recursive in H^ for some M G O J } .

We shall show that V(J) is a proper subset of the set of relations recursive in 11
by defining a functional K which is recursive in D but has the property that for all
u E O J, H^ is recursive in K.

For γ E W, we define K7 by recursion on | |γ | | by:

fθJ(α)(p), if II y || = 0;
Ky(0?)*α) =

[j(K ( r r p ))(α), otherwise.

Roughly speaking, Kr is the result of | |γ | | applications of J. Set
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fKΎ(a), if γ e W ;
K«α, y» =

[O, otherwise.

3.3 Lemma. K is recursive in 0.

Proof. Since sJ is recursive in 0, so is E1 and hence so is W. Let

foJ(α)(p), if yGW and | |γ | | = 0;
G(e9(p)*a,γ)~ \j(λβ.{e}\β,Ύ\pM<*)> if y <Ξ W and | | y | |>0;

tθ, otherwise.

Because sJ is recursive in D, J is calculable from 0 and thus G is partial recursive in
D. By the D-Recursion Theorem there exists an index e such that

{e}\(p)*a,y)~G(e,(p)*a,y).

A straightforward induction on || γ || shows that for all γ,

{*}'(«, y)=K«α,γ»

and thus K is recursive in D. D

For each u E O J, let δM be defined by:

(0, if v^Jw^Ju;

1, otherwise.

An easy induction on | u | J shows that for all u E OJ, δu E W and || δu \\ = | u | J.
Note that if υ < J M, then δu\v = δυ.

3.4 Lemma. T/iere exist primitive recursive functions f and g such that for all
uEOJ,

(i) δM is recursive in HJ

U with index f(u);
(ii) H^ is recursive in Kδ" with index g(u).

Proof The existence of / may be established much as in Lemma VI.5.2 and we
leave the details to Exercise 3.7. For (ii), we define g by effective transfinite
recursion to satisfy the following conditions. If u = 1, g(«) is any index of the
recursive functional Hj from Kδ\ If u = 2υ, then g(u) is an index for the
following computation: from Kδ" compute J(Kδ") = J(KδuΓt) and from this (by
3.1(ii)) compute J(F), where F is the functional recursive in Kδ%) with index g(v).
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Since F is HJ

υ, g(u) is indeed an index for H^ from Kδ". If u = 3α 5ϋ, let
ε(p) = {a}(p, HJ

υ) and let g(u) be an index from Kδ" for the functional G
described as follows. Let I be the functional recursive in Kδ"Γυ with index g(v)
and set ε'(p) = {a}(p, I). For each p, let Gp be the functional recursive in Kδ"rε ( p )

with index g(ε'(p)). Finally, G((p)*α) = Gp(α). It is now straightforward to
prove by induction over O J that (ii) is satisfied. D

3.5 Theorem. There exists a primitive recursive function h such that for all
u E O J, H^ is recursive in K with index h(u).

Proof We again define h by effective transfinite recursion. h(\) is any index for
the recursive functional Hj from K. If u = 2V and HJ

υ is recursive in K with index
h(v), then from K we can, by Lemma 3.4(i), compute an index for δυ, and thence
one for δM. By 3.4(ii), H^ is recursive in Kδ", hence in K alone. We take h(u) to be
any index which describes this computation.

If u = 3α 5V and ε(p) = {a}(p, H )̂, then using h(v) we can compute an index
of ε from K. Then the indices h(ε(p)) uniformly compute Hg(p) from K and thus
lead to an index of H^ from K. •

3.6 Corollary. There exists a set A C ω which is recursive in 0 but not recursive in
any HJ

U (u e O J).

Proof Let A = {a :{a}κ(a) is defined}. A is recursive in sJ(K), hence in ϋ. A
standard diagonal argument shows that A is not recursive in K and thus by
Theorem 3.5 A is not recursive in any H^ (u E O J). D

It can also be shown that the type-1 functions and relations recursive in K are
exactly those recursive in some H^ ( M G O J ) (Aczel-Hinman [1974, Theorem
1.10]). In the particular case D = sJ there is a direct way to construct a countable
hierarchy for the type-1 relations recursive in 0 (Aczel-Hinman [1974, Corollary
4.20]).

3.7 Exercise. Prove part (i) of Lemma 3.4.

3.8. Notes. The failure of hierarchies of the type discussed here to exhaust the
class of objects recursive in D was shown in Moschovakis [1967] for D such that E is
recursive in 0 and extended in Aczel-Hinman [1974] to all D such that sJ is
recursive in 0.

4. Higher Types

For the most part, the definitions and results for recursion relative to func-
tionals of types 4 and higher are straightforward generalizations of those for
type 3. Rather than discuss these for arbitrary types, we sketch them for type 4
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and leave it to the reader to formulate the general results. There is one new

phenomenon which appears at type 4, a selection theorem which implies that

when Έ (the tyρe-4 quantifier functional) is recursive in a type-4 functional $,

then the class of relations semi-recursive in J> is closed under existential function

quantification (3 1 ).

We shall use script letters to denote functions and relations of type 4 — <?, Φ,

% Sίf, J, and $ for functions from k U ' ' ' ω into ω and $, Sf, &. % and Ύ for

subsets of k l U ' 1 ' ω (a typical element of κιιj"ω is of the form (m, α, l,ϊ)). As

with types 2 and 3, we define recursion relative to a single type-4 functional $>

which takes a single argument F. Examples of such functional are:

fθ, if 3G.F(G) = 0;

»(F) =
U, otherwise;

(0, if {α}F(m, α, I) is defined;

1, otherwise.

Recursion relative to other sorts of type-4 functionals or relative to several

tyρe-4 functionals is then defined in the usual way by coding.

4.1 Definition. For any J, Ω[#] is the smallest set such that for all fc, /, /', /", n,

p, q, r, and 5, all i < fc, / < /, / ' < / ' , and / " < / " , and all (m, α, I,Ϊ)G ^ ' ' ' ' " ω ,

(0) Ί identical to the corresponding clauses of Definition 1.1 with the

i J addition of the parameter /" and the provision in clause (4) for indices

(4) J (4, fc, /, /', /",/", b) for the application of 0Γ;

(5) for any b and any F,

if for all H, (6,m, α, I, H,0,F(H))6

then ((5, fc, /, /', /", b), m, α, 1,0, ^(F)) E Ω[J>].

As always, we set

{aγ(m, α, I, ϊ) =- n iff (a, m, α, I, ϊ, n)

and say that ^ is partial recursive in 3 iff 9 = {a}* for some α, etc. The import of

clause (5) is that

{(5, fc, /, /', /", &>}*(m, α, 1,0) - ^ ( λ H . {b}*(m, α, I, H, ϊ)).

The simplest properties of recursion in a type-4 functional are established

exactly as in previous cases and we leave their formulation and proof to the
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reader. Note that the class of relations semi-recursive in 3 is closed under
universal (type-2) functional quantification (V2). The substitution theorems are
related to those for type 3 (Theorem 1.6) as those are related to the results for
type 2 (Theorems VI.2.10, 14). The new cases here involve primitive recursive
functions h and h' such that for all J, a, d, m, α, I and ϊ,

(i) {Λ(fl,d)} '(m,α,l,ϊ)-{fl} '(m,α,l,B,λH.{d} '(m,α,l,H,ϊ));
(ii) if λG.{d}J(G) is a total type-4 functional #f, then

{h'(a, d)}*(m, α, 1,0) - {α}*(m, α, I, ϊ).

The ideas involved in the discussion of sβ and E# following Corollary 2.11 can be
extended to show that sβ is recursive in E# and thus that the class of relations
recursive in sβ is a proper subset of Δ2. On the other hand, all Π2 relations are
semi-recursive in sβ and all Δ2

ω) relations are recursive in %. It follows from the
proof of Theorem 1.4 that sβ is recursive in % but the preceding remarks imply
that % is not recursive in sβ. The classes Σ?, Πf, and Δf may be defined in the
natural way and one may prove similarly as for Corollary VI.7.12 that for any
inductive operator Γ over ( ω )ω and any r ^ 1, if Γ E Δ,, then also Γ E Δ?. In
particular we obtain by the method of Theorem 1.4 that for any r ^ 1, if 3 E Δ3

n

then the class of relations semi-recursive in $ forms a proper subset of Δ .̂ Of
course, the example % shows that no Δ2 has this closure property.

For the rest of this section we shall assume that $ is a fixed tyρe-4 functional
such that % is recursive in $. For simplicity, we shall omit mention of tyρe-3
parameters; type-2 arguments can no longer be regarded as parameters. We use
x and y to denote typical elements (m, α, I) of fc//ω, (x) to denote the
corresponding triple «m),<α>,<l», (x,/8) for «m),<α,j3),<!)), etc.

Set

V*(a, (*))«+{a}*(x) is defined

and

| α , x Γ = least σ.(α,x,{α}'(x))E ί2[^] σ

if such a σ exists; otherwise, o( Γ ω ) ω) (the least ordinal not the type of a
pre-wellordering of ( ω )ω). The ordinals of computations introduced by clause
(5) are given by: if a = (5, k, /, /',0, b) and {a}J(x) is defined, then

4.2 Ordinal Comparison Theorem. There exists a functional H partial recursive
1 x°in J such that for all a , a1, x°, and x ,

(i) if (α°,<x°»EIi/ and | a°,x°\J ^ \a\xι\*, then
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(ii) if (αSfr^Gl/ and |α\xT < |α°,x°Γ, then

Proof. The definition of B-fl is entirely analogous to that in Theorem 2.1 and thus
(in more detail) to that in Theorem VI.3.3. D

From this we obtain exactly as in § VI.4 and § 2 of this chapter the Selection
Theorem and all the structural consequences analogous to 2.3-2.8. The proof of
Lemma 2.9 can similarly be generalized and we obtain a relation IP** semi-
recursive in J> such that for all a and x = (m, α, I),

{a}*(x) is defined ~ i 3 F 3 δ 3ε Vp [P*(δ(p), δ(p + l),(ε)p,(ε)p + 1,(F)p;(F)p + 1)

Intuitively, F* «α, m), <6, n), (α >, (β >, <l>, (H» means that the computation
(b, n, β, H) is an immediate predecessor of (α, m, α, I). In particular, the class of
relations semi-recursive in 3 is not closed under existential functional quantifica-
tion (3 ). We leave to the reader the definition and study of the functional %Φ

and the formulation and proof of the analogue for $ of Theorem 2.12
(Spector-Gandy Theorem).

We come now to showing that the class of relations semi-recursive in 3 is
closed under existential function quantification (31).

4.3 Theorem. There exists a functional F partial recursive in 3 such that for any a
and x, the following are equivalent:

(i) 3j3.{a}'(x,/3) is defined;
(ii) Vj8.F(α,<x,j8» is defined and 3j8.F(α,<x,/3»~0.

From this follows immediately that if R is semi-recursive in 3, say with
semi-index a from ^, then

so that 31R is also semi-recursive in 3.
The proof of Theorem 4.3 is rather involved if all details are included, but the

basic idea is relatively simple and we shall confine our discussion to this.
Proof of Theorem 4.3. The point of the functional F is to select from Bα x =
{β :{fl}**(x,β) is defined}, whenever it is non-empty, a non-empty subset
Aα x = {β : F(α, (x, β)) — 0} which is recursive in x and J>, uniformly in a and x —
that is, with index from x and $> computable from a independently of x. Aα x will
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be recursive (not merely semi-recursive) in x and $ because when B α x ^ 0 ,
λβf(a,(x,β)) is total.

It turns out to be more convenient to prove a slightly more general result. Let
φ, φ, and θ denote functions from ωω into 2 1 1 ω , so φ(β) = (a, m, a, I). We may
think of φ as a quadruple (F, G,H,I) of type-2 functionals, where

= (F(/8),G(/8),Ap.H(p,/8),λr.l(ftr))

and thus as a single type-2 functional. We shall define a function G partial
recursive in 3 which selects a set Aφ - {β :G(/3, <p) —0} such that whenever
Bφ = {β : φ(β) E U^} is non-empty, then Aφ C Bφ and Aφ is recursive in φ and
3, uniformly in φ. Then F is obtained by applying this result to the function φa x

defined by: φajβ) = (a,(x, β))
For any φ, let

min φ = inf{|<p(β)| : β E ωω}

and

Clearly, 3β. φ(β)e V* «+min φ < κ Λ

We shall determine G so that for all β and φ,
(a) if min φ < κJ, then

fθ, if | φ ( β ) | * = m i n φ ;

U, otherwise;

In fact, we need only be concerned about condition (a), for if G satisfies (a), and
φ(β) = (α, (x)), then the functional computed according to the following flow
diagram satisfies both (a) and (b):

0

I 1

We may thus define G by effective transfinite recursion on min φ for
min φ < κJ. Suppose that for all ψ such that min ψ < min φ and all β, G(/3, ψ)
has been defined to satisfy (a); we shall describe how to compute G(β,φ). If
min φ = 0, this is clear and we assume min φ > 0 .
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Let © denote the "augmented" immediate predecessor relation for computa-
tions relative to 3:

(α',x')©(α,x)~F*(α,α',x,x') or a = (0, fc, /,/',0,...)

is an index appropriate for x and

The relation ©0 is the restriction of © to those cases where the fact that (a\ x') is
an immediate predecessor of (α, x) can be determined without performing any
computations. Precisely, let Po be the relation defined by replacing clause (1) of
the definition of P* (κ,υ,<α>,<0>,<H>,<l» by

(Γ) for some b, c0,.. . ,c k _,, u = ((1, fc, /, /',0, b, c 0,.. . , cv^), m), β = α, H=
I, and v = (c,,m) for some i <k'\

Then the definition of ©0 is obtained from that of © by replacing P* by pζ. Thus
©o is a subrelation of © which is recursive in 3. Although in general © is only
semi-recursive in 3, it is clear that for any (α, x),

(c) if for all (a\x')©Q(a,x\ {α'Γ(x') is defined, then
{(α',x'):(α',x')©(α, x)} is recursive in x and 3, uniformly in x.

Let

B = {β: for all ( α , x ) © o φ ( β ) , \a,xf < min ψ}\

C = {β: for all (α,x)©φ(β), |α,x|^ <minφ}.

Clearly CCB and | φ(β)\* = min φ iff β G C, so it will suffice to show that C is
recursive in 3 and φ, uniformly in φ, as we may then set G(β, φ) = Kc(β). Our
approach to this is to show that B is recursive in 3 and φ and to define a set A
also recursive in 3 and φ such that

(d) for all β £ A , min θ < min φ, but
(e) min φ = sup+{min θ : θ G A}.

Given such A and B, we have for any β,

j3GC<H>/3GB and for all (α,x)©φ(/3), (30 G A).| α,x|* ^ min θ.

For /3 G B, the condition (α,x)©φ(β) is recursive in ^ and φ by (c). The
quantifier (30 G A) is computable from % and A, hence from 3 and φ. Finally,
for 0 G A, it follows from (d) and the induction hypothesis that

(f) I a, x f ^ min 0 ** 3γ (G(γ, 0) = 0 Λ | a, x f ^ | 0(γ)^).
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That the condition on the right side is recursive in 3 and φ is immediate from

the Ordinal Comparison Theorem and the fact that E is recursive in 3 and we

have thus verified that C is recursive in 3 and φ.

Let Λ denote the least cardinal greater than 2M°. For σ < λ we define Aσ and

Bσ by recursion as follows. Let B ( σ ) = U{BT : τ < σ}. Then

Aσ = {θ: Vβ [β E B(σ) A θ(β)®φ(β)] v [β £ B ( σ ) Λ θ(β)®oφ(β)]};

Bσ = {β\ for all (a,x)©oφ(β) (30 E A σ ) . | α , x | ^ ^ min 0}.

It is straightforward to prove by induction that for σ ^ p, A σ C A p and

Bff C Bp C B. Suppose that for all σ < λ, B ( σ ) £ Bσ. Then by associating with

each β E B ( λ ) the least σ such that β E B σ , we obtain a pre-wellordering of ωω

of length λ, a contradiction. Hence, for some σ < λ, B(5.) = B^. It follows that for

p ^ σ, A^ = Ap and B^ = Bp. We set A = A^ and show below that B = B^.

It is immediate that (d) and the inequality ( ^ ) of (e) are satisfied. Suppose

that min φ > sup+{min θ : θ E A}. We shall construct a function ψ with the

following two mutually contradictory properties: ψ 6 A and

(V0 E A) Vj3 (I φ(β)\J > min θ). For β E B^,

suρ+{min0 : θ E A}<min<p ^ φ(β) = sup+{|α,x|^ : (a,x)©φ(β)}.

Hence there exists a pair (α,x)Θ<p(β) such that for all 0 E A, \a,xf >min 0

and we set ψ(β) equal to some such pair. For β £ B&, there exists by the

definition of B^ a pair (a, x)©oφ(β) such that for all 0 E A^ = A, | α, xf > min 0

and we set ψ(β) equal to some such pair. That ψ has the announced properties

follows from the fact that B(^} = B^.

It remains to show that A and B are recursive in 3 and φ. Note first that

B = B^, since if β E B, then by (e), for all (a,x)©oφ(β), \a,x\J <

sup+{min 0 : 0 E A}, so β E B σ . Recall that W denotes the set of type-2

functional I which code well-orderings of ωω. W is recursive in 3 and contains

codes for all ordinals less than λ. We claim that there exist functionals HI and 0

recursive in 3 such that for all I E W, β, and φ,

,\) = 0+*θ E A|,,|( and 0(0, φ, I) = 0 «-> β EB,,,,,.

From this it follows that

and
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so both are recursive in J. D-fl and 0 are defined by effective transfinite recursion

parallel to the recursive definitions of Aσ and Bσ. The equivalence (f) is used

again to justify the recursiveness of B σ and in the definition of H we use the

equivalence, for I G W,

where

J < I«->3F(F is an isomorphism of = ĵ into a proper initial

segment of ^ , ) . D

4.4-4.5 Exercises

4.4. Prove that sj> is recursive in E#.

(O>ω)4.5. Sketch a proof that for all r ^ 1 and any inductive operator Γ over (O>ω)ω, if

Γ G Δf, then also f G Δ*.

4.6 Notes. Theorem 4.3 was announced in Grilliot [1969] and is known as the

Grilliot Selection Theorem. The proof there was incorrect and our proof is from

Harrington-MacQueen [1976].




