
Chapter III

Hierarchies and Definability

In the preceding chapter we saw that the semi-recursive relations are exactly
those which arise from the recursive relations by existential number quantifica-
tion (Π.4.12). In this chapter we study the relations which arise from the
recursive relations by all kinds of quantification: existential, universal, number,
and function. After classifying these relations according to the number and type
of quantifiers used and establishing the simplest combinatorial properties of this
classification in §§ 1 and 2, we relate it to other notions of definability. In §3 we
compare the complexity of definition of an inductive operator Γ with that of the
set Γ. In § 4, we investigate the relationship between the complexity of a subset A
of ωω and that of its elements. In §5 we show that the relations we are
considering are exactly those definable in certain natural first- and second-order
formal languages. Finally in § 6 we introduce the method of forcing to extend
and complete some earlier results.

1. The Arithmetical Hierarchy

1.1 Definition. The class of arithmetical relations is the smallest class of relations
containing the recursive relations and closed under number quantification (3°
and V°).

We next define a classification of the arithmetical relations based on the
number of quantifiers needed to define a relation.

1.2 Definition (The Arithmetical Hierarchy). For all r,
(i) Σo = Πo = the class of recursive relations;

(ii) Σ?+1 = {3°P:PGΠ?};
(iii) Π?+1 = {V°P:PGΣ?};
(iv) Δ? = Σ?ΠΠ?;
(v) Δ?«,= U{Σ?UΠ?: rGω}.

It is immediate by induction on r that all of the classes Σ? and Π?, and hence
Δ°ω>, are included in the class of arithmetical relations. The converse inclusion is
immediate from Theorem 1.5 below.
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1.3 Examples. Note first that by Theorem Π.4.12, Σ? is exactly the class of
semi-recursive relations and Π? is the class of co-semi-recursive relations. Hence
by Corollary Π.4.10, ΔU = Δ? = the class of recursive relations.

Consider the set A = {a: a is recursive}. We have

a EA^3αVm [{a}(m)^ a(m)]

« 3 Λ Vm 3M [T(α,(m>, u,< » Λ ( M ) 0 = a(m)]

and thus AGΣS. The set B of primitive recursive functions is Σ°:

a G B ^ 3 α V m [a G Pri Λ Evlo(α, m) = α(m)].

Let C be the set of γ such that the relation ^ γ = {(p, q): γ((p, q)) = 0} is a linear
ordering. Then an easy computation shows C E Π? (try this now without using
Theorem 1.5).

Let !£ be a first-order formal language with (for simplicity) only one binary
relation symbol and no function symbols, and suppose Gόdel numbers have
been assigned to the symbols, formulas, and sequences of formulas in some
standard way (as in Shoenfield [1967], for example). We henceforth identify
these objects with their Gόdel numbers. An analysis of the notion of formal
proof shows that the relation

, m, A)++p is a proof of m from A

is recursive. Hence, by the Completeness Theorem,

S(ra, A)<^m is a logical consequence of A

is Σ?. The set {A: A is consistent} is Π? and {A: A is complete} is Π2. Every
denumerable structure for 5£ is isomorphic to one of the form (ω, R) with
R C 2ω. Analysis of any standard proof of the Completeness Theorem shows
that if A is recursive and has infinite models, then A has a model (ω, R) with
R<ΞA°2.

We write F E Σ? (Π?, Δ?) to mean GrF E Σ? (Π?, Δ?). Note that R E Σϋ does not
in general imply KR E Σ?. We often use the terms Σ?, etc. as adjectives and write,
for example, "for any Σ? relation R" instead of "for any REΣ?".

1.4 Lemma. For all r and R,

R E Σ ? ~ ~ R E Π ? and R E Π ? ^ ~ R E Σ ? .

Proof. The case r = 0 is immediate. Suppose the result holds for r and suppose



1. The Arithmetical Hierarchy 71

ReS?+ 1 . Then R = 3°P for some P G Π? and ~R = V°~P. Then -PeVr so
~R G Π(

r

}

+i by definition. The case for R G Π?+1 is similar. D

1.5 Theorem. The classes of the arithmetical hierarchy have the following closure
properties for all r:

Composition and substitution
with recursive functions
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Proof. In the proofs we use the following equivalences and their duals (obtained
by negating both sides):

3p P(p, m, a) v 3q Q(q, m, a) <->3p [P(p, m, a) v Q(p, m, α)];

3p P(p, m, a) Λ 3̂ f Q(^, m, α ) * * 3p [P((p)o, m, α) Λ Q((p)i, m, α)];

(3<j < 5)3p P(p, ί, 5, m, α)«->3p [(p), < 5 Λ P((p)«, (p),, 5, m, α)];

(Vq < s)3p P(p, q, 5, m, α)«* 3p (V(? < s) P((p),, ^, 5, m, α);

3p 3^ P(p, q,m,a)+*3p P((p)«, (p),, m, α).

For example, we prove by induction on r that Σ? and Π? are closed under
bounded quantification. For r = 0, this is known (§ II.2). Suppose it holds for r
and R is any Σ?+i relation, say

R(g, 5, m, a)«-» 3p P(p, q, s, m, a)

with P G Π". Using the third and fourth equivalences and the induction
hypothesis, it follows that the relations defined by

(3q < s) R(q, 5, m, a) and (Vg < 5) R(g, 5, m, a)
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are also Σ?+i. The other proofs are similar. D

1.6 Corollary. For all r, Σ?UΠ?CΔ?+1.

Proof. We observed in 1.3 that this holds for r = 0 and we proceed by induction.
Given the conclusion for r, suppose R E Σ?+] and let S be defined by

S(p,m, α)<->R(m, a).

Then R = 3°S = V°S and S E Σ ? + , SO immediately REΠ?+2. But S = 3°P for
some P E Π? C Π?+1 so also R E Σ?+2 and thus R E Δ?+2. The proof for R E Π?+1 is
similar. D

These last two results are often used together to "compute" where a given
arithmetical relation falls in the hierarchy. For example, if

R(m, a)+*3p 3q Vr [3s Vί P(p, G(q, s, m), /,m, a) v 3w Q(p, w, r, m, α)],

with G, P, and Q recursive, then the relation described inside the brackets is the
union of a Σ5 and a Σ? relation, hence is ΣS. Then by applying successively V°, 3°,
and 3° we conclude R E Σ2. Of course, such a computation does not always yield
an optimal classification — in fact, in this example we have also

R(m, α)<-»3p 3q [3s Vί P(p, G(^, s, m), ί,m, a) v Vr 3M Q(p, w, r, m, α)]

from which we obtain R E ΣS. We consider later in the chapter methods for
showing that a relation does not belong to some class Σ? or Π".

1.7 Corollary. For any r > 0 , F: k ιω —* ω, F: kω —> ω, and R C u ω ,
(i) // F E Σ ? and F is total, then also FEΔ?;

(ii) // FEΣ (: then DmFEΣ?;
(iii) if FE Tr then Im F E Σ?
(iv) i/ REΣ(:UΠ(:, ίήen KReΔ?+1;
(v) Σ" and I\°r are closed under composition with total Δ? functionals.

Proof. For (i), if F is total, then

F(m, a)= n <^Vn'[n'^ n -> F(m, α ) ^ n'].

Hence if GrF is Σ", it is also Π". (ii) and (iii) are immediate from the closure of Σί?
under 3°. For (iv) we have

KR(m, a)= n <-»[R(m, α) Λ n = 0] v [~R(m, a) Λ n = 1]
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so GrKp is the union of a Σ? and a Π°r relation, hence is Δ(

r

}

+1. For (v) we have for
total G,

R(G(m,α),m,α)^3n [G(m,α)= n Λ R(n,m,α)]

<-»Vπ[G(m, a)= n ^ R ( n , m , α ) ] .

The first equivalence serves if R E Σ? and the second if R E Π(

r\ D

The following diagram exhibits the inclusions of Corollary 1.6:

π? πs π§

ΣS

To show that each of these inclusions is proper — that each space in the
diagram represents a non-empty class of relations, we use a diagonal argument.
For r ^ 1, let

Recall (H.4.20) that U is universal for a class X iff U G X and for every R E X
there exists a n α G ω such that

R(m,α)«U(α,<m>,<α».

1.8 Arithmetical Indexing Theorem. For all r >0,
(i) U? is universal for Σϊ;

(ii) ~U? is universal for Π?;
(iii) C/(; is universal for {R: RE Σ?};
(iv) ~ I/? is universal for {R: R E Π?}.
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Proof. A straightforward induction on r shows that U? and U°r are Σ? and ~U?
and ~ U°r are Π?. For r = 1, (i)-(iv) a r e clear from the proof of Theorem II.4.12.
Given ( i M i v ) f o r Γ> suppose R E Σ?+i, say R = 3°P with P E Π?. Then for some α,

which implies

(ii)-(iv) are proved similarly. D

1.9 Arithmetical Hierarchy Theorem. For all r >0
(i) Σ?£Δ? and ΠϋgΔ?;

(ii) Δ?+IgΣ!ΪUΠ?.

Proo/. Since I/? E Σ?, it will suffice for (i) to show U°r £ Δ?. Suppose the contrary
and let

Λ={a: t/?(α,<fl»}.

Then also Λ E Δ" and in particular ~Λ E Σ?. Since U°r is universal, there is some
b E: ω such that for all m,

In particular,

b £ A *+ U°r(b,(b))±* b <= A,

a contradiction.
For (ii), let

B ={2m: m EΛ}U{2m + 1: m^Λ} .

Clearly β is a union of a Σ? set and a Π? set, so £ E ΔtVi. Suppose, however, that
B E Σ?. Then

m£A±*2m -h 1 E B

and ~Λ E Σ? which was seen to be impossible. If B E Π", then

m EL A <r>2m E JB

which implies A E Π?, hence ~Λ E Σ?. Therefore B fέ Σ? U Π?. D

One application of the Hierarchy Theorem is to obtain precise classifications
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in the arithmetical hierarchy. Recall that a relation R is (many-one) reducible to
a set A (in symbols, R < A) iff for some recursive functional F,

R ( m , α ) β F ( m , α ) G A

Clearly if A E Σ? or Π", so does R. Suppose that A is such that all Σ(

r

} relations on
numbers are reducible to A (such an A is called Σ?-complete). In particular, if R
is a relation which is Σ? but not Π", R is reducible to A. Hence A fέ Π". For
example, let

Tot = {a: {a} is a total function of rank 1}.

Since for any a,

κ T(α,<m), κ,< »,

Tot G Π". In fact, this is an optimal estimate of the complexity of Tot — i.e.,
Tot fέ ΣS. To establish this we show that Tot is Incomplete.

If R is any Π" relation and P is a recursive relation such that
Vp 3qP(p, q, m) <-» i? (m), let / be the partial recursive function defined by

/(m, p) - least q. P(p, q, m).

Clearly, R (m) «-> Vp. /(m, p) j . Let b be an index for /. Then by Lemma II.2.5,

and R <^Tot. Some other results of this type are given in the exercises.
To this point it appears that the properties of the classes Σ?, Π?, and Δ? and

the relationships among them strongly resemble the corresponding properties
and relationships for Σ?, Π?, and Δ?. In the remainder of this section we shall
examine how well this analogy holds up.

First the reduction and separation properties hold for r > 1 just as they do for

1.10 Theorem. For all r > 0 ,

(i) Σ? has the reduction property but not the separation property

(ii) U°r has the separation property but not the reduction property.

Proof. That Σ? has the reduction property is proved exactly as in Theorem
II.4.17 using the closure properties of Theorem 1.5. The other results now follow
from Lemmas II.4.19 and II.4.21. D

One flaw in the analogy appears in connection with function quantification.

Σ? is closed under existential function quantification (II.4.14), but Σ?+2 is not so
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closed for any r. Indeed, if R is any relation in Π?+2 ~ Δ?+2, say
R(m, a)++Vp3qS(p,q,m, a) with S E Π?, then

R(m, a)+*3β Vp S(p, 0(p),m, a)

so that R = 3'P for a relation P E Π?C Σ?+2.
For relations on numbers, we shall see that the Σ?+i relations are exactly

those which are semi-recursive in a certain Σ? set. To investigate this situation
and for later use we prove first a general result on substitution of arithmetical
functionals in arithmetical relations.

1.11 Arithmetical Substitution Theorem. For any r and s, any S E Σ?+1(Π?+1),
and any total functionals H o , . . . , Hn E Δ°, //

R(m, a) <-> S(m, α, λp. H0(p, m, α ) , . . . , λp. Hn (p, m, α)),

Λen R E Σ(;+s (Π?+β).

/. We proceed by induction on r and take n = 0 for simplicity. Suppose first
SGΣ?. By Theorem Π.4.12 there exists a recursive relation P such that

S(m, α, β)« 3p P(j8(p), m, α).

Then

R(m, α)^»3p 3s [s = H0(p,m, α) Λ P(S, m, α)].

Since

5 = Ho(p,m, α ) ^ S q ( s ) Λ lg(s) = p Λ (V/ <p)((s), = H(i,m, α)),

the relation inside the brackets is Δ", so R E Σ?.
If S E Π", then for some recursive Q,

S(m, a,β)±*Vp Q(β(p), m, α)

and we use the equivalence

R(m, a)++Vp Vs [s = H()(p, m, α)—>Q(s, m, a)].

The induction step is straightforward and is left to the reader. D
The next two results are known jointly as Post's Theorem.

1.12 Theorem. For all r and all R C V
(i) R E Σ?+i <-> K is semi-recursive in some set A E Σ? (Π?);

(ii) i^ E Δ?+1 <-> JR is recursive in some set A E Σ? (Π?).

/. The implications (<—) are immediate from the preceding theorem
together with Corollary 1.7(iv). Suppose now that JR = 3°P with P E U°r. Let
A ={(p,m>: ~P(p,m)}. Then A E Σ? and K ( m ) ^ 3 p [<p,m>£ A], so i? is
semi-recursive in A.
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For (ii) (->), if R G Δ?+1 then both R,-REl°r+ι so by (i) there are A, B <ΞΪ°r

such that K is semi-recursive in Λ and ~JR is semi-recursive in B. Let

C = {2m: m G A}U{2m -hi: m G B}.

Then both i? and ~R are semi-recursive in C, hence R is recursive in C (by the
relativized version of Corollary II.4.10) and C G Σ?. Because a set is recursive in
its complement, we may take as well AGΠ?. D

Let D,, = {0} and D r + 1 = (D r)
o j.

1.13 Theorem. For a// r and a// R C V
(i) Λ e Σ ( ; ^ i ? < ^ A (m particular, Dr G Σ?);

(ii) /? GΣ(r+i^»i? /s semi-recursive in Dr\
(iii) i? GΔ'Γ+I*-*!? IS recursive in Dr.

Proof. We prove (i)-(iii) simultaneously by induction on r. For each r, (ii) and (iii)
follow from (i) by Theorem 1.12. For r = 0, D() is recursive and hence so is any R
which is many-one reducible to it. If i ? 6 ΣS, i? is recursive and
R (m) ̂  KR (m) G D(), soR<^ Do.

Suppose (i)-(ϋi) hold for r. Then (i) for r + 1 is immediate from (ii) for r and
Theorem II.5.7. D

There are two natural definitions for the relativized arithmetical hierarchy.
We may either set:

Σ!![/3] = Π!![β] = the class of relations recursive in β;

etc, as in Definition 1.2,

or we may define, for r > 0, R G ϊ°r[β] (Π?[/3]) iff R(m, a) ++ S(m, α, β) for some
S G Σ ? (Πr). Fortunately, these two definitions are equivalent (Exercise 1.24).
Note that REΔ°r[β] is not in general equivalent to the condition that
R(m, α)<->S(m, α, β) for some S G Δ? (cf. remarks following Π.5.1). It is easy to
check that R is (semi-) recursive in β just in case RGΔ?[β] (Σ?[β]). D

With appropriate changes, the results of this section all hold for the
relativized arithmetical hierarchy with essentially the same proofs. In particular,
there exists for each r >0 a relation U^β] universal for Σ(

r

}[j3] and thus not in
Δ(r[β]. {Relativized Arithmetical Hierarchy Theorem)

Since a is recursive in β just in case a G Δ(i}[j3], it is natural to enquire the
properties of the relations ςα G Δ(

r

}[j3]'. Surprisingly they are not transitive for
r > 1 (Exercise 1.23). The best one can say in general is

1.14 Theorem. For any rands, if a GΔ?+,[0] and β G Δ"[γ], then a GΔ?+S[γ].
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Proof. Immediate from the relativized version of Theorem 1.11. D

Finally, motivated by Theorem II.5.5, we define

1.15 Definition. For all r >0,

(i)X?= U{X?[j3]:j3e-a>};

(ii)Π?= U{Π?[/3]:/3G"ω};
(iii) Δ? = Σ?nπ?.
Thus X°ι is the class of open relations, Π? is the class of closed relations, and

Δ? is the class of closed-open relations.

1.16 Theorem. For all r and R, R G Σ°r+ι ** R is the union of countably many ϊl°r

relations of the same rank.

Proof. Suppose first that R G 2?+1, so for some β and some P G Π?[j3], R = 3°P.

If for each p G ω,

Pp(m,α)«*P(p,m,α),

then P p GΠ?[β]CΠ? and R= U { P p : p G ω } .

For the converse, let R= U { P p : p G ω } with each Pp G U°r. For each p

choose βp such that Pp GΠ?[βp]. Then for each p there exists αp such that

Pp (m, α ) « -U°((γ«p, 0»)o, <m>, <α, (r)?»

Let γ be a function such that for all p and q, γ((p, q)) = (ap, βP(q)). Then for all

and thus for some relation Q6Πj[γ] ,

PP(m, α ) ^ Q ( p , m , α).

Then R = 3°QEΣ; + i [γ]CΪ? + 1 . D

Thus, for example, Σ2 is the class of countable unions of closed relations,

commonly called Fσ in analysis, Π2 is the class Gδ, Σ° = G^, etc. These comprise

the finite levels of the Borel Hierarchy which will be studied further in the next

section and in §IV.3. (See also Exercises 1.25-30.)

1.17-1.30 Exercises

1.17. Show that the following relations are arithmetical and estimate the level at

which they occur in the arithmetical hierarchy:

P i f e y ) ° ^ 7 is a linear ordering and p is the

^γ-least element of Fld(γ);



1. The Arithmetical Hierarchy 79

r is a discrete linear ordering (every element of
Fld(γ) has an immediate ^r-successor);

γ is a well-ordering of type ω;
P4(n, γ)<-»^7 is a well-ordering of type ^ ω n.

1.18. Show that for all r, {α: a E Δ"} is arithmetical and estimate its level in the
arithmetical hierarchy.

1.19. Write out the proofs for two of the other parts of Theorem 1.5.

1.20. Let a be a function such that {a} is a Π? set (a is implicitly Π?). Show that
if Im a is bounded, then a is recursive, but otherwise a may be non-recursive.

1.21. Let Xo = Σ?, X() = Π?, and for all r,

Xr+1 = {RUS: R G X , S G Xr, R and S of the same rank}

and

Xr+ι = {R Π S: R G Xr, S E Xr, R and S of the same rank}.

Show that for all r,

(i) R E X r * * ~ R E X r ;
(ii) X r UX r CX r + 1 ΠX r + 1 ;

(iii) X r £X r and X r £ X r ;
(iv) U {Xr: r E ω} is a proper subclass of Δ".

1.22. From Theorem 1.11 we see that if β E Δϊ, then £?+, [0] C Σ(

r

}

+S. Is this ever
an equality?

1.23. Let a^°r β^a EΔ?[β]. Show that for r > 1 , ^? is not transitive.

1.24. Show that the two characterizations of Σ?+1[β] are equivalent.

1.25. Verify that
(i) R is semi-recursive in β <-> R E Σ?[β];

(ii) Σ?+1 = {3°P:PEΠ?};
(iii) Δ?= U{Δ?[iS]:iSEωω}.

1.26. Show that for all r ^ 1, Σ? and Π? are parametrizable (cf. Exercise Π.5.11).

1.27. Show that for all r > 0 and all relations R,
(i) REΣ^-REΠ?;
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(Hi) Σ?£Δ?and Π?£Δ?;

(iv) Δ?+,£Σ?UΠ?.

1.28. Show that the Arithmetical Hierarchy Theorem may be improved to: for

all r > 0 , Σ?£Δ

1.29. Show that for all r,

(i) X" has the reduction property but not the separation property;

(ii) Π" has the separation property but not the reduction property.

1.30. Let V? = Hi, and for r > 0,

Set

Show that for all r > 0,

(Note: Pα+1 is the recursive union of the relations ~P{αHP) so that Σ?+i consists

exactly of recursive unions of Π? relations. The arithmetical hierarchy is thus

sometimes called the (finite) effective Borel hierarchy. Cf. § IV.4.)

2. The Analytical Hierarchy

We take up next the relations which are obtained from the recursive relations by

application of both number and function quantifiers. The basic structure we

develop in this section is parallel in most points to that of § 1, but we shall see in

Part B that these are indeed much more complex relations. Proofs will be

omitted when they are very similar to corresponding proofs in § 1.

2.1 Definition. The class of analytical relations is the smallest class of relations

containing the arithmetical relations and closed under function quantification

(3 1 and V1).

2.2 Definition (The Analytical Hierarchy). For all r,

(i) Σi = Uo = the class of arithmetical relations;
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(ϋ) vr+ι =
(iii) Π l . ^
(iv) Δ: = Σ
(v) Δ;ω)=

Clearly every relation in Δ{ω) is analytical; the converse inclusion follows from
Theorem 2.6 below. As before, we write F G Σί, etc., to mean GrF G Σί, etc., and
use the terms Σί, ΠJ, and ΔJ as adjectives.

2.3 Examples. Recall that

W = {γ: ^ γ is a well-ordering}.

Then using (4') of 1.1.6,

y G W ^ ^ r is a linear ordering Λ

Vα(Vm [a(m + l ) ^ α ( / n ) ] ^ ] m . α ( m ) ^ α ( w + 1))

<->Vα[^y is a linear ordering Λ (Vm.γ((α(m + l),α(m))) = O

The part inside the brackets is easily seen to be arithmetical so that WEΠl.
Let

γ < δ ++^γ and ^ δ are linear orderings and

=̂ Ύ is isomorphic to a subordering of ^ δ

Then the second conjunct is equivalent to

3αVpVq[α is 1-1 on Fld(γ) Λ (p ^yq -> a(p)^δa(q))]

so that the relation < is Σί. Note that if γ, δ G W,

A similar argument shows that

{(R, S): the relational structures (ω, R) and (ω, S) are isomorphic}

Suppose A is an arithmetical set of functions with just one element, a. Then a
is Δi since for any m and n
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a(m)= n+*3β [β G A Λ β{m) = n]

A ^ | 3 ( m ) = n].

Let Γ be a monotone operator over ω such that the relation 'm G

Γ({n: a(n) = 0}y is arithmetical. By Theorem 1.3.3,

m G Γ++VB [Γ(B)C B -> m G B]

^ Vα [Vp (p G Γ({n: α(n) = 0})^ α(p) = 0)-> α(m) = 0].

Hence f G Π | .

Two other examples which will be treated in § V.2 but may serve to orient the

reader familiar with other parts of logic are:

{(m, R): m is the Godel number of a formula valid in (ω, R)} is Δj;

{a: a is constructible (in the sense of Gόdel)} is Σ£.

2.4 Lemma. For all r and R,

R G Σ ; « - > ~ R G Π ; and RGΠ;<H>~RGΣ;. D

2.5 Theorem. The classes of the analytical hierarchy have the following closure

properties for all r:

vr π ; Δ ; Δ (

!

ω )

Composition and substitution V V V V

with recursive functional
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Expansion
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V
V

V
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V
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Proof. In the proofs we use the following equivalences and their duals (obtained
by negating both sides):

3β P(m, a, β) v 3γ Q(m, α, y)*+3β [P(m, α, β) v Q(m, α, j8)];

3β P(m, α, β) Λ 3 r Q(m, «, y ) ~ 3 β [P(m, α, (β)0) Λ Q(m, α, (β),)];

(3<j < r)3β P(q9 r,m, α, β)«3/3 (3<j < r)P(q9 r,m, α, β);

Q/q < r)3β P(q, r,m, a, β)*+3β Qfq < r)P(q, r,m, α, (β),);

3p 3β P(p,m, α, jβ)^3jβ P(β(0),m, α, λ 9 . β ( 9 + 1));

Vp 3j3 P(p,m, α, β ) ^ 3 β Vp P(p,m, α, (β)p);

3β 3γ P(m, α, β, γ ) « 3 β P(m, α, (jβ)0, (β),).

For example, we prove by induction on r that ΣJ and Yl\ are closed under 3° and
V°. For r = 0 this is contained in Theorem 1.5. Suppose it holds for r and R is any
ΣJ+i relation, say

R(p, m, α ) ^ 3 β P(p, m, α, β)

with β E Πj. Using the fifth and sixth equivalences and the induction hypothesis,
it follows that the relations 3°R and V°R are also Vr. The result for Γi; follows by
dualization. •

2.6 Corollary. For all r, VrUϊllQ Δί+1. D

2.7 Corollary. For any r > 0, F: κιω —> ω, F: kω —» ω, α E ωω, and R C M ω
(i) i / F E S u Π ; and F is total, then also FEΔJ;

(ii) if F E S ; (ΠJ), ώen DmFeXI (Πj);
(Hi) ifFEVr (ΠJ), Λeπ I m F e X ! (Πί);
(iv) // FEΣί, Λen ImFEΣJ;
(v) // R E Σ U Π ; , then KRGΔ!+I;

(vi) ΣJ (III) is closed under composition with Σί (ΠJ) functional

(vii) a EM iff {a} E ΔJ iff {a} E ΣJ.

Froo/. The proofs are in general like those for Corollary 1.8 and we leave them
to Exercise 2.21. D

We may picture the arithmetical and analytical hierarchies together as
follows:
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π?
ϊ
»

m
4

π!

X? Σ! XJ

We want next to show that the indicated inclusions are proper. We postpone
to the next section (3.8) the proof that Δ°(ω) ̂  Δj. For the others we proceed as for
the arithmetical hierarchy to define relations universal for Σί and Π). However,
we shall need one preliminary result.

2.8 Lemma. ΣJ = {3'P: P E Π?}.

Proof. The inclusion (D ) is immediate from the definitions. On the other hand,
it follows from the last three equivalences used in the proof of Theorem 2.5 that
{B'P PGΠ?} is closed under 3°, V°, and 31. Hence this set includes all
arithmetical relations and thus also Σi. D

We now set, for r ^ 1,

2.9 Analytical Indexing Theorem. For all r > 0,
(i) UJ is universal for XJ;

(ii) ~Uί is universal for Πl;
(iii) Ul is universal for {R: ReVr}\
(iv) ~Ul is universal for {R: RG III}.

Proof. We first prove by induction that for all r > 0 , U ! E Σ ! and -UJ G ΠJ. By
the convention discussed following Theorem II. 1.8, the definition of UJ given
above is an abbreviation for:

U!(α, s, s, λm(r(m)*(/3(m)))).
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The part following the quantifier is Π? by the Arithmetical Substitution Theorem
(1.11) and thus UleΣi. Similarly,

Όl+ι(a,s,y)<*3β~Ul(a,s,λm(y(m)*(β(m)))).

Thus under the induction hypothesis that ~UJ E ΠJ we have, using Lemma 2.5,
that u : + 1 eΣί + 1 .

If R is any Σ! relation, then by Lemma 2.8, R = 3*P for some P E IT?. Since
— U? is universal for Π?, there is a number a such that

Then

The remainder of the proof is by induction on r just as in the arithmetical
case. D

2.10 Analytical Hierarchy Theorem. For all r > 0
(i) Vr£M and Ul^M;

Proof. Just as for the arithmetical hierarchy. D

From this point on the theory of the analytical hierarchy begins to diverge
from that of the arithmetical hierarchy. The question of which of the classes Σί
and Π' have the reduction and separation properties is much more complicated.
Results for r = 1 and r = 2 will be obtained in §§ IV.1 and V.I, respectively, but
for r ^ 3 these questions cannot be decided on the basis of the usual axioms for
set theory (cf. end of § V.3).

2.11 Analytical Substitution Theorem. For any r, any S E Σ r (ΠΓ), and any
partial functional H E Σj (Πj), if

R(m, α)<-»S(m, α, λp. H(p, m, α)),

then also RGX| (Πj).

Proof. For r = 0, suppose S and H are both arithmetical. H may be extended to a
total arithmetical functional I:

l(p,m, a)— n <-»H(p,m, α)— n v (—»3g.H(p,m, a) — q Λ n = 0).
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Then

R(m, a)*+Vp 3rc. H(p, m, a)— n Λ S(m, α, λp. l(p, m, α)),

and R is arithmetical by the Arithmetical Substitution Theorem 1.11.

Suppose r > 0 and H, S E X \. Then the result follows from the equivalence:

R(m, fr)~3j8 (Vp [H(p, m, a) = β(p)] Λ S(m, α, β)).

If H,S6Π; we have

R(m, α)<-> Vp 3M [H(p, m, α) — n] Λ

Vβ (Vpn[H(p, m, α) = n -> ]3(p) = n]-» S(m, α, |8)). D

The relativized analytical hierarchy may be defined in two equivalent ways:

Xo[β] = Π()[β] = the class of relations arithmetical in β;

etc. as in Definition 2.2;

or, for r > 0 , REl\[β] (Πj[β])ifϊ R(m, α)^>S(m, α, β) for some S G Σj (Πj).

The proof that these are equivalent is the same as in the arithmetical case

(Exercise 1.24).

Again there is no problem in extending all the results of this section to the

relativized hierarchy.

2.12 C o r o l l a r y . For all r and j8, if βo,...,βnE Δ1,, then

Σ;[/B] = Σ;, nι

r[β] = nl and ΔJ[P] = Δ;.

Proof. Immediate from Theorem 2.11. D

2.13 Corollary. For all r, α, 0, and γ, ί/ α £ Δ j [ β ] αntί βGΔj[γ], ί/ien

α e Δ ί [ γ ] . D

Thus the relation "Δj in" is transitive and one may consider Δj degrees

analogous to the (ordinary) degrees of § II.5:

Δj-dg(α) = {β: a ε Δj[β] and β G Δj[α]}.

The Δ| degrees are called hyperdegrees and are considered further in § IV.2.
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There are several ways one might hope to extend Post's Theorem to the
analytical hierarchy. The most direct generalization is

(1) R G Δι

r+ι<^ R recursive in some set A GΣj.

It could be argued that a relationship stronger than "recursive in" is needed
here. Since "recursive in" coincides with "Δ? in", a natural choice is "Δ| in" or
even "Δ* in":

(2) REΔι

Γ+ι^REΔ\[A] for some A Ell;

(3) REΔ]+ί<^REΔι

r[A] for some AE^ι

r.

The implication (<—) of (3), and hence of (1) and (2) is immediate from
Corollary 2.12: if A G Σj, KA G A | + 1 and R E Δι

r[A] C Δj+1[A], SO R G A | + ,
However the implication (—>) of (3), and hence of (1) and (2), is false for all r > 0
(also for r = 0 but for a different reason — see Corollary 3.8 below). By the
relativized analytical hierarchy theorem there exists a relation R GΣj[L/J]~
Δj[ί/']. Since every A El] is recursive in Uι

r, R£Δ\[A] for any A GΣj.
However, Σj[ί/J]CΔj+ I[l/J] and 1 / J G Σ J C Δ J + 1 , SO by Corollary 2.12,
REΔλ

r+x. Thus there is no analogue of Post's Theorem for the analytical
hierarchy.

2.14 Definition. For all r > 0,
(i) Σ* = U {Σj[j3]: β Gωω};

(ii) Π* = U{Πj[j3]: β G ω ω } ;

(no Δ; = ΣJ n π;.

The classes Σj and Πj comprise what is known as the projective hierarchy, and
were known and studied long before the invention of recursion theory. It follows
easily from Lemma 2.8 that Σ | = {3 !P: P is closed}. That is, the Σj relations are
exactly the projections (with respect to a function coordinate) of closed relations.
Similarly the Σ*+1 relations are exactly the projections of Π) relations. The class
of projective relations ( = Δ(

!

ω)) is the smallest class containing the closed relations
and closed under projection (3 1) and complementation.

Contrasting with Theorem 1.16 we have

2.15 Theorem. For all r >0, ΣΓ and Πr are closed under countable unions and
intersections of relations of the same rank.

Proof Suppose Pp G Σ* for all p E ω and let
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Q(p,m, α)«->Pp(m, a).

Then as in the proof of Theorem 1.16, Q E Σ j . Since

U {Pp: p E ω} = 3°Q and Π {Pp: p E ω} = V°Q,

these are both in Σj by the relativized version of Theorem 2.6. D
The class Bo of Borel relations is the smallest class containing the open

relations and closed under countable unions and intersections of relations of the
same rank.

2.16 Corollary. BoCΔj. D

We will prove in § IV.3 that in fact Bo = Δj. This classical result of descriptive
set theory is paradigmatic for many of the other results of later chapters.

2.17-2.23 Exercises

2.17. Show that {a: a E Δ°ω)} E Δj (cf. Exercise 1.18 and Corollary 4.21 below).

2.18. We might have defined the analytical hierarchy by quantifying sets rather
than functions. Let 3 ! P be the relation 3B P(m, α, B) and define analogously V1,
Σj, etc. Show that

Σj = Σj, but that corresponding to Lemma 2.8 we have

2.19. For any countable indexed family of relations (P s : s E ω), let sί(Ps: s E
ω) = U { Π {Pβip): p E ω}: β E ωω}. Show that for any R, the following are
equivalent:

(i) ReΣi;
(ii) R = si{Ps: 5 E ω) for some P s E Δ?

(iii) R = 3 ! P for some P E Δj.

2.20. The operation si of the preceding exercise may also be regarded as a
quantifier:

Gs/P)(m, a)+>3β Vp P(/8(p), m, α).

Show that for all r and P
(i) if rs*l and P E Σ J (Σj), then i P £ Σ | (Σj);

(ii) if r ^ 2 and P E Π | (Πj), then i P G Π | (Πj).
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2.21. Prove Corollary 2.7.

2.22. Prove that the class of Borel relations is closed under complementation.

2.23. Prove the following Strong Hierarchy Theorem: for all r >0, Xj^Δj.

2.24 Notes. The arithmetical hierarchy was developed independently by Kleene
[1943] and Mostowski [1946] (because of the Second World War Mostowski in
Warsaw did not see Kleene's paper until his manuscript was finished). The
analytical hierarchy was first studied in Kleene [1955b]. Kleene's approach was
motivated by GδdeΓs results on incompleteness, whereas Mostowski saw the
arithmetical hierarchy as analogous to the projective hierarchy, with "recursive"
corresponding to "Borel" and existential number quantification (3°) corres-
ponding to projection (3 ). When Kleene [1950] showed that Σj does not have
the separation property, Mostowski pointed out that this is a flaw in the analogy,
since X\ does have the separation property. Addison, in his thesis (announced in
Addison [1955]) proposed that a better correspondence is that between "recur-
sive" and "closed-open" with 3 corresponding to countable union. The unified
approach to these hierarchies grew out of this analogy and is also largely due to
Addison.

The technique of proof of Theorem 2.11 is due to Shoenfield [1962].

3. Inductive Definability

To this point we have used inductive definitions mainly as a tool. We begin now
to consider their use as a measure of complexity. We shall be interested here in
the relationship between the complexity of Γ and that of Γ as measured by their
classifications in the arithmetical and analytical hierarchies.

For each a E ωω we put Za = {p: a(p) = 0}. Then for any inductive operator
Γover ω we define a relation P Γ by

PΓ(m,a)^m GΓ(Zβ).

We write Γ E Σ,, etc. to mean P Γ E Σ,, etc. We showed in Example 2.3 that for
monotone Γ E Δ°ω), Γ E Π j . The same proof establishes

3.1 Theorem. For any r > 0 and any monotone operator Γ over ω,

Proof. If Γ is monotone, we have
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m <ΞΓ++VB[Γ(B)CB-*m E B]

++ Vα [Vp (PΓ (p, α)-> α(p) = 0)-> α(m) = 0].

An easy calculation based on the techniques of the preceding section shows that
if P Γ G Πj, so is Γ. Π

Much of the rest of this section concerns the question of when a strengthen-
ing of the hypothesis of Theorem 3.1 allows a strengthening of the conclusion.
We begin with the case r = 1 and find that limiting Γ to lie in Π? permits no
stronger conclusion, whereas if Γ G Σ? (and Γ is monotone), then ΓGVi.

3.2 Theorem. For every set A G Γl], tfiere exisίs α monotone operator Γ E Π ? SWC/I

ί/iαί A is many-one reducible to Γ.

Proof. Let A be an arbitrary ΓlJ set. By Lemma 2.9, A = V!P for some P E S , .
Thus by Theorem Π.4.12 there exists a recursive relation R such that

m EA +*Vβ3pR(m,β(p)).

Let Γ be the operator defined by

(m, s) G Γ(B)<+R(m, 5) v Vn «m, 5 * <π» 6 B).

Clearly Γ is monotone and Γ G Π?. We claim that

<m, s) G f +* Vβ 3pR(m, s * β(p)).

Once this is established we have

mGA«->(m,< » e f

so that Λ is many-one reducible to Γ.
To establish the claim, let

We must show C = Γ. As usual, to show Γ C C it suffices to show Γ(C) C C.
Suppose (w,s)GΓ(C). Then either

(1) R(m,s) or (2) ¥ n . ( m , s * ( n ) ) G C

In case (1), any β satisfies R (m, s * j8(0)) so that (m,s)E C. In case (2), for all n,
Vβ3pi?(m,s*(n)*/3(p)), so also (m,s)G C.
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For the converse inclusion we assume (m, s)ξ£ Γ and construct a function β
such that Vp ~ R(m,s*β(p)). Let D = {t: (m, s * i)£ Γ}. By assumption,
( > G D. Since Γ(Γ) = Γ we have

t E D -> (m, s * ί) £ Γ(f)-> 3n (ί * <n) E D).

Hence there is a unique function /3 such that for all p,

n[β(p)*(n)E D].

For this j3, V/? «m, 5 * 0(p)> £ f ) so in particular, Vp ~ R(m,s* β(p)). Hence
<m,s)^C D

Combining 3.1 and 3.2, a set A is ΓlJ iff A is many-one reducible to Γ for
some monotone operator Γ E Π?. The same proof works also for relations R on
numbers.

Since by the Analytical Hierarchy Theorem there exist sets A wich are Πj
but not Δ1? there exist Hι monotone operators such that Γ is Π1 but not Δj. A
natural question to ask in conjunction with this theorem is whether or not every
ΠJ set is equal to Γ for some Γ E Π?. We shall show in § 6 that this is false if Γ is
required to be monotone. The answer is unknown if non-monotone Γ art
admitted.

We turn now to Σ° operators, which turn out to be much weaker.

3.3 Lemma. For any inductive operator Γ ε Σ j , | Γ | ̂  ω.

Proof. Suppose Γ E Σ° and let R be a recursive relation such that
P Γ (m,α)^3njR(m,α(n)). \Γ\ is the least ordinal σ such that Γ(Γ(σ))CΓ{σ\
so to show I Γ\ ^ ω it suffices to show Γ(ΓM) C Γ ( ω ). Suppose m E Γ(Γ(ui)), so
for some n, K(m, KΓ(^)(n)). For each i < n let

= [least s.iEΓ', if i E Γ ( ω );
' lθ, otherwise;

and

t = max{5j: i < n}.

Then Kr(-)(n) = KΓ̂  (n)soR (m, KΓ̂  (n)) and thus m E Γ(Γ') = Γ ί + 1 C Γ ( ω ). D
As a special notation for the following lemma and theorem only, we write

s < A «(V/ < lg(5))((s)f ^ 1 Λ [(*),- = 0-> i E Λ]).

Thus if 5 = KB(n), then s<A+*BΠnCAΠn.
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The import of the following lemma is that for monotone Σ? operators Γ, the

relation m E Γ(Λ) depends only on positive information about A — that is,

information concerning membership in A but not concerning non-membership

in A.

3.4 Lemma. For any monotone operator Γ E Σ?, there exists a recursive relation R

such that for all m and A,

m

Proof. If Γ E Σj there exists by definition a recursive R such that

m EΓ(A)+±3nR(m,KA(n))

*+3s3n[s = KA(n)Λ R(m,s)].

Thus for this R,

m

The converse implication holds also. Suppose s <A and R(m, s). Let

B = {/: [i < lg(s) Λ (s), = 0] v [f ^ lg(s) Λ / E A ]}.

Then B C Λ and s = Kβ(lg(s)). Hence m E Γ{B) and by the monotonicity of Γ,

Γ(B)C Γ(A) so also mEΓ(A). D

3.5 Theorem. For any monotone operator Γ,

Froo/. Let Γ be a Σ? monotone operator. We shall define a primitive recursive

function / such that for all r, f(r + 1) is a semi-index for the semi-recursive set Γr.

Once this is done, we have by Lemma 3.3

m <ΞΓ+*3r.m E Γr +*3r 3u T(/(r + l),(m), w,( ))

and thus f E Σ?.

We let /(0) = 0 and f(r + 1) = Sbo(c,/(r)), where c is an index chosen as

follows. Let R be as in Lemma 3.4, so that

mEΓr±*3s[s< Γ(r) Λ R(m, s)].
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Under the induction hypothesis that Γ(r) = Dm{/(r)} (which is valid for r = 0) we
have

for an appropriate recursive relation 5. Choose c such that

(n,m)G Dm{c}<->3pS(p, ny m).

Then

m<ΞΓr <->(/(r), m) G Dm{c}e ™ G Dm{Sbo(c,/(r))} = Dm{/(r + 1)}. D

If Γ is not monotone, then Γ need not even be arithmetical. Let

U°M = {(r,a,m): I/?(α,<m»}.

It is clear that for any arithmetical relation R, there exist r and a such that

jR(m)<-><r,α,m>e £/°ω).

Hence C/°ω) is not itself arithmetical as if it were, say, Σ?, then so would be every
arithmetical relation contrary to the Arithmetical Hierarchy Theorem. On the
other hand,

3.6 Theorem. There exists a Σ? inductive operator Γ such that Γ = U°(a}).

Proof. Let

v 3r 3a 3m [36 3n(r, b, n)G Λ Λ S = (r + 1, α, m) Λ

Clearly Γ E.2% and it is easy to show by induction on r that

Γr = { ( ί , α , m ) : 0 < K r + l Λ l/?(α,<m»}.

Hence Γ = U°M. D

Note that Γ is non-monotone because of the condition in its definition that
something not belong to A. On the positive side,
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3.7 Theorem. For any inductive operator Γ,

Γ G Σ ? - * f GΔj.

Proof. Let Γ be a Σ° inductive operator and let β* be the function such that for
all r and m,

β*«r + l ,m» = 0 ^ m 6 Γ r ,

and β*(t)= 1, otherwise. Consider the following arithmetical relation S:

Λ Vr Vm [β((r 4- 1, m)) = 0 ^ PΓ(m, λn. β«r, n»)].

Note first that S(β*). Furthermore, for any β such that S(β), β ( 0 = 1 = β*(0
for all t not of the form (r 4-1, m) and it is easy to show by induction on r that for
all m

β((r + l,m)) = 0+*m G Γ\

Thus β* is the unique member of S and we have

m<ΞΓ±+3r.m G Γr +*3β [S(β) Λ 3Γ. β«r 4- 1, m» = 0]

?

ThusΓGΔj. D

3.8 Corollary. £/°ω)G Δj ~ Δ?ω).

Froo/. By 3.6 and 3.7. D

The proof of 3.7 actually establishes a stronger result:

Γ G Δ } Λ | J Ί ^ ω - > f GΔ|.

Since by Theorem 3.2 there exist monotone ΓGΠ? such that Γ £ Δj, it follows
that for some such Γ,\Γ\> ω. It will soon be clear that Hί operators may have
quite large closure ordinal; an upperbound for these is obtained in § IV.2.

For the remainder of this section we exploit the fact (Corollary 1.3.2) that all
inductive operators over ω have countable closure ordinal. Thus for any such Γ
we have
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m G Γ ^ ( 3 σ < N 1 ) m G Γσ

o ( V σ < K 1 ) [ Γ c Γ ( σ U m E Γ σ ] .

Recall from the end of § I.I that W denotes the set of functions γ such that
^ 7 is well-ordering of order type || γ || < H{. Since every countable ordinal is
for some γGW, we have

W)[ΓIHI C Γ ( I H I ) ^ m G ΓM}.

Thus we can classify Γ in the analytical hierarchy if we can classify the relations
m G ΓM) and mGΓM.

3.9 Theorem. For any r >0 and any inductive operator Γ G Δj, ίnere ejcisί
relations V^} and VΣGΣ! and Vί̂  and VΠGΠ; such that for any γ G W and
any m,

(i) m G^oV^yJβV^y);
(ii) m GΓ I M I^Vx(m,γ)<->Vπ(m,γ).

/. The technique is an elaboration of that used for Theorem 3.7 in which we
index the stages of Γ by p G Fld(γ) rather than by r G ω. Suppose Γ G Δj with
r >0. For each γ G W we define α7 and βy by:

ay((p,m)) = 0±+p G Fld(γ) Λ m G Γ ( lp lγ);

βy «p, m» = 0 ~ p G Fld(γ) Λ m G Γ lpl-,

and ay(t)= βy{t)= 1, otherwise. Let S be the relation defined as follows:

Λ Vp Vm (p G Fld(γ)-> [α«p, m» = 0 ^ ( 3 α < γ p ) β « α , m» = 0]

» = 0«P Γ (m,λn.α«p,n»)]) .

As P Γ G Δ) and everything else is arithmetical, S G Δj. It is routine to check
that for any γGW, S(ay, βy, y). We claim that for any γGW and any a and β
such that S(a, β, γ), α = α7 and β = βy. For any such α, β, and γ, let

Z^p={m: α«p,m» = 0}

and similarly Z β p. It will suffice to show that for all p G Fld(γ),
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Zα,p = Γ<"^ and Z f t p = r""^.

We proceed by induction on \p \γ and assume as induction hypothesis that for all

Z^q=Γ^ and Zβ,q = Γlql\

Then by the definition of S and formulas (8)-(10) of §1.1,

m G Za,p±*(3q <γp)m G Zβ,q«+(3q <yp)m G Γ k l -

and

m E Z β ) P «-» PΓ(m, λn.a((p, n)))++m

~ m

We now set

(m, γ) ±*3aβ [S(α, jS, γ) Λ 3p (/8«p, m» = 0)];

Vπ(m, r ) « V α β δ [S(α, jS, γ) Λ Vn (δ(n) = 0 ~ 3 p [j3«p, m» = 0])-> PΓ(m, δ)].

We leave to the reader the straightforward verification that these relations
satisfy the conditions of the theorem. D

3.10 Theorem. For any r ^ 2 and any inductive operator Γ,

Proof. With the notation of the preceding theorem and the remarks before it we
have

m G f o 3 γ [ γ E W Λ VΣ(m, γ)]

Since r ^ 2, W G Γl{ C Δj and an easy computation shows that the first formula
gives a Σj definition for Γ, the second a ΓlJ definition. D

By Theorem 3.2, the result fails for r = 1, but we can get some information
about Δj operators.
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3.11 Definition. An ordinal σ is recursive iff σ = | |γ | | for some recursive y E W.

The least non-recursive ordinal is denoted by ωx.

As there are only countably many recursive functions, ωx is a countable

ordinal. Furthermore it is easy to see that any ordinal less than a recursive

ordinal is also recursive so that σ is recursive iff σ < ωx. Other properties of ωx

are indicated in Exercise 3.27.

3.12 Corollary. For any inductive operator Γ,

E Δ j Λ l i I < (ox—>1 E Δj .

Proof. If | Γ | < ω j , then there exists a recursive function γ G W such that

|| y || = IΓI. Then by Theorem 3.9,

m^Γ^m EΓw l«-»VΣ(n

The conclusion follows from Theorem 2.5. D

The proof of Corollary 3.12 establishes an apparently stronger result. We say

an ordinal σ is Δ* iff σ = || γ || for some γ E Δj Π W; δ I denotes the least non-Δj

ordinal. Then using the Analytical Substitution Theorem (2.11) instead of

Theorem 2.5 we have by the same argument,

Γ<ΞA\Λ\Γ\<δ\-+Γ<ΞA\.

However, we shall see in § IV.2 that δ\ = ωx so that this is no improvement. We

can also now extend the reasoning following Corollary 3.8 to conclude that for

some ϊlx monotone operators Γ we have | Γ\ ̂  ωx. In §IV.2 we shall also prove

that for any Ux operator Γ, | Γ \ ̂  ωx and Γ E Πj ~ A\ just in case | Γ \ = ωx.

For arbitrary inductive operators Γ E Σj, the best possible classification of Γ

in the analytical hierarchy is that given by Theorem 3.10: ΓE:A1

r+x. For

monotone Γ, however, a refinement of the proof of Theorem 3.10 yields a result

parallel to Theorem 3.1.

3.13 Theorem. For any r > 0 and any monotone operator Γ E Σj (ΓlJ), there exist

relations V ( } and V E Σί (Πj) such that for any y E W and any m,

Proof. We follow closely the proof of Theorem 3.9 and only indicate the

necessary modifications. Suppose first that Γ E Σj and is monotone. Define ay

and βy for y E W as before and let S' be the relation defined as S except that the

clause
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[β((p, m» = 0** P Γ (m, λn. a((p, n)))]

is replaced by

, m» = 0-> P Γ (m, An. α«p, n)))].

Clearly S' G l] and for any γ G W, S'(α r /3y, γ), but α r and β r are no longer the
only functions for which this is true. Rather we prove by induction on \p\y that
for all p G Fld(γ), if S'(α, β, γ), then

Z ^ C Γ * 1 ' 1 and Z A , C Γ W ' .

Assuming as induction hypothesis that this holds for all q<γp, we have

m G Za,p+*(3q <yp)m G Zβ,q - ( 3 q <Ύp)m G Γ1"1^

and

m e Z A p -» P Γ (m, An. a((p, n)))**m G

m

The last implication is the only place where the monotonicity of Γ is used.
Finally, define V° and V from S' just as V^} and VΣ are defined from S.

Clearly V(} and V are Σj. If y E W and m E ΓiM\ then for some p E Fld(γ),
m G ΓIPIΎ and thus β y «p, m » = 0. Since S'(αy, β7, γ), also V( }(m5 r ) Conversely,
suppose V( \m, y) holds, say S'(α, j8, γ) and j8«p, m» = 0. Then p G Fld(γ) and
m €Zβ,p CΓ l p l γ so m GΓ ( l l γ i ), We leave the similar verification of (ii) to the
reader.

In case Γ is a monotone Π) operator, we define S" by replacing the last clause
in the definition of S by

[PΓ (m, λn.a((p, *»)-> β«p, m» = 0].

Then S" E Sj (!), S"(αy, j3y, γ) holds for any γ G W, and for all γ E W, a and 0
such that S"(α, β, γ) and p G Fld(γ):

Γ ( l p l γ ) CZ β i P and Γ i p l γ C Z β i ,

Then if V(} and V are defined from S" as V^ and Vπ are defined from S in 3.9, we
have V(} and V in Πj and an easy computation verifies (i) and (ii). D

3.14 Theorem. For any r^2 and any monotone operator Γ,
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Proof. With the notation of the preceding theorem, we have

m G Γ ^ 3 γ [ γ G W Λ m E ΓM] **3γ [γ E W Λ V(m, γ)]. D

At this point the strongest result we have for Γ E Σj is that Γ E Δ2. Although
this is clearly the best estimate possible in terms of the analytical hierarchy, we
shall return to this question in § VI.6 and find better bounds in terms of other
measures of complexity.

So far in this section we have treated only inductive operators over ω. There
is little difficulty in extending our analysis to operators over ω. For any a let

and for any operator Γ over ω set

Then we classify Γ as Ί\, etc. (i = 0,1), according as P Γ E Σ,, etc. and all the
results of this section hold with only minor changes in the proofs.

If we attempt to do the same for operators over klω or even over ωω,
however, we encounter an immediate difficulty. In place of Zk

a we should have to
use

ZkJ = {(p,β): (p, β) E klω Λ F(p, β) = 0}

and attempt to classify Γ by means of the relation

P Γ (m, α, F) <r> (m, α) E Γ(Zp ').

Relations with functional as arguments are not included in our present system
so we have no way to assess the complexity of such a PΓ . We shall develop such
means in Chapter VI and return to this question in §VI.7.

We can, however, with our current machinery, treat inductive operators over
klω which are decomposable in the sense of Definition 1.3.6. Recall that such an
operator Γ is defined by a family (Γa: a E '(ωω)) of operators over kω by

( m , α ) E Γ ( R ) ~ m E Γ t t ( R J

where Rα(m)<-*R(m, a). For such an operator we define

Γa{Z\)
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and say that Γ is Σ,, etc. according as P Γ G Σ,, etc. Note that with these
conventions,

(m, a) G Γ ( R ) ^ PΓ(m, α, λp. KR((p)0,..., ( p ) ^ , a)).

The crucial restriction is that the arguments a enter only as parameters:
whether or not (m, α)GΓ(R) depends only on the membership or non-
membership of other sequences (p, α) in R not on that of sequences (p, β) for
any β^ a. One sometimes says that the operators Γa are Σ ,̂ etc. uniformly in α.

At first glance, the class of decomposable operators over ' ω may appear
very limited. It turns out, however, that not only can all of the results of this
section be extended to this class, but also that these extensions are just what is
needed for many applications in later chapters. We shall state some of these but
relegate most of the details of the proofs to the exercises.

In what follows we always assume that the decomposable operator Γ is
defined by the family (Γa: a G 'fω)). Note that Γ is monotone just in case each
Γa is monotone.

3.15 Theorem. For any r > 0 and any decomposable monotone operator Γ over
k,l

ω,

Proof. As in the proof of Theorem 3.1, by Lemma 1.3.7,

(m, α ) G Γ o m G f α ~Vδ [Vp(PΓ(p, α, δ)-> δ«p» = 0)-> δ«m» = 0]. D

3.16 Theorem. For every R G Πj, there exists a decomposable monotone operator

Γ E Π , and a recursive function f such that

R(m,α)β(f(m),α)Gf.

Proof. For any RGΠ} there exists a recursive relation S such that

R(m, a)<r*\/β 3p S(β(p),m, a).

Let

(m, 5) G Γa(B)<+ S(s, m, a) v Vn «m, 5 * <n» G B).

Then ΓEU^ Γ is monotone, and as in the proof of Theorem 3.2,

R(m,α)«<m,< » G f β o ( ( m , ( )),*)<ΞΓ. D
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3.17 Theorem. For any decomposable operator Γ over ' ω,
(i) Γ G Σ I Λ Γ monotone -^Γetl;

(ii) ΓGΣ?->fGΔJ.

Proof. We leave the proof of (i) to Exercise 3.31. Suppose Γ E Σ°. For each α, let

and βoc(t)= 1, otherwise. Set

Λ Vί [~Sq(0 v lg(ί) ^fc + lv(ί o ) = 0 ^ β{t) = 1]

Λ Vr Vm[β«r + 1, m» = 0 <-> PΓ(m, α, λn. β«r, n»)].

As in the proof of Theorem 3.7, for each α, βa is the unique β such that S(a, β)
and we have

(m, a) E f « 3 β [S(α, j8) Λ 3Γ. j8«r + 1, m» = 0]

)-*3r.i8«r + l,m» = 0]. D

3.18 Theorem. For any r ^ 2 α/td any decomposable inductive operator Γ over
k,l

ω,
(i) ΓEAI-+Γ G Δ ! ;

(ii) Γ monotone A Γ G Sj -> Γ E Σj.

/. By modifications of the proof of Theorem 3.9 similar to those in the
preceding proof we obtain for Γ E Δj relations V^ } and VΣEΣj and Vπ

 } and
Vπ E Yl\ such that for all y E W,

m E Γ ί y | l ) « V̂  }(m, α, y)« V(

π ^m, α, γ)

and

mE ΓLΎ|I« Vs(m, α, γ ) « Vπ(m, α, γ).

Then the proof may be completed as above. The construction for (ii) is
similar. D

As usual the results of this section may be relativized to any β E ωω. In
particular we shall later have occasion to use the "boldface" versions of
Theorems 3.15 and 3.18: for any r > 0 and any decomposable operator Γ over
k,l
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Γ monotone Λ Γ E Πj -• Γ E Πj

and for r ^ 2,

and

Γ monotone Λ Γ G X r ^ Γ E Σ r .

For reference, we summarize in a table the results concerning the relative
complexity of Γ and Γ:

Operator Γ

Closure Γ

Σϊ
monotone

Σϊ

ΣΪ

Δί

π(;
monotone

Πί

Arithmet-
ical
monotone

Πί

π;
monotone
( r > l )

π;

Σ:
monotone
(r>2)

Σ:

Δ:
(r>2)

Δ:

3.19-3.34 Exercises

3.19. Let D be the smallest subset of ω such that 0 G D and for all ά, if
Vp.{α}(p)ED, then a E D. Show that £>EΠj and every ΓlJ relation on
numbers is reducible to D (D is ΓlJ-complete).

3.20. Let «S? be a countable first-order language and 5" a theory of if which
under some standard Gόdel numbering is recursively axiomatizable. Sketch a
proof that both Fm = {n: n is the Gόdel number of some formula of 3?) and
Th = {n: n is the Godel number of a theorem of ?f} are both of the form Γ for
monotone Σ? operators Γ. What difference in these inductive definitions
accounts for the fact that Fm is recursive, whereas in general Th is only Σj?

3.21. Show that for any monotone Σ° operator Γ, there exists a partial recursive
function / such that

(i) for all e and m,

f ( e m ) J 0 , if mEΓ({p:{e}(p)-0});
{undefined, otherwise;

(ii) there exists an index e such that for all m,

f(e, m) — {e}(m) and {e}(m) — 0«-»m ε f .

3.22 (Moschovakis [1972]). The ΓlJ relations are exactly those expressible in the
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form Vβ 3n P(β(n), m, a) with P recursive. The function quantifier may be
thought of as an infinite string of number quantifiers thus:

VpoVp! Vp2 ... 3n P«p 0,... . p ^ m , α).

The purpose of this exercise is to establish that the class of relations expressible
in the form

(*) Vp0 3pί Vp2 3p 3 Vp4... 3n P«p 0 , . . . , pπ_,>, m, a)

is also exactly ΓlJ. The expression (*) may be interpreted in several equivalent
ways. We shall take it here to mean

3 γ Vp0 Vp2 Vp4... 3 n P«p0, y «po», p2, γ «p0, p 2»,.. .), m, a)

where the second ... terminates with pn_x if n is odd and with γ((p 0 , . . . , Pn-2)) if
n is even. (The function γ may be thought of either as a Skolem Function or as a
strategy for a certain infinite game — cf. V.3 and the discussion preceding
Definition V.4.7.)

It is easy to see that every Πj relation is expressible in the form (*) with P
recursive. For the converse, show first that the same class of relations is
expressible in the form

3p0

 v P i 3P2 Vp3 3 p 4 . . . 3n P«p 0 , . . . , pn_,), m, α),

that is,

35 Vp, Vp3Vp5. . 3n P«δ« »,p1? δ((Pι))9p3, .. >, m, a).

Then imitate the proof of Theorem 3.2 to show that every relation (*) is
reducible to the closure of a Δ2 monotone operator.

3.23. Extend the reasoning of the preceding exercise to show that every relation
definable in the form

V/30 3p0 VjS, 3p, . . . 3n P«j80(p0), , βn-ι(Pn-i)), m, «)

with P recursive is Πj.

3.24. Show that every X° set is reducible to Γ for some Γ E Δ?.

3.25 (Richter). Show that for each n ^ 1, there exists a Π? inductive operator Γ
such that \Γ\ = ωn. (For any two operators Γo and Γ l5 let
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-lΓo{Λ)> if Γ ° ^ Λ

" l , otherwise.

Choose appropriate Γo and Γj such that Γ = [Γo, ΓJ is Π° and has closure
ordinal ω .)

3.26. Show that there exist (non-monotone) inductive operators Γ E Π2 such
that Γfί Πj. (Choose Γo such that Γo E ΓlJ ~ Δj, set

= {<0,m>:meΓo({p:<0,p)eA})}

and

>: Γ,(A)CA Λ ^

3.27. Show that the recursive ordinals are closed under ordinal addition and
multiplication.

3.28. Show that for X any of l[ or Π^ (i =0,1; r>0), there exists an "X-
universal" operator Γ* — that is, Γ^GX and for any Γ E X there exists an a
such that

3.29. Find a monotone operator Γ E Σj such that Γ£ Σj UΓlJ.

3.30. Show that not every Δ2 subset of ω is reducible to Γ for some monotone
operator Γ1.

3.31. Complete the proofs of Theorems 3.17 and 3.18.

3.32. Let X be any of the classes Σ^ or Π* (1 = 0 or 1, r ^ 0) and X the class of
relations reducible to some Γ with Γ E X. Show that

(i) X is closed under 3°;
(ii) if X is not ΣQ, ΠQ, or Σ°, then X is closed under V° and indeed under the

Suslin quantifier si, where

(siR)(m)++Vβ 3njR(j8(n),m).

3.33 (Aczel). For any monotone operator Γ over ω, let
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• i = [least σ. m E Γσ, if mEΓ\
l r \\Γ\, otherwise;

*m E Γ Λ \m \Γ ^ | n | Γ ;

m < Γ n «•» m E. Γ /\\m\r <\n\Γ;

(i) Show that for any τ<\Γ\ and any m E Γ τ

and

(ii) Let Δ be the operator defined by:'

Δ(Λ) = {<m, n>: n E Γ({q: m E

Show that for all m and M and all τ < | Γ | ,

m E. Γτ /\\m\Γ <\n\Γ «-»(m, n) E Δτ,

and

m < Γ n « ( m , n ) ε ϊ

(iii) Similarly, show

n ^Γm <-*(m, n) E Δ°.

3.34. Use the results of the preceding exercise together with Theorem 3.2 to

show that:

(i) the class of Πj relations on numbers has the reduction property;

(ii) for any monotone arithmetical operator Γ, | Γ \ ̂  δ J, the least ordinal not

the order-type of a Δ} well-ordering of ω\ Γ E Δ j iff | Γ | < δ } ;

(iii) (Cenzer [1974a]) for any r^=2 and any monotone operator Γ E Δj,

\Γ\<δ\.

3.35 Notes. Theorem 3.2 is essentially due to Kleene [1955a], but the simple

direct proof given here seems to appear first in Lorenzen-Myhill [1959].

Theorem 3.10 is from Putnam [1964], although it is stated there in very different

terms.
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4. Implicit Definability and Bases

If A C ωω is a set of given complexity, what can one say about the complexity of

the elements of A? Since ωω is recursive and has elements of all complexities, we

shall at best be able to prove that a simple set has some simple elements. This

leads to the notion of basis:

4.1 Definition. For any class X of relations and any B C ωω, B is a basis for X iff

for all A G X,

3a. a e A ^ ( 3 α G B). α E A.

We shall present in this section a number of positive results concerning bases

along with counterexamples to indicate that these are optimal in the sense that

they fail if B is reduced or X enlarged. Among the classes X to be considered

are classes of singletons. If {β} G Δ, (etc.) we say that β is implicitly Δ,. Note that

B is a basis for the class of Δί singletons iff every implicitly Δj. function belongs

to B.

4.2 Theorem. Δ° is a basis for X°{.

Proof. The set of recursive (Δ^ functions is dense and hence intersects every

open (Σ?) set. D

4.3 Theorem. Δ°(ω) is not a basis for the class of 11° singletons.

Proof. Let Γ be the inductive operator of Theorem 3.6 and β * and S be as in the

proof of Theorem 3.7 for this Γ. Since

β* is non-arithmetical. On the other hand, β* is the unique member of S and it

is routine to check that S E Π j . D

4.4 Lemma. For any β, if β is implicitly arithmetical, then β is recursive in some

function y which is implicitly Π?.

Proof. We shall prove the conclusion for {β}GU°r by induction on r. If r = 1,

there is nothing to prove. Suppose {0}GΠ?+1 with r > 0 and let R be a Δ?

relation such that

3n R(m, n, a)].
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In particular, Vm 3n R(m, n, β) so define

δ(m) = <β(m), least n. R(m, n, β))._

Since for all m, β(m) = (δ(ra))0, β is recursive in δ. We claim that

Vα (α = δ^Sq 1 (α)Λlg(α) = 2ΛVm R(m,(a(m))u(a)0)

and thus that {δ} G Π°. Then by the induction hypothesis, δ is recursive in some

implicitly Π° function y and thus so is β.

The implication (—») of (*) is obvious from the definition of δ. Conversely, if

a satisfies the right-hand side, then from the third clause follows that

Vra 3/t R(m, n, (α)0) and thus that (α) 0 = β- Then from the fourth clause it is

immediate that (a(m))1 = least n. R(m, n, β) and thus that a = δ. D

4.5 Corollary. Δ°ω) is not a basis for the class of Πj singletons.

Proof. Immediate from 4.3 and 4.4. D

In the positive direction, we have from the examples of 2.3:

4.6 Lemma. For all r > 0, Δj is a basis for the class of Σj singletons. D

Hence in particular, Δj is a basis for the class of Π? singletons. To settle the

question for arbitrary Π? sets we shall need a result from the next chapter:

(IV.2.6) {a: α E Δ | } E Π |

together with the following Lemma.

4.7 Lemma. For any r > 0 and any set B which is closed under "recursive in", if

B is a basis for Πj (ΓlJ), then B /s α/so α basis for Σ} (Σj+1).

Proo/. Suppose « E A o 3 β R ( α , β ) , RGΓlJ, and B is a basis for Π?. Let

C = {γ: R((γ)0, (y)i)} If A-^0, also C ^ 0 so there exists γ G C Π B . Then

(γ) 0 E A and as (γ) 0 is recursive in γ, also (γ) 0 G B, so A Π B ^ 0 . The proof for

R G Π* is identical. D

4.8 Corollary. Δj W noί α fcαsi s for 11°.

Proof. Let A = {α: α £ Δ}}. By IV.2.6, A G X|, but clearly A has no Δ} element.

Hence Δj is not a basis for Xj, so by Lemma 4.7 also not for nv D
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Note that since a function a is Σ} or ΠJ just in case it is Δj, neither Σ} nor Π}

is a basis for Π^ However,

4.9 Kleene Basis Theorem, {a: α /s recursive in some B G Σj} is α fcαsis /or Π?,

hence also for Σ}.

Proof. Let A be a non-empty Π? set. Then for some recursive set A C ω,

α G A ^ V m [α(m)G Λ].

Let

B ={5: 3α Vm [s*ά(m)GΛ]} .

Then £ G Σj and from the assumption A 7̂  0 it follows that ( )E B. Further-

more, (Vs E B)3n. s *(n)E B. Thus there is a unique function β such that for

all m,

β(m) = least n[β(m)*(n)E B].

Clearly β is recursive in B. Since B C Λ and for all m, β(m)EB, also

βGA. D

In the remainder of this section we investigate the basis properties of various

special arithmetical classes. We have not yet developed techniques to deal

successfully with most basis questions in the analytical hierarchy, but for

comparison we mention some results from later chapters:

(V.6.1) {a\ a is recursive in some B G Σ}} is not a basis for

the class of Il\ singletons;

(IV.7.9) Δ2 is a basis for Π}, hence for Σ2;

(IV.2.20) every R G Δ{ is recursive in some implicitly Πi function γ;

but

(IΠ.6.11) there exist a G Δ{ such that {α}£Δ°ω).

The existence of bases for Π2 and higher classes in the analytical hierarchy is

independent of the axioms of set theory. We shall show in §V.2 that it is

consistent that for all r ̂  2, Δ* be a basis for Σj. However it is also known to be

consistent that Δ|ω ) not be a basis for Π2 (Levy [1965a]).

4.10 Kreisel Basis Theorem. Δ° is a basis for {A: A G Σ° Λ A Π ω 2 / 0} .
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Proof. Suppose that A = {a: 3p VmR{p, ά{m))} with R recursive and AΠ
ω2/0. Then for some p0 there exists a function α * E ω 2 such that
VmR(po,ά*(m)). Let

As in the proof of Theorem 4.9 there exists a function β E A which is recursive in

B. In this case, however, we shall show B E Yίι which by Post's Theorem (1.12)

°implies β E Δ°.
By Exercise 1.2.6,

5 E £ <->Vn (3a* E ω2)(Vm < n)R(p0, s * α*(m)).

Let δ be the primitive recursive function defined by: δ(0)= 1 and δ(n + 1) =
δ(n) * (1). Any code for a sequence of 0's and Γs of length at most H is less than
δ(n). Hence

s E B « V n (3ί SΞ δ(n))(Vm < n)[(t)m ^ 1 Λ R(pθ9 s *<(f)0,..., (ί)m-i»]

which implies B E Π°. D
The following shows that this is the best possible result.

4.11 Theorem, (i) There exists a non-empty Π? set A C ω 2 which contains no
characteristic function of a Σ? or Π° set;

(ii) tfiere exisίs α non-empty Π2 seί B C ω 2 which contains no Δj function.

Proof. Corollary II.4.22 asserts that the class of semi-recursive relations does not
have the separation property. The proof actually shows that there exist
semi-recursive sets A, B C ω such that no recursive set C separates A and B.
For any set D and all i < 2, let Dt = {m: (i,m)E. D}. Set

A = {KD: A C D 0 C ~ B Λ D 0 = ~ D 1 } .

Since A, B E Σ?, it follows directly that A E Π?. Suppose that there is a D E Σ?
such that Ko E A. Then Do, Dλ E Σ? so D o is a recursive set which separates A
and B, contrary to assumption.

We established in Corollary 4.8 that there exists a non-empty Πj set with no
ΔJ elements. If C is such a set, it suffices for (ii) to take B = {KGr(α): a EC}
(Exercise 4.26). D

Note that without using 4.8 (which depends on IV.2.6) we have already in the
proof of Theorem 4.3 a Π2 subset of ω2 with no Δ^ω) element.

The theme of the remainder of this section is that a set of a given complexity
which is in some sense "large" is more likely to contain some simple elements
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than a "small" set of the same complexity. In particular, this is true when we

interpret "large" by "non-meager" or "of positive measure".

4.12 Lemma. Δ? is a basis for the class of 11° sets which are dense in some

interval.

Proof. Suppose A = {a: Vm 3nR(m,ά(n))} with R recursive, and A is dense in

[s0]. Then for any s which extends s0 and any m, there is a sequence t compatible

with s such that R(m,t) holds (cf. proof of Π.5.3). Hence if we set

sm + ι = least ί[Sq(0 Λ s m ^ Λ ( 3 « C t)R(m, w)],

then sm is defined for all m and s0C s{C - - C sm C- - -. Hence there is a unique

function a which is the "limit" of the sm, given by a(m) = (sm)m. Clearly a is

recursive and belongs to A.

4.13 Corollary. Δ° is a basis for the class of non-meager Σ 3 sets.

Proof A Σ 3 set is a countable union of Π2 sets. If it is non-meager, one of these

must be dense in some interval and hence contain a recursive function. D

An interesting by-product is the classification of the class of recursive

functions:

4.14 Corollary, {a: a E Δ?} E Σ 3 ~ Δ3.

Proof. It was shown as one of the Examples 1.3 that the set A of recursive

functions is Σ 3 . Suppose also A E Π 3 so that ~A E Σ 3 . As A is denumerable it is

meager, so by the Baire Category Theorem (1.2.2), ~A is non-meager. But then

by Corollary 4.13, —A contains a recursive element, a contradiction. D

Note that it also follows from this argument that Δj is not a basis for the class

of non-meager or even co-meager Π3 sets. Also, since the class of primitive

recursive functions is Σ°, this class does not form a basis for the class of

non-meager Yl°2 sets.

We shall extend these results to all levels of the arithmetical hierarchy in § 6.

If we replace "non-meager" by "of positive measure" the results have a similar

flavor but are weaker in the sense that the bases are larger. First, in contrast

with 4.13,

4.15 Theorem. Δ? is not a basis for either of

(i) the class of Π° sets of positive measure, or

(ii) the class of Σ2 sets of measure 1.

Proof. For each n and α let
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Each An a is either empty or is an interval of length n + a + 1. In either case,

since the measure of an interval of length k is at most 2~k, mes(An α ) ^

2~" 2~(α+1). Hence for each n, An = U {An a: a E ω} has measure at most

Σ~= 02~n 2~{a + ι) = 2~M. Furthermore all recursive functions belong to every An,

so that each ~An is a Πj set of positive measure with no recursive elements, and

~ Pi {An: n G ω} is a ^2 set of measure 1 with no recursive elements. D

On the other hand, we have

4.16 Theorem. Δ° is a basis for the class of Yί^ sets of measure 1.

Proof A Π2 set A of measure 1 is a countable intersection of Σj sets An each also

of measure 1. Clearly each An is open and dense so that ~An is nowhere dense.

Thus ~A = U {~An: n E ω} is meager and by the Baire Category Theorem, A

is non-meager so has a recursive element by Corollary 4.13. D

In the remainder of this section we compute for all r bases for the class of Σ?

sets of positive measure. For the next lemma only, if F is any total functional we

set for any R,

F C ( ) { 3 : R(m, α, j3)} ^

4.17 Lemma. For all r > 0 , all ε, any recursive functional F and any R, //

R £ Σ ° [ ε ] , then R ^ G l ! ^ ] .

Proof We proceed by induction on r and omit reference to ε. Suppose first that

R G Σ?, say

R(m, α, β) +* 3n S(β(n), m, a)

ursive

interval [0, 1]:

for a recursive S. Let θ be the following function from k + XJω into the rational

_ ίmes[s], if s E Sq Λ S(s,m, a) A (Vί $Es)~S(ί,m, α ) ;
{s, m,a) j ^ otherwise.

Since {β: R(m, α, β)} is the disjoint union of the intervals [5] for which

θ(s, m, c*)>0, we have



112 III. Hierarchies and Definability

Since if s E Sq and lg(s)=fc, mes[s] = 2 " ( ( s ) o + " + ( s ) k ~ 1 + k ) (cf. end of §1.2), a
simple calculation shows that there exist recursive H and I such that

Thus

RLs(m, a)« Vq [F(m, α) H(q, m, α) ^ \(q, m, α)].

Assume now as induction hypothesis that the result holds for l,...,r. We
consider first R G Π°r, say R(m, α, j3)«* Vp S(p, m, α, β), with S G Σ?_! Then

q [mes{β: (Vp ^ q)S(p,m, α, β)} ^ F ( n | α ) +

so by the induction hypothesis R^e sGΠ°+ 1.
Now if RGΣ°_!, say R(m, α, β ) ^ 3 p P(p,m,α,jS) with P e Π j w e have

,m, α,[mes{β:(3p

and again FC SGΠ?+ 1 . D

4.18 Lemma. For all r and ε, and any R E Π°[ε], if mes{α : Vp 3q R(p, q,a)}>
0, then there exists a βEΔ° + 2 [ε] such that mes{α : Vp (3g =̂  β(p))R(p, g, α)}

Proof Let A = {a:\fr \q R(p,q,a)}, Ap = {a: 3q R(p, q, a)} and Ap n =
{a: (3q ^ n)R(p,q,a)\. Suppose mesA>l/2m and define β by

β(p) = least n

As Ap ~ Ap „ E Σ^+1[ε], it follows from Lemma 4.15 that β E Δ?+2[ε].
Let B = {α: Vp (3qr ^ β(p))R(p, ^, α)}. Then since

A= Π { A p : p E ω } C B U U {Ap ~ Ap,β(p): p E ω},

we have

;rm- < mes A ̂  mes B + V ^m+p+2 = mes B + ^ΓFT
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which implies mes B > l/2m + 1 > 0. D

4.19 Lemma. For all r, 0, ε, and all REΠ?[ε], // S(m, a)*+

Vp(3q^β(p))R(p,q,m,a)9 then S6Π°max(l jr)[β,ε].

Proof. We leave this straightforward calculation to the reader. D

Now let f(r) denote the greatest integer not exceeding r2/4+ 1.

4.20 Lemma. For any r and ε, and any AEΠ°[ε] such that mesA>0, there

exists γEΔ° ( r ) [ε] and C E Π ^ γ ] such that CCA and also m e s O O .

Proof. We proceed by induction on r. For r = 0 or 1 the result is obvious.

Suppose AEΠ° + 2 [ε]. By the two preceding lemmas there exist BCA and

βEΔ? + 2 [ε ] such that BEΠ°m a x ( l r )[ |3,ε] and mesB>0. By the induction

hypothesis there exist γEΔ° ( r ) [β, ε] and CEΠ°[γ] such that C C B and

mesC>0. Then by the Arithmetical Substitution Theorem, γ E Δ/(Γ)+r+1[ε] =

Δ°(r+2)[ε] as required. D

4.21 Theorem. For all r, Δ^(r)+2 is a basis for the class of Π r sets of positive

measure.

Proof. Let A be a Πj set of positive measure and let γ and C be as in Lemma

4.20. Then there exists a unique function 8 such that for all m,

δ(m) = least n . mes(C Π [δ(m)*(n)]) >0.

Since C E Π^(r), by Lemma 4.17 δ E Δyr(r)+2. That δ E C is immediate from the

fact that C is closed. D

4.22 Corollary. For all r, Δ^ ( r ) + 2 is a basis for the class of Σ Γ + 1 sets of positive

measure. D

4.23 Corollary. {a:a£ Δ?ω)} £ Δ?ω).

Proof. Since { α : α ^ Δ ( ω ) } is the complement of a denumerable set it has

measure 1. Hence if it were arithmetical it would have an arithmetical element,

which is absurd. D

4.24-4.27 Exercises

4.24. Show that for r ̂  2, if β is implicitly Π° and β and y are each recursive in

the other, then also γ is implicitly Π?. (Exercise 6.17 shows that this is false for

r = l.)
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4.25. Show that if β is implicitly 11°, then so is βoJ. (Let F be a recursive
functional such that for all β, β = km. F(m, β°J). Then y = β°J++
λm.F(m,γ)=0 and γ = (λm . F(m, γ))°J.)

4.26. Show that the set B in the proof of Theorem 4.11 (ii) is in fact Π2.

4.27. Is {a: a is primitive recursive} a basis for the class of non-meager S2 sets?

4.28 Notes. Corollary 4.14 is from Shoenfield [1958] and Theorem 4.15 is from
Tanaka [1970a]. 4.17-4.22 are due to Sacks [1969] and independently to Tanaka
[1967], although neither formulated the sharp versions given here. Corollary 4.23
was originally proved by Addison using forcing methods (cf. Corollary 6.10 and
Notes to § 6). Extensions of many of the results of this section and § 6 may be
found in Kechris [1973].

5. Definability in Formal Languages for Arithmetic

The reader familiar with formal languages will certainly have noticed a similarity
between the arithmetical and analytical hierarchies and classifications of the
formulas of a formal language by the complexity of their structure. In this section
we show that the classes Σ, and Π, (i = 0,1) consist exactly of the relations
formally definable over the standard model of arithmetic by certain classes 3'r
and V* (i = 0,1) of formulas. At the end we sketch briefly how these results may
be applied to derive the undecidability and incompleteness theorems for
axiomatic theories of arithmetic and discuss how much of the theory of this book
could be developed in such systems.

We shall assume in this section some familiarity with formal languages and
their interpretations and we shall omit many standard details, all of which may
be found in Shoenfield [1967] or Enderton [1972]. Some of our notational
conventions are suspended for this section as indicated below.

By the standard model for arithmetic we mean the structure

sJf = (ω, ωω, < , + , ,', 0)

where ' denotes the successor function and < , +, and have their usual
arithmetical meanings. With 31 we associate the second-order language «S?
described as follows. The symbols of ££ are:

-π,v,3,θ,Θ,®,Θ,Q,0,jc 0,Jc 1,...,φ 0,φ 1,... .

The set of terms is defined inductively as the smallest class such that
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(i) 0, JC0, xu . . . are terms;

(ii) if σ and τ are terms, then so are σ ω , cr®τ, σ 0 τ , and φj(σ) for

y = 0 , l , . . . .

The atomic formulas of 5£ are the expressions σθτ and σ © r for any terms σ

and T. The set of formulas is the smallest class such that

(i) atomic formulas are formulas;

(ii) if 31 and 93 are formulas, then so are -iSl, 31 v 93, 3JC, 31, and 3φy3l for

i , 7 = 0 , 1 , . . . .

We denote by ^(σlx^) the result of substituting the term σ for all free

occurrences of the variable xt in the formula 31 and assume that before the

substitution all bound variables of 31 which occur in σ are changed to the first

unused variables of the proper type. 3l(cr0,..., σk_λ) is an abbreviation for

3l(σ-0/x0)... (σk_ι/xk_ι). Similarly, 3l(φy /φ, ) denotes the result of substituting φj

for all free occurrences of φt in 31. We denote by n the term 0Φ '"Φ with n

successor symbols. The symbols Λ,—>, «->, and V are used as abbreviations in the

usual way. We write (3JC, < cr)3ί for 3*, (xt < σ Λ 31) and (Vx, < cr)3l for

Vx, (jtf < σ -* 31).

5.1 Definition. For any k and /, all (m, α ) E ' ω, and any term σ whose

variables are included among JC0, . . . , xk-λ, φ0,..., Φt-ι, we define σ[m, a], the

value of σ at (m, α ) , recursively by:

(i) 0[m,α] = 0;

(ii) ^[m, α ] = m,

(iii) or' [m, a] = cr[m, a] + 1;

(iv) ( σ ® τ)[m, α ] = σ[m, α ] + τ[m, α ] ;

(v) (crΘτ)[m, α ] = cr[m, a] τ[m, α ] ;

(vi) φ ;(c7)[m,α] = α7(o-[m,α]).

Note that this definition and the next one rely on Theorem 1.3.5 for their

justification.

5.2 Definition. For any k and /, all (m, a) E M ω , and any formula 31 whose free

variables are included among JC0, . . . , jck_1? φo,...,φι_u we define f= 3I[m, a],

3ί is true at (m, a), recursively by:

(i) N ( σ θ τ ) [ m , a] iff σ-[m, a] = τ[m, a];

(ii) \= (σ © τ)[m, a] iff cr[m, a] < τ[m, α ] ;

(iii) |=(- ι3 ί) [m,α] iff not N3l[m,α];

(iv) |=(3Iv93)[m,α] iff N3I[m,α] or h=93[m,α];

(v) hBx.SIfm,**] iff 3n(hW(xk/Xi)[m,n,a]);

(vi) N3φ7.3I[m,α] iff 3β (N3l'(^/^)[m, α, j8]);

where 3Γ is a variant of 3ί in which the variables xk and φz do not occur.

Note that for any 31,

h 3l[m, n, a] iff 1= 3I(no/xk) (nk-i/*k+k-i)[m, α].
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5.3 Definition. For all r,
(i) 3° = VQ = the smallest class of formulas such that

(a) all atomic formulas belong to 3 0 ;
(b)if SI and 93 belong to 3°, then so do ~ι 21,21 v 93, and (3xt < σ)2l for

i = 0,1,... and σ any term in which xf does not occur;
(ii) 3°r+1 = {3^21: 21 G V? Λ i G ω};

(iv) 3j =
(v) 3j + 1

(vi) V'

<= U{3?:
= {3φ,2ί: Sli
= {-ι2l:3ίe

r £ ω } U

E Vj Λ j €

5.4 Definition. For any k and /, any R C k / ω , any r, and any i<2, R is 3J.
(V,)-definable (in the standard model) iff for some formula 21 G 3J. (V̂ ) with free
variables included among JC0, . . ., xk-u φ0,..., Φι-\,

R(m, α)«-»l=2l[m, a].

A functional is 3^ (Vj.)-deflnable just in case its graph is. We also use 3^ and V̂  to
denote the corresponding classes of relations.

5.5 Lemma. For all r and all i <2, 3^CΣ* and V^CΠ .̂

Proof. Relations defined by atomic formulas are recursive. Since the class of
recursive relations is closed under complementation, union, and bounded
quantification, all relations in 3Q are recursive. The remainder of the proof is a
straightforward induction based on the fact that 3^+1 = {3'R: RGV}. D

The main result of this section is that for i and r not both 0, the converse
oinclusions hold also. To this end we first establish some closure properties of 3 0

and 3j. First it is clear from the definitions that the class of 3Q relationί
Boolean algebra and is closed under bounded quantification.

5.6 Lemma. The class of 3j relations is closed under binary union and intersec-
tion, bounded quantification (3< and V<) and existential number quantification
(3°).

Proof For any 3? relations R and S, there exist 3Q relations P and Q such that
R = 3°P and S = 3°Q. Then (cf. the proof of Theorem 1.6) the lemma follows
from the following equivalences:

3p P(p,m, α) v 3q Q(g,m, α)<-»3p [P(p,m, α) v Q(p,m, α)];

3p P(p, m, a) Λ 3q Q(q, m, a)<-»3r [(3p < r)P(p, m, a)
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(Vp < r)3q P(p, q, r,m, a)*+3s (Vp < r)(3q < s)P(p, q, r,m, α);

3p 3q P(p, q, m, α)<^ 3r (3p < r)(3q < r)P(p, q, m, α). D

The key to the fact that all primitive recursive relations are 31-definable is
that there is an 3o-defϊnable function which codes finite sequences.

5.7 Lemma. There exists an Indefinable function h such that for any
p,qo,...,qp-ι, there exist s and t such that for all i < p, h (s, t, i) = qt and qt < s.

Proof. Let h (s, t, i) be the remainder when s is divided by 1 + t(i + 1) — that is,

h(s,t,i)= n*+n< l + ί(/ + l)Λ(3u < s). s = u{\ + t(i + 1))+ n.

It is obvious that h is 3o-definable. Given p and qo,...,qp_u let t =
(max{p,q0,...,qp-ι) + 1)!. It is easy to check that the numbers 1 + t(i + 1) for
i < p are pairwise relatively prime and greater than qt. The Chinese Remainder
Theorem of number theory asserts that in this situation there exists a number s
such that for all i < p, s = qt (mod 1 + t(i + 1)) as required. D

5.8 Theorem. All primitive recursive functionals are 3°-definable.

Proof. We show that the class of 3^-deflnable functions contains the initial
functionals and is closed under composition and primitive recursion. First, we
have for the initial functionals:

CSp'̂ m, α) = n <H>|= (xk θp)[m, n, α);

Pry (m, a) = n <->(= (jck θ^) [m, n, a];

Scf'^m, α) = n<H>l=(Jck0Jtf)[m, n, a];

Ap£ /(m, α) = n ^ h (xk θ Φ7fe))[m, n, a].

If G , ^ , . . . ^ ^ , ! are all 3?-definable and F = FCmp^G, H o,. . .,

then

F(m, a) = n ±* 3q0 ... 3qk,_1[H0(m, a) = q0Λ...

Λ Hk,_! (m, α) = qk^ Λ G(q0,..., qk._ί9 a) = n],

so F is 3i-definable by Lemma 5.6.
If G and H are 3i-definable and F = Reck + 1 /(G, H), then
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F(/?,m, a)= n<r*3s 3t (h(s, ί,0) = G ( m , a) A h(s,t,p)= n Λ

Λ (Vi < p)(3q < s)[h(s, t, i) = q Λ ft (S, ί, / + 1) = H(<?, ΐ, m, α)]),

where ft is the function of Lemma 5.7. Again by Lemma 5.6, F is 3°-

deίinable. D

5.9 Theorem. For all r >0,3°r = X%ndV°r = Uo

r-for all r,3ι

r = ϊl and Vl = Ilι

r.

Proof. Let R be any Σ° relation. By Theorem Π.4.12, R = 3°S for some primitive
recursive S. By the preceding Theorem, Ks is definable by some 3? formula 91.
Then

S(p, m, α)<->!= 9l(0/xk)[p, m, α],

s o S G 3 i , and thus also R E 3° by Lemma 5.6. The remainder of the proof is a
straightforward induction. •

In the rest of this section we shall give a brief survey of some facts concerning
axiomatic theories of arithmetic. We do not intend to give a complete treatment
of these topics but only to point out some of the ways they are related to the
main themes of this book.

A formal theory 3~ in the language 5£ consists of a set of sentences (formulas
without free variables) called the axioms of Si and some rules of inference for
deducing theorems from the axioms. We shall always assume that among the
axioms and rules of SΓ are a complete set of logical rules and axioms (for
example, as in Shoenfield [1967, §2.6]). We write ^hSl to mean that 91 is a
theorem of J~.

We first consider first-order theories, that is, theories in which the variables
φi do not occur and the rules of inference are only the usual ones. Let 5"0 be the
theory with the following nine non-logical axioms. To make the formulas more
readable we shall write JC, y, z,... instead of JC0, XU JC2>

(1) Vjc-π(jcΦθδ);

(2) V jcVy( jc®θy 0 ->Jcθy);
(3) V J C ( J C © 0 Θ X ) ;

(4) \/x\/y(x_®y_CDθ(x + yf)
(5) VJC(JCOOΘO);

(6) VxVy( jcO_y°θ( jcΘy)θjc);
(7) VJC-I(JCΘO);

(8) VJC Vy (jcΘy.^-^JcΘy v j c θ y ) ;
(9) Vx Vy (x©y v x 0 y v y © x).
Θ'Q is a very weak theory. For example, it is easy to see that the commutativ-

ity of addition is not a theorem of SΓ0 (Exercise 5.18). However it is just strong
enough to carry through the undecidability and incompleteness results of Gόdel
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and we sketch these next. Of course, the axioms of SΓ0 are true and the rules of

inference preserve truth, so whenever SΓ0\-tyi, also h9l. The converse is false

(Corollary 5.15) but at least we have:

5.10 Lemma. For all ^-sentences 91, // H=9l, then SΓ0\-SΆ.

Proof. Consider the set X of all formulas SI such that for any k such that the free

variables of 91 are included among JC0, . . . , xk_λ and any m E fcω, if h 9l(m), then

J"oh9l(m). It is straightforward to show that X is closed under the clauses of the

inductive definition 5.3(i) of 3° and hence contains all 3° formulas. D

5.11 Lemma. For any two disjoint semi-recursive relations R and S C kω, there

exists an 3j formula © such that for all m E kω,

(i) R{m)-* P0\-<i(m)\

(ii) S(m)-*5Γoh-ιe(m).

Proof. By Theorem 5.9 there exist 3 0 formulas 91 and 93 such that for all m E kω,

JR(m)^t=3x9l(m) and S ( m ) ^ h 3y 93(m).

Let © be the formula

3jt(9lΛ(Vy©jt)-ι93).

Then (i) and (ii) follow easily by use of Lemma 5.10 and axioms (8) and (9). D

For any theory SΓ, a formula 91 with free variables among JC0, . . . , xk_ι

SΓ-represents Ά relation R iff for all m E ω,

K(m)^5Γh9l(m) and ~R(m)-+ 3Ύ -ι9l(m).

R is SΓ-representable iff R is 5^-reρresented by some formula. It follows

immdiately from Lemma 5.11 that all recursive relations are ^Vrepresentable

(take S = ~R).

5.12 Lemma. For any 3~ which extends 5"0, if 3~ is consistent, then there exists a

formula S with only x0 free such that {m: ^hβ(m)} is not recursive.

Proof. By Theorem 1.10(i), there exist disjoint semi-recursive sets A and B such

that there is no recursive set C such that A C C C ~B. Take A and B for R and

S in Lemma 5.11 and let C = {m: JX£(m)} By (i) of 5.11, A C C, and by (ii)

together with the consistency of SΓ, C C ~ B . Hence C is not recursive. D

Informally, we say that SΓ is decidable iff there is an algorithm for deciding

among the sentences of ££ which are theorems of SΓ and which are not. Thus on
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the intuitive level, Lemma 5.12 implies that any consistent SΓ which extends SΓ0 is

undecidable, as otherwise we could effectively decide for each m whether or not

SΓ\-<S,(m). These intuitions are made precise through the technique of Gόdel

numbering. To each expression (symbol, term, or formula) z of ££ we assign a

natural number r z ] much as we did to each description of a primitive recursive

functional in §11.1. The square quotes are to suggest that the assigned number be

thought of as a name for z.

We begin by assigning successive odd numbers 1,3,... to the symbols of 56.

The terms are (recursively) assigned numbers by: ΓorΦ1 = ( Γ ©\ ΓσΊ), ^ Θ T 1 =

^ © V α - V r 1 } , etc. Similarly for formulas, f σ θ τ ] = < Γ θ\ ΓσΊ, Γτ]>, Γ2l v 931 =

(Γv\ Γ2l\ Γ931), and so on. It is an elementary exercise to show that the sets of

Gόdel numbers corresponding to various syntactic classes of expressions are

recursive — for example, { V : σ is a term}, {rSlΊ: 21 is a formula} and {Γ2lΊ: 31 is

an 329-formula with at most x12 and φ47 free}. Similarly, there is a recursive

function / such that for all 21 and all m E kω, /(Γ2l], m) = Γ2l(m)Ί. Now we call SΓ

decidable iff {Γ2l]: SΓhSl} is recursive.

5.13 Corollary. Any consistent theory SΓ which extends SΓ0 is undecidable.

Proof. Immediate from Lemma 5.12 and the above discussion. D

A theory SΓ is called (first-order) complete iff for every (first-order) sentence

21, either 21 or —121 is a theorem of ST. SΓ is recursively axiomatizable iff there

exists a theory SΓ' such that {Γ2l]: 21 is an axiom of 2Γ'} is recursive and for all 21,

^ > « iff SΓ'V 21. SΓ is semi-decidable iff {r2lΊ: 3Π-21} is semi-recursive.

5.14 Lemma. For any SΓ,

(i) if SΓ is recursively axiomatizable, then SΓ is semi - decidable

(ii) // SΓ is recursively axiomatizable and complete, then Sf is decidable.

Proof. Let JV be the monotone operator defined by:

JV (A) = {m : m G A or m is the Gόdel number of an axiom of

Si or m is the Gόdel number of a formula which

follows from formulas with Gόdel numbers in A

by a single rule of inference}.

It is easy to see that TV is Σ° and that /> = {Γ2l]: Si V 21}. Hence (i) follows from

Theorem 3.5. Suppose now SΓ is recursively axiomatizable and complete. If SΓ is

inconsistent all formulas are provable so SΓ is decidable. Otherwise the sets

{Γ2lΊ: 21 is a sentence and SΓ Y%] and {m: m is not the Gόdel number of a

sentence or m is the Gόdel number of a sentence 21 such that 5Ί-—ι2l} are

complementary. By (i), both are semi-recursive, hence both are recursive and SΓ

is decidable. D
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5.15 Corollary. Any consistent recursively axiom atizable theory which extends

3~0 is incomplete.

Proof. Immediate from 5.13 and 5.14. D

As a consequence, the complete theory ZΓm whose axioms are all first-order

formulas valid in the standard model is not recursively axiomatizable. It also

follows from 5.14(i) that for any consistent recursively axiomatizable theory 3~

which extends SΓ0, a relation R is ^"-representable iff R is recursive.

That θ~w is not recursively axiomatizable can also be seen by a slightly

different argument. From Theorem 5.9 and the Arithmetical Hierarchy Theorem

it follows that {ΓSlΊ: f= §1} is not arithmetical, in particular not semi-recursive, and

thus is not the set of theorems of any recursively axiomatizable theory by 5.14(i).

5\j? can, however, be recursively axiomatized if the system is expanded by

adding a rule of inference to which the proof of 5.14(i) does not apply — that is,

one such that the operator TV defined there is not Σ°. For any theory 3~, we write

Si hω 21 to mean that 21 is derivable from the rules and axioms of Sf together with

the ω-rule: from the (infinitely many) premises 21(0), 2 l ( ϊ ) , . . . , infer VJCO21.

5.16 Theorem, (i) For all first-order formulas 21, SΓ0\-ωSΆ iff N2t;

(ii) { r2ί1:3 r

ohω2l} is Πj .

Proof, (i) follows from Lemma 5.10 by an easy induction, (ii) follows from

Theorem 3.1 and the observation that the operator Γ^ω associated with 3Γ and

the ω-rule is arithmetical and monotone. D

We turn now to the full (second-order) language !£. In the first part of this

section we considered only the standard interpretation for «SP, but now we shall

need a more general notion. A (general) structure for ££ is sequence U =

(C/, Φ, < u , + u , u , Ή,0u) such that U is a set, Φ is a set of unary total functions

U—* U, <u is a binary relation on U, + u and u are binary total functions on

U, ' u is a unary total function on U and 0 u E U. For u E k [ / , φ EιΦ, and σ a

term of SB with free variables among JC0, . . . , Jck_1? φo> >Φ/-i> w e define

σu[u,^>], the value of σ in tt at (u,φ) just as in Definition 5.1 except that 0 is

replaced by 0u, -I- by + u , etc. Similarly, the relation lll=2l[u, φ] is defined as in

Definition 5.2 with < replaced by <n,3n replaced by (3v E U), and 3β

replaced by (3ψ E Φ). II is a model of a theory 3~ iff UN 21 for all axioms 21 of ST.

VL is called an co-structure iff the values in U of all the terms ή (n E ω) exhaust U.

In this case U is isomorphic to a structure si = (ω, A, <^, + ̂ , ^ ',0), where '

and 0 have their usual meanings. If in addition U (and hence si) is a model of 3~0,

then <ja, +J4, and ^ must also coincide with the usual < , + , and . Hence such

a structure is determined by the set A C wω and we write simply AN 2l[m, a]. In

particular, N2l[m, a] iff ωωN2l[m, a].

Let 3Ί denote the theory obtained from 3~0 by extending the logical axioms
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and rules of θ~0 to all formulas of if and adjoining the following (infinitely many)

axioms: the universal closures of

(10) {Induction) 21(0) Λ VXO[21-*21(JC®)]-^ VJC0SI for all formulas SI;

(11) (Extensionality) Vφ0\fφ, [VJC {φo{x) = φλ{x))^ Φo = Φι]\

(12) {^-Comprehension) Vx 3 ! y 2t^>3φ0Vjc ςΆ{φQ{x)ly) for all

Bo-formulas 21.

The completeness theorem of first-order logic has the following natural

extension to !£\

5.17 Theorem. For any theory & which extends 3~x and any sentence 21 of 3?

(i) 5Γh2l iff UN21 for all models U of J";

(ii) 5 > ω 2 ί iff AI=2I for all ω-models A of V.

Proof See Shoenfield [1967, §8.5]. D

From this and 5.16(i) it is immediate that for all VJ sentences 21, ^ , h ω 2 l iff

t=2l. From 5.16(ii) it follows that any relation which is 5"0-ω-representable is Δj.

The same proof applies to SΓX and from the preceding it can be derived that the

5~,-ω-representable relations are exactly the Δprelations.

The Δo-Comprehension axioms guarantee that the range of the variable φt is

not too small. In particular, if A is an ω-model of Δi-Comprehension, then not

only does A contain all arithmetical functions, but because the formula 21 in the

Δ0-Comprehension schema may have free variables, A is also closed under the

relation "arithmetical in".

As is sketched in Shoenfield [1967, §8.5], the notion of truth for first-order

formulas in 9ί may be formalized in the theory θ~λ (although the system 5 there

includes the comprehension axioms for all formulas, only Δ0-Comprehension is

needed here; indeed, for a fixed n, the truth of 3° sentences may be defined

without use of the comprehension axioms). By virtue of Theorem 5.9, much of

the theory of the arithmetical hierarchy may thus be developed in SΓV Relations

are denoted in SΓλ by the Gόdel numbers of their defining formulas and the

results of §1 become first-order arithmetical theorems in 2ΓX. Alternatively, the

arithmetical hierarchy of relations on numbers may be developed in terms of

characteristic functions.

For each r, the truth of 3j and Vj sentences in 9? and the classes of formulas

which define Σj and \\\ relations can similarly be defined in SΓλ. However, some

of the basic closure properties of Σj and ΓlJ cannot be proved without additional

axioms. Furthermore, without additional comprehension axioms the class of

functions defined by second-order formulas is not provably larger than the class

of first-order definable functions. To guarantee the existence of all characteristic

functions of Σj relations we need
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(13) (^-Comprehension) 3φ0Vx[φ0(x) = 0«*yi] for all SI G 3j.

Note that in ?ΓX this is equivalent to the corresponding Vj-Comprehension
schema.

Following the development in § 2, we encounter the first difficulty with the
next-to-last formula in the proof of Theorem 2.5. The translation of the
implication (—>) into S£ need not hold in every model of ?fx (see Exercise 5.20).
Hence to prove the closure of S r under number quantification we need to add
the axioms

(14) (Ξl-Choice) Vx 3</>02l^3φ1 Vx 2l(φί/φ0) for all 91 G 3j.

Here Sί(φ^/φ0) denotes the formula obtained from SI by replacing all occur-
rences of terms φo(σ) by φx((x, σ)), where ( , •) is a symbol for a pairing function
introduced by definition into 3~λ.

Then 2.6-2.10 follow easily. It is worth noting that there is a different proof of
Lemma 2.8 which does not require the 3ΓChoice axioms. This is based on the
equivalence

which is provable in 3~x (by use of the Induction and Δ0-Comprehension axioms).
The Analytical Substitution Theorem (2.11) for r follows from the 3j-

Comprehension axioms, but here a smaller collection of comprehension axioms
will suffice. The second equivalence in the proof of that theorem depends on the
fact that if VpH(p,m,α) | , then 3β Vp [H(p,m, α ) « β(/?)]. This is provable
from the schema:

(15) (^-Comprehension) Vx3\ y <Ά-*3φ0Vx(Ά(φ0(x)/y) for all « G 3 j .

Note that Δj-Comprehension is derivable from 3*-Choice (Kreisel [1962]). If
VJC 3! y 21, then VJC 3φo«(φo(jc)/y) so by Sj-Choice, 3φx VJC »(φί(*)/y). Then
if φ2(x) = φx((x,x)), VJC W(φ2(x)/y)• The existence of φ2 follows from that of φx

by Δo-Comprehension (cf. Exercise 5.21).
In the counterexample following Corollary 2.13 an 3j-Comprehension axiom

is essential to guarantee the existence of (the characteristic function of) U\.
Some results concerning monotone inductive definitions can be established in ?FX

together with some of (13)—(15), but those which involve ordinals are in general
beyond the scope of these theories. The closure Γ must be defined as the
intersection of sets closed under Γ and for Γ G Πj the 3^-Comprehension
schema is needed to prove the existence of Γ. We leave it to the interested reader
to determine which axioms are needed to prove the remaining results of §§3
and 4.
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5.18-5.21 Exercises

5.18. Show that the commutativity of © is not provable in 3~Q.

5.19. Let V be the set of all (ΓA],m) such that for some k, 21 is a first-order
if-formula with free variables among x0,..., xk__u mG ω, and h=2l[m]. Show
that V is reducible to Γ for some Σ° inductive operator Γ. (Use the result of
Exercise 3.32(i)).

5.20. Show that {a: a eAjω)} is not a model of 3j-Choice. In fact, it is not a
model of ΔJ-Comprehension.

5.21. Show that 3ΓComprehension implies Bj-Choice.

5.22 Notes. The main ideas through Corollary 5.15 are due to Gόdel [1931], but
the presentation here benefits from many modifications and improvements due
to Rosser, Tarski, Kleene, and others.

The difference in the forms of 3Γ-Comprehension and ΔΓ-Comprehension is
due to the fact that we are working in a language with function variables rather
than set variables. A (total) function which is 3Γ-definable is is also VΓ-definable.
The import of 3j-Comprehension (for ω -models) is that (the characteristic
functions of) sets which are 3r-definable belong to the model.

6. Arithmetical Forcing

The technique of forcing was first developed by Cohen [1963/64] in the context
of set theory. We shall develop here a simpler form of this technique due to
Feferman [1964/65] which leads to several interesting results in the arithmetical
hierarchy.

As motivation, consider an arbitrary open (Σ°) subset A of ωω. There exists a
set A C ω such that for all α,

That a function a belong to A when it does is "forced" by some initial segment
ά(p) and every other function β such that β(p) = a(p) also belongs to A. Of
course for A which are not open the situation is different — no finite initial
segment s can "force" all β E [s] to belong to {a: Vm. a(m) = 0}, for example.

The key idea of forcing is that even for more complex A, there exists a set A
such that (*) holds for "many" α. The success of the applications turns on the
interpretation of "many".

It is convenient to use here a formal language ,2" slightly different from the
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language ϊ£ of §5. The symbols of ££' are —ι, v, 3,^,0, x0, JC15 . . . , φ, i?α (α E
Pri).

Note that we have removed all the relation and function symbols except ω

from cS? in favor of an infinite collection of relation symbols Ra and left only one
function variable. The terms of ££' are the expressions obtained from 0, JC0, xt,...
by application of and φ. The atomic formulas of !£' are all expressions of the
form Ra(σ0,..., c r ^ ) for a G Pri and k = rank[α]. The formulas of 5£' are all
those expressions obtained from the atomic formulas by application of —ι, v, and
3JC( (i = 0,1,...) — the variable φ is not quantified.

A term σ with free variables included among x0,... ,xk_1? φ, has υα/we
σ[m, a] defined recursively by clauses (i)-(ni) a n c * (vi) (without the subscript) of
Definition 5.1. If 31 is a formula of 5E' with free variables included among
JC0, .. .,jcfc_!,φ, then h=2l[m, a] (51 is true at (m, a)) is defined recursively by
clauses (iii)-(v) of Definition 5.2 together with:

N* Ra(σ0,..., σk^)[m, a] iff [a](cro[m, α ] , . . . , ^ . ^ m , α]) = 0.

The 3Q and VQ formulas of «SP' are simply the atomic formulas and the classes
3?+1 and V^+1 are defined as in 5.3. Relations and functionals of rank (k, 1) are 3?
or V? definable as before. Then for 5£' as for 5£ we have:

6.1 Theorem. For all r >0 and all RC k f l ω, R e Σ ? iff R is 3°r-definable and
ReU°r iff H is V?- definable.

Proof It is immediate from the definition that every primitive recursive relation
on numbers is 3o-definable and that the class of 3o-definable relations is a
Boolean algebra closed under bounded quantification. Hence the proof of
Lemma 5.6 also establishes here that the class of 31-definable relations is closed
under binary union and intersection, bounded quantification, and existential
number quantification. The function h of Lemma 5.7 is primitive recursive,
hence also 30-definable here and the result follows as for <SP. D

For any term σ of J?' the value σ[m, a] clearly depends on only finitely many
values of a. Hence we may also define the value of a term relative to a finite
sequence 5 thought of as an initial segemnt of a if s is too short, this will be
undefined.

6.2 Definition. For any k, any m G ω, any s E Sq, and any term σ of if' whose
variables are included among x0,..., xk_1? φ, or[m, s] is defined recursively by:

(i) δ[m,s]-0;
(ii) *i[m, s ]^m,

(iii) σ ;[m, s] — σ[m, 5] + 1 ;
(iv) if σ[m,s]<lg(s), φ(σ)[m, s] - (s)σ [ m, s ].
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It is easy to check that for sufficiently large n, σ-[m, ά(n)] — σ[m, a]. Hence,

if σ[m, 5] — n, then or[m, a] = n for all a E [5].

6.3 Definition. For any k, any m E ω, and 5 E Sq, and any formula ?! of ££'

whose free variables are included among JC0, . . . , xk-u φ, we define Ih ?l[m, 5], 91

is forced at (m, 5), recursively by:

(i) I h ^ ί σ c .^σfc.OIm,*] iff [α](σo[m, s ] , . . . , ^ _ , [ m , s])=* 0;

(ii) Ih(-ι9l)[m,s] iff ~ 3t (t D s Λ > 91 [m, t])\

(iii) Ih(9lv93)[m,s] iff Ih9l[m,s] or Ih93[m,s];

(iv) Ih3jc,9l[m,s] iff 3n(lh«'(jc k/*i))[m>".s];
where 91' is a variant of 91 in which the variable xk does not appear.

Note that except for the clause (ii), this definition is nearly identical with that

of N 9ί[m, a]. In terms of the discussion at the beginning of the section, clause (ii)

says that a is "forced" to belong to —A by its initial segment s just in case no

extension t forces membership in A.

6.4 Lemma. For all m, 5, and 91 as in Definition 6.3,

(i) not both ll-9I[m, 5] and Ih -ι9I[m, s];

(ii) for any t D s, if Ih 9I[m, s], then also Ih ?I[m, t]\

(iii) for some t D s, either Ih 9I[m, t] or Ih —19l[m, t].

Proof (i) and (iii) are immediate from clause (ii) of the definition. We prove (ii)

by induction on formulas. For 91 atomic, the statement follows from the fact that

if σ[m? s] — n and s C ί , then also σ[m, t] — n. If Ih —19l[m, s] and s Ct, then for

any uDt also u D s so not lhΛ[m, u]. Hence Ih—ι9I[m, t]. The other two

clauses follow similarly. D

We call a formula of SB' closed iff none of the variables xt occur free in 91 — φ

may occur.

6.5 Definition. For all r and α, a is r-generic iff for all closed formulas 91

in U { 3 ? : i^r},

or Ih ~ι 9I[

a is generic iff a is r-generic for all r E ω.

We now obtain the promised generalization of (*). Note that all a are

0-generic.

6.6 Theorem. For all r, all closed 91 in 3°+ 1, and all r-generic functions α,

N9l[α] iff for some p, lh?I[ά(p)].

Proo/. We proceed by induction on r. Suppose r = 0 and N ̂ α (σ- 0 , . . . , σ"k_i)[α].



6. Arithmetical Forcing 127

Then if p is chosen sufficiently large so that σo[ά(p)],..., σk_ι[ά(p)] are all
defined, then ϊ= Ra(σ0,..., <7k_i)[a(p)], i.e. H-K«(σo,...,σk_1)[ά(p)]. Con-
versely, if Ih Ra (cr0,..., σk_ί)[ά(p)], then for all i < fe, σ\a] = σ^άip)] so also

a { 0 , , k λ ) [ )

Assume the result for r and suppose a is r + 1-generic and first that 31 E V°+1.
Then 21 = —193 for some 93 E 3?+1 and we have

h 2l[α] <π>not h 93[α] ̂ n o t 3p. Ih 93[ά(p)].

Because a is r + 1-generic, this is equivalent to 3p. Ih —ι93[ά(p)].
Now if 91 E 3°+2, 21 = 3JC, δ for some S E V°+1 and we have

. D

For Theorem 6.6 to be useful there must be sufficiently many r-generic
functions. First we have

6.7 Lemma. For any s there are 2H° generic functions in [s].

Proof. Let 2l0, Sli,... be a list of the denumerably many closed formulas of S£'.

For any 5 and any β we define recursively:

γ(0)=s;

γ(2n -h 2) = least t[t E Sq Λ y(2n + 1) C ί Λ (Ih 2ln [ί] or Ih -ι 2ίn [ί])].

γ is a well-defined function by Lemma 6.4(iii). As γ(n) C γ(n + 1) and γ(2n -h 1)
is a proper extension.of γ(2n), there exists a unique limit function β* such that
for all m, β*(m) = (γ(n))m for all sufficiently large n. Clearly β*E[s] and is
generic. Since if /M δ, also β* ^ δ*, there are 2M° distinct such β*. D

Our next aim is to show that there are some relatively simple r-generic and
generic functions. For this we shall use a construction similar to that in the
preceding proof together with an assessment of the complexity of the relation
|h 2l[s]. Let Γ2ίΊ and Γcr] denote the Gδdel numbers of 21 and σ in an assignment
of numbers to the formulas and terms of if' similar to that described for if in § 5.
By the discussion there it is clear that for each r, {Γ2IΊ: 21 is a closed 3?-formula}
is recursive. Similarly, there are partial recursive functions fk such that for all
terms σ and all m and 5, /k(

Γcr\m, 5) — σ[m, 5]. Let

Fo^(Γ2l\s)<^2l is a closed 3?-formula and Ih2ί[s];

Fo7(Γ2ί1,5)^2Jί is a closed 3?-formula and Ih -ι2I[s];
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Fo + = U{Fo^: r<Ξω};

Fo"= U{Fo7: rGω}.

6.8 Lemma. For each r >0, Fo*G Σ? and Fo^GΠ?; Fo+ and Fo" are Δj.

Proof. If 21 is a closed 3^-formula, then for some a G Pri and some terms

σo,..,σk-i, 2t = 3xιJRα(<70,...,σk_1). Then

Ih « [ s ] « 3 n . |h .Rα (σ-0,..., σ ^

[n, s ] , . . . , σk^[n, s]) = 0

Since the Gδdel numbers crf of the terms occuring in 31 can be recursively
calculated from Γ2l\ this shows Fo^ E Σ°. That Fo7 G Π^ is immediate from this
and the definition of Ih.

Suppose now that Fo^ G Σ? and Fo^ G Π .̂ Then for any closed 3?+Γformula
21 = 3jti 93,

where g is a recursive function such that

g(
Γ3jcI 931,n)=Γ93(n/jci)

1.

Hence Fo^+ 1GΣ?+ 1. That Fo7+iGΠ^+1 follows immediately.
To evaluate Fo+ and Fo~, recall the relation U°iω):

By Theorems 3.6 and 3.7, £/°ω)GΔJ. The preceding part of the proof may be
interpreted as providing instructions for computing recursive functions h + and h ~
such that for all r > 0,

Fo;(m,5)^^ ω ) ( r ,^ + ( r ) , (m,s» , and

Fo7 (m,s)^~ U°M(r, h"(r), (m, s»;

that is, h +(r) is an index of Fo^ as a X°r set and correspondingly for h ~. Then

Fo+(m, s) <^ 3r U°(ίθ)(r, h +(r), (m, s)), and

Fo"(m,s)«3r~ί/c

(

>

ω )(r,Λ"(r),<m,s»,

so both are Δj. D
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6.9 Theorem. For all r there exist r-generic functions in Δ?+1. There exist generic
functions in Δj.

Proof Let / be a recursive function which enumerates the Gόdel numbers of
closed 3°-formulas and let 3tn denote the formula with Gόdel number n. Set
y(0) = < >and

γ(n + 1) = least t[t G Sq Λ y (n) £ t Λ (If- Sln [t] or |h -ι 2ln [t])]

= least ί[ί G Sq Λ y(n)5 / Λ (FoΓ(/(n), t) v Fo7(/(n), *))]•

As in the proof of 6.7, if β the limit of the sequences γ(n), β is r-generic. Both γ
and β are recursive in the relations Fo* and Fo7, hence are Δ?+1 by Post's
Theorem.

The second part is proved similarly using Fo and Fo . D

6.10 Corollary. For all r, {a: a G Δ°r+ι}£ X°r+1. {α:α£Ajω )}^Ajω ) (second
proof — cf. Corollary 4.23).

Proof Suppose, contrary to the first assertion, that there exists an 3^-formula 31
of <£' such that

Then for some n and some r-generic β in ΔΓ+1, f= ~~\<Ά(ή/x0)[β]. It follows from
Theorem 6.6 that for some p, ίh —\(Ά(ή/x0)[β(p)]. By Lemma 6.7 there are 2K°
r-generic functions γ such that y(p)= β(p) For each of these
|h-Ί?I(n/jco)'[γ(p)], hence h=-ι3ί(n/jco)[γ], hence f=3jto-iSl[γ], hence γ G
Δ^+1. This contradicts the fact that there are only countably many Δ?+1 functions.

For the second part, suppose that A = {a: a £ Δ^} were, say, Σ?+1. The
foregoing proof shows that no denumerable S r + 1 set includes {a: a G Δr+J, and
A would be such a set, a contradiction. D

A strengthening of the first part of 6.10 is proved in 6.15.
In the examples of 2.3 we saw that if {a} G Δ(

(

}

ω), then a G Δj and in IV.2.22
we shall show that every a G Δj is recursive in some β with {/3JGIΊ". The
natural conjecture that every Δj function is implicitly Δ (ω) is, however, false:

6.11 Corollary. There exist a G Δj such that {a}(ί^ω).

Proof Let a be any Δ[ generic function. Suppose that for some ?l G 3", 31
defines {a} — that is, for all β,

β = a+>\
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Since l=2l[α] and a is generic, Ih2l[α(p)] for some p. But then for any generic
β G [ά(p)] also l!-2l[β(p)], hence N2l[β]. By Lemma 6.7 there are 2M° such β, a
contradiction. D

Related to this question is the relationship between Δj subsets of ω and sets
of the form Γ for monotone arithmetical operators Γ. It follows from Theorem
3.2 that every Δj set is many-one reducible to such a Γ, but the following shows
that the reduction cannot in general be omitted.

6.12 Corollary. There exist A G Δ] such that A/ Γfor any monotone arithmeti-
cal operator Γ.

Proof. Let a be a Δ1, generic function and A ={m: a(m) = 0}= Za. Suppose
that A = Γ for some monotone arithmetical Γ. Since P Γ is arithmetical, there
exists a formula 21 G 3 0 such that for all β,

Vm [PΓ(m,/3)-*β(m) = 0]«HSl[β].

Since Γ is monotone, A is the smallest set whose characteristic function satisfies
the left-hand side of this equivalence. Hence h?I[α] and for any β, if h2l[β],
then A C Zβ. Since a is generic, Ih 9ί[α(p)] for some p. Clearly A is not finite so
there exists a q ^ p such that q G A. Let j8 be any generic function in
[ά(q)* (1)]. Then Ih ?ί[β(p)] so 1= 2l[β], but q G A - Zβ, a contradiction. D

To obtain the promised extensions of 4.12-4.14 we need to measure the size
of the set of r-generic functions in yet another way:

6.13 Lemma. For all r, the set of r-generic functions is comeager

Proof For each closed 3?-formula 21, let

A« = {α: 3p(lh2I[α(p)]or Ih-π2l[

It is immediate from Lemma 6.4 that each A?ί is open and dense, so that ~A9ι is
nowhere dense. Since

{a: a is not r-generic} = U {~A9ι: 21 is a closed 3^-formula},

this set is meager. D

6.14 Theorem. For all r, Δ(

r

}

+i is a basis for the class of non-meager Σ° + 3 sets.

Proof Suppose A G %°r+3 is non-meager and let 93 be an V?-formula such that
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A is the countable union of sets Am, where

αGAm <->(= Vxι3x2ϊ8[m,a].

Let Ge r denote the set of r-generic functions. By the preceding Lemma, A ~ Ge r

is meager so A Π Ge r is non-meager. Hence for some m and some 5, Am Π Ge r is

dense in [s].

We shall contruct a Δ°+, function in A^ Π Ge r. As in the proof of Theorem

6.9, let / be a recursive function which enumerates {ΓSlΊ: Sϊ is a closed 3°r

formula}, and let ?ln be the formula with Gόdel number f(n). Set

y(0)=s;

y(2n + 1) = least t[t G Sq Λ γ(2n) C t Λ (Ih 2In [t] or If- -π Sln [f])];

γ(2n + 2) = (least u[(iι), G Sq Λ γ(2n + l )5(iι), Λ Ih 93[m, n, (u) 0, (w)i]])i

To see that y is well defined, suppose that y(2n + 1) is defined. Since

A^ Π G e r C{α: 1= 3x293[m, n, α]} Π Ge r ,

this latter set is also dense in [5] and thus has a non-empty intersection with

[y(2n + 1)]. If δ is a member of this intersection, then for some p, 1= 93[m, n, p, δ],

so since δ is r-generic, Ih93[m, n,/?, δ(^)] for some q. We may choose q larger

than lg(γ(2n + 1)). Then u = (p,δ(q)) satisfies the condition and y(2n + 2) is

defined.

Now let β be the limit of the sequences y(n). The odd stages of this

construction ensure that β is r-generic and the even stages ensure that

Vn 3p 3q. Ih 93[m, n, p,

Hence

Vn3pf=93[m,n,p,/3],

and thus

Thus β G A^ Π G e r That also β 6 A j + 1 follows from Lemma 6.8 and Post's

Theorem, β is the required element of AΠΔ° + 1 . D

6.15 Corollary. For all r > 0, {a: α G Δ?} G Σ?+ 2 ~ Δ(,!+2.

Froo/. The positive half follows from the equivalence
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a G Δ ^ B a Vm Vn [a(m)= n ±* U°r(a,(m, n))].

Suppose that also {a: a G Δ('}G Π ^ . Then {a: α£Δ°} is a comeager, hence
non-meager, Σ(

Γ

}+2 set, so by the Theorem, it has a Δ° element, a
contradiction. D

6.16-6.17 Exercises

6.16. Show that for all r ^ 1 there exist functions β which are implicitly Π°+1 but
not implicitly Π r.

6.17. Use the result of the preceding Exercise to show that Exercise 4.24 is false
for r = 1.

6.18 Notes. For readers familiar with forcing in the context of set theory as
described (say) in Shoenίield [1971], we note that the r-generic functions are
those which meet a certain collection of Δ°+1 dense sets, namely those of the
form

{s: Ih?i[s]orlh-i2l[s]}

for 3 r formulas ?ί. Similarly, the generic functions are those which meet a certain
collection of arithmetical dense sets.

Corollary 6.10 is due to Addison [1965], the proof given here is from Hinman
[1969a]. 6.14 and 6.15 are also from Hinman [1969a]. The other results are due to
Feferman [1964/65].




