
Chapter II

Ordinary Recursion Theory

The notion of a recursive function resulted from an attempt in the 1930's to
provide a precise mathematical characterization of the concept of a mechanically
or algorithmically calculable function from kω into ω. One way to understand
this concept is to imagine an idealized digital computer not subject to error or
limitations of memory or storage space. Then a partial function F is mechani-
cally calculable just in case there is a finite program (or algorithm) for this
computer which directs it to accept inputs of the form m and carry out a
computation with two possible results: if m E Dm F, the computation terminates
after finitely many steps with the correct value F(m) as output; if m £ Dm F, the
computation does not terminate.

As this is an intuitive concept, however, it cannot be described completely
except by convention. Not only is any attempt subject to legitimate disagreement
on the basis of current knowledge, but also the possibility remains open that in
the future a new means of calculation will be discovered which will be agreed by
mathematicians to be mechanical but will not fall under the proposed descrip-
tion. Still, from a practical point of view, the notion seems to be a viable one:
most people with a thorough understanding of the concepts involved will agree
on the question of whether or not a given method of calculation is mechanical.

In particular, although we cannot give a rigorous proof that every recursive
function is mechanically calculable, our justification of this assertion in § 2 below
should be convincing to almost everyone. The converse proposition, known as
Church's Thesis, that all mechanically calculable functions are recursive, is
somewhat more problematic. Without a precise ^delineation of the class of
mechanically calculable functions, we are in no position to prove that all of its
members are recursive. We are forced, therefore, to rely on what might be called
circumstantial evidence. Most importantly, no one has exhibited a function
which is agreed to be mechanically calculable but is not recursive. In a similar
vein, every known procedure which produces from calculable functions another
calculable function also produces a recursive function from recursive functions.

Another kind of evidence is given by the variety of ways that the class of
recursive functions can be characterized. Although these characterizations have
quite different intuitive content (based on different conceptions of mechanical
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calculability) they all describe exactly the class of recursive functions. This shows
that this is a very natural class and is at least intimately connected with the
notion of mechanical calculability.

A discussion of these diverse characterizations and a more detailed examina-
tion of the evidence for Church's Thesis may be found in Kleene [1952].

As we shall be discussing functionals as well as functions, we shall want, for
comparison, also a notion of mechanical calculability for partial functions from
M ω into ω. At first glance there seems to be no way for our idealized computer
to accept inputs of the form (m, a). Even if we allow the computer to have
infinite memory facilities sufficient to store all the values of an argument α, it
would seemingly take infinitely long just to "read in" these values. Hence to
preserve the finiteness of computations we say that the computer receives an
input (m, a) when it is connected to an infinite memory device in which have
previously been stored ra0,..., mk_i and the complete graphs of α 0 , . . . , «/i. The
computer may then refer to this device at any point in the computation to
transfer to its working "registers" either an m, or a value a}(p). Since the
computation of a value F(m, a) must be finite, only finitely many values of each
argument are actually used. Thus mechanically calculable functionals are
continuous.

1. Primitive Recursion

We examine first the class of primitive recursive functionals. We shall show that
this class includes many familiar functionals but fails to exhaust the class of
mechanically calculable functionals. Although in this section we are concerned
only with total functionals, we state some of the definitions with ' — ' rather than
4 = ' for future application to partial functionals.

1.1 Definition. For any fc, /, and n, any i < fc and / < /, and any (m, a) E k/ω,
(i) (the initial functionals)

Csί 'ίm, a)=n, Pit'(m, a)=mi,

ScfJ(m, α) = m, + 1, and Ap£'/(m, a) = α; (m, );

(ii) (functional composition) for any fc' and any functionals G, H o , . . . , H k - l 5

FCmpϊ '(G, Ho,.. ., Hk -,) is the functional F of rank (fc, /) such that

(a) if G is of rank (fc', /) and H o , . . . , Hk_, are all of rank (fc, /), then

F(m, a) =* G(H0(m, α ) , . . . , Hk ^(m, α ) , α ) ;

(b) otherwise, F(m, a) — 0;
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(iii) (primitive recursion) for any functionals G and H, Reck + 1 /(G, H) is the
functional F of rank (fc 4-1, Z) such that
(a) if G is of rank (fc, Z) and H is of rank (fc + 2, Z), then F(0, m, α) =* G(m, α), and

for all p,

F(p + 1, m, α) - H(F(p, m, α), p, m, α);

(b) otherwise, F(p, m, a) — 0.

1.2 Definition. The class Prf of primitive recursive functionals is the smallest
class of total functionals which contains the initial functionals and is closed under
functional composition and primitive recursion.

Note that Prf is inductively defined by closure under finitary functions. By
induction over Prf it follows that every primitive recursive functional is total and
mechanically calculable: clearly this is true for the initial functionals and these
properties are preserved by functional composition and primitive recursion.

1.3 Examples. The addition function ( + ) is defined by the equations 0 4- m = n
and (p + 1)4- m = (p + m)+ 1. A simple calculation shows that

4- =Rec2'°(Prr,Scr)

and is thus primitive recursive. Multiplication satisfies 0 m = 0 and (p 4-1) m =
p m 4- m, so that

• = Rec2'°(Cs(V°, FCmpi °( + , PrΓ, Pit0))

and is thus primitive recursive. The exponential function exp(p, m)= mp satisfies
exp(0, m) = 1 and exp(p + 1, m) = exp(p, m) m and is similarly shown to be
primitive recursive. The factorial function (!) satisfies 0! = 1 and (p + 1)! =
p!(p 4-1) and is primitive recursive. Let

if p = 0 ; , _, v ίl, if p = 0 ;
{ if p>0; a n d S g ( P ) = ( θ , if p>0.

Then

sg+ = Rec^CsΓ, Csf) and sg" = Rec1 W , Csg-0),

so both are primitive recursive. Let / be the primitive recursive function
Reclo(CSo°,Pr20) so that /(0) = 0 and /(p + l) = p (the predecessor function).
Then if we set
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g = Rec20(Pr!°,FCmp30(/, Pr?,0)),

it is straightforward to check that

m - p, if m ^ p
, otherwise.

g(p,tn) is usually written m - p.
We call a relation R primitive recursive just in case its characteristic

functional KR is primitive recursive. Then lC(m,p) = sg+(m-p), K^(m,p) =
sg+(p-m), K<(m,p) = sg~(p-m), K>(m,p) = sg~(m ^-p), and K=(m,p) =
sg+(K«(m,p) + K^(m,p)) so these relations are all primitive recursive. Further-
more, if R and S are primitive recursive relations of the same rank, then

KRUS(m, a) = KR(m, a) Ks(m, α),

KRns(m, α) = sg+(KR(m, a) + Ks(m, a)), and

K^R(m, a) = 1 - KR(m, a)

so that the class of primitive recursive relations of a given rank forms a Boolean
algebra.

Our next aim is to show that the sequence coding and decoding functions of
§1.1.4 are primitive recursive. To this end we establish some further closure
properties of the classes of primitive recursive functionals and relations.

1.4 Definition. For any k,l,k', and /', any functionals G,G 0,... ,G k , and any
relations R(),..., Rk _,, and S,

(i) {expansion) if G has rank (k, /), then Exk,, (G) is the functional F of rank
(fc + fc',/+ /') such that

F(m,n,tt,β)-G(m,α);

(ii) (bounded search) if G has rank (k + 2, /), then Bs(G) is the functional F
of rank (k + 1, /) such that

F(p,m, a)

q, if q < p, G(q, m, a) — 0, and

r , m , α ) - n;

p, .if (Vq<p)(3n>0).G(<7,m, α ) - n;

we write

F(p,m, a)^ "least" q <p.G(g,m, α ) ^ 0 ;
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(iii) (definition by cases) if Go,...,Gk , Ro,..., Rk-i all have rank (fc, /) and

for any (m, a)E.klω there is at most one i<k' such that R,(in, a), then

Cases k(G 0,...,G k, Ro,..., Rk-i) is the functional F of rank (fc, /) such that

Go(m, α), if R0(m, α);

F(m,α)
Gfc'-i(m,α), if Rfc-i(m, α);

Gk (m, a), otherwise (V/ < fc'~ R,(m, a));

(iv) (relational composition) if Go,... ,Gk _i have rank (fc, I) and S has rank

(fc',/), then RCmpk'(S,Go,...,Gk'_i) is the relation R of rank (fc, Z) such that

R(m, a)+*S(Go(m, α) , . . . ,G k -i(m, a),a);

(v) (bounded quantification) if S is of rank (fc + 2, I), then 3<(S) and V<(S)

are the relations P and Q of rank (fc + 1, Z) such that

P(p,m, a)«*(3q <p)S(q,m, a), and

Q(p, m, α ) <-• (Vq < p) S(q, m, α).

1.5 Theorem. The class of primitive recursive functionals and relations is closed

under expansion, bounded search, definition by cases, relational composition, and

bounded quantification.

Proof, (i) Clearly any expansion of an initial functional is still an initial

functional. Any expansion of FCmp(G, Ho,..., Hk _i) is FCmp(G', Hό,..., Hί-i)

for suitable expansions G' and H! of G and Hi. Similarly, any expansion of

Rec(G, H) is Rec(G', KΓ) for suitable G' and H;. Hence by induction the expansion

of any primitive recursive functional is primitive recursive,

(ii) If G is primitive recursive, then so is F defined by:

F(0,m,α) = 0;

F(p + 1, m, a) = F(p, m, a) + sg+(G(F(p, m, α), m, a)).

We leave to the reader the amusing verification that F is Bs(G).

(iii) Suppose that Go,..., Gk and Ro,..., Rk -i satisfy the hypothesis for

definition by cases. Then the F defined there is also given by

F(m, a) = [Go(m, a) sg-(KRo(m, a))] + + [Gk.-,(in, a) sg-iKR .̂Xin, a))]

+ [Gk(m, a) KRo(m, a) KRfc..1(m, a)],
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and is thus seen to be primitive recursive.
(iv) If R = RCmp(S, G o , . . . , Gk _i), then KR = FCmp(Ks, G o , . . . , Gk -i); so if

S,G0,..., and Gk_i are all primitive recursive, so is R.
(v) Let P, Q, and S be as in the definition. Then

P(p,m, a)+*["least" q <p.S(q, m, a)] < p,

and Q = ~3°<(~S). D

These results will be used, usually without reference, to justify the claim that
some explicitly defined functional or relation is primitive recursive. For example,
if G, H, I, R, S, and T are primitive recursive, and F is defined by:

F(m,α) =

then a succession of applications of the clauses of Theorem 1.5 together with the
remarks preceding it shows that F is primitive recursive.

As a first application, we obtain the primitve recursiveness of the relation "m
divides p " and the function (pm: m E ω) which enumerates the prime numbers:

mo+α2(mi),

α,("least" q <

[qn

- 0, otherwise

if (

:H(m

ύq < s)H(q, G(q,m, α), α4);

m2,α,)]), if S(m, α)/\—ιT(mo,α);

m divides p <-»(3q < p + \){q m - p ) ;

Po = 2, and

Pm+i = (" least" q < pm! + 2)[p m < 4 Λ ( - Ί 3 Γ < q)(l <r*r divides 4)] .

1.6 Corollary. The sequence coding and decoding functions and the set Sq of

§1.1.4 are all primitive recursive.

Proof For the functions, this is immediate from their definitions. Also 5 E
Sq«*(Vi < s)[pi divides s —• i < lg(s)]. D

For any functional F of rank (fc + 1, /) we set

F(0,m,α) = < > and

F(p 4-1, m, a) = F(p, m, a) * (F(p, m, a)).

Thus F(p, m, α) == (F(0, m, α ) , . . . , F(p - 1, m, a)). From the definition and the
preceding Corollary it is clear that if F is primitive recursive, so is F. Further-
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more, for any q > p, F(p, m, a) — (F(q, m, a))p so the primitive recursiveness of F
implies that of F. The same argument shows that the functional H(p, a) = ά(p) is
primitive recursive.

1.7 Definition (course-of-values recursion). For any fc and /, and any functional
G of rank (fc + 2, /), CvRec(G) is the functional F of rank (fc + 1, /) such that

F(p, m, α) =* G(F(p, m, α), p, m, α).

1.8 Theorem. The class of primitive recursive functionals is closed under course -
of-values recursion.

Proof. If G is of rank (fc + 2, /) and F = CvRec(G), then

F(p + 1, m, a) = F(p, m, a) * (G(F(/?, m, α), /?, m, a)).

Hence, if G is primitive recursive, so is F. But then by the preceding remarks,
also F is primitive recursive. D

In applying these theorems to show that a particular relation R is primitive
recursive, we must formally work with KR and show this to be a primitive
recursive functional. Usually, however, it is more perspicuous to describe
directly recursive conditions on R. For example, the condition

is equivalent to

lF(p,KR(p)), if

where

F /_ ,Λ _ ί0 ' i f (3<? </>)[<?+ 7 = P A ( S ) * = O];
n p ' ' [l, otherwise.

In such cases we shall leave to the reader the translation of the conditions on R
to conditions on KR.

Another technique we shall use frequently is to give definitions of the form

This should be taken as an abbreviation for
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so that F is defined for all arguments, not only those of the form (m) and (a).

Since the decoding functions are primitive recursive, if G is primitive recursive,

so is F.

We turn now to the assertion that not all mechanically calculable functionals

are primitive recursive. Our method derives from the description of mechanical

computability in terms of an idealized computer. We shall in effect specify a

particular computer and a "programming language" which suffices to write

programs for computing all primitive recursive functionals. We can then exhibit

a functional which is mechanically calculable but cannot be "programmed" in

this language and hence is not primitive recursive.

The "language" is simply a set Pri C ω, members of which we call primitive

recursive indices. To each a G Pri is assigned a primitive recursive functional [a]

by interpreting a as a program for an idealized computer whose basic operations

correspond to the clauses of Definition 1.1.

1.9 Definition. Pri is the smallest subset of ω such that for all fc, Z, and n, all

i < fc, and all / < /,

(0) (0, k, /, 0, n>, (0, k, /, 1, i), <0, fc, Z, 2, /), and (0, fc, Z, 3, i, /> all belong to Pri;

(1) for any fc' and any fc, c 0 , . . . , ck_, G Pri, <1, fc, Z, fc, c 0 , . . . , ck -λ)G Pri;

(2) for any b,cE Pri, (2, fc + 1, Z, fc, c)E Pri.

This is clearly a monomorphic inductive definition, so by Theorem 1.3.5 there

exists a unique map [ ] from Pri into the class of functionals such that

(0) [<0,fc,Z,0,n>] = Csk

n';

[<0,fc,Z,2,O] = Sc? ';

[<0,fc,Z,3,ι,/>] = Apk';

(1) [<1, fc, Z, fc, Co,..., <v_,>] = FCmpkV([fc], [ c 0 ] , . . . , [cv-J);

(2) [<2,fc + l,Z,fc,c>] = Reck'([fc],[c]).

1.10 Theorem. Prf = {[a]: a G Pri}.

Proof. For the inclusion ( C ) we observe that {[a]: a G Pri} clearly contains the

initial functions and is closed under composition and primitive recursion. For

( D ) consider {a: a G Pri Λ [a] is primitive recursive}. This set satisfies clauses

(0)-(2) of Definition 1.9 and thus includes Pri. D

For each fc and Z, set



1. Primitive Recursion 35

FMkl(n m ΛΛ = Π α ] ( m ' α ) ' i f Λ G P r i Λ ( α ) , = k Λ ( α ) 2 = Z;tv ^ m , α ; j ^ o t h e r w i s e

Evk/ is called an evaluation function.

1.11 Theorem, for all fc > 0 and a// /, Evk' is mechanically calculable but not
primitive recursive.

Proof. Suppose first that Evk+1/ were primitive recursive. Th&n if

F(α, m, a) = Evk+1 '(α, α,m,α)+l

also F is primitive recursive. Hence by Theorem 1.10, F = [b] for some b E Pri.
But then

F(f>,m, a) = Evfc+1 '(fr, b, m, α) + 1 = [6](6, m, α ) + 1 = F(ί>, m, α ) + 1,

a contradiction.
To see that Evk>/ is mechanically calculable we examine the notion of a

computation tree. Such a tree may be thought of as a schematic representation of
the action of the idealized computer in calculating a value of a given functional.
Each computation tree has a top node x0. Each node x has 0 or more immediate
predecessors which lie just below x. Each node x is labeled with a triple (α, m, a).
x is said to be evaluated when [a] (m, a) is computed. If a is an index for one of
the initial functions, then x has no immediate predecessors. If a =
(1, fc, Z, ft, Co,... ,Ck -i), then JC has fc'+l immediate predecessors labeled as
follows:

(α,m, α)

where q = (q0,..., qk -i) and for all i < fc', [c,](m, α) = q,. If a = (2, fc + 1, /, b, c),
then x has either 1 or 2 immediate predecessors:

(α,0,m, α) • (α,p + l,m, α)or A
(b,m, α) (α,p,m, α) (c,̂ ,p,m, α)
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where [a](p,m, α) = q. Thus the labels on the immediate predecessors of x
correspond to the subcomputations necessary to evaluate the label at JC.

For any triple (α, m, a) with a E Pri, (a)λ = fc, and (α)2 = /, we generate and
label a computation tree as follows. The top node is labeled (α, m, a). Depend-
ing on α, the appropriate number of immediate predecessors of x0 are con-
structed and all but possibly the right-most one labeled. The number of
immediate predecessors of these may then be determined and so on. If node x
lies below node y, then the index at x is not greater than the index at y, and if
they are equal, then the first argument at x is strictly less than the first argument
at y. Hence each branch terminates with a node labeled with an index for one of
the initial functions. This is immediately evaluable. If at some stage all nodes at a
given level except the right-most one have been evaluated, then this one may be
labeled. When all immediate predecessors of a given node x have been
evaluated, then x may be evaluated and has the value of the right-most
immediate predecessor as its value. In any application of composition, fc'< a.
Hence by the Infinity Lemma (1.2.3) the tree is finite and this process terminates
after a finite number of steps with an evaluation of the top node x0 and hence
with the value EvM(α, m, a).

A mechanical procedure for calculating EvM(α, m, α) now goes as follows.
Determine first whether or not a E Pri, (a)ι = fc, and (α)2 = /. This is possible by
Corollary 1.6 and Exercise 1.16. If not, the value is 0. If so, construct the
computation tree as described above and read off the value of the top node. D

1.12-1.18 Exercises

1.12. Find explicitly primitive recursive indices for addition and multiplication.

1.13. Show that any primitive recursive function has infinitely many indices.

1.14. Show that if G is primitive recursive and

p, m, a) = G(p, m, α, λq. Fp(q, m, a))

where
F ^ ' m ' α ) ' i f

^ o t h e r w i s e ;

then also F is primitive recursive.

1.15. Show that if G and H are both primitive recursive and

F(m, a) = G(m, α, λp. H(p, m, α)),

then F is primitive recursive.
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1.16. Show that the set Pri of primitive recursive indices is a primitive recursive
set.

1.17. For each of the closure properties established above, there is a stronger
effective closure property which asserts that an index for the resulting functional
or relation can be computed from indices of the component functionals and
relations. For example, Prf is effectively closed under bounded search iff there
exists a primitive recursive function / such that for all a E Pri, [/(α)] = Bs([α]).
Show that the class of primitive recursive functionals and relations is effectively
closed under expansion, bounded search, and course-of-values recursion.

1.18. For any β = (β0,..., βr-ι), let Prf[/3], the class of functionals primitive
recursive in β, be the smallest class of total functionals which contains
βo,..., βr-u and the initial functionals, and is closed under functional composi-
tion and primitive recursion. Show that FEPrf[/3] iff, for some primitive
recursive G, F(m, a) = G(m, α, β).

1.19 Notes. The primitive recursive functions have played a varying role over
the years. Gόdel [1931] used "rekursiv" to mean primitive recursive and used
only these functions in the incompleteness proof. As various formalized
analogues of the class of mechanically calculable functions came to be studied in
the 1930's and the class of (general) recursive functions was introduced, the
primitive recursive functions were relegated to the secondary role of providing a
basic stock of methods for elementary calculations (cf. Exercise 1.17 and
Corollary 3.3 below). That some kinds of "recursions" lead beyond the primitive
recursive functions was already shown in Ackermann [1928] and by the method
of Theorem 1.11 in Peter [1935]. Peter [1967] has a good deal of information on
various extensions of the class of primitive recursive functions by means of more
complicated recursions.

The method of proof used in Theorem 1.11 is called a diagonal argument and
is used repeatedly in the remainder of the book. It is an adaptation of Cantor's
proof that the set of real numbers is uncountable.

2. Recursive Functionals and Relations

If the class of recursive functionals is to include all mechanically calculable
functionals, then it must evidently contain each Evk/. This suggests that we
consider the class Prfi, the smallest class of total functionals which contains the
initial functionals and all Evk/ and is closed under functional composition and
primitive recursion. Unfortunately, the methods of §1 are easily adapted to show
that there is an indexing [ ]i of Prfi such that the functionals
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[α]i(m, α), if a E Prii, (a)λ = fc, and ( α ) 2 = / ;
0, otherwise;

are mechanically calculable but not in Prfi.

It is still instructive to examine the properties of Prfi more closely. For any

G E Prfi, the functional F defined by

F(m, a) = Evk ί (G(m, α), m, a)

is also in Prfi. The computation of F(m, a) proceeds in two parts: first a value

G(m, a) is determined, then this value is interpreted as a "program" for the rest

of the computation. The principle that the results of one part of a computation

may be interpreted as coded instructions for another part we call the self-

determination principle. It is an idealized form of the various devices for program

modification which play an essential role in most programming languages for

electronic computers.

The class Prfi exhibits the self-determination principle only in a limited form.

Although the functional G may be any element of Prf1? the remainder of the

computation described above is determined by an index in Pri (not Prii) and thus

cannot make further use of the functional Evk/. We should like to allow for the

possibility that the result G(m, a) of one computation might be interpreted as an

index for any functional in the class under consideration {full self-determination

principle).

To accomplish this we change slightly our point of view. Instead of fixing in

advance a class of indices which code instructions for computing total function-

als, we shall regard every natural number a as an index for a partial functional

{a}. As before we shall have { α } ( m , a ) - n just in case a codes a "program"

which, when applied to the arguments (m, α ) leads to the value n. Now,

however, a program may lead to a value for some arguments but not for others.

Indeed many a (0, for example) are not of the prescribed form for coding

instructions, so that {a} is the empty functional. A functional will be called

partial recursive just in case it is one of the functional {a} {a E ω).

Many of the indices will have the same interpretation as before. For example,

we shall arrange that

{(1, fc, /, b, Co,..., ck'-,)}(m, a)« {6}({co}(m, α ) , . . . ,{ck-i}(m, a),a)

so that the partial recursive functionals are closed under composition. The key to

obtaining the full self-determination principle is the fact that we shall have

The index (2, k + 1, /) may be thought of as coding the following program: apply
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the program coded by the first number argument to the remaining arguments. If
{b}(m, a) is undefined, so is {(2, fc + 1, Z)}(ί>,m, α); it is for this reason that we
are forced to deal with partial functionals. It is now evident that the full
self-determination principle holds: if G is partial recursive, so is the functional F
defined by:

F(m, a) - {G(m, α)}(m, α) - {<2, fc + 1, /)}(G(m, α), m, a).

The reader may well be puzzled as to why a diagonal argument does not
exhibit an inconsistency. Indeed, if we set F(α, m, a) - {a}(a, m, a) + 1, then F is
partial recursive and thus coincides with some {b}. Thus

but F is now a partial functional and from this we conclude merely that
F(fc,m, α) is not defined.

To realize these provisions, we shall define inductively the set Ω of sequences
(α,m, α, n) such that {α}(m, α ) ~ n. At each stage r + 1 we add to β Γ + 1

sequences corresponding to computations which are intuitively one step more
complex than computations corresponding to sequences in Ω\ The elements of
Ω° correspond to computations of some initial functionals which we regard as
being immediately computable. These are the same as the initial primitive
recursive functionals with two additions which serve as a technical device to
enable us to derive the closure of the class of partial recursive functionals under
primitive recursion without putting this into the definition. The function Sb0 is
defined in Lemma 2.5 below.

2.1 Definition. Ω is the smallest set such that for all fc, Z, n, p, qy r, and s, all i < k
and j < I and all (m, α)G k /ω,
(0) «0,fc,/,0,n>,m,α,n)e/2;

«0, fc, Z, 3, Ϊ, />, m, α, a, (m, ))Gfl;
«0,fc +4,/,4},p,g,r,s,in,a,p)e/i, if r = s;
((0, k + 4, Z, 4), p, qy r, s, m, a, 4) E 12, if r^ 5
«0, k + 2, Z, 5), p, <?, m, a, Sbo(p,q)) E Λ

(1) for any fc', 6, c 0,. . ., ck _i, q0,..., φc'-i, if for all 1" < k' (c,, m, α, ψ) E Λ and
(ί),q,α,n)Gfl, then

«1, fc, Z, fc, Co,..., <*._,), m, α, n) E Ω

(2) for any ί>, if (6, m, α, n) E β, then

«2,fc + l,Z>,b,m,α,n)Eβ.
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Although it is not phrased explicitly as such, the definition of Ω is another
example of closure under finitary functions. For example, clause (2) requires Ω
to be closed under the function λx.((2, fc + 1, /))**. In particular, there is an
inductive operator Γ such that Ω = Γ = Γ(ω).

2.2 Lemma. For all α, m, and α, there is at most one n such that (a, m, a, n) E Ω.

Proof. With Γ as above, it suffices to prove by induction on r that there is at
most one n such that (α, m, α, n) E Γr. Assume as induction hypothesis that this
holds for all s<r and suppose that both (α, m, α, n) and (α, m, α, n'), with
n^ n\ belong to Γr. This is clearly impossible if (α)o = 0 so suppose (a)0= 1.
Then for some fc, fc', /, b, c, q, and q', a = (1, fc, Z, fc, c), and for all i <fc',
(c, , m, α, φ) and (Cj, m, a, q') belong to Γ( r) and (b, q, α, n) and (fe, q', α, n') belong
to Γ(r). But then by the induction hypothesis, q = q 'son = n'. The case (α)0 = 2
is similar. D

Thus if we set

{α}(m, a)- n «-»(α,m, α, n)E β,

then for each α E ω, {α} is a partial functional.

2.3 Definition. For all F and R,
(i) F is partial recursive iff for some a E ω, F = {a}; a is called an index

for F;

(ii) F is recursive iff F is partial recursive and total;
(iii) R is recursive iff KR is recursive; an index for KR is also called an index

for R.

2.4 Remark. There is a somewhat technical point which should be mentioned
here. The assertion

is equivalent to: for all n,

{<2, fc + 1, /)}(*>, m, a)« n ++ {6}(m, a) =* n.

The implication (<—) is built into the definition, but the converse must be
proved. The situation is similar with

{<1, fc, Z, b, Co,..., Ck'-i>}(m, α ) « {b}({co}(m, α),...,{ck_i}(m, α),α) .
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If the right-hand side is - w, then for some q0,..., qk-u each {Ci}(m, a) =* φ and

{&}(?, α ) - n so that also the left-hand side - n by the definition of Ω. The

reader should not find great difficulty in supplying the missing proofs. (Exercise

2.14)

From this discussion it is clear that the class of partial recursive functionals is

closed under functional composition. To show that it is also closed under

primitive recursion, we first prove a very fundamental result known as the

Recursion Theorem.

2.5 Lemma. For every i E ω, there exists a primitive recursive function Sb, such

that for any α, any k > i, any /, and any (m, a) E k 'ω,

{Sb,(α, m0,..., w,)}(m,+i,..., mk-u α ) - {α}(m, a).

Proof Let k' = (α), - 1 and /' = (α) 2. Then set

Sbo(α, mo) = (1, k\ /', α,(0, k', Γ,0, mo),<0, k', /', 1,0),... ,(0, fc\ /', 1, k ' - 1»;

Sbi+i(α, m 0 , . . . , m i + 1) = Sbo(Sb,(α, m 0 , . . . , m,), m j + 1).

The functions Sb, are clearly all primitive recursive. We leave it to the reader to

check that they all have the required property. D

2.6 Recursion Theorem. For any partial recursive F there exists an e EL ω such

that for all (m, α),

Proof. Let F be given and set G(α,m, a)— F(Sbo(α, α),m, a). G is partial

recursive, so let b be an index for G and take e = Sbo(ft, b). Then

— F(e, m, a). D

We observe that the Recursion Theorem holds also for primitive recursion. If

F is primitive recursive, then so is G in the preceding proof. If b is a primitive

recursive index for G, then e = Sbo(b, b) is also a primitive recursive index and

clearly

[ β ] ( m , α ) = F(e, m,α).

We shall refer to this fact as the Primitive Recursion Theorem.

The following is a property of the partial recursive functionals which is not

shared by the primitive recursive functionals.
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2.7 Definition (unbounded search). For any functional G of rank (fc + 1,/),

Se(G) is the functional F of rank (fc, /) such that

q, if G(q, m, α) — 0, but for all r < q,

_, . there exists n > 0 such that G(r, m, α) = n;
F(m, a) =*<

. undefined, if there is no such q.

(We write F(m, a)^ "least" q.G(q,m, α ) ^ 0 . Note that if G(r,m, α) is unde-

fined for some r less than the smallest q such that G(q, m, α)=*0 (if any), then

F(m, α) is undefined. If this cannot happen, say, because G is total, we write

F(m, a) — least q. G(q, m, α) ~ 0. In particular, we write least p. R(p, m, α) for

least p. KR(p, m, a) - 0.)

2.8 Theorem. The class of partial recursive functionals is closed under unbounded

search.

Proof. Suppose G is partial recursive and F = Se(G). Let b and c be indices such

that for all e, q, m, and α,

{b}(e, q,m, a) - 0, and {c}(e, 4, m, a) =* {e}(<j + 1, m, α) + 1,

and set

H(e, 4, m, α) - {{<0,4,0,4)}(fe, c, G(q, m, α),0)}(e, q, m, α).

By the Recursion Theorem there exists an e such that

{e}(q, m, α) * H(e, ̂ , m, α).

Let I = {e}.

Suppose first that G((j,m, a) — 0. Then

{<0,4,0,4>}(6,c,G(9,m,α),0)«6

so

1(4, m, α ) « H(e, q, m, α) = {ί>}(e, q, m, α ) « 0.

On the other hand, if G(^,m, α ) = n >0, then

l(<7, m, α)«{c}(e, ^, m, a) ^ l(qf -I-1, m, α) + 1.

If G(g, m, α) is undefined, so is \(q, m, α). From these facts it follows easily that

F(m,α)-l(0,m,tt). D
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2.9 Corollary. The predecessor function p - 1 is partial recursive.

Proof. Let b and c be indices such that for all p,

{b}(p)~0 and {c}(p)= "least" <?.{(0,4,0,4>}(0,l,f + l , p ) - 0 .

Then

p^l-{{<0,4,0,4)}(ί>,c,p,0)}(p). D

2.10 Theorem. The class of partial recursive functionals is closed under primitive
recursion and course-of-values recursion.

Proof. Suppose G and H are partial recursive and F = Rec(G, H). Let G' and H'
be defined by:

G'(e,p,m,α)-G(m,α);

H'(e,p, m, α ) « H({e}(p- 1, m, α ) , p - 1, m, a).

By the corollary, G' and H' are partial recursive. Let V and c' be indices for G'
and H\ respectively, and set

Thus

l(e,0,m,α)-G(m,α)

and

l(e,p + 1, m, α ) « H({e}(p, m, α),p, m, a).

Let έ be an index provided by the Recursion Theorem such that

{e}(p,m,α)=-l(e,p,m,α).

Then

{e}(0,m,α)-G(m,α)

and

{e}(p + 1, m, α) =« H({e}(p, m, α),p, m, α).
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So F = {e} and thus F is partial recursive. D

2.11 Corollary. Every primitive recursive functional is recursive. D

We leave it to the reader to check the obvious fact that the primitive
recursive functionals form a proper subset of the recursive functionals (Exercise
2.17).

Computations of partial recursive functionals may be arranged in labeled
trees similar to those for primitive recursions. There is one additional type of
node:

Branching in the tree is still finite, so that a tree either is finite or has an infinite
branch. The latter case corresponds to an undefined computation. The proce-
dure for computing on the tree is the same as before and we conclude that the
functional λ a mα.{α}(m, a) is mechanically computable, and hence so is every
partial recursive functional.

We want now to consider other closure conditions satisfied by the (partial)
recursive functionals and the recursive relations. It follows as in 1.3 that the
recursive relations form a Boolean algebra. If we restrict ourselves to recursive
(total) functionals, then we can establish closure under bounded search, defini-
tion by cases, relational composition, and bounded quantification with exactly
the same proofs as for Theorem 1.5. The proof for expansion given there
depends on the inductive characterization of the class Prf and does not
generalize directly; the result is proved as Corollary 3.4.

What happens to these properties when the functionals are allowed to be
partial? Closure under relational composition is no longer true (Exercise 4.26).
On the other hand it is easy to verify that the proof for bounded search still
works: if G is partial recursive so is Bs(G). The proof for definition by cases,
however, does not work if some of G o , . . . , Gk are not total functionals. If F is as
defined in 1.5(iii), F(m, a) is undefined unless all of G0(m, α ) , . . . , Gk(m, α) are
defined, whereas Casesk(G,R) is defined for any (m, a) such that for some
i, R,(m, α) and G,(m, a) is defined. The result is nevertheless true.

2.12 Theorem. The class of partial recursive functionals and recursive relations is
closed under definition by cases.

Proof. Suppose R o , . . . , Rk -i are recursive relations and G o , . . . , G k ' are partial
recursive functionals which satisfy the hypothesis of 1.4(iii). Let ft, be an index
for G, and let H be the recursive functional defined by:
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bo, if R0(m, α);

U, I ; ifV.dn,*);
.bk>9 otherwise.

Then Casesk(Go,..., Gfc , Ro,..., R* i) is the partial recursive functional

F(m,α)-{H(m,α)}(m,α). D

2.13-2.20 Exercises

2.13. Show that there exists a primitive recursive functional F such that if for
each a we define

Γa (A) = {u : 3p (Vί < p). F(p, i, u, <α» E A U {0}},

then

{α}(m, α ) ^ n o ( f l , m , n ) G f 0 .

2.14. Supply the missing proofs discussed in Remark 2.4.

2.15. Prove the Effective Recursion Theorem: there exists a primitive recursive
function g such that for all α, m, and α,

{g(α)}(m, a) - {α}(g(α), m, α).

2.16. With each sequence (α, m, α, n) such that {α}(m, α ) - n , we associate the
natural number | α, m, α |, the least number r such that (α, m, α, n) E β r . Show
that e in the Recursion Theorem may be chosen so that whenever F(e, m, α) — n,
then I α, e, m, α I < I e, m, α I (α is an index for F).

2.17. Check that the class of primitive recursive functionals is a proper subclass
of the class of recursive functionals.

2.18. Prove an effective version of Corollary 2.11: there exists a primitive
recursive function / such that for all a E Pri, [a] = {f(a)}.

2.19. Suppose that F is defined from G and H by the following recursion:

F(p + 1, q, m, α) - H(p, q, m, α, λr. F(p, r, m, a)).

If G and H are partial recursive, does it follow that F is partial recursive?



46 II. Ordinary Recursion Theory

2.20. Is it possible to define recursive functions Sbj such that for all α, all / > /, k,
and (m, α ) E k /ω,

{Sb (α, α(), .., θίj)}(m, α/ + I,..., α,_,) « {α}(m, α)?

2.21 Notes. The definition we have given for the class of partial recursive
functionals via indexed schemata is an adaptation of that of Kleene [1959].
Historically, the most important characterizations of this class are those of
Kleene [1935/36] and Turing [1936]. A good informal discussion of these may be
found in Rogers [1967, § 1.5]. We have chosen the Kleene [1959] definition for
two reasons. First the basic properties of the partial recursive functionals are
easier to derive because the indexing is built in from the beginning. More
importantly, it is this definition which is most easily generalized to functionals of
higher types and functions on ordinals. Of course, there are many minor
variations possible. For example, the schemata in clause (0) for equality and
sequence coding may be omitted in favor of a schema for primitive recursion.
The sequence coding functions may be replaced by + and .

The fact that recursiveness for functionals can be defined exactly as for
functions was apparently first noted in print in Kleene [1952, § 55] and developed
in Kleene [1955 b].

3. Normal Forms

Much of the remaining theory of partial recursive functionals depends on the
fact that the relation {α}(m, a) — n can be represented in a simple way in terms
of primitive recursive relations, namely, as 3M P(M, α, m, n, a) with P primitive
recursive. The key idea is that the number u codes the sequence of steps which
are necessary to carry out the computation.

3.1 Theorem. There exists a primitive recursive relation T C 3 1 ω such that for all

α, m, α, and n,

{α}(m, a)= n +*3u [T(a, <m>, w,<α» Λ (W)O = n].

Proof. We first define a primitive recursive relation Cmt — Cmt(u,(α» is to
mean that u codes some computation relative to α. Each such u will be of the
form u = (n, α, m, vίh . . . , vτ-x). v0,..., vr-ι code in turn the immediate subcompu-
tations of w, that is the computations indicated by the labels on the immediate
predecessors of the node labeled (α, m, a) in a computation tree. We shall write
u = (n, α, m,...) as an abbreviation for: Sq(w) and lg(w)^(α)i + 2 and ( M ) 0 = n
and (M)I = a and (Vi < (a)ι)(u)i+2 = m, .
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For any Z and any aEι(ωω), Cmt(w,(α)) iff for some k, m0,...,

mk-ι,n,p,q,r, and 5 all less than M, one of the following holds:

(0) w=(n,(0,fc,Z,0,n>,m>;

u = (m, , (0, fc, Z, 1, /), m) for some i < f c ;

M = (w, 4-1,(0, fc, /, 2,1), m) for some i < fc

M = (α, (m,), (0, fc, /, 3, 1", y), m) for some / < fc and y < /

u = (p,(0,fc + 4, /, 4), p, q, r, 5, m) and r- 5;

M =(q,(0,k + 4, /, 4), p, 4, r, 5, m) and r =£ s;

u = <Sbo(p, <?), (0, fc + 2, /, 5), p, q, m>;

(1) for some fc', fc, c 0 , . . . , ck _1? q0, ., qk -1, t?0, , υk> < w,

M = <n, (l,fc, Z, fe,c>,m,v>, for all is$fc', Cmt(u,(α)),

for all i < fc', u« = <ψ, c,, m,...), and tv = (n, 6,q,...);

(2) for some ί> and v < M,

M = (n, (2, fc + 1, />, b, m, ϋ), Cmt(ι;, <α», and ϋ = <n, fc, m,... >.

All quantifiers in the definition of Cmt are bounded to u and thus Cmt may

be seen to be primitive recursive by the techniques discussed following Theorem

1.8. We now set

T(α, <m>, M, <α» <-> Cmt(w, ( α » Λ M = <(M)0, α, m,... >.

Then T is clearly primitive recursive and it suffices to show that for all α, m, α,

and n,

(i) {α}(m,α)=n^3M[T(fl,(m),M,(α))Λ(u)o= n];

(ii) VM[T(α,(m>,M,<α))-^{α}(m,α)-(M)0].

The proof of (i) is by induction over Ω — that is, we show that the set

Z = {(α,m,α, n): 3M [T(α,(m>, w,(α» Λ ( M ) 0 = n]}

is closed under the conditions which define Ω. If (a)0 = 0 and (α, m, α, M) E β,

then the condition for membership in Z is satisfied with u = (n, α, m>. Suppose

α = (1, fc, Z, fc,c) and for some q, (Vi < fc')(Ci, m, α, ψ) E Z and (fc, q, α, n) E Z.

Then there exist υ 0 , . . . , vk> such that (Vi < fc')[T(Ci,(m), ϋi,(α» Λ (ϋi)o = ̂ i] and

[T(fc, (q), vk',(a)) Λ (ϋk')o= n]. Then by clause (1) in the definition of Cmt, if

u * (n, α,m,v), Cmt(w,(α» and hence T(α,(m>, M,(α». Since also (u)0= n,

(α, m, α, n) E Z. The proof for clause (2) is easier.

The proof of (ii) is by ordinary induction on u. We assume as induction

hypothesis that the matrix of (ii) is true for all υ < u and that T(α, (m), w, (a)). If

u falls under clause (0), the result is obvious. Suppose u falls under clause (1).

Then since υ 0 , . . . , vk> < u, and clearly T(c,, (m), vh (a)) and Γ(fc, (q), ιv, (α», the



48 II. Ordinary Recursion Theory

induction hypothesis guarantees that {Cj}(m, a)— q{ and {b}(q, a)— n. Hence
{α}(m, α ) — n = (w)0. Case (2) is similar. D

3.2 Corollary (First Normal Form). For any partial recursive functional F, there
exists an a such that

F(m, a) =* (least u. T(α, <m), u, <α)))0.

Proof. If a is any index for F, then clearly F(m, a) is defined just in case
3M T(α,(m), M,(a)) and if so, then F(m, a)— (u)0 for any such u. D

As an immediate consequence of the First Normal Form we obtain direct
inductive characterizations of the classes of partial recursive and recursive
functional:

3.3 Corollary, (i) The class of partial recursive functionals is the smallest class of
partial functionals which includes the class of primitive recursive functionals and is
closed under functional composition and unbounded search

(ii) the class of recursive functionals is the smallest class of total functionals
which includes the class of primitive recursive functionals and is closed under
functional composition and unbounded search restricted to functionals G such that
VmVα 3q.G(q, m, α) = 0.

Proof Let X be the class of partial recursive functionals and Y the other class
described in (i). Then Y C X by the results of § 2 and X C Y by Corollary 3.2.
The proof of (ii) is similar. D

3.4 Corollary. The class of partial recursive functionals is closed under expansion.

Proof. Suppose F(m, n, a, β) — G(m, a) and let b be an index for G. By
expansion for primitive recursive functionals there is a primitive recursive
relation R such that

R(w, m, n, α, β) +*T(b, <m>, w, <α».

Then

F(m, n, α, β) — (least u. R(w, m, n, a, β))0

and is thus partial recursive by Theorem 2.11. D

In the introduction to this chapter we observed that all mechanically
calculable functionals are continuous. The fact that all partial recursive function-
als are partial continuous plays an important role in the theory of the later
chapters and we shall find useful a second normal form which makes this explicit.
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3.5 Theorem. There exists a primitive recursive relation T C4ω such that for all

a, m, a, and n,

<m), w,<άo(w),... ,άι_i(u)» Λ ( U ) 0 = n].

Proof. Let Cmt be the relation defined in the proof of Theorem 3.1 and set

Cmt(u, s)+*3β [s = (βo(u),..., ft-i(M» Λ Cmt(u, <β»],

and

T(a,(m), M, s)<^Cmt(«,s) Λ M = ((w)0, α,m,...).

Suppose first that {a}(m,a)—n and by Theorem 3.1 choose u such that

T(α, (m), w,(α)) and (u)0= n. Since Cmt(u,(α)) holds we have

Cmt(w, (άo(u),.. .,άι-ι(u))) and thus Γ(α, (m), M, (άo(w)>..., α/-i(w))). For the

implication (<—) we first note that it is easy to prove by induction on u that

Cmt(iι,<α»Λ(V/</)ά/(iι) = ft(iι)->Cmt(iι,O».

Intuitively, the computation u "uses" values of the functions only for arguments

less than u. Then if T(α,(m), M,(αo(w), .. ,«/-I(M))) holds, it follows that also

T(α, (m), u,(a)) and the result is immediate from Theorem 3.1.

Of course, as we have defined them above it is not at all evident that Cmt and

T are primitive recursive. In fact, however, Cmt may also be defined exactly as

was Cmt except for the replacement of the clause

M=<α,(m,),...> by u = <((s),)mi,...)

and the addition of the conditions: lg(s)= / and (V; < /)lg((s), ) = w. D

3.6 Corollary (Second Normal Form). For any partial recursive functional F,

there exists an a such that

F(m, a) =* (least u. T(a, (m), M, (άo(u),..., άi-i(w))))0. D

3.7 Corollary. Every partial recursive functional is partial continuous. Every

recursive relation is closed-open.

Proof If F is partial recursive and (m, α ) E F-1({n}), then for some u,

Γ(α, (m), M, (άo(u),..., άι-ι(u))) and (u)0 = n. Then for any (p, β) belonging to

the neighborhood {mo}x x {mk-λ} x [ao\ u] x x [α/.J u] of (m, a) also

F(P> β) — n so (p, β) E F~\{n}). Hence F" !({M}) is open and F is partial continu-
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ous. If R is recursive, KR is recursive, hence continuous so R is closed-open by
Lemma 1.2.1. D

The recursive functional are sometimes called effectively continuous and the
recursive relations effectively closed-open.

We conclude this section by applying the Second Normal Form to establish
another closure property of the class of partial recursive functionals.

3.8 Definition, (i) (functional substitution) For any functionals G and H of ranks
(k, / + 1) and (k + 1 , Z), respectively, FSub(G, H) is the functional F of rank (k, I)
such that for all m and α,

F(m, a) - G(m, α, λp. H(p, m, a));

(ii) (relational substitution) for any relation S of rank (fc, / + 1) and any
functional H of rank (k + 1, /), RSub(S, H) is the relation R of rank (fc, /) such
that for all m and α,

R(m, α)<-»S(m, α, λp. H(p, m, a)).

At first consideration, it seems natural that the class of partial recursive
functionals should be closed under functional substitution. If G and H are
mechanically calculable then so should be F — whenever in the computation of a
value F(m, a) a value of λp. H(p,m, a) is called for, it could be computed by a
"subroutine". This procedure leads to an answer as long as H(p, m, a) is defined
for all those finitely many p for which a value is required during the computa-
tion. The right-hand side, however, is defined at most when λp. H(p, m, a) is a
total function, as we have admitted only total functions as arguments. Thus the
procedure described actually calculates an extension of F.

This difficulty could be removed by extending our functionals to allow partial
functions as arguments, but this leads to other problems which we prefer to
avoid. Of course, this argument establishes only that the proposed procedure
may fail to compute F, but in fact the partial recursive functionals are not closed
under functional substitution (Exercise 4.27). We have instead the following
restricted version.

3.9 Theorem. For any partial recursive functionals G and H there exists a partial
recursive functional F such that for all m and a such that λp. H(p, m, a) is total,

F(m, a) =- G(m, α?, λp. H(p,m, a)).

Proof. To minimize notational confusion we suppose k = I = 1. Let b and c be
indices for G and H, respectively. By Theorem 3.5 we have for any m, α, and β,
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<->3s 3M [5 = β(u) Λ T(b,<m>, M,<<Ϊ(M), 5)) Λ (M)0 = n].

Then if λp.H(p,m,a) is total,

G(m, α, λp. H(p, m, α)) = n **3s 3M 3υ [(\/p < M)(T(c,<p, m),(υ)p,

Λ ((^)P)O = (5) P )Λ T(b,{m), w,<ά(w),s»Λ(u)0= n].

If we abbreviate the right-hand side of this equivalence by 3s 3M 3 D
P(s, M, υ, m, α), then P is recursive and

G(m, α, λp. H(p, m, α))« ((least w. P((w)0, (w)i, (w)2, m, α))i)0

Hence if we take F to be the functional defined by the right-hand expression, F
has the desired property. D

3.10 Corollary. The class of recursive functionals is closed under functional
substitution. The class of recursive relations and recursive functionals is closed
under relational substitution.

Proof. If H is recursive, then the hypothesis is automatically satisfied. D

3.11-3.13 Exercises

3.11. Show that the class of partial recursive functionals is the smallest class of
functionals containing the functionals of clause (0) of Definition 2.1 and closed
under functional composition and unbounded search.

3.12. Prove the following effective version of Theorem 3.9: there exists a
primitive recursive function / such that for any α, d, m, and a such that
λp.{d}(p, m, a) is total,

{/(α, d)}(m, a) - {α}(m, α, Λp. {d}(p, m, a)).

3.13. The definition schema of Exercise 1.14 makes sense if we repace the
relation < on ω by any relation <* such that ^ * is a well-ordering of ω. Show
that if ^ * is recursive, then the class of recursive functionals is closed under this
schema.

3.14. Notes. The Normal Forms are due to Kleene [1935/36] and are charac-
teristic of Ordinary Recursion Theory as opposed to recursion relative to a
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functional of type 2 or higher. To appreciate their value, the reader might glance
ahead at the work required to prove Corollary VI.2.11, the analogue of Theorem
3.9 (functional substitution) for functionals partial recursive in a tyρe-2 func-
tional.

4. Semi-Recursive Relations

We noted following 3.7 that the recursive relations might be viewed as the
effectively closed-open relations. In this section we study effectively open
(semi-recursive) and effectively closed (co-semi-recursive) relations.

4.1 Definition. For any R,
(i) R is semi-recursive iff R = DmG for some partial recursive functional G;

an index for G is called a semi-index for R;
(ii) R is co-semi-recursive iff ~R is semi-recursive.

The semi-recursive relations are, of course, a formal counterpart of the
mechanically semi-calculable relations. R is semi-calculable iff there is a finite
program which directs an idealized computer of the sort discussed in the
introduction to this chapter to accept inputs of the form (m, a) and carry out a
computation which terminates iff R(m, a).

4.2 Lemma. Every recursive relation is semi-recursive but there exist semi-
recursive subsets of ω which are not recursive.

Proof. For any recursive R, define F and G by

pγ \ _ ί a n index for λp.O, if m = 0;
[0, otherwise;

G(m,α)-{F(KR(m,α))}(0).

Then F and G are partial recursive and R = DmG.
For the second part we use a diagonal argument. Let g(a) — {a}(a) and

A = Dm g. Clearly g is partial recursive so A is semi-recursive. Suppose, for a
contradiction that A were in fact recursive. Then by Theorem 2.9 the function /
defined by

= ί

1,1,0, otherwise

is recursive. Let b be an index for /. Since {b} is total, b E A and thus
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a contradiction. D

Note the similarity of this proof with that of Theorem 1.11. Essentially the
same argument shows that the set of indices of total functions is not a recursive
set (Exercise 4.23).

We begin now to study the properties of the class of semi-recursive relations.
The first lemma follows directly from the definition.

4.3 Lemma, (i) The class of semi-recursive relations is closed under finite
intersection and bounded universal quantification

(ii) the class of semi-recursive relations and partial recursive functional is
closed under relational composition.

Proof. If R = Dm F and S = Dm G with F and G partial recursive, then R Π S is
the domain of λma. F(m, α) + G(m, a). If

Q(p,m, a)++(Vq <p)S(q,m, a),

define a partial recursive functional H by

H(0,m,α)-0;

H(p + 1, m, a) == H(p, m, a) + G(p, m, a).

Then Q = Dm H and thus is semi-recursive.
For (ii), if S = Dm I and

R(m, a)+* S(Go(m, α ) , . . . , Gk.-i(m, α), α),

then R is the domain of the partial recursive functional FCmp(l, G). D

Note, however, that the recursive relations and partial recursive functional
are not closed under relational composition (Exercise 4.26).

The remainder of the theory of semi-recursive relations depends on the
normal forms of §3. First, it is an immediate consequence of Theorem 3.9 that
the class of semi-recursive relations and recursive functionals is closed under
relational substitution.

4.4 Selection Theorem. There exists a partial recursive functional Sel such that
for all a, m, and α,

(i) 3p.{α}(p,m,α) j iff Sel(α,<m>,(α» | , and
(ii) if 3p.{a}(p,m, a) I, then {α}(Sel(α,(m),(α)),m, α) | .
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Proof. With T as in Theorem 3.1 we take

Sel(α, <m>, <α» - (least q. T(α, ((q)(h m), (q)u <α»)0. D

4.5 Corollary. For any semi-recursive relation R, there exists a partial recursive
functional SelR such that for all m and α,

3p. R(p, m, α?)<-»R(SelR(m, α), m, α)<->SelR(m, a) j .

Protf/. If α is any semi-index for R, take

SelR(m, a) - Sel(α, <m), <α».

SelR is partial recursive by Theorem 3.9 and clearly has the required
property. D

By analogy with the notation "least" we shall sometimes write
Selp.R(p,m, α) for SelR(m, a).

4.6 Corollary. The class of semi-recursive relations of a given rank is closed
under finite union.

Proof. Suppose R = Dm{α} and S = Dm{ft} are semi-recursive. Let F be the
recursive function defined by

F(p)= ("> i f P=^
KP) \b, if p>0.

Set

H(p,m,α)«{F(p)}(m,α).

Then ( R U S ) ( m , α ) o 3 p . H ( p , m , α ) | so that R U S = Dm(SelDmH) and is thus
semi-recursive. D

4.7 Definition ((unbounded) number quantification). If R is any relation of rank
(k + 1, O'then 3°R and V°R are the relations P and Q of rank (fc, /) such that

and

Q(m, α)<-»Vp. R(p, m, a).
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4.8 Corollary. The class of semi-recursive relations is closed under existential

number quantification (3°), hence also under bounded existential quantification

Proof. Immediate from Corollary 4.5. D

It follows, of course, that the co-semi-recursive relations are closed under V°

and V<. The semi-recursive relations are not, however, closed under V° (Exercise

4.24).

To extend definition by cases to semi-recursive relations we must modify the

definition (cf. Exercise 4.28). We say that F is defined by positive cases from

Go,.. ., G k-i and Ro,..., R* -i if all are of rank (fc, /), for any (m, a) E k / ω there

is at most one i <k' such that Ri(m, α) , and

Go(m, α), if R0(m, a);

F(m, a) — i
G f c - ^ α ) , if Rk '-,(m,α);

. undefined, otherwise.

4.9 Theorem. The class of partial recursive functionals and semi-recursive rela-

tions is closed under definition by positive cases.

Proof. Let / and g be recursive functions defined by

/ \ ί a n i
g ( ί ) = lo,

a semi-index for R, , if i < k';
O, otherwise;

index for G,, if i<k'\
otherwise.

Then if

H(/, m,α)-{/(/)} (m,α),

it is easy to check that the desired F is given by

F(m, a)^{g (SelDm H(m, a))} (m, a). D

4.10 Corollary. A relation is recursive iff it is both semi-recursive and co-semi-

recursive.

Proof If R is recursive so is ~R and thus R is both semi-recursive and

co-semi-recursive by Lemma 4.2. Conversely, if both R and ~R are semi-

recursive, then
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, if R(m,

is a definition by positive semi-recursive cases and thus KR is recursive. D

4.11 Corollary. For any partial functional F, F is partial recursive iff its graph
GrF is semi-recursive, and F is recursive iff F is total and GrF is recursive.

Proof. If F is partial recursive, then since = is recursive and

GrF(n, m, α)<-» F(m, a) = n,

GrF is semi-recursive by 4.3(ii). For the converse we have

F(m, a) =* SelGr(F)(m, a).

The second part follows from the observation that if F is total, F(m, α ) ^ n iff
( 3 n V n ) F ( m , α ) - n ' . •

To this point we have used the normal forms only to prove the Selection
Theorem. Now we use them to obtain some new characterizations of the class of
semi-recursive relations.

4.12 Theorem. For any relation R, the following are equivalent:
(i) R is semi-recursive',

(ii) for some {primitive) recursive relation S, R(m, α)<-*3p S(p,m, a);
(iii) for some (primitive) recursive relation S,

R(m, α)<-»3pS(m, άo(p),..., άι-ι(p)) (only when />0).

Proof. Suppose R is semi-recursive, say with semi-index a. Then

R(m, α)<-»3n.{α}(m, α ) - n < ^ 3 w T(α,(m), u,(a))

<-> 3 u T(a, (m), M, (ά o (κ),. . ., ά,_i(w)»

by Theorems 3.1 and 3.5. Hence (ii) and (iii) follow if we set

S(p, m, a)*+ T(α, <m>, p, (a))

and

5(m, so,..., 5,-1) ̂  T(a, <m), lg(s0), <^o,.. •, 5,_i».
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On the other hand, if (ii) holds (in either form) then R is the domain of the
function λmα.leastp.S(p, m, a) and is thus semi-recursive. The implication
(iii)-»(i) is similar. D

Of course, combinations of forms (ii) and (iii) are possible. For example,
every semi-recursive R may also be expressed in the form

R(m, a)+* 3p S(άo(p), m, άx{p), α 2 , . . . , e*/-,).

4.13 Definition (function quantification). For any relation R of rank (fc, / + 1),
3*R and V*R are the relations P and Q of rank (k, /) such that

P(m,α)~3βR(m,α,j3),

and

4.14 Theorem. The class of semi-recursive relations is closed under existential
function quantification (3 1 ) .

Proof Suppose R is semi-recursive. Then by 4.12 there exists a recursive S such
that R(m, α, β)*+3p.S(β(p),m, a). Then

30 R(m, α, β)**3β 3p S(j3(p), m, a)

+*3s S(s,m, a).

Thus 3'R = 3°S and is thus semi-recursive by 4.12. D

4.15. Theorem. For any non-empty set A C ω, the following are equivalent:
(i) A is semi-recursive;

(ii) A = ImF, for some recursive function F ;
(iii) A = Im F, for some recursive functional F;
(iv) A = Im F, for some partial recursive functional F.

Proof Suppose first that A is semi-recursive, so by Theorem 4.12 there exists a

recursive relation 5 such that

n G Λ ^ 3 p . S(p, n).

Then if ή is some fixed element of Λ, A is the image of the recursive function F

defined by
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F(m) = ί ^ 1 ' i f S (( m ) ° ' ( m ) ' ) ;
' 1 ή, otherwise.

The implications (ii)-»(iii)->(iv) are trivial. Suppose A = Im F for a partial
recursive F. Then

n E A <-»3m3α. GrF(n, m, a).

GrF is semi-recursive by Corollary 4.11 and thus so is A by 4.8 and 4.14. D

Because of this theorem, semi-recursive subsets of ω are often called
recursively enumerable.

We conclude this section with a discussion of two notions which originated in
descriptive set theory and have played a significant role in recursion theory as
well.

4.16 Definition. A class X of relations has the reduction property iff for any R
and S belonging to X, there exist R* and S* in X such that:

(i) R*CR and S*CS;
(ii) R* Π S* = 0 ;

(Hi) R*US* = RUS.
The pair (R*,S*) is said to reduce (R,S).

4.17 Theorem. The class of semi-recursive relations has the reduction property.

Proof. Let R and S be any two semi-recursive relations. If R and S are not of the
same rank, then they are disjoint and it suffices to take R* = R and S* = S.
Otherwise by Theorem 4.12 there exist recursive relations P and Q such that
R = 3°P and S = 3°Q. We set

R*(m, α)«* 3p [P(p, m, a) A (V<J < p) - Q(q, m, α)];

S*(m, a)±*3q [Qfa,m, a) A (Vp ^ q)~ P(p,m, a)].

Again by Theorem 4.12, R* and S* are semi-recursive, and it is straightforward
to check that conditions (i}-("0 a r e satisfied. D

4.18 Definition. A class X of relations has the separation property iff for all R
and S belonging to X, if R and S are of the same rank and R Π S = 0, then there
exists a relation P such that both P and ~ P belong to X and R C P C ~S. P is
said to separate R and S.

These two properties are closely related. First we have
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4.19 Lemma. For any class X of relations, if X has the reduction property, then
cX = {~R: REX} has the separation property.

Proof. Suppose X has the reduction property, R and S belong to X and have the
same rank (k, /), and (~R) Π (~S) = 0 . Then R U S = klω. Let (R*, S*) reduce
(R,S). Since also R* U S* = kιω and R* Π S* = 0, R* = ~S* so both S* and
~S* belong to X. Also, ~R C ~R* = S * C S = ~ (~S), so S* separates ~R and
~ S . D

4.20 Definition. A class X of relations is indexable iff there exists a relation
U E X such that for every REX, there exists a number a such that

R(m,α)~U(α,<m),<α».

U is said to be universal for X.

4.21 Lemma. For any indexable class X of relations which is closed under
composition with recursive functionals, if X has the reduction property, then X does
not have the separation property.

Proof. Let U be universal for X and set

R(m)+*U((m)o,(m),( )) and S(m)«U((m),,<ro>,< )).

JR and 5 both belong to X so there exists (R*,S*) which reduces (R, S).
Suppose that X has the separation property and that P separates R* and 5*.
Since both P and ~ P E X , there exist a and b such that

P(m)~U(α,<m>,< » and ~P(m)~U(fc,<m>,< »•

Consider the number m = (b, a). We have

(1)

and

(2)

Suppose that P((b, a)). Since P Π S* = 0 , it follows from (1) that (b,a)E.
S - S*. Then R*((b, a)) so R((b, a)) and hence by (2), ~P((b, a)), a contradic-
tion. A similar argument obtains a contradiction from the hypothesis

». •
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4.22 Corollary, (i) The class of semi-recursive relations has the reduction property
but not the separation property

(ii) the class of co-semi-recursive relations has the separation property but not
the reduction property.

Proof. The class of semi-recursive relations has the universal relation

m),<α»«{fl}(m,α)i. D

Note that in view of Corollary 4.10, the separation property for the class of
(co-) semi-recursive relations asserts separability by a recursive relation. The
second part of 4.22(i) is often referred to as establishing the existence of a pair of
recursively inseparable semi-recursive relations.

4.23-4.34 Exercises

4.23. Show that the set of indices a such that {a} is a total unary function is not
recursive or even semi-recursive.

4.24. Show that the class of semi-recursive relations is not closed under V°.

4.25. Let Seisin, a) — least p. R(p,m, a). Show that for some semi-recursive
relations R, Selp is not partial recursive.

4.26. Show that the class of recursive relations and partial recursive functional
is not closed under relational composition.

4.27. Show that the class of partial recursive functionals is not closed under
functional substitution (cf. Theorem 3.9).

4.28. Show that the class of partial recursive functionals and semi-recursive
relations is not closed under definition by (not necessarily positive) cases.

4.29. Prove or refute the following analogue of Corollary 4.11: for any total
functional F, F is primitive recursive iff GrF is primitive recursive.

4.30. Show that a non-empty subset A of ω is semi-recursive iff A is the image
of a primitive recursive function /. Show that an infinite subset A of ω is
semi-recursive iff A is the image of a one-one recursive function F.

4.31. For any partial function / of rank 1, let Ω[f] be defined as is Ω with the
following additional clause:

if f(p)^n, then «0, k + 1, /,6>,p,m, α, n)G Ω[f].
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We write

{α}(m, aj)=n*+ (a, m, α, n) G Ω[f].

We have thus defined the class of partial recursive functionals with arguments of
type (m, a, /) . Show that for any such partial recursive functional F

(i) there exists an ordinary partial recursive functional G such that

G(e,m, a) - F(m, α , W ) ;

(ii) (First Recursion Theorem) there exists a partial recursive function / such
that for all p, F(p, /) =* f(p) and for any h, if also for all p, F(p, h)— h(p), then

fch.
(in) Formulate and prove a version of (ii) which allows for the presence of

parameters.
Hint. For (i) use an analogue of the Second Normal Form of § 3. For (ii), let

go = 0 and gΓ+i(p) =* F(p, gr). Take /(p) - n +* 3r. gr(p) - n.

4.32. Use the techniques of Exercise 1.2.7 to show that the class of closed subsets
of ωω has the separation property. (Show that for any A and B, if Vn. A(<n>) and
B(<n>) can be separated by a Kalmar set, then also A and B can be separated by a
Kalmar set.)

4.33. Give an alternate proof using the Selection Theorem that the class of
semi-recursive relations has the reduction property.

4.34. A class of relations X is said to have the second separation property iff for
any R,SEX of the same rank, there exist R* and S* such that ~R* and
~S* E X and R ~ S C R* C ~S* C ~ (S ~ R). Show that if cX has the reduction
property, then X has the second separation property.

4.35 Notes. The remarks made in the Notes to the preceding section apply also
to the Selection Theorem and its consequences — all of § VI.3 is devoted to a
technical lemma needed to prove the Selection Theorem for functionals partial
recursive in a type-2 functional (VI.4.1).

Theorem 4.12 does not depend on any of the earlier results of this section and
could be used to give alternate proofs for many of them. For example, if R and R'
are semi-recursive and S and S' are recursive relations such that R = 3°S and
R' = 3°S', then RUR' = 3°(S U S') and is thus also semi-recursive. Similarly, if
R(q,m,a)<r*3p S(p,^,m,α), 3q R(g,m, α)<-»3r S((r)0, (r)i,m, a), so that if R
is semi-recursive, so is 3°R. We have given the proofs as we have in order to
emphasize the parallel with the generalized recursion theories of Chapters VI
and VII where the analogues of 4.2-4.11 hold, but that of 4.12 does not.
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The term "semi-recursive" is relatively new and many authors still use

"recursively enumerable" (r.e.) even for subsets of klω (which are not enumer-

able at all!). The need for separate terms, even for sets of numbers, becomes

especially clear in § VI.1 where the class of "recursively-in-E enumerable" sets

of numbers (images of functions partial recursive in E) is properly included in the

class of sets semi-recursive in E (domains of functions partial recursive in E). To

complete the confusion, at least one author has used "semi-recursive" in a

totally different sense from ours.

5. Relativization

In our description of mechanical calculability, the input to the idealized

computer consisted of an infinite memory device which contained the arguments

and could be connected to the computer. In this section we consider the notion

of calculability which arises from considering a second such memory device with

fixed content permanently connected to the computer. If this device contains the

graphs of a sequence of functions β, then we say that a functional computed by

the machine is calculable in (or relative to) β.

5.1 Definition. For any F, R, and β,

(i) F is partial recursive in β iff there exists a partial recursive G such that

F(m, a) — G(m, α, β ) ; an index for G is also called an index for F from β ;

(ii) F is recursive in β iff F is partial recursive in β and total;

(iii) R is recursive in β iff KR is recursive in β an index for KR from β is also

called an index for R from β

(iv) R is semi-recursive in β iff R is the domain of some functional G partial

recursive in β an index for G from β is also called a semi-index for R from β.

In accord with the conventions of § I.I we also say that F is partial recursive

in (Λo,..., Ar) iff F if partial recursive in (KΛ ( ),..., KAr), F is partial recursive in R

iff F is partial recursive in {(m): K(m)}, etc.

Note that we did not define F to be recursive in β just in case F(m, a) =

G(m, a, β) for some recursive (total) G. This is a more restrictive notion (cf.

Exercises 5.8-9). From (iv) it is clear that R is semi-recursive in β iff

R(m, α)<-»S(m, α, β) for some semi-recursive S, but again it is false that R is

recursive in β iff this equivalence holds for a recursive S.

If we replace "primitive recursive" by "primitive recursive in β " (cf.

Exercise 1.18), "partial recursive" by "partial recursive in β " , etc., the theory of

§§ 1-4 all goes through with essentially the same proofs. We shall refer to these

results as the relativized versions of the various theorems.

5.2 Lemma (Transitivity). If all of' β0,..., βr are recursive (in γ ) , and F is partial

recursive in β, then F is partial recursive (in γ).
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Proof. We prove the version with y. By assumption there exist partial recursive
G,H0, . . . ,H r such that

F(m,tt)-G(m,tt,0), and for all i ^ r, # ( p ) = H,(p, y).

By Theorem 3.9 there exists a partial recursive functional I such that for all y
such that λp. H,(p, y) is total for all i ^ r,

l(m, α, γ ) =- G(m, α, λp. Ho0?, y), . . . , λp. Hr(p, y)).

In particular this is true for the fixed γ under consideration and thus F(m, α ) —

l(m, α, y). Hence F is partial recursive in y. D

It follows that the relation "recursive in" is transitive on members of ωω. For

any α, the degree of a is defined by

dg(α) = {β: a is recursive in β and β is recursive in a}.

The degrees inherit a partial ordering — we say

dg(α)^dg(/3)<-»α is recursive in β\

dg(α)<dg(/3)^dg(α)^dg(j8) and dg(β)^dg(α).

Because of transitivity these notions do not depend on the choice of representa-

tive. This is far from being a linear ordering. Because there are only countably

many partial recursive functionals, {β: β is recursive in a} is always countable.

5.3 Theorem. For any non-recursive α, {β: a is recursive in β} is meager.

Proof. Let a be a fixed non-recursive function, A = {β: a is recursive in β}, and

for each α, Aα = {β: a is recursive in β with index a}. If A is not meager, then for

some a and some p, Aα is dense in [p]. We claim, however, that from this follows

that

α(ra)= n <-»3u 3s [(p C s v 5 Cp)Λ lg(s)= u Λ T(a,{m), u,(s)) Λ ( U ) 0 = n].

This implies, by Corollary 4.11, that a is recursive, contrary to assumption.

Suppose first that a(m)= n. Since Aα is dense in [p] there exists a β E [p]

such that {α}(m,j3)^n. Then 3u [T(a,(m), M,</3(W)))Λ(M)0= n] and clearly

β(u)Cp or pCβ(u), and lg(/3(u))=M.

Conversely suppose there are u and 5 such that ( p C s v s C p ) , lg(s) = w,

(m), M, (5)), and (M)0 = n. Let β be any element of Aα and the smaller of [p]
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and [β(u)] so that s = β(u). Thus Γ(α,<m>, iι,<j3(ιι)» and (u)0= n so
{a}(m, β) — n and hence also a(m)= n. D

5.4 Corollary. For any non-recursive a, there are uncountably many β such that
neither a is recursive in β nor β is recursive in a.

Proof. By 5.3 and the Baire Category Theorem (1.2.2). D

One of the main themes of this book is the notion of complexity for
functionals and relations. The simplest objects beyond the finite that we have
discussed are the primitive recursive ones. Recursive functionals and relations
are more complex in that an additional technique of calculation (the self-
determination principle or unbounded search) is needed to compute them.
Partial recursive functionals and semi-recursive relations are still more complex
in that they are not completely calculable — if (m, α ) E Dm F, that fact will
become known at the conclusion of the computation of F(m, α), but if
(m, a) 0. Dm F, the attempt to compute F(m, a) will go on forever (cf. Lemma
4.2).

The relationship "recursive in" is a measure of relative complexity among
elements of ωω and P(ω). If a is recursive in β, then "given" the graph of β, a is
mechanically calculable. Thus in some sense β is at least as complex as a and
more complex if also β is not recursive in α. According to this measure, the
recursive functions are the simplest ones, since any recursive function is
recursive in every β. Of course, by the preceding corollary, the complexity of two
functions may be incomparable.

For any A and B C ω, if A is recursive and B is semi-recursive but not
recursive, then clearly A is recursive in B but B is not recursive in A. Thus in
this sense also semi-recursive sets are more complex than recursive sets. It is
natural to ask if all non-recursive semi-recursive sets are equally complex. This is
answered by:

Friedberg-Mucnik Theorem. There exist semi-recursive sets A and B such
that neither A is recursive in B nor B is recursive in A. This result belongs to
the theory of degrees, which will be treated in a separate volume in this series
Lerman [198?], and we shall not give the proof.

We mentioned in the Introduction the fact that many of the ideas of
hierarchy theory arose independently in Descriptive Set Theory and Recursion
Theory, and that the fruitful methods of investigation in the two fields are very
similar. The following theorem, which characterizes the topology of klω in
recursion-theoretic terms, is the basis for this similarity.

5.5 Theorem. For any F and R,

(i) F is partial continuous iff F is partial recursive in some β

(ii) R is open iff R is semi-recursive in some β\
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(iii) R is closed iff R co-semi-recursive in some β\

(iv) R is closed-open iff R is recursive in some β.

Proof. Clauses (ii)-(iv) are immediate from (i). The implication (<—) of (i) is the
relativized version of Corollary 3.7. Suppose that F is partial continuous; for
simplicity take F to be of rank (1,1). Define β by

rtίVm n\ϊ - ί" + 1 ' i f F(m^a)^n f o r a 1 1 « Ξ [ p ] ;
pm,p» - | 0 > i f t h e r e i s n o s u c h „

The continuity of F implies that for all m and α,

F(m,α)| +*3k.β((m,ά(k)))>0.

Hence

F(m, a) - β((m, a (least k. β«m, α(/e)» > 0))) - 1

and is thus partial recursive in β. D

The relationship "recursive in" is by no means the only one which compares
the complexity of two objects. The next chapter will provide many examples, but
one is appropriate here. A relation R is called (many-one) reducible to a set A
(R<A) iff for some recursive functional F,

R(m, α)<^F(m, α)GΛ.

From the composability of partial recursive functionals it follows that if R is
many-one reducible to Λ, then R is recursive in A and if A is (semi-) recursive,
so is R (cf. Exercise 5.13).

Among the sets semi-recursive in a given set A there is one which under
comparison by many-one reducibility is most complex:

5.6 Definition. For any A C ω, the (ordinary) jump of A is the set

Clearly Λo J is semi-recursive in A but not recursive in A — in fact,

5.7 Theorem. For any A C ω, any fc, and any R C kω,

R is semi-recursive in A <-» R < Λo j.
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Proof. Suppose that R is semi-recursive in A with semi-index a from A. Then

Ώ ( \ I \( Λ\ \ 4-* I m\ f1 A o J

and thus R < A o j. On the other hand, A o J is semi-recursive in A by its

definition and hence so is any R many-one reducible to it. D

The jump may also be applied to functions:

I, otherwise;

and βoj(p) = 0 if p is not of the form (α, m). Corresponding to Theorem 5.7 we

have only the implication:

R is semi-recursive in β—># is recursive in βoJ.

In each of these results the restriction to relations on numbers is a necessary

one. Consider the relation (set) R = { α : 3 m . α ( m ) = 0}. R is easily seen to be

semi-recursive (and hence open) but not closed. Then by Theorem 5.5, R is not

recursive in any β.

This restriction is closely related to the fact that we have defined here only

the notion "F is partial recursive in β" rather than the more general "F is partial

recursive in I". This latter notion is the subject of Chapter VI, and we shall have

there a version of Theorem 5.7 for arbitrary relations (VI.1.11).

5.8-5.14 Exercises

5.8. A is called truth-table reducible to B iff there exist recursive F and D such

that

m G A <H>KB(F(m))ED.

Show that A is truth-table reducible to B iff there exists a (total) recursive

functional G such that KΛ(m) = G(m, Kβ). (Suppose such a G exists and R is a

recursive relation such that

If α* ranges over ω 2, we have

Vm Vα * 3p 3qR(ά*(p), m, q).

Apply the result of Exercise 1.2.6.)
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5.9. Show that there exist A and B such that A is recursive in B but A is not
truth-table reducible to B. (Let

a G A <r*{a}{a) is defined,

choose by Exercise 4.30 a one-one recursive function / which enumerates A and
set

n G B « ( 3 p > n ) . / ( p ) < / ( n ) .

Show first that ~£? is infinite and

if n<£B and f(n)>a, then α G Λ o ( 3 p < n ) [ α = F ( / ? ) ] ,

and conclude that Λ is recursive in B. Suppose that A were truth-table reducible
to B, say F and D are recursive and

Let G be a recursive function such that

{G(m)}(α) is defined iff <KB(0),..., KB(m - l),0,... ,0>£ D,

where the sequence on the right has length F(α). Show that for every m, there is
an n£B such that m ^ n < F(G(m)) and conclude that A is recursive, a
contradiction.)

5.10. Show that
(i) the class of open relations has the reduction property but not the separation
property;
(ii) the class of closed relations has the separation property but not the reduction
property (cf. Corollary 4.22 and Exercise 4.32).

5.11. Parallel to Definition 4.20, call a class X of relations pαrαmetrizαble iff
there exists a relation U G X such that for every R G X, there exists a function β
such that

R(m,α)«U«m),<α),j8).

U is said to be universal for X. Show that the class of open relations is
parametrizable.

5.12. Prove that the class of partial continuous functionals is the smallest class of
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partial functionals which includes ωω and the class of primitive recursive
functionals and is closed under expansion, functional composition, and un-
bounded search.

5.13. Show that if R is reducible to A, then R is recursive in A and if A is (semi-)
recursive, then also R is (semi-) recursive. Give an example of R recursive in A
but not reducible to A.

5.14. Show that there exists a primitive recursive function / such that if A is
recursive in B with index α, then Aoj is recursive in Boj with index f{a).

5.15 Notes. The theory of degrees is one of the most developed areas of
recursion theory. Shoenfield [1971a] is an excellent introduction. Many-one
reducibility and other related notions are discussed in detail in Rogers [1967,
Chapters 6-10].

Historically, the notion of relative recursiveness for functions on numbers
preceded and led to the notion of recursive functional (see the first few pages of
Kleene [1955b]). In our framework this would go as follows. First we would
define for a fixed β a set Ω[β] of sequences of the form (α, m, n). The definition
would be exactly like Definition 2.1 except that a and the parameter / would be
omitted and the clause introducing the initial functionals ApM would be
replaced by one introducing β as an initial function:

«0,k,3,i>,m,j8(ml))eΛ[j8].

We would write {α}β(m) — n iff (α, m, n) E Ω[β] and say F is partial recursive in
β iff F = {a}β for some a E ω. Next we would extend this in the obvious way to
Ω[β], etc. and finally define F to be a partial recursive functional iff for some α,
F(m, β) — {a}β(m). Of course, in hindsight, this is a trivial variant, but it was not
always so obvious.




