
Chapter V
Δl and Beyond

Most of the analysis of the first level of the analytical hierarchy in Chapter IV

rests on the representation of Πj sets in terms of well-orderings (Theorem

IV. 1.1), and for many years after these results were known there seemed to be

no hope of extending any of the methods or results to higher levels. Since W is a

Πj set it cannot be used directly to represent all Σ2 or Π2 relations, and no

analogue of W at higher levels was apparent.

In § 1 we formulate the abstract pre-wellordering property and show that

much of the structure of Πj and Δ| relations is due solely to the fact that Π| has

this property. Furthermore, it is easily seen that Σ2 also has the pre-wellordering

property and this leads to the conclusion that a strong analogy exists between Πj

and Σ2. This correspondence will be reinforced in § VIII.3 where we discuss two

generalizations of recursion theory for which Π| and Σ2 a r e exactly the classes of

"semi-recursive" relations.

The pre-wellordering property cannot be proved for other classes in the

analytical hierarchy without further set-theoretical hypotheses beyond ZFC. In

§§2 and 3 we discuss two such hypotheses — the hypothesis of constructibility

(V = L) and the hypothesis of projective determinacy (PD). The principal results

are (1) if V = L, then Σ* has the pre-wellordering property for all r ^ 2, whereas

(2) if PD, then the classes which have the pre-wellordering property are

Πj,Σ2,Π3,£4,115,... . These hypotheses also imply analogues of many of the

results of §§ IV.5-7 for higher levels of the analytical and projective hierarchies.

We turn then to extensions of the results of §§ IV.3-4, which might be termed

the study of Δj and Δ | "from below". Here the results are mainly negative: no

analogue of the Borel hierarchy suffices to exhaust any of the classes Δj for r ^ 2,

and similarly for the effective hierarchies and Δj. On the other hand, the classes

of sets which comprise these analogues are themselves somewhat similar in

structure to the class of (effective) Borel sets. The classical (boldface) versions

lead to significant extensions of the reuslts of § IV.5, while the effective versions

will be seen in §§VI.5-6 to be closely connected with certain generalized

recursion theories. Finally in § 6 we consider some facts peculiar to Δ2 which lead

to a hierarchy for the Δ2 relations on numbers.
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1. The Pre-Wellordering Property

We recall from 1.1.6 that a pre-wellordering is a well-founded, transitive,

reflexive, and connected relation — from being a well-ordering it lacks only

antisymmetry. With any pre-wellordering < is associated a norm | |, a function

from the field of < onto an ordinal such that

x < y <r*\χ I ^ \y I.

The image of | | is called the (pre-wellorder-) type of < . Conversely, any

function | | from a set into the ordinals determines a pre-wellordering on this

set by this equivalence. For example, the function || \\ defined on ωω by:

•I
the order-type of ^ y , if γ E W;

Hί9 otherwise;

determines a pre-wellordering of type Hλ + 1.

In what follows, we denote by X any one of the classes Σj or ΓlJ (r ^ 1) and

by V the corresponding universal relation Uj or ~U*. We sometimes think of V

as the set, {a: V(α(0), α(l), λp. a(p + 2))}. To improve readability, we shall write

x for (α, (m), (a)) and y for (ί>, <n>, (β)). Then also (x, γ) denotes (α, (m), (α, γ»,

etc., so for example,

1.1 Definition. X ( = Σj or ΓlJ) has the pre-wellordering property iff there exist

relations < , < Σ , and < π such that

(i) < is a pre-wellordering with field 2Λω such that for all x and y,

(a) ~V(y)-» x < y, and

(b) V(y)ΛX<y ^V(JC);

(ii) < Σ is Σj and < π is Πj;

(iii) for any x and y such that either V(x) or V(y),

(Cf. Exercise 1.20 for other characterizations).

Conditions (i) (a) and (b) mean that all y ^ V are < -equivalent and strictly

follow all x G V in the pre-wellordering. Hence the pre-wellorder type of < is a

successor ordinal. If X has the pre-wellordering property with notation as in the

definition, then we set
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and x < π y ^ " l ( y <**)'

Then it is clear that < Σ is Xj, < π is Πj, and for any JC and y such that either V(jt)
or V(y),

Note also that if ~V(y), then [x < y <r» V(x)].
In the following, we shall write cX to denote {R: ~R E X} and X to denote

Xj when X = Σj, etc. In situations where X may refer to either Σ* or Πj we shall
sometimes write < x to refer to < Σ in case X is Σj and to < π

 m c a s e X *s Πj.
Similarly, < c X refers to < π in case X is Σj and to < Σ in case X is ΓlJ.

To avoid confusion, we now write the relations of Definition IV. 1.3 as <™,
< etc.

1.2 Theorem. ΓlJ has the pre-wellordering property.

Proof. Since ~L)J is a Πj relation, there exists by Theorem IV.1.1 a recursive
functional F such that for all x, ~Uj(x)«-»F[x]e W. Thus if we define

it follows easily from Theorem IV.1.4 that the relations <*, < Σ , and <π satisfy
the conditions of Definition 1.1. D

1.3 Theorem. For any r ^ 1, if Πj has the pre-wellordering property, then Σj+ 1

also has the pre-wellordering property.

Proof. Let < r, < Σ , and <π be relations which establish the pre-wellordering
property for Πj, | |Γ the norm associated with <Γ, and Kr + 1 the pre-wellorder
type of <Γ. Then for any JC,

x, γ) | r < κr).

Let

|x | =inf{|(x,γ)| : γ G ω}.

Then
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We take <r+1 to be the pre-wellordering determined by | |Γ + 1:

and set

and

The provisions of clause (ii) of Definition 1.1 are clearly satisfied and those of
(i) follow from (*). Towards (iii), we first observe that directly from the
definition we have

(1) j c < r + 1 y ~ 3 r V δ [ ( x , γ ) < Γ ( y , δ ) ] .

From this, elementary logic, and the fact that < Γ is well founded, we conclude

also

(2) x « r + 1 y ~ V S 3 r [ ( x , r ) « r ( y , δ ) ] .

We claim that if either UJ+1(JC) or Uj+1(y), the following four equivalences

hold:

(3) x < Γ + 1 y ^ 3 γ V δ [ ~ U : ( x , γ ) Λ ( x , γ ) < r ( y , δ ) ] ;

(4) x <r+1 y ~ Vδ 3γ [~Uj(x, γ) Λ (X, γ) < Γ (y, δ)];

(5) x < 1 y ^ 3 r V δ [ ~ U : ( j c , γ ) Λ ( x , γ ) < ί 1 ( y , δ ) ] ;

(6) x < π + 1 :

All of the implications (<—) are immediate from (1), (2), and the definitions. For

(3)(—•) assume x < Γ + 1 y and suppose first Uj+1(x). If γ 0 is such that |(x, γo)|Γ is as

small as possible, then ~L)J(x, γ0) and for all δ, (JC, γ0) <
Γ (y, δ). If, on the other

hand, Uj+1(y), let δ0 be such that ~Uj(y, δ0). By (1), there is some y0 such that

for all δ, (x, γ0) <
Γ (y, δ). In particular, (x, γ0) <

r (y, δ0) so by (i)(b) applied to < Γ

we have ~Uj(x, γ0).

The proofs of the remaining implications (—») are similar and are left to the

reader. Condition (iii) of Definition 1.1 for <r+1, <χ+ 1, and <π+ 1 is immediate

from (3)-(6) and (iii) for < r, < ^ and <r

n. D
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1.4 Corollary. Σ 2 has the pre-wellordering property.

Proof. Immediate from Theorems 1.2 and 1.3. D

In the remainder of this section we shall derive a number of results which
apply to any class X ( = Σj or ΓlJ) which has the pre-wellordering property. In
the main, the proofs are translations of those of the corresponding results for Πj
in §§IV.l-2 into a more general setting. As corollaries we obtain many facts
about Σ2 and Δ2, and in §§2 and 3, under additional set-theoretic assumptions,
also about higher levels of the analytical hierarchy.

When X is assumed to have the pre-wellordering property we shall use the
notation of Definition 1.1 and in addition write | | for the norm associated with
< and set #c = sup+{| x | : V(x)}. On occasion we shall write | α, (m), (a)\ instead
of I x I or |(α, (m), (α)) | . We also set

The pre-wellordering < restricted to sequences of the form (α, (m), ( )) induces
a pre-wellordering of ω x ω in an obvious way and we write | | 0 for the norm
associated with this pre-wellordering. Thus

and

In particular, K = sup+{ | α, (m) | 0 : V(a, (m))} is a countable ordinal. Note that

) | 0 ^|α,(m),( )| and the inequality may hold (Exercise 1.24).

1.5 Theorem. If X ( = Σj or IlJ) has the pre-wellordering property, then

(i) X and X have the reduction property but not the separation property

(ii) cX and cX have the separation property but not the reduction property.

Proof. By Lemmas II.4.19 and Π.4.21 it suffices to show that X and X have the
reduction property. Let R and S be any two relations in X of the same rank.
Since V is universal for X there exist indices a and b such that

m),(α)), and S(m,

We set

R*(m, α) ** R(m, a) Λ (α, <m>, <α» < x (ί>, (m),

S*(m, α ) ~ S ( m , a) Λ (fe,(m),(α))<
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It is straightforward to verify that (R*,S*) reduces (R,S).

For R and S belonging to X, there exist a, b, β, and γ such that

R(m,α)~V(fl,<m),<«,j8», and S(m, a)**V(b,(m),(a, γ».

Then we take

R*(m, a) +* R(m, α) Λ (a, (m), (a, β)) <x (b, <m>, (a, y));

S*(m, α ) ~ S ( m , a) A (b,(m),(a, γ ) ) < x (α,(m),(α, /3». D

1.6 Boundedness Theorem. If X ( = Xl or Π*) /ια5 ί/ie pre-wellordering property,

then
(i) /or any R G cX, i/ i? C V, ίfien sup+{ | α, (m) | 0 : R (a, <m»} < K

(ii) // X 15 Πj, then for any REcX ( = Σj), // RCV ( = ~ U ; )

/. Suppose that for some R E cX, 1?CV, the conclusion of (i) is false. Then
for any b and n,

(m))Λ(6,(n),( » < c X (α,(m),( »].

Since cX is closed under 3°, this implies V E cX, which is false as V is universal
for relations on numbers in X.

If X = Π* and for some R E cX, R C V, the conclusion of (ii) is false, then for
any b, n, and β

Since ΣΓ is closed under both 3° and 31, this implies V E Sj, a contradiction. D

Of course, the proof of (ii) does not work for X = Σj because IlJ is not closed
under 3 1 — in fact, the result is false for X\ (cf. Exercise 1.25).

For each ordinal p, set

Vp={(α,(m),<α»:|α,<m>,(α)|<p}, and

Vp={(α,<m)):|α,<m>|o<p}.

1.7 Theorem (Hierarchy). If X ( = Xj or Πj) has the pre-wellordering property,
then



1. The Pre-Wellordering Property 207

(i) for all relations R on numbers,

R E ΔΓ <-» R < Vp for some p < κ;

(ii) if X = Uι

r, then for all relations R,

R E Δ,1 <H» R < Vp for some p < K.

Proof. If p < K, then there exists a (b, n)E V such that p = |ft, (n)|0 (we are
treating V here as the set {(a,m): V(α,(m))}). Then

<α,m)E Vp~(α,<m>,< »<Σ(6,<n>,< »

which implies that Vp E Δj. It follows that if R <£ Vp, then also i?EΔj.
Conversely, if i? E Δj, let α be such that for all m, i?(m)<-»(α,m)E V. Then
Λ = {(a, m): I? (m)} belongs to cX, so by the Boundedness Theorem A C Vp for
some p < K. Thus i? <̂  Vp.

For (ii), suppose REΔj, say REΔj[)3]. Then for some a,
R(m, α) <-> V(α, <m>, <α, j8». Then S = {(α, <m>, <α, j3»: R(m, α)} is a Σfts] sub-
relation of V, so by the Boundeness Theorem, S C Vp for some p < K. Then
i?(m,α)oVp(α,(m),(α,j8)),soR<Vp. D

Note that the proof of (i) also establishes:

1.8 Corollary. If X (= Σj or Πj) has the pre-wellordering property, then for all
relations R on numbers, R E Δj iff for some a and some p < K,

Λ(m)«Vp(fl,<m». D

1.9 Theorem (Upper Classification). If X (= Σj or Πj) has tfie pre-wellordering
property, then {a : a E Δ̂ } E X.

Proo/. By Corollary 1.8, for any a,

< κ ) 3 α Vran [α(m)= n <-» Vp(a,(m, n))]

E V)3α Vmn ([α(m)= n -^(a,(m, n))<xu]Λ

Λ[(a,(m, n))<cXu^>a(m)= n]). D

1.10 Corollary. // Πj has the pre-wellordering property, then Δj is not a basis for
Πl-ι. If Σj has the pre-wellordering property, then Δj is notabasisfor ΠΓ. D
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1.11 Selection Theorem. If X ( = Σj or ΓlJ) has the pre-wellordering property,

then for any R E X , there exists a partial functional SelR with graph in X such that

for all m and a,

3p R(p,m, α)<-»R(SelR(m, α),m, α)<-»SelR(m, a) j .

Proof Suppose R E X and a is an index such that R(p, m, α)<->V(α, (p, m),(α)).

Then as in the proof of Lemma IV.2.5, it suffices to define

SelR(m, a) - p «-» R(p, m, a) Λ \fq [(α, <p, m>, <α» < x (α, <q, m

A (V? < p)[(Λ, <p, m>, (α)) < x (α, (q, m), (a))]. D

1.12 Lemma. If X ( = Σj or ΓlJ) fiαs ί̂ ie pre-wellordering property, then for every

p < K, ί/zere exί5ί5 a set B E. Δj SMC/I ί/iαί B < V̂ . /or no σ ^ p.

Proof Similar to that of Lemma IV.2.4. D

1.13 Theorem (Lower Classification). If X ( = X\ or ΓlJ) has the pre-wellordering

property, then {a : a E Δr} £ ΔΓ.

Proo/. If X is Πj we may proceed as in the second part of the proof of Theorem

IV.2.6. Suppose now that X is Σ*. Let

A = {a : a is the characteristic function of Vp for some p ^ K}.

First, A E Σj since for all α,

((fl,m)) = 0-^(α,m)G V]

Λ \fab Vmn [α «Λ, m» = 0 Λ (6, <n>, ( ))<u (a, <m), ( ))

For p < K, the characteristic function of Vp is Δj by Theorem 1.6 whereas the

characteristic function K v of Vκ = V is not Δ). Hence A ~ {a : a E Δj} = {Kv}.

But if {a : α E Δj} E Δj, this set is Σj which implies, by Corollary III.2.7 (vii), that

K v is Δj, a contradiction. Π

It would seem at first glance that the ordinals K and K might depend on the

particular pre-wellordering used to establish the pre-wellordering property. It

turns out, however, that in many cases these ordinals are uniquely determined.

1.14 Definition. For any r ^ l ,

(i) δr = sup+{||.R | | : .R E Δj and R is a well-ordering on ω};

(ii) δ] = sup+{||R||: RGAJ and R is a pre-wellordering on ωω}.
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From Theorem IV.2.11 we have δ\ = ωι and it easily follows from the
techniques of that section that δ\ = Hx (Exercise 1.26). Note that if £ is a Δj
pre-wellordering on ω and

then 5 is a Δj well-ordering and | |S | | ^ \\R ||. Hence δι

r is also the supremum of
the types of Δj pre-wellorderings on ω.

1.15 Lemma. If X ( = Σj or Π*) has the pre-wellordering property, then K ̂  δ\
and K ^ δr.

Proof. For any ordinal p < K, choose w E V such that \w\0 = p. Then if
Rw(u,υ)*+\u\0^\v\0<\w\0, Rw is a Δj pre-wellordering of type p so by the
preceding remark, p < δ\. Thus K ̂ δ\. The proof that K ^ δ\ is similar. D

To prove the converse inequalities we shall need an effective version of the
Boundeness Theorem. For the next two lemmas, let

Λb={(fl,<m»:~V(Mα,m»}, and

Rf δ = {(α, <m>, <α» : -V(fr, <α, m), <α, j

1.16 Lemma. //X ( = Σj or Π*) /ιαs ί/î  pre-wellordering property, then there exist
primitive recursive functions f and g such that for all b, β, and δ,

(i) ifRbCV, then V(f(b),(f(b))) and

sup+{I a, <m)|0: Rb (a, <m»}« |/(a), (f(a))\0<κ;

(ii) i/Xis Π; and Rf δ CV(=~Uj), ίften V(g(6),<g(fc)>,<j8,δ» and

snp+{\a,(m),(ct)\:nβΛa,(m)Λa))}^\g(b),(g(b))Λβ,δ)\<κ.

Proof Suppose first that Rb C V. Since V is universal, there exists a primitive
recursive function / such that for all n,

~ V # ) , ( n ) ) o 3 α 3 m [ ^ ( α , ( m ) ) Λ ( n , ( n ) , ( ))<cX (α,(m>,( »].

If ~ V(/(ί>),(/(ft))), then for some α and m such that Λb(α,<m»,
(/(fr), </(*)), ( » <cX,(α, <m>, ( )). Since Rb C V, this implies V(f(fr), </(*>)», a
contradiction. Hence V(f(b),(f(b))) and thus for all α and m such that
Kb(α,<m», (f(b)Λf(b))Λ »*cX(α,<m>,< », that is, |α,(m)| 0<
as required.
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If Rf δ C V and X = U], we take g to be a primitive recursive function such

that for all n,

and the argument proceeds similarly as above. D

1.17 Theorem. If X ( = Σ* or ΓlJ) has the pre-wellordering property, then

(i) for any S E ΔΓ, if S is a well-ordering of ω, then \\S\\< κ;

(ii) if X is III, then for any S E Δj, i/ S is a pre-wellordering of ωω, then

Proo/. Let S be a Δj well-ordering. We shall construct a primitive recursive
function /ι such that for all p and q,

It follows from (*) that for all p EFld(S), |p | s ^ |Λ(p),<Λ(p)>U s o

by the Boundedness Theorem.
Since S E ΔΓ, there exists a primitive recursive function h0 such that for any

q E Fld(S) and any e,

: 3 p [S(p, q)ΛpϊqΛ

Let / be the function of the preceding lemma, by the Primitive Recursion
Theorem choose e such that for all q, {e}(q) = f(ho(e,q)), and set h = {e}. We
prove (*) by induction on S. Suppose that (*) holds for all p and q such that
\<l \s < \r\s- Then by Lemma 1.16

so that (*) holds for all p and q such that \q \s ^ \r\s.
For (ii), let S be a Δj pre-wellordering — say S E Δj[δ]. We shall construct a

primitive recursive functional H such that for all a and β
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Since S G Δ^[δ], there exists a primitive recursive functional Ho such that for any
β G Fld(S) and any e,

= {(ί>, (b), γ) : 3a [S(α, β) Λ - Ί S(β, α) Λ γ = (α, δ) Λ

Let g be as in the preceding lemma, by the Primitive Recursion Theorem choose
e such that {e}(β) = g(H0(e, 0)), and set H = {e}. The proof of (*) is now similar
to that of (*) and the result is immediate from (*). D

1.18 Corollary. If X (= Σj or ΓlJ) has the pre-wellordering property, then
(i) K = δj;

(ii) if X is n], then K = δ\.

Proof. Immediate from 1.15 and 1.17. D

Note that it is not necessarily true that when Σj has the pre-wellordering
property, K = δ\. Let κ2 and κ2 be the ordinals associated with the pre-
wellordering for Σ2 obtained by the method of the proof of Theorem 1.3 from
<\ Then clearly κ2 = δ\ = Hu but the relation {(γ, δ) : γ, δ G W Λ || γ || ^ || δ ||} is a
Πj pre-wellordering of type Hι so δ ^ M , .

We conclude this section by listing the consequences of the pre-wellordering
property for Σ2.

1.19 Theorem.
(i) Σ2 and Σ 2 have the reduction property but not the separation property

(ii) Π2 and Π2 have the separation property but not the reduction property
(iii) for any RE III, ifRQU\, then sup+{| α,(m)|0: R(a,(m))}< δ 2 ;
(iv) for any R, R E ΔI++R < U\p for some p < δ 2 ;

(vi) Δ2 is not a basis for Π2

(vii) for any R G Σ2, there exists a partial functional SelR with Σ2 graph such
that for all m and a,

3p R(p, m, α) ̂  R (SelR(m, α), m, α) ++ SelR(m, a) |

(viii) κ2 = δ 2 and κ2 = Hι = δ\. D

1.20-1.33 Exercises

1.20 (Moschovakis). Show that for X = Σj or Πj, each of the following is
equivalent to the pre-wellordering property for X:

(i) for every R G X, there exist relation < , < Σ , and < π which satisfy (i)-(m)
of Definition 3.1 with 'V replaced by 'R';
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(ii) for every REX, there exists an ordinal λ and a function φ mapping ' ω

onto λ + 1 such that R(x)++φ(x)< λ and the two relations

and

both belong to X. (Such a φ is called an X-norm for R of length λ).

1.21. Give an alternative proof of Theorem 1.2 based on the results of Exercise

IΠ.3.33. For simplicity, consider in detail only relations on numbers.

1.22. Show that for all r ^ 1, Σ? has the pre-wellordering property (defined by

making the obvious modification in Definition 1.1 (ii).)

1.23. Show that if X ( = Σ* or Πj) has the pre-wellordering property, then so

does X ( = ϊ\ or Πj).

1.24 (Gandy). Show that it may happen that |α,(m)| 0 < |a,(m),< >|. (Take

X = X\ with the pre-wellordering defined by the proofs of Theorems 1.2 and 1.3.

Apply the Basis Theorem to

to show that not all Δ2 ordinals are of the form

|α,(m>,( >|2 with l4(α,<m>,< ».)

1.25. Show that the boldface boundedness property (1.6(ii)) fails for X = Σ2.

1.26. Prove that δί = Hx. Show in fact that every Xί pre-wellordering of ωω has

type <HX. Note that there are Hι pre-wellorderings of uncountable type.

1.27. (Cf. Exercise IV.2.25.) If X ( = Σj or Πj) has the pre-wellordering

property, then the following two effective choice principles hold: for any R G X,

(i) if VmVα3p R(/?,m, α), then there exists a Δj functional F such that

VmVα R(F(m, α), m, α);

(ii) if VmVα(3/3 GΔj[α])R(m, α, β), then there exists a Δj functional G

such that VmVαR(m,α,λ(|.G(^m,α)).

1.28. Show that if ΓlJ has the pre-wellordering property, then the image of a Δj
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set B under a functional θ : ωω —> ωω with Δ* graph which is one-one on B is Δj
(cf. Theorem IV.6.9).

1.29. For any X (= Σj or Πj), let Σ j ' x be the class of relations R such that for
some P E Δ*,

R(m, α)<^ (3β G Δ*[α]) P(m, α, β).

Show that if X has the pre-wellordering property, then Σj ' x C X. (Cf. Theorem
3.8 below). Show that if X = Σj and has the uniformization property, then the
converse inclusion also holds.

1.30. Show that if X ( = Σj or ΓlJ) has the pre-wellordering property, then there
exists a well-ordering of ω in X of order-type δj but every well-ordering of ω in
cX has order-type less than 8ι

r.

1.31 (Martin, Solovay). A natural conjecture based on Theorem III.4.9 is: if ΓlJ
has the pre-wellordering property, then {a : a is recursive in some B E Σj} is a
basis for Σ*. Show that this conjecture is false for r > 1 (but cf. Theorem 3.7
below). (Show that for any B E ΓlJ and any γ E W such that | | γ | | ^ δ * , B e
Δj[γ]. Then consider {a : 3γ (γ E W Λ ||γ || ^ δ) Λ α g Δj[γ])}).

1.32 (Moschovakis). Let W2 = {a:3j3.aG W[β]} and ||α ||2 =
inf{||α||β & ^ W[β]} Show that every Σ^ relation on numbers is reducible to
W2 and that if A is a Π^ subset of W2, then sup+{||α | |2: a E A}< δ\.

1.33. Give another proof of the existence of a Σ2 relation R of order-type δ^
along the following lines. Using the Uniformization Theorem IV.7.8, obtain a
relation R E ΓlJ, such that

3β.a E W[j3]o3!βR(α,β).

Use this to assign to each a E W2 a function ya E W with || ya \\^\\a \\ and
obtain .R by "piecing together" the orderings ^ ya.

1.34 Notes. The pre-wellordering property arose from an analysis of just what is
used about ΓlJ in proving the main structure theorems. Although we have for
convenience formulated it here only for the classes Σj and ΓlJ, essentially the
same definition applies to any indexable or parametrizable class of relations, (cf.
Definition VI.4.7 below) and by Exercise 1.20 even this restriction is unneces-
sary.

The observation that Σ2 has the pre-wellordering property is due to Mos-
chovakis; an early version appears in Rogers [1967, § 16.6], but the ideas go back
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to Addison [1959] and by attribution there to Novikov even earlier. The

property was implicit in Moschovakis [1967] and [1969] and

Addison-Moschovakis [1968], but the first abstract formulation seems to be

Moschovakis [1970].

2. The Hypothesis of Constructibility

The Hypothesis of Constructibility (V = L) was formulated by Gόdel in 1938 to

prove the relative consistency with ZF (and other axiomatizations of set theory)

of the Axiom of Choice (AC) and the Generalized Continuum Hypothesis

(GCH). He showed Gόdel [1939]

Theorem, (i) // ZF is consistent, then ZF + (V = L) is also consistent

(ii) AC and GCH are theorems of ZF + (V = L).

Since then it has been recognized that many other mathematical assertions

which are not provable in ZFC — or which at least have resisted proof to the

present day — are provable in ZF + (V = L). It follows that any such assertion is

at least relatively consistent with ZFC — that is, its negation is not a theorem of

ZFC unless ZF itself is inconsistent. We shall consider here what can be proved

about the analytical and projective hierarchies in Z F + ( V = L).

The general theory of constructibility is beyond the scope of this book and we

shall base our discussion on results (l)-(6) below of this theory, which we state

without proof. They may be found in any treatment of constructibility, for

example Devlin [1973] or Mostowski [1969].

The language of set theory i ? Z F has the symbols —i, Λ, 3, = , E , and

variables JC0, JC,, . . . . The only terms are the variables, the atomic formulas are

the expressions x = y and x E y for variables x and y, and the class of formulas is

the smallest class containing the atomic formulas and such that if 31 and 93 are

formulas, so are —iSl, 21 Λ 93, and 3 ^ 21. A structure for this language is an

ordered pair 9JΪ = (M, E) such that M is a set and E is a binary relation on M:

E C M. If E = €.\ M = {(w, υ): u E v Λ W, D G M}, we call 3Jian 6 -structure

and denote it simply by (Af, E ) (here and for the rest of this section we suspend

the convention that w, υ, and w denote natural numbers). We write
sJJΪh 2I[w0,..., uk_!] to mean that the elements u0, ...yuk_ι of M satisfy the

formula 21 in SDΪ when the variable JC( is interpreted as ut. A precise definition of

this relation is similar to ΠI.5.2. A set X C M is called definable over (M, E) iff

for some formula 21 and some w0, . . . , M k _ , G M ,
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The hierarchy of constructible sets is defined by (transfinite) recursion on

ordinals:

2.1 Definition. For all ordinals p,

0) L« = 0 ;
(ii) Lp + 1 = { X : X C L p and X is definable over (Lp, G)};

(iii) Lp = UfL^ : σ < p}, if p is a limit ordinal.

A set u is called constructible just in case M E L P for some p. For

constructible w, the order of w, Od(«), is the smallest p such that u G Lp. It is

easily verified from the definition that the following hold for all ordinals σ and

(1) σ < p ^ L σ U { L σ , σ } C L p ;

(2) Lp is transitive — that is, V w [ u £ L p ^ u C L p ] ;

(3) Card(Lp) = Card(p).

The property of being a constructible set, as with most properties of informal

mathematics, may be expressed by a formula L of the language of set theory. If x

denotes the unique free variable of L, then the formula VJC L, which asserts that

all sets are constructible, is called the Hypothesis of Constructibility. In a set

theory which admits proper classes as well as sets, L defines a class (also called L,

the class of constructible sets) and the Hypothesis of Constructibility may be

written kV = L\ where V is the class of all sets. In accord with common practice

we shall use ςV = L' to denote this hypothesis even in ZF.

The proof that V = L implies the Axiom of Choice proceeds by showing that

if V = L, then the universe may be definably well ordered. The key fact in

applications to the analytical hierarchy is that the restriction of this well-ordering

to ωω is Δί. To state this precisely, we need:

(4) there exists a relation < L which well orders {a : a is constructible} with

order-type N, and has the property that if Od(α)< Od(β), then α < L β .

Furthermore, there is a formula Θ of the language of ZF such that for any p and

any α, β G Lp,

α<Lβ<->(L p, 6 ) h 0 [ α , β ] .

2.2 Theorem. // V = L, then

(i) < L « Δi;
(ii) for any r^2 and any R G Σj (Πj), if

P(m, α, y)<r+(3β < L γ)R(m, α, β), and

Q(m, α, γ)<-> (Vj8 < L γ) R(m, α, j8),

then also P and Q are lι

r (Uι

r).

We shall prove the theorem after discussing some additional set-theoretic

facts. The first of these is
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(5) For all constructive a G ωω, Od(α)<M,.

From this we can already see the outline of the proof of Theorem 2.2. Under
the assumption V = L, we have for any R,

(3β<Lγ)R(m,α,β)<-»

(*) ~3cr 3β [σ < M, Λ 0, γ E Lσ Λ (Lσ, 6 )h ©[ft γ] Λ R(m, α, β)]

~ Vσ [σ < Ni Λ γ G Lσ -> 3/3 (β G Lσ

Λ(Lσ, ε)h©[fty]ΛR(m,α,j3))].

The reader familiar with the techniques of § III.3 (especially the discussion
following III.3.8) will suggest that the first step in evaluating the complexity of
these expressions is to replace quantification over countable ordinals by quantifi-
cation over well-orderings. It turns out to be simpler to characterize directly the
class of models Lσ (σ<Hι). The other key point is that for σ < H , , Lσ is
countable so that with suitable coding the quantifier '3/3 G L σ ' may be replaced
by a number quantifier.

A structure 9JZ is called well founded iff the relation E is well founded — that
is, there is no function φ : ω —> M such that for all n, E(φ(n + 1), φ(n)). If 2Jί is
well founded, then each u G M is assigned a unique ordinal number hgt(w) by
the condition

hgt(iι) = sup+{hgt(u): E(v, u)}.

The least ordinal not assigned to any wGMis called the height of 2)ϊ. If 97? is
well founded and satisfies the axiom of extensionality, then there is a unique
isomorphism ψ (the "collapsing map") of 93? with an G -structure (M°, G ). ψ is
defined recursively by

ψ(u) = {ψ(υ):E(υ,u)}.

If 9K is a model of V = L together with a certain finite collection of axioms of ZF,
then in fact M° must be exactly Lp for p the height of 2)ϊ:

(6) there exists a theorem S of ZF + (V = L) such that for any p, any
well-founded model of K of height p is isomorphic to (Lp, G ). Furthermore, for
any σ < Hu there exists a p such that σ < p <HX and (Lp, G )f= S.

The effect of (6) is to allow us in (*) to replace quantification over the sets Lp

(P < *i) by quantification over well-founded models of S.
For any ε G ωω, let Wlε = (ω, {(m, n) : ε((m, n)) = 0}). Any countable struc-

ture for the language of ZF is isomorphic to some Wlε, so we may restrict
attention to these. Let Γ ] denote a fixed Gόdel numbering of this language.
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2.3 Lemma. There exist relations Wf E ΓlJ and Mod E Δj swcfc that for all m, ε,
and 91,

(i) Wf(e)<-»2Re is well founded;
(ii) Mod(Γ«\<m>,ε)«*SKβhH[m].

Sketch of proof For (i) we have

Wlε is well founded «+-ι3aVm [ε«a(m + 1), a{m))) = 0].

(ii) may be proved by constructing a Σj family of inductive operators Γε such
that for all 91, m and ε,

and applying Theorem IΠ.3.17 (cf. Theorem IΠ.3.6 and Exercise IΠ.5.19). D

Suppose now that Wlε is a well-founded model of & and define θε : ω -> ω
follows:

0e(O) = the unique u E ω such that Vn. ε((n, M

βε(w + 1) = the unique u E ω such that

Then θε(m) is the element of the model 3Dlε which plays the role of the natural
number m. In particular, if ψε is the unique isomorphism of 3Kε with some
(Lp, E), then ψε(θε(m))= m. Similarly, we extend θε by setting

ββ(j3)« u ~Vmn (j3(m) = n ^9K e h ({xl9 x2)E xo)[u, ββ(m), ββ(n)]).

If θε(β)^ M, then M plays the role of β in Έlε and ψβ (0e(0)) = 0. It follows from
Lemma 2.3 that the relation ίθE(β)— u1 is Δ|.

We can now conclude the proof of Theorem 2.2. By (*) together with (6) we
have

( 3 j 3 < L γ ) R ( m , α , β ) ~

++3ε 3β3uv[3Jlεh&Λ(2Jlε is well founded Λ θε(β)=-u Λ θε(γ)^v Λ

>VεVυ[3WeheΛ2fte is well founded Λ θe(y)^υ-*

3u (Wlε \= ©[M, υ] Λ 3β (θε(β) - M) Λ V/3 [(9ε(β)- M -> R(m, α, β)])].

If R E Σj (Γ ̂  2), then the first equivalence shows that also P E Σj. Similarly,
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if R G Π*, the second equivalence shows P G Πj. The results for Q are immediate

by complementation and (i) follows from the equivalence:

L γ ) [ α = /3]. •

2.4 Theorem. // V = L, then for all r ^ 2 , Σ* has the pre-wellordering property.

Proof. Under the assumption V = L, < L well orders ωω in type Hx and therefore

assigns to each γ a countable ordinal | γ | L . For each x = (a, (m), (a)) we define

finf{|y|L:-u;.1(x,r)}, if Ufr);

[MJ, otherwise.

Then the relation < L defined by

is a pre-wellordering on 2 1 ω . It is easy to check that the conditions of Definition

1.1 are satisfied if we set

x « U y ~ 3 r l-UUOe, y) Λ (Vδ < L yJUj^ίy, S)],

and

L δ) ~ Uj.^x, y)]. D

In accord with the notation of the preceding section, let | |L>0 be the norm

associated with the pre-wellordering induced on U) by <L,

and

κί = sup+{\aΛm)\io'

2.5 Theorem. // V = L, then for all r ^ 2,

(i) ΣΓ and Xr have the reduction property but not the separation property

(ii) ΠΓ and ΠΓ have the separation property but not the reduction property

(iii) for any R G Πj, if R C U\, then

(iv) for any R, RGΔl+*R<4 U\p for some p < δj;
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(v) {α:α6A:}6Σ:-A|;

(vi) A] is not a basis for ΓlJ;

(vii) for any R E Σj, there exists a partial functional SelR with Σj graph such

that for all m and α,

3p R(p, m, α)<-*R(SelR(m, a), m, α)<-»SelR(m, α ) j

(viii) * L = ^J and KL = NJ = δ\.

Proof. Immediate from Theorem 2.4 and the results of § 1. D

The Hypothesis of Constructibility also has consequences concerning the

opertie

we have

properties of Σ} and Γl| sets considered in § IV.5-7. As regards uniformization,

2.6 Theorem. // V = L, then for all r ̂  2, Σj and Σj ftαi e ί/ie uniformization

property.

Proof. Suppose V = L and

R(m, α, j3 )«•» 3 γP(m,α, ft γ)

with PGΠj_!. Let

Q(m, α, j8, r ) « P ( m , α, ft γ) Λ (Vδ <L(ft γ))~P(m, α, (6)0,(6)0

and

^(m, a) ̂  β «• 3γ Q(m, α, ft γ).

Then 0 uniformizes R and Q e Δj SO Grθ e Σ*. D

2.7 Corollary. // V = L, rfeen /or α// r ̂ 2 , Δj W α ί>Λ5/5 /or Σj. D

The main conclusion we draw concerning the results of § IV.5 is that they

cannot be extended to higher levels of the projective hierarchy without

assumptions which contradict V = L. Consider first the results on cardinality. Of

course, if V = L, then the Continuum Hypothesis holds and every uncountable

subset of ωω has power 2H°. We are interested, however, in the method used to

prove Theorem IV.5.12. The construction shows that any uncountable Σj set has

a perfect subset (which therefore has power 2H°).

2.8 Theorem. // V = L, then there exists an uncountable ΓlJ subset of ωω which

has no perfect subset.



220 V. Δ̂  and Beyond

Proof. Let W* = {γ : y E W Λ - ι (3δ < L γ ) ( | γ | = |δ |)}. For each countable or-
dinal p, W* contains exactly one function γ such that | |γ | | = p and thus W* is
uncountable. It follows from Theorem 2.2 that W* E Σ2, so let R be a ΓlJ relation
such that γ E W*<->3β R(y,β). By the Uniformization Theorem there exists a
Πj relation SCR such that γ E W*<-*3j3 S(γ, β)<->3!/3 S(γ,j3). Let B =
{(γ, β): S(γ, β)}. B is ΓlJ, and as the projection function (y, β) »-> γ is one-one
from B onto W*, B is uncountable. Suppose B had a perfect subset P, and let
C C W* be the projection of P. On the one hand, C is the one-one image of the
uncountable set P so is uncountable. But P is closed so by (1) of § IV.6, C E X\
(indeed by Theorem IV.6.9, C is Borel). Hence, by the Boundedness Theorem,
C C Wp for some p < Hv Since W* Π Wp is countable, this is a contradiction. D

Concerning measurability and the Baire property, we need the following two
standard results. The proof of Fubini's Theorem may be found in almost any text
on Measure Theory, while that of the Kuratowski-Ulam Theorem is in Oxtoby
[1971] and Kuratowski [1966]. For any RC°'2ω, let

Ra={β:R(a,β)} and Rβ = {a : R(α, β)}.

We denote the usual Lebesgue measure in the plane also by mes. The phrase
"for almost all a (measure) (category)" means "for all a except those in some
set (of measure 0) (which is meager)".

Fubini's Theorem. For any measurable relation RC°'2ω, the following are
equivalent:

(i) mes(R) = 0;
(ii) mes(Rα) = 0 for almost all a (measure);

(iii) mes(Rβ) = 0 for almost all β (measure).

Kuratowski-Ulam Theorem. For any relation RC°'2ω which has the Baire
Property, the following are equivalent:

(i) R is meager;
(ii) R" is meager for almost all a (category);

(iii) Rβ is meager for almost all β (category).

2.9 Theorem. // V = L, then there exists a Δ2 relation which is neither measurable
nor has the Baire Property.

Proof. The relation is < L . Since the order-type of < L is Hu < L β is countable for
each β and thus is meager and of measure 0. Similarly, for each a, <" is the
complement of a countable set, hence is comeager and of measure 1, hence is not
meager (by the Baire Category Theorem) and is not of measure 0 (by additivity).
These facts contradict the preceding theorems if < L is either measurable or has
the Baire Property.
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2.10-2.13 Exercises

2.10. Without the hypothesis V = L, {a : a is constructible} may be a proper
subset of ωω. Show that it is Σ 2 .

2.11. Show that if V = L, then for all r ^ 2 and all β,

(Use the Basis Theorem (2.7) and the fact that the functions belonging to any Lσ

form an initial segment in the < L ordering).

2.12. Show that if V = L, then for all r, Δj is a model of the Δj-Comprehension
schema.

2.13 (Spector [1958]-Addison [1959a]). Show that there exist a and β such that
neither a E Δ\[β] nor β E Δ\[a] (α and β have incomparable hyperdegrees),
but that if V = L, then any two functions are Δ^-comparable. (For the first part
use Fubini's Theorem).

2.14 Notes. The history of the consequences of V = L for the analytical and
projective hierarchies is rather complex. A good summary of it appears in
Addison [1959a]. That Theorem 2.2 leads to the pre-wellordering property for
all Σ* (r ^ 2) was obvious as soon as this property was formulated. Much of the
material of this section may be found also in Devlin [1973] and Mostowski
[1969].

In most of the literature the assertion V = L is called the Axiom of
Constructibility. We have used the term "hypothesis" to reflect more accurately
the light in which this assertion is regarded by most logicians.

3. The Hypothesis of Projective Determinacy

Although the Hypothesis of Constructibility leads to a reasonably pleasant and
elegant world of sets, it has not been accepted by many as a true statement about
the intuitive world of sets. The case for the intuitive truth of any assertion is
supported by the "correctness" of its consequences, but there seems to be little
support to be gained from the structure of the analytical hierarchy described in
the preceding section. In this section we discuss an alternative hypothesis (PD)
which leads to a quite different picture of the analytical hierarchy. The reader
may judge for himself whether or not these results are arguments in favor of the
intuitive truth of PD.
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Determinacy is an assertion concerning the existence of strategies for a
certain class of infinite two-person games. With each set A C ωω we associate a
game as follows. Players I and II choose alternately the values ε (0), ε (1), ε (2),...
of a function ε. If, after an ω-sequence of moves, the completed function ε
belongs to A, then I is the winner, if ε £ A, then II wins.

Let ει(m)= ε(2m) and ε π ( m ) = ε(2m 4-1). Player I plays the number εj(m)
at his m-th turn and player II plays the number ε π (m) at his. We say that I plays
according to the strategy y iff for all m, ει(m)= γ(ε(2m)). Similarly, II plays
according to the strategy δ iff for all m, ε π ( m ) = δ(έ(2m + 1)). If each player
plays according to his respective strategy γ or δ, the unique function generated is
denoted by γ # δ — that is, for all m,

(y # δ)(2m) = γ((γ # δ)(2m)) and (γ # δ)(2m + 1) = δ((γ # δ)(2m + 1)).

A strategy γ is called winning for I iff Vδ [γ # δ E A], δ is winning for II iff
Vγ [y # δ g- A]. A is determined iff either I or II has a winning strategy. Det(X)
means that all A E X are determined. The Hypothesis of Projectiυe Determinacy
(PD) is the assertion Det(Δ(ω)).

It would be inappropriate here to enter into a full-scale study of all the
consequences of PD or other forms of determinacy. Our main aim here is to
show that under the assumption PD, the classes Ul^l^Ul,... have the
pre-wellordering property. However, to orient the reader who is completely
unfamiliar with determinacy, we shall mention a few of the simpler general facts
about it. Others are treated in the exercises.

Using the Axiom of Choice, one can easily construct a non-determined set —
given a function from a cardinal λ onto ωω, (yσ : σ < λ), one constructs A in A
stages to ensure at stage σ that yσ is not a winning strategy for either I or II
(Exercise 3.13). Thus —ιDet(P(ωω)) is a theorem of ZFC. Without the Axiom of
Choice, however, there seems to be no way to construct a non-determined set,
and it may well be that Det(P(ωω)) is relatively consistent with ZF. It is known,
however, that even the consistency of Z F + D e t ^ ) cannot be proved in the
theory ZF+(ZF is consistent) (Friedman [1971]).

In another direction, Det(ΔJ) is a theorem of ZFC (Martin [1975]). Det(ΣJ U
Π^ is provable from the existence of a measurable cardinal (Martin [1970]), but
—ιDet(ΣJ U U\) holds in ZF+ (V = L) and is therefore relatively consistent with
ZFC (Corollary 3.11).

We shall continue to work in ZFC even when we assume PD. The preceding
remarks do not imply that the theory ZFC + PD is inconsistent because the
non-determined set constructed above is not projective (or definable in any
way). It is worth noting, however, that the results of this section depend only on
two special forms of the Axiom of Choice. The first is used in the general
development of the analytical and projective hierarchies to prove that Σ* and Πj
are closed under number quantification and in the last part of the proof of
Theorem 3.1:
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Vp3βR(p,m,α,/3)~3/3VpR(p,in,α,(j8)p).

This equivalence for projective R in fact follows from PD (Exercise 3.14). The
other use of the Axiom of Choice is in the proof of Theorem 3.1 below when we
use the alternative condition (4') of 1.6 for well-foundedness. To prove the
equivalence of (4') with (4) requires not the full Axiom of Choice, but only the
weaker axiom of Dependent Choice (DC). Thus the results we obtain are all
theorems of ZF + DC + PD.

3.1 Theorem. // PD, then for any r > 0, if Σ) has the pre-wellordering property,

then Πj + 1 also has the pre-wellordering property.

Proof. As in the preceding sections we shall write x for (a, (m),(α)), (JC, y) for
(α, (m),(α, γ)), etc. Let <Γ, <^ and <π be relations which establish the
pre-wellordering property for Σ r and | | r the norm associated with < r. We aim
to define relations < r + \ <χ+\ and <π+1 which establish the pre-wellordering
property for Π r + 1.

To motivate the definitions, we first consider a construction which does not
work. Since ~Uj+1(jc)<-»Vγ UJ(JC, γ), the method used in the proof of Theorem
1.3 suggests that we define

and define < Γ + 1 so that | j Γ + 1 is the associated norm (the dot signifies that these
are not our eventual definitions). Corresponding to formula (2) in that proof we
have

(2) x ^ Γ + 1 y ~ V γ 3 δ [ ( x , γ ) < r ( y , δ ) ]

so that if we set

we can prove as before that <r+1 and =^π+1 coincide when one of the arguments
lies in ~Uj+ 1. However, the equivalence corresponding to (1) is false:

(1) jc^Γ + 1y*43SVγ[(jc,γ)<Γ(y,S)].

The implication (—>) fails because it is not the case that every non-empty set of
ordinals has a largest element. Thus there is no good candidate for =^+ 1

The contribution of determinacy is essentially to provide a new sort of
"quantifier" which avoids this problem. We set
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x < - * y ^ v r 3δ [(x, (γ # δ) I )< Γ (y,(γ # δ)π)];

x < * y « 3 δ Vγ [(x, (γ # δ),) <π (y, (γ # δ)π)];

x <ίΓy ~Vγ 3δ [(x,(γ # δ),)<i(y,(γ # δ)π)].

It is clear that <^+ 1 is Σj+1 and <π + 1 *s Πj+1. For any x and y, let

Thus

(1) x < r + 1 y <^Player I does not have a winning strategy in Axy.

Suppose that one of ~U*+ 1(x) or ~Uj+1(y). Then for all ε, Uj(x, ε^ or Uj(y, επ),

so that for all ε

(2) (x, ε,) < s (y, επ)«-»(x, ε,) < Γ (y, επ)«+ (x, εθ < „ (y» en)

by clause (iii) of Definition 1.1. It follows that Axy is Δj and thus, by the

assumption PD, is determined. Hence, whenever one of ~l)J+ 1(x) or ~Uj+1(y),

(3) x < r + 1 y *->player II has a winning strategy in Axy

It follows immediately from (2), (3) and the definitions that whenever one of

~Uί+1(x) or ~U;+1(y),

(4) x<1

that is, condition (iii) of Definition 1.1 is satisfied.

It remains to check condition (i). Since V here is ~llj+ 1, (i)(a) and (b) become

(a) U ; + 1 ( y ) - ^ x < r + 1 y ;

(b) ~U: + 1 (y )ΛX< Γ + 1 y-^~U: + 1 (x) .

For (a), suppose Uj+1(y), so for some δ, ~Uj(y, δ). If player II plays in the game

Axy so that ε π = δ, then by the corresponding property for <Γ, (x, ε j < Γ (y, ε π )

and thus II wins. Hence II has a winning strategy in Axy, hence I does not so

x < Γ + 1 y .

For (b), suppose ~Uj+1(y), so for all δ, ~llj(y, δ), and x < Γ + 1 y. If ε is any

play of Axy in which II follows his winning strategy, then (x, εx) <
Γ (y, επ). Since

Uj(y, επ), the corresponding property for < Γ implies also U)(x, εΣ). Clearly player

I may realize any function as εγ and thus for all 7, Uj(x, y) — that is, ~Uj+ 1(x).

Finally, we prove that <r+ι is a pre-wellordering. First let δ be any function

such that for all s and n, δ(s *(n)) = n. Then for any γ, if ε = y # δ, then
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εn(m)= δ(έ(2m + 1))= ε(2m) =

and thus by the reflexivity of <Γ, (x, εj) < Γ (x, εu). In other words, δ is a winning
strategy for II in the game AXJC, so I has no winning strategy and thus x < Γ + 1 x —
that is, < Γ + 1 is reflexive.

We next establish that <r+1 is connected. Suppose y ^ Γ + 1 x , so I has a
winning strategy, say γ°, for Ayx. Hence

Then because < r is connected,

' ( * , ( / # 6 ) , ) ] .

We aim to show that player I does not have a winning strategy in Axy and thus
that x < Γ + 1 y. For this it will suffice to show

(5) there exists δ such that for any γ there exists δ0 such that if ε = (y # δ)
and ε = (γ # δ ), then ελ = ε π and εΓ = ε π .

Given (5), we have for any γ,

(x, εO = (x, ε^) < r (y, ε?) = (y, επ)

so that δ is a winning strategy for II.

To prove (5) we define 8 and 8° by the recursive conditions:

δ°(έ°(2m + 1)) = γ(ε(2m)); and
(6)

The solution to these equations may best be visualized by considering the
following diagram:

I

II

I

II

m0 -

no =

y « >

r°« )

) n

«o

) n

m0

h= r«^o?

no>)

2 = y°«n0, m0))

... e,

Π2 . . . εjj

0

m2 . . . ε Γ

As player I plays in Axy according to his strategy γ, player II uses these moves to
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construct δ° which he then plays against γ° in Ayx to determine his moves in Axy.

δ describes this "strategy".

We show next that < r + 1 is transitive. Suppose x < Γ + 1 y and y < r + z. If

U*+1(z), then by (a) above, x <r+1 z as desired, so we assume ~U*+ 1(z). By (b)

above, we have then ~l)J+1(y) and ~llj+1(jc), so condition (3) holds for both

pairs (JC, y) and (y, z). Let δ° and δ 1 be winning strategies for II in Axy and Ay2,

respectively — that is,

Vγ [(x, (γ # δ0),) < Γ (y, (γ # δ°)π)], and

(7)

V γ [ ( y , ( γ # δ 1 ) I ) < Γ ( z , ( r # δ 1 ) π ) ] .

We aim to show that player I does not have a winning strategy in AX2. For this it

will suffice to show:

there exists δ such that for any γ there exist γ° and γ 1 such that if

(8) ε = ( γ # δ ) and ε ' = (γ f # δ1) (i = 0,1), then

P - P° P° - P 1 and P 1 - c

as if (8) holds, then for any γ,

(x, εθ = (x, ε?) < r (y, ε°u) = (y, ε}) < Γ (z9ε
ι

n) = (z, ε π )

so that by the transitivity of < r , (JC, ε^ < r (z, ε π ) and thus δ is a winning strategy

for II. Again, the solution to (8) may best by visualized by means of a diagram:

... εY

Pi .. εu

o
εu

ε\

As player I plays according to y in AX2, player II constructs γ° and γ 1 as

indicated, plays them against δ° and δ 1 in Axy and Ayz, respectively, and uses the

resulting moves in Ayz as his moves in Axz.

Finally, suppose that < r + 1 is not well founded so there exist JC, such that for

I

II

I

II

I

A y z

II

mo-y« »

Po

m0

n0 = βo«mo»

no

m2-

m2

n2 =

n2

P2 =

= y«'»o,Po.

= 8 ((m0, n0

δl((no,Po,

»

,m2))

n2))
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all i G ω, xi+ι <r+1 xt but xt ^ Γ + 1 xi+ί. Then in each game Ax.tXi+1, player I has a

winning strategy, say y\ We aim to show:

there exist strategies δ ' ( I ' E ω) such that for all i,
(9)

if ε ' = (γ 1 # δ'), then ε\ = εjj.

From (9), it follows that for all i,

( *\ *έr ( * \ — ( i+ι\

which contradicts the well-foundedness of < r . Strategies 8ι satisfying (9) may be

constructed as in the following diagram:

I m 0 = γ (( )) m 2 =

Vi

II "o

i »o = r 1 (( )) "2 = i
A ^

II Po

i P o = r 2 « » p 2 = ->
X 2 X 3

I I ^ 0 <Ϊ2 •••

D

3.2 Theorem. // PD, then for all odd r, U] and Σ j + 1 have the pre-wellordering

property.

Proof. By induction using Theorems 1.2, 1.3, and 3.1. D

To express concisely the properties of the analytical and projective hierar-

chies which now follow from the general results of § 1, let ^ b e ^ 1 as defined in

the proof of Theorem 1.2 and for all r > 1, let <ί> be the pre-wellorderings which

arise by application of the proofs of Theorems 1.3 and 3.1. Let | \r

Ό be the norm

associated with <r

Ό, and κr

Ό = sup+{|x \r

Ό: VΓ(x)}, where Vr is ~U), if r is odd,

and Uj, if r is even. Similarly, | \r

Όt0 is the norm associated with the restriction of

< D to sequences of the form (α, (m), ( )) and κr

Ό = sup*{| α, (m)\r

Ό 0: VΓ(α, (m))},

where Vr is ~ I/J, if r is odd, and [/J, if r is even. Note that there is no reason to
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believe that Vr is an initial segment of Vr with respect to <£> so that we may have

>,< )\r

Ό.

3.3 Theorem. // PD, then for all odd r,

(i) III and IlJ have the reduction property but not the separation property

(ii) Σj and X\ have the separation property but not the reduction property

(iii) (a) for any R E Σj, if R C ~ U], then

sup+{|α,<m>|ϊ>,0: K(α,<m»}< δj,

(b) /or any R E Σj, i/ R C -llj, tfien

( i v ) ( a ) for all R, RGkl+^R^-U\p for some ρ<δl;

(b) for all R, R E Δ j « R < ~UjtP /or some p < δj

(v) { α : α e Δ j } e Π ί - Δ ; ;

(vi) Δj IS MOί α basis for Πj.j;

(vii) /or any R E Πj, ίfcere exists a partial functional SelR wiίΛ Πj grαpΛ

ίfiαί /or all m and a,

3p R(p,m, a)±+ R(SelR(m, a),m, a ) ^ S e l R ( m , a ) |

(viii) KD=δJ and κr

Ό=δl D

3.4 Theorem. // PD, then for all even r^2,

(i) Σj and Xj have the reduction property but not the separation property

(ii) ΠΓ and ΠΓ have the separation property but not the reduction property

(iii) for any R E Πj, i/ i? C I/J, then

(iv) /or a// R, ReΔl++R< U) p for some p < δj;

( v ) { a : a ε A j } G ί S A : ;

(vi) Δj W noί a basis for ΓlJ;
(vii) /or any R E Σj, Λere exists a partial functional SelR wίi'Λ Σj grap/i

ί/iaί /or all m and a,

3p R(p,m, a)*+ R(SelR(m, a),m, a)<^SelR(m, a ) 1

(viii) *i> = δj and κr

Ό = K^1 = δ,1^. D

In the remainder of this section we shall give a brief survey of some of the
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other consequences of PD and other forms of determinacy for the analytical and

projective hierarchies. The theory is very rich; in fact, nearly all of the theory of

ΐl\ and %l applies to Πj and Σj + 1 for all odd r under the hypothesis PD. We put

in parentheses following each result the number of the result(s) which it

generalizes.

3.5 Theorem (Moschovakis [1971a]). If PD, then for all odd r, ΠΓ\ ΠΓ\ 2 j + 1 and

Xj+1 have the uniformization property (IV.7.8 and IV.7.13). D

3.6 Corollary. If PD, then for all even r ^ 2, Δj is a basis for Sj (IV.7.9). D

3.7 Theorem. If PD, then for all odd r, and any β & Δj which is implicitly Πj,

{a : a is Δj in β} is a basis for Sj (III.4.7 — cf Exercise 1.31). •

3.8 Theorem (Moschovakis). // PD, then for all odd r and all R C M ω , R G Πj iff

for some ΠΓ_1 relation P,

R(m,α)^(3j8EΔ;[α])P(m,α,β) (IV.2.9). D

3.9 Theorem (Davis [1964], Mycielski-Swierczkowski [1964]). If PD, then every

uncountable projective set has a perfect subset (IV.5.12) and every projective set is

Lebesgue measurable (IV.5.3) and has the Baire property (IV.5.10). D

3.10 Theorem (Moschovakis). If PD, then for all odd r and all A C ωω, the

following are equivalent:

(i)AGΔj

(ii) A is the image of a Δj set B under a continuous functional which is

one-one on B;

(iii) A is the image of a Π1

r_1 set C under a continuous functional which is

one-one on C. (IV.6.9 — cf Exercise 1.28). D

In each of the preceding theorems where the hypothesis PD is assumed, the

proof establishes a somewhat sharper theorem. In the proof of Theorem 3.1, to

define the pre-wellordering < r + 1 from < Γ we needed only the determinacy of

certain Δj sets. Hence, for example, that Π3 has the pre-wellordering property

requires only D e t ^ ) . Similarly, Theorem 3.9 can be refined to show that if

every Πj set is determined, then every uncountable Πj set has a perfect subset.

Thus with Theorem 2.8 we have a clear measure of the incompatibility of V = L

and PD:

3.11 Corollary. // V = L, then -1 Det(Πj). D

A parallel result we simply mention is
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3.12 Theorem (Solovay). // D e t ^ ) , then there exists a Δ3 non~constructive
subset of ω (Friedman [1971]). D

The conclusion of this Theorem is optimal in that all Σ2 and Π2 subsets of ω
are provably constructible (Shoenfield [1962] and Theorem VIII.3.7).

The ordinals δ* are all countable, but the ordinals δ* may be quite large. It
turns out that their size relative to the sequence Mo,Hu... depends rather
delicately on just what set-theoretical assumptions are used. Of course, if the
Axiom of Choice is assumed, then 2H° = Hσ for some σ and any pre-wellordering
of ωω has length less than Hσ+1. In any case δ\ = H1 and δ\^ H2 Martin [1977].
Under the assumption of PD together with the Axiom of Choice, one has also
δ ^ 83 and δ\^ M4, for all r, δj < δ]+1, and if r is odd, δ*+ 1 is not larger than
the next cardinal greater than δj. It is conjectured that in this theory δj ^ Hr for
all r.

If one assumes Det(P(ωω)), the determinacy of all subsets of ωω, then it is no
longer consistent to use the Axiom of Choice. It seems, however, to be
consistent to assume the Axiom of Dependent Choice. In this theory it can be
proved that all δ* are regular cardinals and for odd r, δ j + 1 is the least cardinal
greater than δ). Thus δ\ = H2 here. Curiously, however, all Hn with 2 < n ^ ω
are singular in this theory and it turns out that δ^ = 8 ω + 1 and δ\ = Hω+2. In fact,
for all odd r, δ] is the least cardinal greater than some cardinal with coίinality ω.
It would then be expected that δ\ = Hω .2+ΐ, but it is known that δ^ is still larger.

We mentioned earlier that it is not possible to prove the consistency of
ZFC + PD without some strong hypotheses. Hence the results of this section do
not provide us with any proofs of consistency or independence. Harrington
[1978] has shown that it is consistent with ZFC that neither of the classes Σj or
Πj (r 22= 3) has either the reduction or separation' properties. It follows that
reduction for Σj (Γ ^ 3) and separation for Πj (r ^ 3) are independent of ZFC.
For each a and n, let 21 r n be an assertion in the language of set theory as
follows:

Sl r 0 :Σj has the reduction property;

Sl r! :Πj has the reduction property;

5lr,π-h2: neither Σj nor II] has the reduction property.

It is an open question in general for which a, the assertion Vr 2lΓ,α(r) is consistent
with ZFC. The same question with "reduction" replaced by "separation" or
"pre-wellordering" is also open.

3.13-3.32 Exercises

3.13. Complete the proof sketched above that if the Axiom of Choice holds,
then there is a non-determined set. (Hint: construct two sequences aσ and βσ
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and take A = {aσ : σ < λ}. The role of aσ (βσ) is to ensure that yσ is not a
winning strategy for player II (I).)

3.14 (Mycielski [1964]). Let An (n E ω) be a countable family of subsets of ωω
such that the relation "0 E An" is projective. Show that if PD, then there exists a
choice function θ such that Vn. θ(n) E An. Derive from this fact that Σj and IlJ
are closed under number quantification.

3.15 (Gale-Stewart [1953]). Prove that every open game is determined. (If I has
no winning strategy, then player II may win by ensuring that at each stage of the
game he still has a chance.)

3.16 (Martin [1968]). The following is an outline of an alternative proof for
Theorem 3.1. We write " γ ^ δ " for " γ is recursive in δ " and " γ = δ " for " γ ^ δ
and δ ^ γ".

(i) Let A be any determined subset of ωω which is closed under = (A may be
thought of as a set of degrees.) Show that there is a function γ such that either

γ ) δ E A or

(ii) We say mes(A) = 1 if the first alternative holds, mes(A) = 0 if the second
holds. Show that if PD, then mes is a countably additive measure on the
projective sets of degrees.

(iii) Let <Γ, <^, and <π be relations which establish the pre-wellordering
property for Σj and | | r the norm associated with <Γ. For any ε, let

\x\r = sup+{|x, γ | Γ : γ ^ ε }

and set

Show that if PD then there exist relations <^+1 and <π+1 which together with
< Γ + 1 establish the pre-wellordering property for Π r + 1 .

3.17 (Blackwell [1967]). Complete the following game-theoretic proof that Πj
has the reduction*property. Suppose

R(m, α)«*V/3 3p P(/3(p),m, a)

and

S(m, α)**Vγ 3q Q(y(<?),m, a)
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with P and Q closed-open. For each (m, α), set

Am,α ={ε:3p [P(ε,,(p), m, a) Λ (V<? ̂  p) -i Q ^ ) , m, α)]}.

Let

R*(m, α)«-»R(m, α) and player I has a winning strategy for A m α ;

S*(m, α)<-»S(m, α) and player II has a winning strategy for Am α.

Show that (R*,S*) reduces (R,S). (Hint: Am a is an open, hence determined

game by Exercise 3.15.)

The following series of exercises leads to a proof of Theorem 3.5. We say that

X ( = Σ* or Πj) has the scale property iff for all n E ω there exists relations < n ,

< Σ π, and < π n which satisfy (i)n and (iii)n as in Definition 1.1,

(ii)' the relations RΣ(M, *> y)<r^x ^s , n y a n d Rn(n> *> y)*"** ^π, π y
are Σj and ΓlJ, respectively, and if | | n is the norm associated with < n ,

(iv) for any x and any ordinals λn, if (JC, : i E ω) is a sequence of elements of

V which converges to x and Vn 3in(V/ ^ in) |JCJ | n = λn, then V(x)and Vn. |JC | n ^

λn.
We say X has the n/ce scale property iff there exist <„, etc. which in addition

satisfy the following (when x = (a, (m), (a)), we write x(n) for

(a,m, ao(n), ..^a/.^n)}):

(v) for any x and y, if | x \n ^ | y |n, then also | JC | m ^ | y \m for all m < n if

Ix In = Iy L t n e n x(m)=y(m)foτ all m ^ n.
Note that (iv) and (v) together imply
(vi) if (JC, : i E ω) is a sequence such that Vi V(JC,) and there exist n0

 < *i\ <

• and ordinals λnk such that Vfc 3jk (Vi ^ / k). | jcf | n k = λnk, then (xt : i G ω)

converges to some x E V and for all n there are ordinals λn such that

3 i n ( V / ^ / n ) . | ^ . | n = λn, and | x | n ^ λn.

3.18. Show that if X has the scale property, then X has the nice scale property.

(If < n , etc., establish the scale property, set

and

JC <* y <r*x{n) precedes y ( π ) lexicographically or x, y £• V.)

3.19. Show that if Πj has the nice scale property, then ΓlJ has the uniformization

property. (Suppose R(JC, γ)<-»V(α, x, y) is a Π) relation. Let λx n =

inf{|α, JC, γ\n : R(JC, γ)} and for each n choose γn such that |α, JC, γn \n = λx n.
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Show that the (a, JC, yn) converge to some (α, JC, yx) such that R(x, yx) and that the
function θ such that θ(x)= yx has Γl) graph.)

3.20. Show that Πj has the scale property. (To each x assign a linear ordering as
usual such that ~Uj(x) iff ^ x is a well-ordering. Set p ^x,nq iff p ^xq Λ q <x, n,
and take

χ*ίny iff I K II < K II

or (IKII = K I I < » M I K , J I « K , J I )

or (HJ | = US II = «.))•

Towards (iv), show that if (xt : i G ω) converges to x and for i ^ ιn, | |^ x . || = λ
and || ̂ X | „ || = λn, then the function n »-> λn is order-preserving on the field of ^ x .)

3.21. Show that if U] has the scale property, then also Σj+ 1 has the scale
property. (Let <r

n, etc., be a nice scale for ΓlJ and let θ be constructed as in
Exercise 3.19 to uniformize ~Uj. Thus θ has ΓlJ graph and Uj+1 = Dm θ. Set

if Uj+1(x);

otherwise,

let <ή+1 be the associated pre-wellordering,

x <'C y < ^ 3 r 35 [θ(x)=γ A β(y)« δ Λ (X, γ)<^,n(y, δ)],

and

3.22. Show that if PD, then for any r ^ 1, if Σj has the scale property, then also
Π*+1 has the scale property. (Let <r

w etc. be a nice scale for Σj and let 50, s l 5...
be a recursive one-one enumeration of codes for finite sequences of natural
numbers such that s0 = ( ) and if st is a proper initial segment of s;, then i < j .
Set

player II has a winning strategy for Axy;

Define < ^ and <n^n a n ^ prove (i), (ii)', and (iii) analogously to the proof of
Theorem 3.1. For (iv), suppose (Xj : i £ ω) converges to x and
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Vn (V/ ^ n).\Xi \r

n

+1 = λn. For any fixed 0, let sn. = β(i), and choose δ ' to be

winning strategies for player II in An

x

ι

n X n # Construct strategies γ 1 such that if

ε ' = yι # δ1, then ε\ = <j8(/))*εj,+1 (hence sπ. * ε j = sni+1 * εj^1). For each m, the

ordinals \(xni+ι,sn.* ε\)\r

n. decrease with i, for ί^y, and are thus eventually

constant. Then (JCΠ.+1, 5n. * εj) converges to (x, β) and Uj(x, β). To see that

I x \r* ^ λn, it suffices to show that player II has a winning strategy in A" Xn. Fix n

and a strategy γ for player I. For each k and all m ^ fe, player II wins AXm Xk, say

by strategy δ m ' \ Show that there exist m 0 = n <mι<m2< . . . and strategies yi

and δ such that if ε = (γ # δ) and for all i, ε ι = (γ* # δ m i + 1 ' m i ) , then smi =

Sn*έ"i(0> εj = (ει(i))* ε'^1 (hence sm. * εj = sm.+1 * εjί*"1), and ε I I = ε i I . It fol-

lows that the ordinals |(jcmj+1,sm. *εj) | | n y decrease with ί, for i ^ j , hence are

eventually constant, say at λ). Then (jcm.+1, sm. * ε[) converges to (JC, sn * ε!) and

3.23 (Davis [1964]). Fill in the following sketch of a proof of the first clause of

Theorem 3.9. Given A C ω 2 , consider the game played as before except that

player I at each of his turns may play any finite sequence of natural numbers.

Show first that if player I has a winning strategy for this game, then A has a

perfect subset. If player II has a winning strategy δ, for each (code for a) finite

sequence s of O's and Γs, let βs be the unique function in ω 2 such that

for all i< lg( s ) , βs(i) = (s)i9 and

Show that in this case AC{βs : s E ω} and thus A is countable.

There now remain two steps in the proof:

(i) if every uncountable projective subset of ω2 has a perfect subset, then the

same is true for every uncountable projective subset of ω ω;

(ii) if PD, then for every projective set A C ω2, the game described above is

determined.

Towards (ii), to each ε E ω2 assign a function ε* E ω2 by interpreting the even

values of ε as codes for finite segments of ε* as follows: if lg(ε(0)) = n0, then

ε*(no)=ε(0) and ε*(n o )=ε(l) ; if lg(ε(2))= n l 5 then ε * ( n o + l + n1) =

ε(0)*(ε(l))*ε(l) and ε * ( n o + l + n 1)= ε(3); etc. Given a projective set A, let

B = {ε : ε * E A}. Then B is also projective and a winning strategy for either

player in the ordinary game associated with B can be converted into one for the

same player in the new game associated with A. Finally, verify that this proof

gives also the refined version of Theorem 3.9 needed for Corollary 3.11.

3.24 (Solovay). Show that if all sets are determined, then the following choice

principle holds: for any function φ :Hι—> P(ωω) such that if σ<τ<Hly then
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φ(τ)C φ(σ), there exists a continuous functional θ : ωω —• ωω such that for
all γ e W , θ(γ)<=φ(\\Ύ\\).

3.25. Use the preceding exercise to show that if all sets are determined, then
every union of an KΓsequence of Borel sets is Σ2 (cf. Corollary IV.5.2).

3.26 (Mycielski [1964]). (For readers versed in set theory). Show that if all sets
are determined, then Hί is a strongly inaccessible cardinal in the constructible
universe L. Conclude from this that the relative consistency of the statement <4all
sets are determined" with ZF cannot be proved in ZF. (It is obvious that Hί is
still regular in L. If Hλ were a successor cardinal H^+ι in L, then show that there
exists a set of relations Rp CN^x N^ of power Hx. Since H^ is countable, this
leads to a subset of ωω of power Hι. Since under the hypothesis ωω is not
well-orderable, this yields H1 <2H°, which contradicts an extension of Exercise
3.23. The proof is completed by use of GόdeΓs second incompleteness theorem.)

3.27. Show that if PD, then for all r there exist a and β which are Δj-
incomparable. (Cf. Exercise 2.13.)

3.28. Show that if PD, then Δ3 is a model of the Δ^-Comprehension schema.

3.29. Strengthen Corollary 3.11 to: if Det (Γl|), then {a : a is constructible} is
countable. (If Det (Il|) but {a : a is constructible} is uncountable, then using
Exercises 2.10 and 3.23 it contains a perfect subset. Use Lemma IV.6.3 and a
modification of Theorem 2.2 to construct a Δ2 well-ordering of ωω and reach a
contradiction via Theorem 2.8.)

3.30 (Wadge, Martin). For sets A, B C ωω, let

(These are known as Wadge Games.) Set

A (3 B iff player II has a winning strategy in either

[A, B] or [A,~B]

and

AΞB iff A i B but not B@A.

Show that if PD, then @ restricted to projective sets is a pre-wellordering. (For
well-foundedness, suppose Vί.Ai+1I<lAέ. Then I has a winning strategy in both
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[Af, Ai+1] and [A,, ~A i+1], say (by Exercise 3.14) γ° and γj, respectively. For any
δ E ω 2 , imitate the proof of well-foundedness in Theorem 3.1 using the
strategies γf(l) to construct functions ε l δ . Show that for any finite sequence 5 of
O's and Γs,

mes({δ : ε^E A,} Π [s]) = \ mes([s]).

Derive a contradiction from the 0-1 Law, Exercise 1.2.10.)

3.31. Show that the closed-open subsets of ωω are pre-wellordered by Ξ in type

3.32 (Martin). Show that if every Wadge game is determined, then for any
X C Hl9 X is Π\ in the codes — that is, Code X = {y : || γ || G X} is Il\. (Consider
the game [CodeX,W].)

3.33 Notes. The question of determinacy of infinite games was first discussed in
Gale-Stewart [1953], but the first suggestion of its relevance for set theory came
in Mycielski-Steinhaus [1962]. Since closed-open games are essentially finite, the
Gale-Stewart proof that open games are determinate was an extension of Von
Neumann's proof of determinacy for finite two-person games. Determinacy for
Σ° was proved by P. Wolfe in 1956, for X°3 by Morton Davis [1964], and for Σ° by
J. Paris [1972]. Friedman [1971] shows that X°5 determinacy is not provable in
Zermelo set theory (ZF without the replacement schema).

The inspiration for applications of determinacy to the projective hierarchy
was BlackwelΓs [1967] game-theoretic proof of the reduction property for Π1

(Exercise 3.17). Theorem 3.1 appeared almost simultaneously in Martin [1968]
and Addison-Moschovakis [1968]. There followed an avalanche of results which
is still rolling. As a guide for further reading, we suggest beginning with the
survey articles, Fenstad [1971a] and Moschovakis [1973]. A comprehensive
treatment will appear in Moschovakis [1979?] and Martin [1979?].

4. Classical Hierarchies in Δ)

We turn now to analogues of the Borel and effective Borel hierarchies. The main
results are negative: for r ^ 2 there is no way of building up Δr or Δj from below
as the Borel and effective Borel hierarchies do for Δj and Δj, respectively
(Theorems IV.3.3 and IV.4.12).

The operations U and Π which generate the class of Borel relations may
be thought of as applied either to a countable set of relations or to a countable
family — that is, a function (Pp :p E ω):
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U(P p : p E ω) = {(m, a): 3p. Pp(m, α)}.

We shall consider classes of relations which are constructed by use of other

operations on families. One such operation is sd discussed in Exercise IΠ.2.19:

4.1 Definition. An operation is a function Φ which for any fc and /, to any family

(Pp :p E ω) of relations of rank (fc, I) assigns a relation Φ(Pp : p E ω) of rank

(fc, /). An operation Φ is positive analytic iff

(i) for any constant family (P p G ω ) , Φ(P :p E ω) = P;

(ii) for any families <Pp : p E ω) and (Qp : p E ω), if for all p, P p C Qp, then

Φ ( P p : p E ω > C Φ ( Q p : p E ω > ;

(iii) for any family ( P p : p E ω ) of relations of rank (fc, /) and any
i fc',/' fc,/

iff: ω —•> ω,

φ~\Φ(Pp :p<Ξω))= Φ(ψ'\Pp) : p E ω).

It is obvious that U , Π , and sd are positive analytic operations. For any

BCP(ω), let ΘB be the operation defined by

Θ B ( P p : p E ω ) = {(m,α):(3ΛEB)(VpEΛ)P p (m,α)}.

B is called a base of the operation ΘB . It is similarly easy to check that for any B,

if B ̂  0 and 0 £ B, then ΘB is a positive analytic operation. Conversely, if Φ is

positive analytic, let

B ( Φ ) = Φ ( { Λ :pEA}:pEω).

4.2 Theorem. For every positive analytic operation Φ, B(Φ) is a base ofΦ — that

is, Φ = ΘB(φy

Proof. Let (Pp :p E ω) be a fixed family of relations of rank (fc,/). For each

( m , α ) E k / ω , let φma be the constant function with domain P(ω) and value

(m, a). Note that for any R,

(1) R(m, α ) ~ <AmU(R) * 0 ~ <C«(R) = P(ω).

Similarly, if for any B Cω, ψB is the constant function with domain P(ω) and

value B, we have for all p

(2) p E B *+ΦB\{A : p E Λ } ) ^ 0 o φ-β\{A : p <Ξ A}) = P(ω).
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For a fixed (m, α), let C = {p : Pp(m, a)}. Then by (1) and (2), for all p

(3) ψmUPp)=ψc\{Λ:P

Hence we have

(m,a)eΦ(Pp)**φ^.(Φ(Pp))μ0 by(l)

** Φ( /v«(Pp)) ^ 0 by (iii) of 4.1

«• Φ(φc\{A : p G Λ})>^ 0 by (3) and (ii) of 4.1

<-> ψc'(B(Φ)) fέ 0 by (iii) of 4.1

->(m,α)εeB ( φ )<P p>.

On the other hand, if (m, α ) E ΘB(φ)(Pp) and C is any set in B(Φ) such that

(Vp G C)Pp(m, α), then ^ c (M : P E ^})C </V«(p

P) and the implications (<-)

above all hold, so we conclude (m, α ) E Φ(Pp). Hence Φ(P p )= ΘB(Φ)(Pp) as

required. D

In particular, the class of positive analytic operations coincides with the class

of operations ΘB with B ̂  0 and 0 £ B. B(Φ) is called the canonical base for Φ

and is easily seen to be the unique base B for Φ which satisfies the condition: for

all A and B, if A G B and Λ C £, then B 6 B .

Positive analytic operations may also be thought of as quantifiers or

operators on relations:

B(Φ))(Vp E A)R(/?,m, α)

( 4 ) ~{p:R(p,m,«)}EB(Φ).

In this notation, U coincides with 3° and Π with V°.

4.3 Definition. For any operation Φ, the dual Φ° of Φ is defined by:

Φ°(Pp : p G ω> = ~ Φ ( ~ P p : p G ω>.

It is trivial that if Φ is positive analytic, so is Φ° — in fact, by a direct

computation we see that

(5) B(Φ°) = {B : (VΛ G B(Φ))Λ

As an immediate consequence of (5) we have for any family (Pp :p G ω):
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(3B G B(Φ°))(Vp G B)Pp(m, α)^(VΛ G B(Φ))(3p G A)Pp(m, α);

(6)

(VB G B(Φ°))(3p G β ) P p ( m , α ) ^ ( 3 A G B(Φ))(Vp G A)Pp(m, α).

Another useful characterization is given by:

4.4 Lemma. For any positive analytic operation Φ,

Proof. If B G B(Φ°), then £ Π A ^ 0 for all A G B(Φ) so clearly ~B cannot be

among such A. Conversely, if ~ B £ B(Φ), since B(Φ) is closed under superset,

for no A G B(Φ) is A C ~B. Hence for every A G B(Φ), A ΠB^0 — that is,

B G B(Φ°). D

4.5 Definition. For any operation Φ, V(Φ) is the smallest class of relations

containing the closed-open relations and closed under Φ and Φ°.

Thus V( U ) = V( Π ) = the class of Borel relations and Theorem IV.3.3

asserts that V( U ) = A\. The main result of this section is that if r ^ 2, then

Δj ^ V(Φ) for any positive analytic operation Φ. We call Φ a Δj operation iff Δj

is closed under Φ. Then we have:

4.6 Theorem. For any positive analytic operation Φ, and any r ^ 1, Φ is a Δj

operation iff B(Φ)GΔj.

Froo/. Since B(Φ) results from applying Φ to a family of open relations, if Φ is a

Δj operation, then B(Φ)GΔ*. Suppose now that B(Φ)GΔj and let <Pp :pEω)

be any family of Δj relations. Let P(p, m, a) *+ Pp(m, a). We essentially showed

in the proof of Theorem III.1.16 that also P G Δj. Then by Theorem 4.2 we have

( m , α ) G Φ ( P p : p G ω ) ^ ( 3 A G B ( Φ ) ) ( V p G A ) P ( p , m , α )

which yields immediately that Φ(P p :p Eω)GXl. On the other hand, it follows

from Lemma 4.4 that also B(Φ°) G Δj and by (6) we have

(m,α)G Φ(Pp :p G ω)^(VJ5 G B(Φ°))(3p G B)P(p,m,α)

which implies that Φ<Pp : p G ω) G ϊlj. D

We aim next to show that for any Δ) operation Φ, V(Φ) 5 Δj for all r ^ 2. To

this end we introduce the operator * on operations and prove that if Φ is Δj, SO is

Φ* and that V(Φ)§V(Φ*)CΔ). The operator * turns out to be closely related

to certain sorts of inductive definability.
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The idea behind * is an attempt to generalize the relationship between U
and si. For any operation Φ, let Σf be the class of relations of the form
Φ(PP :p G ω) with all Pp closed-open, Πf the class of complements of such
relations, and Δf = Σf Π Πf. Then Σ^ = Σ? and Σf = Σ} and Theorem IV.3.3
may be stated in the form: V( U ) = Δf. We shall define * in such a way that
Δ^1* = Δf (Exercise 4.15) and for all positive analytic Φ, V(Φ)CΔf \ where in
general the inclusion may be proper.

To motivate the definition of *, consider the operation si in the form

d{Pp : p G ω)(m, a)^>3po3pί Vn P<PQ . . ^ (̂m, a).

In this form it is obvious that Σf is closed under 3° and U , but less obvious that
it is closed under V° and Π . In Exercise III.3.22 we showed that Σf also
coincides with the class of relations R expressible in the form

R(m, tt)**3p0

vPi 3P2V/?3 * * Vn P(PQ,...>Pn_i>(m, a)

with all P s closed-open. This expression is interpreted to mean that player I has a
winning strategy in the game determined by {ε : Vn Pg(n)(m, a)}. This leads to:

4.7 Definition. For any positive analytic operation Φ, Φ* is the operation such
that for any family ( P s : s G ω ) ,

Φ*(PS : 5 E ω)(m, α ) o ( 3 Λ 0 G B(Φ))(Vp0 G Λ0)(VΛ1 G B(Φ))

( 3 P l G Λx) (3Λ2 G B(Φ)) Vn P<Po....fP|i^^m, α),

where the right-hand expression is true just in case player I has a winning
strategy in the game ^ma played as follows: I chooses Λ 0GB(Φ), then II
chooses both p0GA0 and ΛjG B(Φ), then I chooses both pλ^Aλ and Λ 2G
B(Φ), etc; I wins iff Vn P(PQtmmm }(m, a).

There is no difficulty in verifying that if Φ is positive analytic, so is Φ*. The
canonical base B(Φ*) may be described as follows. Call a set C a Φ-fan iff C is a
set of sequence numbers closed under subsequence, ( )E. Q and for every
sGQ

if lg(s) is even, then (3Λ G B(Φ))(Vp G A)[s*(p)E. C];

(7)

iflg(s) is odd, then (VA e B(Φ))(3p G A)[s <p>G C].

Then

B(Φ*) = {£ : 3 C [ C C B Λ C is a Φ-fan]}.
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Indeed, a Φ-fan C such that (Vs E C)P s(m, α) is a natural way of encoding a
winning strategy for player I in the game ^m>«.

4.8 Theorem. For any positive analytic operation Φ, Δj is closed under both Φ
and Φ°. Hence V(Φ)CΔf\

Proof. It will suffice to show that Xf * is closed under both Φ and Φ°, as then by
complementation so is Πf \ By condition (i) of Definition 4.1, Δf * contains all
closed-open relations, so the second assertion follows immediately from the first.

Let (Pp : p E ω) be a family of Xf relations and (Pp s : s E. ω) corresponding
families of closed-open relations such that Pp = Φ*(PPJS : s E ω). Let
(Q, : t E ω) be a family of closed-open relations such that for all p, g, and 5,

Q< p >= f c 'ω and Q<M>*S= Pp, s.

Then

(m,α)E Φ<Pp :p E ω>~(3A E B(Φ))(Vp E Λ)[(m, α ) E Φ*(Pp,s : 5 6 ω)]

« ( 3 Λ E B(Φ))(Vp E Λ)(VB E B(Φ))(3 9 E B) [(m, α) E Φ*(Q(p,q>#s)]

o ( m , α ) G Φ * ( Q f : ί 6 ω ) .

The last equivalence may be seen by reflecting on the notion of strategy. The
proof that Xf * is closed under Φ° is similar except that we take

Q<q)=
kJω and Q<,,p>*s= Pp, s. D

The dual operation Φ*° may also be expressed in terms of the existence of a
winning strategy for a game. Observe first that the game ® m α is open from the
point of view of player II: to win he must force the choice of a finite sequnce
(p0,..., pn_λ) such that ~P < p o P n l ) (m, α) and from that point on the moves are
irrelevant. The argument sketched for Exercise 3.15 shows that <Sm a is
determined. Let <PS : 5 E ω) be a fixed family, ^mct the associated games which
define Φ*, and ^m,αthe games associated with the family (~ P s : s E ω). Then

(m,α)EΦ* o <P s : sEω>

++1 does not have a winning strategy in ^ β

(8)
<->II does have a winning strategy in ®m,<*

~(VA0 E B(Φ))(3p0 G AoXaA, e B(Φ))

(Vp1GA1) 3 n P ( p >(in,α).
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Towards showing that if Φ is Δj, then so is Φ*, we first prove an analogue of

Theorem IΠ.3.16.

4.9 Definition. For any decomposable inductive operator Γ over kJω, Γ is

Φ-positive iff P Γ belongs to the smallest set X of relations such that:

(i) for any closed-open relation R, {(m, α, δ ) : R(m, α)}E X ;

(ii) for any continuous functional F, {(m, α, δ ) : δ(F(m, a)) = 0} E X ;

(iii) X is closed under (countable) U , Cλ , Φ, and Φ°.

4.10 Theorem. For any positive analytic operation Φ and any R E Π f *, there

exists a decomposable Φ-positive inductive operator Γ such that for all m and a,

R(m,tt)«<m,< ))(ΞΓa.

Proof. Let R be any relation in Ilf* and ( P s : s E ω ) a family of closed-open

relations such that

R(m, α)<-*(m, a) E Φ*°(PS : s G ω).

We may clearly assume that if s Ct, then P s C Pt. Let Γ be the Φ-positive

operator defined by:

(m, 5> E Γa(D)+*Ps(m, α ) v (VΛ E B(Φ))(3p E A ) ( 3 B E B(Φ))

We claim that for all s of even length and all m and α,

(9) <m, s)GΓa*+ (m, a) E Φ*°(P s # ί : t E ω)

which for s = ( > is the desired result. To establish the claim, let, for each α,

Ca = {<m, 5>: lg(s) is even Λ (m, a) E Φ*°(P,mt: t E ω>}.

We follow the proof of Theorem IΠ.3.2 and first show Γ α ( C α ) C C α , which

implies Γa C Ca and thus the implication (—») of (9). Suppose (m, s) E Γa(Ca).

If P s(m, a), then II may play any strategy and win the game ^m,«,s associated

with the family ( ~ P s # t : ί E ω ) , so (m, s ) E Ca. Otherwise we have

(VΛ E B(Φ))(3p E A ) ( 3 B E B(Φ))(Vq E B)[<m, 5 * <p, 9 » E C β ] .

By use of (8) this easily implies (m, s ) E Ca.

To show CaQΓa, we suppose (m, s) &. Γa and show that in this case I has a
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winning strategy in ^~, α s . Let D α = {t: <m, s * t) £ Γa}. By assumption
( )GDa. Since Γa(Γa) = fβ, we have for any ί,

(10) t G D α -* (3Λ G B(Φ))(Vp G Λ)(VB G B(Φ))(3<? 6 B ) [ ί <p, «> G D J .

Now I may win ^~, α 5 by the following strategy. Applying (10) to t = ( > she
picks Λo G B(Φ) such that for any choice of p0 G Λo and A1 G B(Φ) there is a
P J E Λ J which she may choose such that ( p o , p 1 > G D α . Applying (10) now to
t = (po,Pι), there is a proper choice of Λ 2 G B ( Φ ) such that for any p2E
A2 '' '(Po,P\,Pτ,P3) ^ ^« Thus I has a strategy which ensures that for all even n,
(Po> >Pn-i)£ ^« a n c i t h u s i n particular that ~p<p0,...,P >(m,«) By the initial
assumption on the PΓ, this implies that for all n,~P(pp }(m, a) and thus I
wins ^ α > 5 . D

4.11 Corollary. For all r^2 and any Δj positive analytic operation Φ,

(i) Φ* is also Δ j ;

(ii) ί

Proof. Suppose r ^ 2 and Φ is a Δ) positive analytic operation. It follows directly
from the definitions (and Theorem IΠ.2.5) that any Φ-positive inductive
operation Γ is Δj and hence from the boldface version of Theorem IΠ.3.18(i)
that Γ G Δj. Hence by the preceding theorem, Ilf * C Δ^ and thus also Σf * C Δj.
In particular, B(Φ*)GΣf* so B(Φ*)GΔj and thus Φ* is a Δj operation. That
V(Φ)CΔj is now immediate from Theorem 4.8. That this inclusion is proper
follows by a standard diagonal argument: if

V«m),(α),/3)^(3ΛGB(Φ*))(VpGΛ)U?((m),(α>,(i8)p).

Then V is a Δj relation universal for Σf . Hence V G Δj ~ Δf , so also
VGΔj-V(Φ). D

The class V(Φ) may be decomposed into a hierarchy just as were the Borel
relations. We set Σ ^ = Π^= the class of closed-open relations and take

Σ^= {Φ(Pp 'p G ω): all Pp have the same rank and belong to Π*)}.

The classes Πjf, Δjf, etc. are defined analogously as in Definition IV.3.4. It is
immediate that all of these classes are included in V(Φ) and indeed that
V(Φ) = Δ J o . The analogue of Lemma IV.3.5 holds with the same proof and the
same is true for the parts of Lemma IV.3.6 which concern expansion, and
composition and substitution of continuous functionals. It is not, however, true
for all positive analytic Φ that Σ̂ f is closed under U and 3 (for example, if Φ
is Π or Φ(Pp :p E ω)= Po). The hierarchy theorem (corresponding to IV.3.11)
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is clearly false for the second of these examples. These results hold, however, for
a restricted class of operations:

4.12 Definition. An operation Φ is normal iff there exist primitive recursive
functions / and g such that for any family (Pp :pGω),

(i) Φ(Φ(P<p,q) :q<=ω):p<Ξω)= Φ ( P / ( r ) : r E ω ) ;

(ii) U ( P p : p E ω > = Φ < P g ( p ) : p E ω > .
For normal operations Φ there is no difficulty in imitating the proofs of

IV.3.10-11 to show that for all p such that 0 < p < 8 1 , Σ p ^ Δ * and
A*+1 ^Xp

ΦUΠp

Φ (cf. Exercise 4.16). Of course U , Π , si, and sί° are normal
and it can be verified by an elementary but tedious computation that if Φ is
normal, so is Φ* (cf. Hinman [1969]).

The characterization of Theorem 4.10 also yields some extensions of the
results of § IV.5. Let Φ be a normal operation. If Γ is any Φ-positive inductive
operator, it is easy to prove by induction on p that for all p < Hu Γp EV(Φ).
Suppose A G Πj and Γ is a Φ-positive inductive operator such that for all a,

α E A β ( ) e f β .

Set

Then just as in Theorem IV.5.1, A = UfA^: p < Nj and thus A is the union of
an Nrsequence of sets belonging to V(Φ). Similarly, if

Each Bp (p < Nj) belongs to V(Φ) and A = Π{Bp : p < Kj.
Let us say that an operation Φ preserves measurability (preserves the Baire

property) iff whenever all Pp (p E ω) are measurable (have the Baire property)
so is (does) Φ(Pp :p E ω). Obviously, if Φ preserves measurability (the Baire
property) then all members of V(Φ) are measurable (have the Baire property).
Of course U preserves both properties and Theorems IV.5.3 and IV.5.10 show
essentially that si also preserves both. To formulate this more precisely, for any
class Y of relations, let Xf(Y) be the class of relations of the form Φ(Pp : p E ω)
with Pp E y, and define the class of (Φ; Y)-positive inductive operators by
introducing Y as an initial class. Then the proof of Theorem 4.10 is easily
modified to yield that for any REllf*(Y) there is a decomposable (Φ; Y)-
positive inductive operator Γ such that for all m and α,

R(m,α)«(m,< ))<ΞΓa.
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4.13 Theorem. For any positive analytic operation Φ, if Φ preserves measurability
{the Baire property), then so does Φ*.

Proof. Suppose that Φ preserves measurability and let Y be the class of
Φ*

measurable sets. It will suffice to show that every A E H1 (Y) is measurable. Let
Γ be a (Φ; Y)-ρositive inductive operator as above and set

Since Φ, Φ°, U , and Π all preserve measurability, it is easy to prove by
induction on p that all Ap (p < Kx) are measurable. The proof concludes exactly
as for Theorem IV.5.3. The proof for the Baire property is similar. D

Let Ψo= U and Ψr+ι = Ψ*. Then it follows that for all r, Ψr preserves both
measurability and the Baire property and thus all sets in V(Ψr) are measurable
and have the Baire property. By appropriately "joining" at limit ordinals, one
can construct a sequence Ψp (p < Hj of positive analytic operations such that all
members of U {V(Ψp): p < Nj are measurable and have the Baire property.
These are known classically as the R-sets and form a proper subclass of \\.

4.14-4.17 Exercises

4.14. Compute B( U ), B( Π ), B(^) and B(sί°).

4.15 Verify that Δ ^ = Δf (cf. Exercise IΠ.3.22).

4.16. Prove the hierarchy theorem for normal operations (discussion following
Definition 4.12).

4.17. For any positive analytic operation Φ and any class Y of relations,
V(Φ; Y) is the smallest class of relations including Y and closed under Φ and
Φ°. Show that

(Show that the right side contains a relation universal for the left).

4.18 Notes. The operation si was defined by Suslin in 1917. Its original
importance was in affording the first "constructive" method of obtaining a
non-Borel set, but it also led directly to the definition and study of the analytical
operations in the 1920's. Kantorovitch-Livenson [1932] and [1933] is a good
survey of this work, which includes many of the results of this section. The
operator * is ascribed there to Kolmogorov, but he seems not to have published
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any account of it. The main facts were established in Ljapunov [1953]. The
presentation in terms of games is new here and was also discovered indepen-
dently by Aczel [1975].

The class of R-sets is not the largest class all of whose members are
measurable and have the Baire property. A theorem due to Solovay and
published in Fenstad-Normann [1974] asserts that all provably Δ2 relations are
measurable and have the Baire property. i?-sets and some extensions discussed
in Ljapunov [1953] are all provably ϋ\.

5. Effective Hierarchies in Δί

The effective Borel hierarchy of §IV.4 is derived from the classical Borel
hierarchy by restricting the generating operation of countable union to families
of relations which are recursively enumerable (relative to a given indexing). No
ingenuity is needed to apply the same techniques to the hierarchies of the
preceding section and obtain a class Δ(* λ) of relations "effectively generated" by
any positive analytic operation Φ. Unfortunately, a more accurate analogy is
obtained by a more complex procedure.

The problem is that the ordinal ωλ, the number of levels in the effective Borel
hierarchy, is not only the least non-recursive ordinal, but also the least non-
effective-Borel ordinal — that is, the least ordinal which is not the order type of
an effective Borel (= Δ}) well-ordering of ω. If Φ is a more powerful operation
(sd, for example), ωλ is represented already by a Γlf well-ordering of ω
(Theorem IV.2.11 — cf. Definition 5.2 below), and it seems natural that Σ*
should be defined for all p for which a well-ordering of type p occurs in the
hierarchy. The apparent circularity in this idea is avoided by a "boot-strap"
procedure: at each level of the hierarchy, Φ is applied to families which are
recursively enumerable in a relation which occurs at some previous level. This
will require that the indices and relations be generated simultaneously. It is by
no means obvious that the resulting construction has the desired property and
indeed this is proved most naturally by the methods of § VI.5, where we shall
also give further evidence for the "naturalness" of the construction.

In the second part of the section we shall consider briefly a similar
generalization of the second hierarchy of § IV.4 obtained by iterating a jump
operator J over a set of notations for ordinals.

It would be entirely understandable if the reader were to blanch slightly at
the prospect of heaping new complexities on the already complicated and
somewhat tedious proofs of § IV.4. It is a sad fact that relatively clear intuitions
often require masses of unpleasant calculation for their justification. We shall
attempt in this section to give proofs in sufficient detail such that the average
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reader will be able to get an intuitive grasp of the ideas without too much pain,
and the dedicated reader will be able to reconstruct complete proofs.

As a start in this direction, we consider here only relations on numbers.

5.1 Definition. For any positive analytic Φ and each k, N Φ k is the smallest
subset of ω such that for all a E N Φ ' \ there exist relations PΦQ kω which satisfy
the following conditions: for all α, b, and c,

(i) if (c), = k and (c)2 = 0, then (7, c)E N Φ k and P Φ

 c ) = Dm{c};
Φk and for all p {a}(pPf)E N Φ ' \ then (ab)<ΞNΦ'k(ii) if bENΦk and for all p, {a}(p,Pf)E N Φ '\ then (a,b)<ΞNΦ'k and

P<t>>=Φ<~Λt><*pί>:peω>.

It is immediate that for α E N Φ ' \ P Φ denotes a unique fc-ary relation. The
definition may be viewed as a single inductive definition of the relation

VΦk = {(a, /, m): a 6 N Φ ' k Λ ([i = 0 Λ PΦ(m)] v [i = 1 Λ ~PΦ(m)])}.

We denote by ω^Φ] the closure ordinal of this inductive definition. The sets
N £ ) \ N Φ N Φ etc. are defined as in § IV.4.

5.2 Definition. For all p < ω,[Φ],

( i ) S ; = { ? r : a E
(ii) Π p

Φ = K : P

(iii)ΔΦ=ΣΦΠΠp

Φ;
(iv) V(Φ) = {PΦ:aENΦ}.

The reader may find it curious that we have arranged things so that Σf
consists of relations obtained by applying Φ to families of co-semi-recursive
relations rather than to families of recursive relations. The reasons for this are
purely technical and are of no concern except in the proof of the hierarchy
theorem where it is essential that the sets of indices corresponding to the various
levels are relatively simple — see Theorem IV.4.14.

It is not in general true that Σ^ coincides with Σp as defined in § IV.4. It is
relatively easy to prove that for all p, ΣpCΣ^ and it follows from Theorem 5.3
below that V( U ) C Δj, so the classes Σ^ form an alternative hierarchy on Δj.

We shall call Φ a Δj operation iff (equivalently) B(Φ) E Δj or for any R E Δ),
also ΦREΔj (cf. (4) of §4 and Exercise 5.9).

5.3 Theorem. For all r ^ 1 and any positive analytic Δj operation Φ, V(Φ)C
{R : R E Δj}, and if r ^ 2 the inclusion is proper.

Proof. It will suffice to show that if Φ is Δ*, then the relations VΦΛ defined
above belong to Π{, if r = 1, and Δj, if Γ ̂  2. This establishes the inclusion and a
standard diagonal argument shows V Φ k £ V(Φ). By Theorems IΠ.3.1 and 10, it
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furthermore suffices to construct a monotone operator Γ E Δ* such that Γ =
ΦkVΦk. For any R, let

If R C VΦ'k, then NR C N φ k , and for any b G NR, Kb = P Φ We now define
Γ similarly as in the proof of Lemma IV.4.9: for any R C k + 2 ω, all Ϊ, and all
m E ω,

(i) if (c), = fc and (c)2 = 0, then
(1) if {c}(m)|, then «7, c>,0,m)E Γ(R);
(2) if {c}(m)t, then «7, c>, l,m)G Γ(R);

(ii) if /JCR (α, fc), then

(1) if (3Λ E B(Φ))(Vp 6A)[({f l}(p, /?„), l,m) E R],

then «α,fc),0,m)GΓ(J?);
(2) if (VAGB(Φ))(3p6A)[({fl}(p,Rb),0,m)6R],

then «α,fr),l,m)GΓ(R).
We leave it to the reader to check that this suffices. D

The properties of the hierarchy corresponding to IV.4.5-7 require in general
that Φ be normal, but under this hypothesis the proofs are similar to the earlier
ones. (For closure under finite intersection use Exercise 5.7.) The hierarchy
theorem (corresponding to Theorem IV.4.15) also holds for all normal Φ,
although its proof is substantially more complicated.

The definition of the class of effective Φ-positive inductive operators Γ is
obtained from Definition 4.9 of the preceding section by replacing "closed-
open" and "continuous" by "semi-recursive" and "recursive". Then the proof of
Theorem 4.10 is easily adapted to show that for any i? GΠ, , there is an
effective Φ-positive inductive operator Γ such that for all m,

If Φ is normal, it is also true that for any inductive operator Γ which is effective
Φ-positive, Γ G Π Φ * so we have that for all R, R E Πf * iff R < Γ for some
effective Φ-positive Γ. In particular, the operator Γ defined in the proof of
Theorem 5.3 is effective Φ-positive, so that if Φ is normal, V φ k E Γlf . From
this it follows that V(Φ)CΔΦ\ the effective analogue of Theorem 4.8 (see
Theorems VI.6.14-19 below).

In §VI.5 we shall introduce a notion of recursion relative to a positive
analytic operation Φ, It turns out that for normal Φ, V(Φ) consists exactly of the
relations recursive in Φ and ω^Φ] is the least ordinal not the order-type of a
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well-ordering of ω recursive in Φ, hence the least non-V(Φ) ordinal as discussed
in the introduction to this section. In §VI.6 we consider another notion of
recursion relative to Φ (recursion in Φ # ). The set of relations recursive in Φ in
this second sense is exactly Δf \ Thus for Φ = U the two senses coincide but
for more powerful Φ(sέ, for example), V(Φ) is a proper subclass of Δf .

We now turn to the generalization of the second hierarchy of § IV.4. We
started there with a set O of notations for the recursive ordinals and constructed
sets Du by applying the jump operator iteratively. Our generalization will consist
in replacing the ordinary jump operator by a general jump operator J and
extending the set of notations by allowing for recursions relative to previously
generated sets much as we extended the set of indices N in Definition 5.1.

5.4 Definition. A jump operator is a function J : ωω —»ω2 such that there exists
an index d and a primitive recursive function h such that for all a, α, and β,

(i) a°J is recursive in J(α) with index d\
(ii) if a is recursive in β with index α, then J(α) is recursive in J(β) with

index h(a).
Of course, oJ is a jump operator. For other examples, consider for any i ^ 1

and r >0:

ΓO, if U;(α,(m),(α»;
jXα)«α,m»= |

[l, otherwise.

J° is the ordinary jump, oJ, and j j is the hyperjump, hJ, (Exercise IV.2.32). Any
jump operator has a natural extension to sets defined by J(Λ) =
{m : J(KΛ)(m) = 0}. Propertities (i) and (ii) of the definition hold also with a and
β replaced by A and B. To avoid confusion we shall now write oJ(Λ) instead of
ΛOJ.

5.5 Definition. For any jump operator J, < J is the smallest subset of ω x ω such
that for all w in the field of < J there exist sets DJ

W which satisfy the following
conditions:

(i) 1< J 2, Di = {0}, and DJ

2 = J(Di)
(ii) if u < J υ, then υ <J2V and D ^ = J(D^);

(iii) if uEFld(< J ) , {α}(0,DJ

w)-M, and for all /?, {α}(p,DJ

u)<J

{α}(p + 1,D^), then for all p, {α}(p,DJ

u)<J3α 5" and

(iv) if u < J v and v < J w, then u < J w.

We write O J for the field of < J and assign ordinals | u | J to u G O J as in
§ IV.4. We set
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V(J) = {R:R is recursive in D ^ for some u E OJ}.

Again O^ and D^ are not identical with O and Du as defined in § IV.4, but
are in a sense equivalent to them. First, it is not (too) hard to show by effective
transfinite recursion that there are primitive recursive functions / and g such
that for all u E O, Du is recursive in D^u) with index g(u). Hence, by Theorem
IV.4.21, Δ|cV(oJ). The converse inclusion follows from the next theorem.

We call J a Δ* jump operator iff the relation Pj(m, A)++m E J(A) is a Δj
relation.

5.6 Theorem. For all r ^ 1 and any Δj jump operator J, V(J) C{R : R E Δ*} and
// r S5 2, /fie inclusion is proper.

Proof. Suppose J is a Δ* jump operator. As in the proof of Lemma IV.4.18,
modified similarly as for Theorem 5.3, we can define a Δj monotone operator Γ
such that

(uJym)EΓ<r>u E O J Λ ( [ I = 0 Λ / Π 6 D J

u ] v [ i = 1 Λ m £ DJ

U]
V [ I = 2 Λ M < J m ] ) .

If r = 1, then f E Πj so all DJ

ME Δ} if r s*2, then f E Δj and all DJ

ME Δj, but a
diagonal argument shows that Γ^V(J). D

In § VI.5 we shall also introduce a notion of recursion relative to a jump
operator and show that V(J) consists exactly of the relations recursive in J. If Φ
is a positive analytic operation such that Pj is Φ-positive, then J will be recursive
in Φ and thus V(J) = {R : R recursive in J} C {R : R recursive in Φ} = V(Φ).

5.7-5.9 Exercises

5.7. Show that for any positive analytic operator Φ and any families (Pp) and
<Qq>, Φ ( P P > n Φ<oq> = Φ(Φ(?P n Qq».

5.8. Show that for any positive analytic Φ, V(Φ) is closed under the quantifier Φ.

5.9. Adapt the proof of Theorem 4.6 to show that for r ^ 1, B(Φ) E Δj iff Δj is
closed under the quantifier Φ.

5.10 Notes. The idea of generating sets and indices simultaneously originates
with Kleene [1963]. The method was exploited in Clarke [1964] and Enderton
[1964]. The constructions discussed here are essentially those of Hinman [1966]
and [1969] and Shoenfield [1968].
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It is not only for reasons of simplicity that we have restricted attention here
to hierarchies of sets of numbers. If we attempt to generalize Definition 5.1 to be
parallel to Definition IV.4.1-2, we come to expressions {a}(p, Pf) which at the
present stage of the theory are not even defined. Although such recursions
relative to functionals are defined in Chapter VI, the resulting construction is not
a natural one. The reason is that among the relations PΦ for b in some early
stage of NΦΛJ there is one that is recursively equivalent to Φ (as a functional).
Thus all enumerating functions recursive in Φ are already available at this stage
and the "boot-strap" nature of the construction is lost. This objection can be
overcome by restricting the enumerating functions to be recursive in the
relations on numbers PΦ for b E NΦ ' k > 0. In either case, however, the hierarchy
does not in general exhaust the class of relations recursive in Φ. This is discussed
further in Hinman [1969] and proved in Hinman [1966].

6. A Hierarchy for Δ2

In the preceding section we have seen that most of the characterizations of Δ} in
terms of simpler relations do not have any natural extensions to characteriza-
tions of Δj for r 5s 2. There is, however, one characterization which does extend,
that of Corollary IV.2.22:

R EΔJ<-»/? EΔ?[γ], for some implicitly Π° function γ.

The extension leads to some interesting results on implicitly Πj functions as well
as a pleasant hierarchy of the Δ2 relations on numbers.

6.1 Theorem. For all R C kω,

R E Δ2<-» R E Δj[γ], for some implicitly Il\ function γ,

Proof If R satisfies the right side, then R E Δ2 by Examples III.2.3 and
Corollary III.2.13. For the converse implication, suppose R E Δ2 and let
KR(W)= KR((m)0,...,(m)k_ ί). Then K R EΔ 2 so there exists a Π1, relation R
such that

Hence for any α,

n [ α ( m ) = n - ^ R(m, n, {β)(mn%
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If we denote the right side of this equivalence by 3β S(α, β), then S G ΓlJ so we
may apply the Uniformization Theorem to obtain a relation S Έ ΓlJ such that

a = K^3\ β S'(α, β)+*3β S'(α, β).

Then S' holds of a unique pair of functions (K ,̂ β) and thus the function
γ = <Ki,j3) is implicitly Π|. Clearly R is Δj[γ]. D

Note that we actually proved that every Δ2 relation is recursive in some
implicitly ΓlJ function. Before constructing the hierarchy for Δ2, we establish
some facts about the implicitly Π, functions which are interesting in their own
right. First, it follows immediately from the theorem that {a : a is recursive in
some B E Σj} is not a basis for even the class of ΓlJ singletons (cf. Theorem
III.4.7).

If γ is implicitly Π,, then there are (infinitely many) recursive relations P
such that for any a,

a =

where FP is the functional F constructed in the proof of Theorem IV. 1.1. We
temporarily call such a P a matrix for γ. Note that for each matrix P for γ,
FP[γ]eW.

6.2 Definition. For any implicitly Π} function γ,

χ(γ) = inf{||FP[γ]||:P is a matrix for γ}.

It is clear that *(γ) is always a countable ordinal — in fact:

6.3 Lemma. For any implicitly Πj function γ,

Proof. For any matrix P for γ, FP[γ] is clearly the order-type of a well-ordering
recursive in γ so that | |F P [γ] | |< ωλ[y}. Since γEΔ^, ωί[y]<δ1

2 by Exercise
IV.2.31. D

6.4 Theorem. For any β and any implicitly ΐl1 function γ,

Proof The implication (—>) is immediate from the preceding Lemma and a
relativized version of Theorem IV.2.11. For (<—), suppose that χ(y)< c*>\[β] and
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let P be a matrix for y such that FP[γ] = χ(y). Choose δ E W, δ recursive in β,
such that | |δ | | = x(y)> Then for any α,

Thus {γ}EΔ}[/3], so also γEΔj[β] by the relativized version of Corollary
ΠI.2.7(vii). D

6.5 Corollary. For any implicitly Il\ functions y and δ,

(ii) γEΔj[δ] orδe\\[y].

Proof, (i) is immediate from 6.3 and 6.4, and (ii) is immediate from (i). D

To interpret these results most succinctly, we return to the notion of
hyperdegree introduced in §IV.2 following Theorem IV.2.12, and the ordering
^ ! on them. We call a hyperdegree x implicitly Yl1 iff some implicitly Hi function
belongs to x. We may extend the function χ to implicitly Πj hyperdegrees x by
setting

χ{x) = inf{χ(γ): γ E x and γ is implicitly Π}}.

6.6 Corollary. The relation ^\ restricted to implicitly Il\ hyperdegrees is a
well-ordering.

Proof That the ordering is linear is exactly 6.5(ii). From the contrapositive of
6.5(i) we have for any implicitly Πj functions γ and δ,

δ <\y~*x(δ)<χ(y)

from which it follows that for any implicitly ΠJ hyperdegrees x and y,

y <\χ-+x(y)<x(χ)>

Since #(*) and χ(y) are ordinals, this implies that the ordering is well-
founded. D

We return now to the construction of hierarchy for the Δ2 relations on
numbers. The most obvious choice for the levels of the hierarchy is the sequence
of sets

X(σ) = {R : R E Δj[γ], for some implicitly Π{ function γ

such that χ(y)< σ).
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However, it is immediate from Theorem 6.4 that for some σ < ωu X(σ) =
X(τ) = X(ωι) = Δj for all r, C Γ ^ T ^ O ^ . To obtain a properly increasing
sequence of sets we select only certain of the X(σ).

For any hyperdegree x and any α, βGx, Δj[α] = Δ}[0] and then from
Theorem IV.2.14, ωλ[a\ = ωt[β]. We denote these common values by ΔJ[JC] and

6.7 Definition. For all σ > 0,
(i) x0 = {a : a G Δj} (the zero hyperdegree);

(ii) if there exists an implicitly Πj hyperdegree x such that for all r < σ,
xτ <\x, then xσ is the ^J-least such x; otherwise xσ = xo;

(iii) Z σ = X K K ] ) ;
(iv) κ = (least cr>0) [xσ = JC0].
Note that by Theorem 6.4, for σ<κ, Zσ = {R:RG Δl[xσ]}.

6.8 Theorem, (i) For all σ < τ < K, Z σ £ Z τ C Δ2
(ii) /or any K, K G Δ2 iff R G Z σ for some σ < K.

Proof, (i) is immediate from the remark preceding the theorem. For (ii),
suppose R E Δ\. By Theorem 6.1 choose an implicitly Π| function γ such that
i?GΔj[γ]. Then there exists a σ<κ such that hydg(γ)^}x^ and thus
R <= A\[xσ) so R G Zσ. D

It remains only to evaluate the length K of this hierarchy. Since any γ which
is implicitly Πj is Δ2, σ < ω ^ ^ ] < δ\ for all σ < /c, and thus K ̂  δ\.

6.9 Theorem, K = δ2.

Suppose to the contrary that K < δ\. If /c were a successor ordinal λ + 1,
then jcλ would be <J-greatest among all implicitly Πj hyperdegrees. By Theorem
6.4 this implies that χ(γ) < ωx[xλ] for all implicitly Il\ functions γ and this leads
easily to the conclusion that the class of Δ2 functions is Δ2, contrary to Theorem
1.19(v). Hence K is a limit ordinal.

We shall derive a contradiction by constructing an implicitly ΓlJ function γ
such that xσ <Jhydg(γ) for all σ < K. By the Uniformization Theorem, there
exists a Πj relation V such that for all a and γ,

; , and

Thus γ is implicitly ϊl\ iff for some α, γ is the unique function satisfying V(α, γ).
Let ε be a Δ2 well-ordering such that || ε || = /< and consider the following set of
functions:
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A = {a :Vp EFld(ε)3γ (V(α(p),γ) Λ (V« <εp)3β[V(a(q), β) Λ β <\

A is Σ 2 and if a E A, then for all p E Fld(ε), if σ = \p \ε, then the unique γ such

that V(α(p), γ) satisfies xσ ^ jhydg(γ). Furthermore, since each \p\ε is less than

K, there always is such a y and thus A ^ 0 . By the Basis Theorem choose a fixed

α E A Π Δ ^

Let δ be an implicitly Π| function such that both a and ε are recursive in δ,

say with indices a and e, respectively. Let

B = { γ : ( γ ) ° = δ Λ

Vp [p EFld(λm.{e}(m,( r)
0))^V({α}(p,(y)°),(r)P + 1)] Λ

Clearly B is a ΓlJ set with a unique member γ, which is thus implicitly ΓlJ. For any

T < K, there exists a p E Fld(ε) such that \p\ε = τ + l and thus

It follows that xκ^ JC0, a contradiction. D

6.10-6.17 Exercises

6.10. Show that not all Δ2 functions are implicitly Tί\ (use the existence of

incomparable hyperdegrees from Exercise 2.13).

6.11. Prove

(i) if β is implicitly Πj and β and γ are each Δj in the other, then also γ is

implicitly Πj;

(ii) if β is implicitly Πj, then so is the hyperjump of β\

(iii) in Definition 6.7, xσ+ι is the hyperjump of xσ (use Theorems 6.4 and

IV.2.14).

6.12. Show that for any implicitly Iϊ\ functions γ and δ,

6.13. Show that for any implicitly Γl| function γ, γ is implicitly Π? iff χ(y) ^ 1.

6.14. Show that

sup+{||γ II: γ E W Λ γ is implicitly ϊl\} = δ^
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6.15. Use the relation V defined in the proof of Theorem 6.9 together with
Theorem 6.1 to give a new proof that {a : a E Δ2} E Σ 2 .

6.16. Combine the results of the preceding two exercises to contruct a Σ2

well-ordering of length δ 2 .

6.17. What parts of this section may be generalized to Δ* under either of the
hypotheses V = L or PD?

6.18 Notes. The results of this section are due to Suzuki [1964].




