Appendix A
Coding into Structures and Theories

Several of our applications of local degree theory have relied on our ability to code
certain information into structures and theories. Thus we needed to associate a
lattice with each degree, and we accomplish this by fixing a set of a given degree and
coding it into a lattice in such a way that the set can be recovered recursively from
any presentation of the lattice. Also, one of the methods which we use to prove
undecidability results is to code one theory T, into another theory T,. We
accomplish this by describing a recursive translation which takes any sentence 6, of
the language for T, into a sentence 6, in the language for 7; so that
0p€ Ty <0, € T;. The undecidability of T'; will then imply the undecidability of T},.
The major theories in which we have an interest are the theories of true first and
second order arithmetic, the theory of (distributive) lattices, and the theory of
graphs.

1. Degrees of Presentations of Lattices

Let ¥ =<L, <, v, Ay beacountable lattice. A presentation of & is an isomorphic
copy 2 = {P, <p, vp, Apy of ¥ such that P is a recursive set. The degree of 2 is
then the join of the degrees of <p, vp and Ap.

We wish to prove a result used in Chap. VIIL.2 which assigns a lattice %, to each
degree a. Thus given a e D, we choose a set 4 of degree a and code 4 into a lattice .%,.
We show that %, has a presentation of degree a, and that 4 can be recovered
recursively from any presentation of .%,.

1.1 Theorem. For any degree a, there is a countable lattice & = (L, <, v, A) such
that:

(1) <L, <) has a presentation of degree a.

(ii) Any presentation of (L, <) has degree > a.

Proof. For each ne N, let %, be the lattice of Fig. 1.1. Thus %, is the lattice with
2n + 9 elements, its universe is L, = {d", ¢", ¢}, ¢}, a},...,al, ,, by, ..., b}, ,} which
is ordered by specifying that exactly the following relations hold:
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We assume that for all m, ne N, if m # n then L, NL, = 0. Given a set 4 of
degree a, let ¥, = (L4, <, v, Ay be the lattice which satisfies the following
conditions, where d¢ U{L;: ie N}:

(6) L,={d}oU{L;,: ne A}UU{L,,,,: n¢ A}.
@) Vne N(%,, is a segment of ¥, <>ne A).
®) Vrne N(&5,+1 1s a segment of £, <>n¢ A).

) Vm,neN (if %, and ¥, are segments of ¥, and m <n, then
VxeL,VyeL,(x <y)).

(10)  VxeL,(x < d).

It is easily checked that properties (6)-(10) can be used to obtain a presentation
of (L4, <) which has degree < a. (In fact, we can obtain a presentation of £,
which has degree < a, although this fact is not needed.) Furthermore, it is easily
checked that a subposet of (L, <) is isomorphic to {(L,,, <) if and only if ne 4,
and a subposet of (L, <) is isomorphic to {L,,+1, <) if and only if n¢ A. (ii)
follows easily from this fact. [

1.2 Remarks. Theorem 1.1 is due to Richter [1979]. Epstein [1979] presents a
different proof using distributive lattices.
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2. Interpreting Theories within Other Theories

In this section, we present recursive translations which enable us to interpret one
theory within another, and so to transfer undecidability results from one theory to
another. We will be interested in undecidability results for fragments of theories on
which we place restrictions on the number of alternations of quantifier. Thus our
translation will have to be very delicate, designed to keep the number of
alternations of quantifier and the number of occurrences of negation to a minimum.

2.1 Definition. Let ¢ be a formula of a language .. We assume that ¢ is in prenex
normal form, so ¢ = Vx; - - - 3x,(R(xy,..., X V1,---,¥x) Where R is quantifier
free. The formula o is said to be positive if all logical connectives in R are either v or
& (no negations can appear). ¢ is said to be negative if its negation, "o, is logically
equivalent to a positive formula.

We begin by considering an arbitrary finitely axiomatizable theory T, in a
language %, consisting of m relation symbols R,,..., R,. We indicate how to
interpret this theory within the theory T}, in the language %, of a single binary
relation symbol R. (We assume that we are working in the pure predicate calculus
with relation symbols for equality and the negation of equality.) Let
X =<X,Ry,...,R,) be an %, -structure. We build an % -structure 4 = {B, R)
and an effective translation of %, into .%, such that for any sentence ¢ of .%,,, the
translation takes ¢ into ¢, and 4 = 0 < % = o,.

We define the binary relation R below pictorially, letting R(x, y) hold exactly
when an arrow goes from x to y. X = {x;: 1 <i < n}. If R; is an n-ary relation and
Z E Ri(xy,...,x,), then we draw the following picture:
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Fig. 2.1

The original structure is now interpreted within this new structure with universe
expanded from X to include the u, and y? introduced, all of which are distinct. The
i+ 1cycle {u,,...,u;,} tells us that we are coding the relation R;. The number of
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elements y7 between u; (the only element from which more than one arrow
emanates) and x, tells us the place of x, in the relation R;. And the elements from
which no arrows emanate code the domain X.

We now describe a uniform effective translation of .%,, into .%, which takes the
sentence 0 to the sentence 6,. We define the universe of interpretation, B*, as the set
of elements from which no arrows emanate. Thus

€)) x € B* < VYy(1xRy).

We obtain 6, from 6 by restricting all quantifiers to B* and replacing Ri(x;, ..., X,)
with the formula

(2 Juy, ..oy 3Y) 33 Iy, 3)’:(( /\ R(uj,ujﬂ))&

j=1
R(um,ul)&(/\R(ul,y;))&---&( A R(yf“,y§)>&~-&
j=1 j=k<n

(A ror9))

Since T is finitely axiomatizable, there is a single sentence ¢ of %, which is the
conjunction of all the axioms for T,,. Under the above translation, ¢ is carried to a
sentence o*. Let IB be the class of all %,-structures satisfying ¢*. Then for all
sentences 0 of %,

3) 0eTy<=VZ (If Z is an Fy-structure and & | o then & = 0)
<>VABeB(ABE 0,)<c" - 0,eT,.

For later applications, we need an alternate definition of B*. The faithfulness of
the definition depends on whether T, has the following property.

2.2 Definition. T, is accessible if given that for each j < m, R; is an n;-ary relation
then:

) Vj < m(n; < ny,).

(if) For all models .# of T, with universe M and all ye M there are
Pis-esVun—1 €M such that R, (y1,...,Vn,—1,1)-

If T, is accessible, then we note that

(4) xeB*Hazls'--’Zm+nm+2<< /\ Zi?ézj>&x=zm+nm+2

LjSm+tn,+2
m+nm,+1
&< /\ R(z;, zi+ 1)>>

i#j
i=1

We note that both B* and R; have positive 3; definitions if 7, is accessible.
Furthermore, in this case, we modify our translation to use (4) instead of (1) to
define B*, and we replace ¢* with the conjunction of ¢* with the sentence which
asserts that the right-hand side of (1) is equivalent to the right-hand side of (4).
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We summarize the facts which we will need about the translation in the
following remark.

2.3 Remark. Assume that T, is accessible. Then there is a translation of %, into %,
which satisfies (3) and which has the property that every model of T, corresponds to
a model of T, in which the interpretation of the universe of the model of T, and of
all atomic relations on that model are given by positive 3; formulas. A translation
having this last property is called positive 3.

The next step will be to translate T into the theory of graphs. We accomplish
this by translating T}, into the theory of graphs. We will need the following property
of iterated translations.

2.4 Proposition. Let Ty, T,, and T3 be theories, and suppose that there is a positive 3,
translation of & (the underlying language for T;) into &, . , fori = 1,2. Then thereisa
positive 3, translation of ¥ into ¥s.

Proof. Write down the obvious definitions for the interpretations of the universe
and atomic relations of a model of T';. The result follows from the positivity of the
translation. [

The next step will be the interpretation of the theory of a single binary relation
within the theory of graphs.

2.5 Definition. A graph is a structure o/ = (A4, S ) where S is a symmetric irreflexive
binary relation on 4, i.e., S satisfies:

1) (Symmetry) Vx, ye A(xSy — ySx).
(i1) (Irreflexivity) Vx e A(T1xSx).

Let # = (B, R) be a structure in which R is a binary relation on the universe B.
We will define a graph o = {4, S)> on which we will be able to interpret 4. S is

defined pictorially in Fig. 2.2. In that figure, x and y are elements of BN 4 and the
remaining elements mentioned are in 4 — B.

tl tz t3 t4

Fig. 2.2

S(x, y) holds exactly when a line segment connects x and y. The original structure is
now interpreted within this new structure with universe expanded to include the
additional elements mentioned in the copies of Fig. 2.2. A copy of Fig. 2.2 will be
placed in S exactly when & = R(x, y). The letters u, v, w and ¢; are different for each
copy of Fig. 2.2 inserted to define S. ¢,, 1,, t5 and ¢, are tags which are distinguished
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by the fact that they are connected to exactly one element. The elements of B are
exactly those connected to two tags. And R(x, y) holdsin (B, R) if and only if there
are elements u, v, w connecting x to y as in Fig. 2.2.

We now describe a uniform effective translation of %, into %, which takes the
sentence 6 to the sentence 0*. We define the universe of interpretation, A*, as those
elements connected to two tags;

(%) XeA* <=3y, t(t # L, & S(x, 1) & S(x, ;) & VY(S(y, 1) &
Sy, t2) > y = x)).

We obtain 6* from 6 by restricting all quantifiers to 4* and replacing R(x, y) with
the formula

(6) Ju, v, w(S(x, u) & S(x, v) & S(u, V) & S, W) & SW, ) &u #v&
u#w&uv#w).

Since T, is finitely axiomatizable, there is a single sentence ¢ of %, which is the
conjunction of all the axioms for T,. By (3), 0e Ty <6" — 0,€ T, where ¢* and 0,
were previously described. Let 1 = ¢+, and let ©* be the conjunction of t* with the
sentence which asserts that S is a graph. Let B be the class of all .%,-structures
satisfying 6 * and let A be the class of all graphs satisfying t *. Then for all sentences
0 of %,

) 0eT, <ot —0,eT,=VBeB(BE 0,) <
Vel eA(d | 0F) <>t > 0F e T,

where T is the theory of graphs.

For later applications we will need an 3, definition of 4*. Note that in the graph
described in Fig. 2.2, the elements of 4* are those which are connected to at least
three distinct elements. Hence in this model,

8) xeA* <3t ,ty,2(t; # 1, &t £z &1, # z& S(x, 1) & S(x, t;) & S(x, 2)).

We note that both 4* and R have positive 3; definitions for these models.
Furthermore, if we modify our translation to use (8) instead of (5) to define 4*, and
we replace t* with the conjunction of t* with the sentence which asserts that the
right-hand side of (5) is equivalent to the right-hand side of (8), then our translation
is positive 3;.

We summarize the facts which we will need about the translation in the
following remark, noting that Proposition 2.4 is being applied.

2.6 Remark. Assume that T, is accessible. Then there is a positive 3; translation of
%, into %, which satisfies (7).

We now show how to pass from the theory of graphs to the theory T, of
distributive lattices with least and greatest elements. The language %, used for these
lattices has symbols < for the ordering, v and A for the join and meet respectively,
and 0 and 1 for the least and greatest elements, respectively.
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Let o/ = {(A4,S) be a graph. We will define a distributive lattice ¥ =
(C, <, v, A,0,1> on which we will be able to interpret .«/. The elements of 4 will
be interpreted as the atoms of ¥, i.e., those elements x which are immediate
successors of 0 (see Fig. 2.3). We will place a new join irreducible element z directly
above x v y(see Fig. 2.3) exactly when 7 |= S(x, y). (An element is join irreducible if
it cannot be expressed as the join of two smaller elements.) € will be the distributive
lattice generated by these atoms and join irreducible elements, together with a new
greatest element.

Fig. 2.3

We now describe a uniform effective translation of %, into ¥, which takes the
sentence 6 to the sentence 6,. We describe the universe of interpretation, C*, as the
set of atoms of %;

©) xeC*ex#0&Vy(y <x—>y=xory=0).

We obtain 6, from 0 by restricting all quantifiers to C* and replacing S(x, y) with
the formula

(10) Je(czxvy&e#Fxvy&Vdd<c—od=cord<xvy)).

Since T is finitely axiomatizable, there is a single sentence o of ¥, which is the
conjunction of all the axioms for T. By (7), 0 To<t* — 0} € T where ™ and 0}
were previously described. Let £ = t+ and let ¢ be the conjunction of &, with the
sentence which asserts that & is a distributive lattice with least and greatest
elements. Let A be the class of all graphs satisfying t* and let € be the class of all
lattices satisfying ¢*. Then for all sentences 0 of %,

(11) 0eTo=1" > 0feTo VA e A(A | 0F) <
VE€eC(CE (05)a) <=L — (0F)ae Ty

We now note that v, A, 0 and | are definable in .%, by V, formulas over any
lattice. Hence the right-hand sides of (9) and (10) can be expressed as 3, formulas of
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%,. We thus summarize the facts which we will need about the translation in the
following remark, noting that its truth follows from Remark 2.6.

2.7 Remark. Assume that T, is accessible. Then there is a translation of %, into %,
which satisfies (11) and which has the property that every model of T, corresponds
to a model of T, in which the interpretations of the universe of the model of T, and
of all atomic relations on that model are given by 3, formulas.

The preceding results will be used in the next section to relate the theory of
second order arithmetic to the theory of distributive lattices with least and greatest
elements. Similar methods are used to prove the result of Chap. VII that V3 N Th(2)
is undecidable. We begin by translating the theory of graphs into the theory of
lattices.

Let o = (4,S) be a graph. In order to avoid special cases, we assume that
|A| = 3. We build a lattice ¥ = (C, <) (viewed as a poset) and an effective
translation of .%, into %, such that for any sentence 6 of %, the translation takes 0
into 0% and @ | 0 =% = 07.

We define the relation < pictorially by means of the two figures below, letting
x < y hold exactly when a sequence of arrows goes from x to y. Let 4 = {a;} be the
universe of .«/. Then the configuration in Fig. 2.4 is inserted into the lattice if
& k= S(a;, a;), and the configuration of Fig. 2.5 is inserted into the lattice otherwise.

1

a;v a; av a;

Fig. 2.4 Fig. 2.5

The original structure can now be interpreted within this new structure, with
universe expanded from 4 to include 0, 1, @; v aj, ¢ and d. Furthermore, different
elements are used to represent ¢ and d for different choices of the pair {a;, ;). Since
|A| = 3, we can pick out the elements of 4 as those atoms of C which lie below more
than one join # 1. Thus if C* is the set of interpretations of elements of 4, then

(12) xeC*«3z2,y0, 1z < x&x < yo & x < y; &yo|y1).

We now describe a uniform effective translation of %, into %,. 6% is obtained
from 0 by restricting all quantifiers of # to C* and replacing all positive occurrences
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of S(x, y) with a formula asserting that Fig. 2.5 does not lie in & for this choice of x
and y, i.e.,
(13)  x#y&Vyo,y1,¥2,73,¥4(yo < x&yo <y1&yo <y &yo <y&
Yo <y3&yo <ys& x|y &x|y, &x|y; &x|y&x <y;&x <y, &
Yily2&yi 1y &y <y3 &y <pa&yz[y&y: <y3&y: <ya&
Y <y3&y <ys&ys <ya)

and replacing all negative occurrences of S(x, y) with a formula asserting that Fig.
2.4 lies in % for this choice of x and y, i.e.,

(14) 0, Y1, Y2, V3, Va(Yo < X&yo < y1 &yo <y &yo < y2& yo <ys &
Yo <pa&x|y1&x|y&x|p&x <y;&x <y, &y; <y, &
Vily&yi <y3&y1 <ya&y|y:&y <y;&y <ys&y, <y:;: &
V2 < Ya&ys < ya).
We note that this translation takes 3, sentences to 3, sentences. In order to

evaluate this translation, we wish to restrict the class of posets considered. We let IP
be the class of all posets satisfying the following conditions:

(15) The poset axioms.
(16) Every chain has length < 5.
a7n There is a unique minimal element 0 and a unique maximal element 1.

(18) Vx(xe C* — x has exactly one predecessor & any chain of elements > x
has at most two elements).

(19) Vx,p(xeC*&yeC*&x#y->Az(x <z&y <z&z < 1)).

(20) If z has exactly one successor, then the initial segment determined by z is
isomorphic to either Fig. 2.4 or Fig. 2.5 with 1 deleted, with certain
elements specified to be in C* as stipulated by the definition of those
figures.

Note that the conjunction of (15)-(20) can be expressed as a single sentence f of
%,. We note that we can use (17) to write (16) as an V, sentence, so that  can be
expressed as an V, sentence. Furthermore, all posets satisfying 8 arise from some
graph. Hence

Q1)  OeTooVA AL = 0)=VPeP(Pl %)=t —07.

Strongly undecidable sets of sentences play a role in the statement and proof of
the undecidability of V; N Th(2).

2.8 Definition. Let I/ be the set of all logically valid sentences. A set X of sentences is
strongly undecidable if there is no recursive set R such that VNX < R< 2.
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2.9 Theorem. The set of all 3, sentences of £, which are true in all finite lattices is
strongly undecidable.

Proof. We note that by Ershov and Taitslin [ 1963], the set of all 3, sentences of %,
which are true in all finite graphs is strongly undecidable. Since all posets which
satisfy f are lattices, and our interpretation passes from finite graphs to finite
lattices, it suffices to show that Z* = { — ¢*: ¢ is an 3, sentence of %, and f — ¢*
is true in all finite posets} is strongly undecidable. We assume that this is not the
case, and obtain a contradiction.

Let R be a recursive set of sentences of %, and suppose that VN X* < R < X*.
Let S = {o: p - 0¥ e R}. Then S is recursive. Let X be the set of 3, sentences of %,
which are true in all finite graphs. Let 6 € VN X be given. Then for all finite graphs
A, oA = o. By (21), p— c* e V. Since B — ¢* € 2*, we conclude that § »c* e R
and so that o€ S. Now assume that 6€S. Then f > 6 e R< Z*andso f > o7 is
true in all finite posets. By the correspondence between graphs and lattices, ¢ must
be true in all finite graphs, so e 2. Hence VN2 = S < 2, yielding the desired
contradiction. [

2.10 Remarks. Remarks 2.3, 2.6 and 2.7 can be found in Nerode and Shore [1979],
but the results are due to Rabin and Scott. Theorem 2.9 is due to Schmerl.

3. Second Order Arithmetic

The preliminary steps for coding second order arithmetic into the degrees are
described in this section. We make use of some results from the previous section.

We will need to work with a finitely axiomatizable theory of arithmetic, so the
theory we work with will be very weak. Since we will eventually be able to talk about
the theory of a standard model of arithmetic, however, we will eventually be able to
work with true arithmetic.

3.1 Definition. The language .%, is the language of the pure predicate calculus
together with a binary relation symbol <, and ternary relation symbols + and x.
By the theory of arithmetic we mean the deductive closure in the language %, of the
axioms which assert that we have a discretely ordered commutative semiring with
unity. (We note that this theory is finitely axiomatizable.) A model of arithmetic is a
structure #/ = (M, <, +, x) where +, x,and < have the obvious interpretation
such that ./ satisfies all the sentences of the theory of arithmetic. A standard model
of arithmetic is one in which the posets (M, <) and {N, <) are isomorphic. We
define second order arithmetic to be Th({(N, 2", <, +, x,€)) where quantifiers are
introduced to range over 2%, the set of subsets of N,ande = N x 2V isinterpreted as
the binary relation is an element of.

3.2 Remark. It follows from Definition 2.1 that .# is a model of arithmetic if and
only if ./ satisfies a first order sentence o, in the language .%,. Also, since 1 x y =y
for any y in the universe of any model of arithmetic, we note that the theory of
arithmetic is accessible. Hence Remark 2.7 applies to this theory.
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By Remark 2.7, there is a sentence o, of %, such that for all sentences 6 of .%,, 0
holds in all models of arithmetic if and only if the translation of 6 into .%;, holds in all
distributive lattices which satisfy o,.

3.3 Definition. Let ¥ = (L, <) be a poset which is order isomorphic to a lattice.
We say that ¥ codes a model of arithmetic if ¥ = o,.

We now turn to second order arithmetic. Let .#; be the language .%, augmented
with a binary relation symbol € to be interpreted as a subset of L x .4 (L is the
universe of a lattice & and .#; is a set of countable ideals of .#) by is an element of,
with second order quantifiers V/ and 37 which range over .#;. (We show in Chap.
VIII.3 how to translate a sentence of %} interpreted on distributive lattices into an
equivalent first order sentence about 9.) We will be able to define ¥ codes a
standard model of arithmetic in %;. We wish to interpret the quantifiers V4 = N and
34 = N of second order arithmetic by VI and 37 respectively, and for 4 = N, the
formula x € 4 in the language of second order arithmetic by xe L* N I, where Iis a
countable ideal of ¥ and L* is the universe of interpretation of the model of
arithmetic given by the translation of Remark 2.7. Thus we need a one-one
correspondence between subsets of N and countable ideals of ¥ containing those
elements of L* corresponding to elements of 4, and no other elements of L*. Since
% will be a distributive lattice and L* will consist of atoms of %, this
correspondence must exist.

A sentence of #; which asserts that % codes a standard model of arithmetic, is
obtained as follows. We note that the original model .# of arithmetic is a standard
model exactly when (M, <> and (N, <) are isomorphic. Thus we need to be able
to say that if <, is the interpretation in % of the ordering < in ./, then any subset
of L* which is bounded under <, has a greatest element. The following sentence o*
asserts this fact:

VI(3ze L*Vxe L¥*(xel - x < 2)) > dze L*(zel&
Vxe L*(xel - x <[ 2))).

We now see that if a lattice & satisfies ¢*, then second order arithmetic is reducible
to Th(%) in the language .%;. We thus summarize the results of this section.

3.4 Theorem. There is a sentence o* of ¥; and an effective translation taking any
sentence 0 of second order arithmetic into the sentence 0y of ¥y such that

(N, 2V, <, +, X, eDE 0 VL (L E o* - L E 0).

Under this translation, the integers are interpreted by an 3,-definable subset L* < L
and <[ is interpreted by an 3, formula of &,. Furthermore, there is a recursive £
which satisfies a* for which L* is recursive. (An & which satisfies o* is said to code a
standard model of arithmetic.)

Proof. Since all standard models of arithmetic are isomorphic, they have the same
elementary theory which is complete. The theorem follows from Remark 2.7 and
the fact that the correspondence between models of T, and models of T, given in
Sect. 2 is recursive. Since the standard model of arithmetic is recursive, there must
therefore be a recursive .# which codes a standard model of arithmetic. [

3.5 Remark. The results of this section are due to Nerode and Shore [1979].





