
Chapter XII

Initial Segments of 0[O,0']

Having embedded minimal degrees below 0', it is natural to try the embed other
uppersemilattices as initial segments of ^[0,0']. We prove such embedding
theorems in this chapter. In the first four sections, we present a detailed proof of the
embeddability of an arbitrary finite lattice as an initial segment of ^[0,0'].
Extensions of this result to other usls or to embeddings below degrees other than 0'
are discussed in Sec. 5. These results are applied to prove theorems about Q) and
^[0,0'].

1. Weakly Uniform Trees

Let if be a fixed finite lattice, with elements 0 = w0, uu . . . , un = 1. Fix a weakly
homogeneous sequential table Θ for if as in Appendix B.2. Θ is then the union of
an increasing sequence Θo c ©x ^ of finite sets of n + 1-tuples. Θ gives rise to
a recursive function/defined by f(k) = \Θk\ for all keN, and hence to the set of
strings !fs = {σe5?: \/ieN(σ(i) </(/))}•

It is tempting to try to embed if as an initial segment of ^[0,0'] by combining
the proofs of Theorems VII.4.1 and IX.2.1, and so, to use partial uniform trees to
construct the desired initial segment. There are severe problems, however, in
carrying out such a program. For suppose that an attempt is being made to
construct a uniform (binary) ^-splitting partial subtree of Id2. Let us suppose that
Γ(0), Γ(0) and Γ(l) have been defined. The partial trees of Chap. IX now require

Fig. 1.1
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that an appropriate e-splitting of 71(0), if found, be erected on T, independently o(
what is happening above Γ(l) (see Fig. 1.1). Uniformity, however, ties the branches
above Γ(0) and above Γ(l) together. We cannot wait to place Γ(0) * σ0 and Γ(0) * σι

on T while we search for e-splittings which are compatible both above Γ(0) and
above Γ(l), (i.e^τoandτ! such that <Γ(/)*τ 0, Γ(0*τ1>isane-splittingfor / = 0,1)
since we may never find an e-splitting of Γ(l) on Id2. Yet if we erect Γ(0) * σ0 and
T(G)*σι on T and Γ(l) must later be extended on T (due to a diagonalization
requirement), then Γ( l )*σ 0 and T(l)*σι must be erected on T to preserve the
uniformity of T, even though they may not e-split T(l) and even if there are other
^-splittings of Γ(l) on Id 2.

There are several ways to circumvent this problem. The one which we adopt
here is to use weakly uniform trees in place of uniform trees. Such trees were
discussed in the exercises for Chap. VII, where it was shown that they could be used
to embed finite lattices as initial segments of Q). Weakly uniform trees differ from
uniform trees in that the condition which requires a local isomorphism of
extensions of any two strings of the same length is dropped. This enables us to build
modified ^-splitting trees the definition of ^-splitting trees is also weakened to
require that there be infinitely many levels at which all strings which reach that level
and do not satisfy a certain congruence relationship, form an ^-splitting. (The
previous definition required that all levels have this property.) Weak uniformity
allows for proofs of interpolation lemmas without causing too much damage to the
ability to prove a computation lemma. Total weakly uniform trees are defined
below.

1.1 Definition. For all σ9 τ e &} and all / < n9 define σ = t τ if σ[i\x) = τ[i\x) for all
x < min({lh(σ), lh(τ)}).

1.2 Definition. A weakly uniform f-tree is a function T: ,9/ -• <9} which has the
following properties:

(i) (Well-defined levels): Vσ,τe^(lh(σ) - lh(τ) -• lh(Γ(σ)) = lh(Γ(τ))).
(ii) (Congruence preserving): Vσ, τ e Sfy V/ < n(σ = , τ <-» T(σ) = f T(τ)).

In order to embed initial segments below 0', we will work with partial weakly
uniform/-trees. Such trees are obtained by weakening Definition 1.2 so that Γneed
not be a total function but we must be careful to make the domains of the resulting
trees relatively nice. We will require that the levels of the trees be nicely organized
into plateaus. Levels and plateaus are best defined in terms of interval notation.

1.3 Definition. Let Γbe a partial /-tree satisfying 1.2(i) on its domain. Level i of Γis
the interval IT(ξ),τ(η) where lσx = [lh(σ), lh(τ)) and ξ and η are strings in the domain
of T such that \h(ξ) = i = \\i{η) - \. If Γ(0) Φ 0, then 70 Γ ( 0 ) is level -1
of T.

Certain levels of Tare special in that only one string which is not terminal on T
ends at the top of the level. These levels give rise to the focal lengths of the tree,
which, in turn, determine the plateaus of the tree.

1.4 Definition. Let Γbe a tree and let σ cz Γbe given, σ is ^potentialfocal point of Γif
there is no τ c Γsuch that lh(σ) = lh(τ), τ ψ σ, and τ is not terminal on T. σ is & focal
point of T if σ is a potential focal point of T and σ is not terminal on Γ. r is a focal
length of T if r = lh(σ) for some potential focal point σ of T.
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It follows easily from Definition 1.4 that no two focal points of a tree have the
same length, and that the set of focal points of a tree is linearly ordered by c . Also,
if the tree Γis finite, then all strings on T of greatest length are potential focal points
of Γ, and each has, as its length the greatest focal length of T. A tree with focal
points is pictured below.
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Fig. 1.2

Focal lengths determine plateaus of a tree as follows.

1.5 Definition. Let T be a partial /-tree satisfying 1.2(i) on its domain. Let
0 ^ r 0 < r1 < be the focal lengths of T. Plateau i of Γis the interval [rf, ri+i) (if
ri+ i is defined). If r0 Φ 0 then [0, r0) is plateau — 1 of T. The height of plateau i is
ri+1. The height of T is the height of the last plateau of T if there is such a plateau,
and is undefined otherwise. We write ht(Γ) for the height of T.

The ability to prove interpolation lemmas will come from the fullness of
plateaus in weakly uniform trees.

1.6 Definition. The interval [s, t) is full on Tiΐ there is no terminal σ on T such that
s < lh(σ) < t, but there is a string T C Γ such that lh(τ) ^ t.

Figure 1.2 pictures a tree whose plateaus are full. Figure 1.3 below pictures a tree
in which plateau 0 is not full.
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The partial trees with which we will be working will have only full plateaus.

They are now defined.
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1.7 Definition. A partial /-tree T: &} -> £ff is weakly uniform if it satisfies:

(i) (Well-defined Levels): V<τ, τ e ^ ( Γ ( σ ) | & Γ(τ)| & lh(σ) - lh(τ)

(ii) (Congruence Preserving): Vσ, τ e ̂  V/ ^ «(Γ(σ)i & Γ(τ)| &
σ Ξ . τ ^ T ( σ ) Ξ . Γ ( τ ) ) .

(iii) (Fullness): Every plateau of T is full.

Henceforth, we will use tree to denote a weakly uniform partial /-tree.
The function g such that ^[0, g] ^ if is chosen to lie on infinitely many trees,

each of which forces the satisfaction of a requirement. Two properties which these
trees may possess are now defined. Recall the definition of σ < o from VI.2.10.

1.8 Definition. A tree Γis <e, i,j)-differentiating if there is an x < lh(Γ(0)) such that
Φτ

e

(e)<j\x)l Φ <ί>

1.9 Remark. If T is <e, /^-differentiating and g is an infinite branch of T, then

1.10 Definition. A tree T is <e, k}-divergent for k ^ n, if there is an x e N such that
for all ( j c ί , Φσ

e

<k\x)l

1.11 Remark. If Γis (e, &>-divergent and g is an infinite branch of T, then Φ9

e

<k> is
not total.

The most important trees for the construction of any initial segment of 2 are the
^-splitting trees. These trees are always the most difficult ones to construct. We will,
in fact, weaken the notion of e-splitting tree and use this weaker notion for the
constructions of this chapter. The weaker notion will require that certain levels of
the tree be designated as e-splitting levels. The existence of infinitely many
^-splitting levels will allow us to prove a computation lemma. But we will be able to
extend many strings on T without having to make pairs of extensions form an
e-splitting.

1.12 Definition. Let Γbe a tree and let k ^ n and ee TV be given. Level / of Γis an e-
splitting level of T for k if for all ξ,ηe&f satisfying \h(ξ) = \h(η) = / + 1, T(ξ)[,
Ί\η)l, and ξ φkη, it is the case that (T(ξ), T(η)} e-splits Γ(0).

1.13 Definition. Let k ^ n and e,s*eN be given, and let {Ts: s ^ s*} be a recursive
sequence of weakly uniform finite trees which approximates to the partial recursive
tree T = U{TS: s ^ s*}. Then Γis a weak e-splitting tree for k generated by {Ts:
s ^ 51*} if the following conditions hold:

(i) There are no e-splittings mod k on T.
(ii) The last level of every plateau of each Ts is an e-splitting level of Ts for k.

Whenever we refer to a tree T as a weak e-splitting tree for k, there will be an
implicit underlying approximation {Ts: s ^ s*} to T which generates Γas a weak
e-splitting tree for k. We now prove a computation lemma for trees which are weak
e-splitting for some k ^ n.
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1.14 Computation Lemma. Let k ^ n and eeN be given, and let T be a partial
recursive tree which is weak e-splitting for k. Let g be an infinite branch of T such that
Φ9

e is total. Then Φ9

e =Tg
<k}-

Proof We first show how to compute Φ9

e{x) recursively from #<fc>. Search for σ cz T
such that σ =kg and Φσ

e(x)[. Let τ cz g be given such that τ cz Γand Φτ

e(x)[. Such σ
and τ must exist since Φ9

e is total. Since σ =kτ and there are no ^-splittings mod k on
Γ, Φσ

e(x) = Φτ

e{x) = Φg

e(x)> Since Φσ

e(x) was computed following a procedure which
is uniformly recursive in g<k>, Φ9

e ^Tg
<ky.

We now show how to recover g<k> recursively from Φg

e. The reader may find Fig.
1.4 helpful for following the proof. In that figure, 7^ appears in solid lines, and its
extension to Γis denoted by a dotted line. We proceed by induction onj, finding, at
step y, Gj cz Γsuch that σi = T(ξj), lh(^ ) =j\ and σ } = kg. Wheny = 0, we choose
σ0 = U0).

At stepy + 1, expressing Γas U{ΓS: s ^ s*} as in Definition 1.13, find the least
s ^ s* and the smallest level r of Ts such that:

(1) Level r = [w, v) is an e-splitting level of Ts for k and v > lh(σj).

(2) 3τ

Such r and s can be found because of Definition 1.13(ii). Note that since each Ts is
weakly uniform, each plateau of each Ts is full, so by Definition 1.13(ii), the interval
[lh(σ,), v) is full on Ts. Fix T(η) = p cz τ such that lh(p) = \h(σj). If μ, v cz Γs are
such that p ς= μ, p c v, lh(μ) = lh(v) = υ and μφkv, then by (1), <μ, v> ^-splits on
some x. Hence Φ9

e can be used to eliminate at least one of μ and v as a potential
candidate for a string σ such that lh(σ) = υ and σ =kg. Complete this elimination
process, ending with μ. (If no string remains at the end, choose μ arbitrarily.) Let
μ = Ί\η*δ). Choose σj+1 = T(ξj+ι) such that σj+ί ςz μ and \h(ξj+ι) =j+ 1.
Since σj+ί =kμ, it suffices to show that μ = k g. Fix α, β e <9j such that lh(α) = lh(̂ y),
Ih(j8) = II1O7 * S), and Γ(α) cz 7TQ8) cz g. Let β = α * y. Since [lh(^), ϋ) is full on TS9

Ts(η * y)|. By the choice of s satisfying (1) and (2), T(η * y) cannot be eliminated
during the above process since, by 1.7(ii), η = k σ} and there are no e-splittings mod k
on T, hence on Ts. Thus μ =k T(η * y) =k T(β) =kg. 0

The types of tree mentioned in this section can be used to embed if as an initial
segment of 3) as follows.

T(η*y)

Fig. 1.4
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1.15 Proposition. Let g\ N-> N be given. Assume that:
(i) For all eeN and i,j ^ n such that u x ^ uj9 there is a partial recursive tree T

such that g a T and either T is <e, /, y>-differentiating or <£,/>-divergent.
(ii) For all eeN, there is a partial recursive tree T such that g c T and either T is

(e, ny-divergent or there is a k < n for which T is a weak e-splitting tree for k.
Then i ? ~ ® [ 0 , g ] .

Proof By the properties of tables, if ut ^ u 5 then g<iy ^ τ g<j>. Suppose that u{ ^ Uj.
Then by (i), Remark 1.9 and Remark 1.11, g<iy ^ τ g<j>. Hence the map w, i—• g<iy is a
poset isomorphism. It therefore suffices to show that ί^[0,g] = {g<ι>: i^n}.
Assume that h ^τg. Then there is an eeN such that Φg

e = h. Since Φ9

e is total g
cannot be on an <e, «>-divergent tree. Hence by (ii) and the Computation Lemma,
h =τ9<k> for some k ^ n, so he{g<ι>: ί ^ «}. B

1.16 Remarks. Our first proof embedding if as an initial segment of ^[0,0 '] used
quasi-uniform trees in place of weakly uniform trees. These trees were sparse rather
than full, and really consisted of a pair of trees, a tree Γ* whose range was the
difference of recursively enumerable sets sitting inside a partial recursive tree T. 7*
was uniform, allowing proofs of interpolation lemmas, and T carried just enough
strings to permit the proof of a complicated computation lemma. The situation was
much more complex than with weakly uniform trees.

The proof using weakly uniform trees occurred to us after a discussion with S.
Simpson in which Simpson commented that weakly uniform trees could be used in
place of uniform trees to prove the results of Chap. VI. Proofs in Chap. VI would
then become slightly more complicated, but these trees could be used to construct
minimal degrees which were bi-immune free. It later occurred to us that the use of
weakly uniform trees would simplify the proofs of this chapter.

2. Subtree Constructions

The proof that S£ ^ ^ [ 0 , g] for some g < 0' will make use of a full approximation
construction. All trees used will be constructed simultaneously with g. However, the
construction of the trees can be isolated from the construction of g if the full
approximation construction satisfies certain conditions. The subtrees needed are
constructed in this section under such an assumption.

The construction of subtrees in a full approximation construction is a dynamic
process which we view as follows. Let T = U{ Tt: t ^ s} be given, where {Tt: t ^ s} is
an increasing recursive sequence of finite trees. A subtree Γ* = U{T*: t ^ s*} is
constructed, where s* ^ s and {T*: t ^ s*} is an increasing recursive sequence of
finite trees, and for each t ^ 5*, T* is a subtree of Tt.

At each stage t ^ s*, T*_ 1 will receive a set of strings S* as input. The way in
which T* extends T*_γ depends on information conveyed by Sf. T* may be
prevented from extending T*_ x because an appropriate string cannot be found on
Tt. This information is conveyed to Γby having Γ* transmit a string αf which will be
received by Γand used to define Tt+1. Γmay also receive strings from trees other



2. Subtree Constructions 227

than Γ*. However, if Γ* controls Γ, then Γand Γ* will be related in a way which will
guarantee the success of the construction.

Strings received by trees will carry instructions with them. The information
received by a tree will be coded as a set of ordered pairs of the form <α, />, with α e <9y
and / ̂  3. If <α, /> is received by the tree Ts at stage s + 1, then <α, /> will instruct
Ts+! to extend Γs in a specified way. The following are the types of extensions which
may be specified. They are pictured in the next two figures.

ΓJ+1-type2

2.1 Definition. Let Ts be a tree, and let α c Ts be given. Let α* be the longest focal
point of Ts such that α* c α , and fix η,η*eSff such that ΓO7) = α and Γ(f/*) = α*.
Fix t E N such that t ^ ht(Γs) and the greatest m e N such that Ts{δ)[ for some δ e &}
for which \h(δ) = m. Ts+1 is a ί /7̂  0 extension of Tsfor oc of height t if:

(i) Ts+ι extends Ts.

(ii) ht(Γ s + 1 ) = '

(iii) dom(Γ s + 1 ) = dom(Γ s )Uμ: η* c λ&\h(λ) ^ m + 1}.

Γ s + 1 is a /y/?e 7 extension of Tsfor α of height t if (i) and (ii) hold as well as:

(iv) lh(α) = ht(Γs).

(v) dom(Γ s + 1 ) = dom(Γ s )Uμ: η c λ&\h(λ) = m + l}.
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Ts+! is a type 2 extension of Tsfor a if (i) holds as well as:

(vi)

(vii) dom(Γ s + 1 ) = dom(Γs) U {λ: η* c λ&\h(λ) ^ m}.

2.2 Remark. The reception of <α, /> by the tree Ts at stage s + 1 will convey the
instruction to carry out Objective / whenever possible. The objectives are listed
below.

Objective 0. Combine plateaus and create a new (splitting) level. This objective will be
met when Γ s + 1 is a type 0 extension of Ts for α of height t, where / > ht(Γs) is
specified. There is a type 2 extension Γ* of Ts for α within Ts+U the existence of
which is crucial to the proofs of the interpolation lemmas. Ts+ x adds one level to Γ*
(which will be an e-splitting level if a weak ^-splitting tree is being constructed).

Objective 1. Designate a new focal point. This objective will be met when Ts+1 is a
type 1 extension of Ts for α of height t for some t > ht(Γs). It is used to force
T = U{ΓS: s ^ s*} to be infinite, with infinitely many focal points.

Objective 2. Specify an (e, k}-divergent extension tree. When Ts receives <α, 2), α is a
potential focal point of Ts, and a tree Tf is specified such that Γ* c Ts with
α = Tf(ξ). Tt +! is instructed to preserve α as a potential focal point, while a search
for suitable strings in PExtj(Γ*, ξ) proceeds. If this search is unsuccessful, then
PExt/Γ*, ξ) will be <e, &>-divergent for some k^n.

Objective 3. Specify a tree with no e-splittings modk. The process is the same as in
Objective 2, except that if the search is unsuccessful, then PExt/Γ*, ξ) will have no
e-splittings mod k for some k < n.

Since an oracle of degree 0 ( 2 ) is not available, we will not be able to determine in
advance whether or not searches as in Objective 2 and Objective 3 will succeed. This
differs from the situation in Chap. VII.

Reception of strings will be subject to the following constraints.

2.3 Remark. Let the tree Ts receive <α,/> and <β,y> at stage s + 1. Then the
following conditions will hold:

(i) α c Ts.
(ii) If / = 0, then lh(α) < ht(Γs).

(iii) If / = 1, then α is a potential focal point of Ts which is not a focal point of Ts.
(iv) If /e{2,3} and Ts-1 does not receive <α,/>, then α is a potential focal

point of Ts.
(v) α c β or β a α.

If T c 7* and Γ* is sufficiently large, then there will be an extension T* of Γof
type / such that T* c T*. The proof of the existence of T* under the following
hypotheses is left to the reader.

2.4 Lemma. Let T and Γ* be trees such that T c Γ* ύwd Γ is finite. Let oce6ff and
i ^ 2be given such that oc a T. Then there is a type i extension T* of Tfor α of height t
such that τ# <Ξ: T* under the following circumstances:
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(i) / = 0, lh(α) < ht(Γ) < ht(Γ*) - t, and if α* is the longest focal point of T
such that α* <Ξ a then α* is in the last plateau of T*.

(ii) / = 1, ht(Γ*) = /, 2.3(iii) holds for T in place of Ts, and VL is not terminal on
Γ* but is in the last plateau of T*.

(iii) / = 2, ht(7") = t, and Γ* contains a type 0 extension of T for α.

When a tree Ts receives information at stage s + 1, it will decide to process at
most one bit of information <α, /). This choice is made as follows.

2.5 Definition. Let Ts be a tree which receives the set of ordered pairs Ss+! at stage
s + 1. We say that Tsprefers <α, /> if <α, /> is the first pair in Ss+ λ (under a fixed one-
one recursive correspondence of N with 5^ x [0,3] such that for all α, βe^f and
/,y< 3, if α c βthen <α,/> precedes </?,./> and if i <j then <α,/> precedes <α,y»
such that / < 1.

The following notation will be used for strings.

2.6 Notation. Let ξ e Sή be given such that ξ Φ 0. ξ ~ will denote the unique λ e &}
such that 2 c ξ and lh(A) + 1 = \h(ξ). Fix / e 7V such that ξ = ξ " * /. s(ξ) will denote
the string ξ~ *(i+ 1), and if / φ 0 then /?(ξ) will denote the string ξ~ *(i— 1).

The identity tree will be the starting point for the construction. Since it is
convenient to require that all trees contain infinitely many focal points, the first tree
will be a partial subtree of the identity tree. This partial tree is defined through a
recursive approximation which depends on the set of strings received by the tree.
The tree is described in terms of its approximations.

2.7 Initial Tree Construction. Let {St: t > 0} be a recursive sequence of finite
subsets of £/f x {/: / ̂  3}. We construct a recursive sequence of finite trees,

a :0 < u ^ t}: teN}, whose union is the initial tree specified by {St: t > 0},
S,: / > 0}). For convenience, we use Tt to denote Ini t^S^: 0 < u ^ /}). Tt-λ

receives the set of strings St at stage /.
Let Idj be the full identity tree as specified in VII.2.1, and let Id, = {σ a lάf:

lh(σ) < /}.
We begin by setting To = Id 0. Given Tt, fix ( α , / ) e S ( + 1 such that Tt prefers

<α, /> if such a pair <α, /> exists. If no such pair <α, /> exists or if <α, i} does not
satisfy 2.3(i)-(iv) for Γr, let Tt + 1 = Tt. Otherwise, let Tt + x be a type / extension of Tt

for α of height t + 1 such that Tt + 1 c Idr + 1. Note that by Lemma 2.4, such an
extension exists. No information is transmitted by Tt for any t.

The following remark summarizes the properties of Init({5,: t > 0}) used later
in the construction. These properties follow easily from Definition 2.1 and 2.7.

2.8 Remark. Fix {St: t > 0}, let Initf denote lnitt({Su: 0 < u ^ t}) and let Init denote
Init({S,: t > 0}). Suppose that 2.3(i)-(iv) are satisfied at stage t + 1 by Init, for all
<α,i}eS t + 1. Then:

(i) Init, +! Φ Init, if, and only if Init, prefers some <α, />, in which case Init, + x is
a type / extension of Init, for α of height t + 1.

(ii) If α is a potential focal point of Init, and for all <β,y> received by Init, with
y < 1, either j = 1 and oc ^ β, orj = 0 and oc ^ β and α is a focal point of Init,, then α
is a potential focal point of Init, + x.
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During the construction, it will not be enough to construct subtrees. Rather, all
previously defined trees will play a role in determining the next tree. The new tree
must be added to the end of a sequence of previously defined trees, and this new
sequence must be special. Special sequences are used to insure that g, the limit of the
strings constructed, has domain N. This is accomplished by forcing all trees to have
infinitely many plateaus, with g as the unique infinite path through each of these
trees.

2.9 Definition. Fix s*,t,keN. For each / ̂  k, let {TitS: s* ^ s ^ t) be a sequence of
finite trees. The array {TitS:i ^ k&s* ^ s ^ /} is special if it satisfies the following
conditions:

(i) VΪ < ΛVje[j*,ί](Γ i + l t 5 c Γίf5)&Vι < k\/sels*,tχτitS+1 extends ΓifS).
(ii) W < k Mse [>*, t] Vαe<9}. (If α is a potential focal point of Tis and for all

m ^ / and </?,y> received by Γm5S, either ye {2,3}, or 7 = 1 and α ^ /?, ory = 0 and
α c β and α is a focal point of Γm s, then α is a potential focal point of Γf s +1.)

(iii) Vί < k Vse [s*, 0(Γ i t S + ! * Γitβ -> Vy < /(huχ s + x) = ht(7ί,5+ i))
& (Γf s # 0 -• 3w < 1 3α G «95 (Γf s prefers <α, m> & Γf s + 1 is a type m extension of Γt s

fora))).

Conditions 2.9(ii) and (iii) tell us how to preserve focal points from tree to tree,
and indicate the conditions under which trees will be extended. They reflect 2.8(ii)
and (i) respectively, allowing us to immediately note the following fact.

2.10 Remark. Under the hypothesis of Remark 2.8, for all teN, {Inits: s ^ t) is
special.

Many of the trees which will be used during the construction will be defined by
the Ext operation. These trees are defined through a recursive approximation. They
do not process the pairs which they receive, but pass them on to the tree which they
extend.

2.11 Extension Tree Construction. Let s,s*eN be given such that s* ^ s. Let Γbe a
tree defined by T = U{Tt: t ^ s}, where {Tt: t ^ s} is a recursive sequence of
increasing finite trees. Let ξe£ff be given such that Ts*(ξ)l. Define the tree
Γ* = Ext(Γ, ξ,s*) as the union of the trees {T*: t ^ s*}, where T* = PExt/Γ,, ξ)
(see VII.2.3). T* will be denoted as Ext(Γί? ξ, s*). (Note that 5* determines the stage
at which the recursive approximation to Γ* should begin.) T* transmits exactly
those pairs which it receives; these pairs are received by Tt.

The following properties of Ext(Γ, ξ,s*) follow easily from its definition.

2.12 Remark. Let T, ξ, s and 5* be given as in Definition 2.11. Then the following
conditions hold:

(i) For all t ^ s*, Ext(Tt, ξ,s*) c Tt; and for all t > s*9 Ext(Γf, ξ,s*) extends
ExtiTt-l9ξ,s*).

(ii) For all t ^ s*, Ext(Tt, ξ, s*) transmits exactly those pairs which it receives,
(iii) For all t ^ s*, if Tt(ξ) is a potential focal point of Tt, then the (potential)

focal points of Ext(Γr, ξ,s*) are exactly those (potential) focal points α of Tt such
that Tt(ξ) c α .
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There are two basic types of requirement which play a role in the construction of
a function g for which ^[0, g] ~ J5f. The first type of requirement is a diagonaliza-
tion requirement whose satisfaction produces a one-one map from if into ̂ [0, g].
Such a requirement is satisfied by forcing g to be on a differentiating tree. These
trees are now introduced.

2.13 Differentiating Tree Construction. Let k,seN be given, and let {Tmy.
m ^ k & t ^ s) be an array of trees such that for all m ^ A: and ί ^ s, T ^ +1 extends
Tm%x and if m # Othen Γ m _ u ^ Γm>ί. For each m < A:, let Γm = U{Γmft: ί ^ s} and let
Γ m ί _ ! receive Smtt at stage /. Fix e, s*eN such that 5* > s and /,y ^ n such that
βt ^ β7. We construct an <e, /j>-differentiating tree

Γfc+1 = Diff({Γmft: m^k&t^ s}9e,ij,s*)

as the union of the increasing sequence of trees

{Tk+U = Diffr({Γm,r: m ^ k&s ^ r ^ t}9e9ij,s*): t > s*}.

Weproceedbyinductionon{ί:ί ^ s*}. By VII.l.l(i)and 1.2(ii),fix/?,# </(0)such
that/? = jq but/? ^.^, and the least x such that T(p)(x) φiT(q){x).

Stage / of the construction proceeds through the following sequence of steps. At
the end of stage t, t is placed in some state. If t > s*9 proceed directly to the
beginning of the step or substep of the construction in which a state was assigned at
stage t. The reader may find Fig. 2.3 useful for following the construction. The first
diagram is used if r = p and the second if r = q.

Tk,t-ΛΦ)

Fig. 2.3

Step 0. Begin Tk+1. If TKt-S)ϊ or if ht(ΓM_x) # ht(ΓOfί-i), set Γ k + l f t = 0.
Γfc+ 1 > t_! has no transmission. Place t in state (0,0) and proceed to the next stage.
Otherwise, proceed to Step 1 if T^-^p)], and to Step 2 if T^-^p)], = δ.

Step 1. Begin branching on Tk+1. If Tktt-ι is a type 1 extension of TKt-2 and
h ( Γ ) hίΓo^-i), proceed to Step 3 letting δ = TkΛ-γ(p). Otherwise, set
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Tk+U - 0 and let Tk+ίtt-ι transmit <ΓM_i(0), 1> to Γ M _i Place tin state {1,0s)
and proceed to the next stage.

Step 2. Obtain a type 0 extension. We want δ to be in the last plateau of Γfc>ί_ i with
ht(Γ k ) ί_!) = ht(Γo5 ί-i). If this is not the case, set Tk + U = 0 and let Tk+lΛ-ι

transmit <Γ/cί_1(0),O> to Tktt-ί. Place t in state (2,0} and proceed to the next
stage. Otherwise, go to Step 3.

Step 3. Force Φ9

e

<j\x)l. Let τ = Tktt-ι(β) be the least string in Sfs (under some fixed
recursive one-one correspondence of TV with £ff) such that δ ̂  τ and τ is a potential
focal point of TKv, where v is the first stage at which Step 1 or 2 is completed. Search
for σ a J>Extf(Tktt-l9β) such that τ c σ and Φσ

e°\x)l. If no such σ is found, set
Tk + 1 tt = 0 and let Tk + ι^t-ι transmit <τ,2> to Γ ^ - i . Place t in state (3,0} and
proceed to the next stage. Otherwise, fix the least such σ = T^-^η) (under some
fixed recursive one-one correspondence of TV with Sff). Proceed to Step 4.

Step 4. Build the Difftree. Before we define the Diff tree, we must make sure that the
arrays of trees are special. This is accomplished in the first substep. The Diff tree is
defined in the second substep.

Substep 0. Obtain a type 0 extension. We want δ to be in the last plateau of Tkit-χ
with ht(Tktt-ι) = ht(ΓO f t_i). If this is not the case, set Tk+U = 0 and let Tk+U-X

transmit <Γk>ί_1(0), 0> to Tkt.1. Place t in state (4,0) and proceed to the next
stage. Otherwise, go to Substep 1.

Substep 1. Define the (e, i,j)-differentiating tree. Let z = Φσ

e

<J>(x). Let r be the first
of {p,q} such that Γ^-^r) 0 "^*) Φ z. If r=p let λ = η and if r = q let
X = tr(/7 -» q η). Let p = T^-^ξ) be the first string (under some fixed recursive
one-one correspondence of Λ̂  with «9/) such that λ c ξ and lh(p) = ht(Tkt _ J . Set
7k + i,r(0) = P Tk + ltt-ι has no transmission. For all stages u ̂  t, let Γfc + l j U =
Ext(TKu, ξ, t) and place u in state (4,1). Tk+liU transmits all the pairs which it
receives to TktU.

The next two lemmas specify properties of (e, ij)-differentiating trees which
are important for the construction of the initial segment of ^[0,0 '] which is
isomorphic to if. The first lemma specifies details of the construction, while the
second lemma specifies properties which the final tree will have if suitable
assumptions are made. The properties specified by the next lemma fall into four
categories. The first three properties specify the type of tree which was defined. The
next three properties aid with the verification of 2.3(i)-(v). We then have two
properties dealing with the preservation of focal points and five ^properties
specifying how information is processed.

2.14 Lemma. Let e, i, j , k, s, s*eN be given, and let

Tk+ι = Diff({Γmif: m^k&t^s}, e, i,j, s*)

be defined as in 2.13 through the recursive approximation {Tk+U: t ^ s*}. Then the
following conditions hold:
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(i) For all t ^ s*, Tk+U <= τky9 and for all t > s*, Tk+U extends Γ f c + l f ί _!.
(ii) Tk+1 is recursive and weakly uniform, andifTk + ι Φ 0 then Tk+1 is <e, z,y>-

differentiating.

(iii) For all t > s*9 if Γ k + u ( 0 ) i = TU0: then Tk+U = P E x t / Γ ^ , ξ) and
Tk+U transmits exactly the pairs which it receives.

(iv) For all t ^ 51*, ifTk+u = 0 then Tk+ u _ x transmits at most one pair <α, />,
α«ί/ α cz 7"kjf _ x .

(v) For all t^s*, if Tk+lt = 0 and 7"Λ + 1 f _ ! transmits <α,0>, ίλeΛ

lh(α)<ht(Γ k , ί _ 1 ) .
(vi) For a// ί ^ s*, i/Γk + u = 0 <z«d Tk+ u _ ! transmits <α, /> wzϊλ / G {1,2,3}

α«d ί Λ« J ί — 1 are in different states onTk + 1, then for all m < k,oc is a potential focal
point ofTmt-l which is not a focal point of TmΛ-γ.

(vii) For all t ^ s*, if Tk+ί t = 0 and Tk+11_ x transmits <α, /> w/7A /G {2,3},

(viii) For all t ^ s*9 ifTk+u Φ 0 then lh(Γk + l f f(0)) > lh(Γkff(0)).
(ix) For all t ^ s*9 if Tk+lΛ = 0 and Tk+l4-l transmits <α,/>,

ί + 1 are i« different states on Tk+1 exactly when one of the following conditions
holds:

(a) / ̂  1 & TkΛ is a type i extension of TKt-X for α such that ht(Tk t) =

ht(ΓO f f).
(b) / = 2 and α = TkΛ-ι(ξ) for a specified ξ9 and for a specified xeN,

there i s a σ c P E x t / Γ ^ , ξ) such that Φσ

e

<j\x)[.
(x) For all t ^ s*, if t and t + 1 are in the same state on Tk+U then either

Tk + ί^-i and Tk+U transmit the same pair, or neither tree transmits a pair.
(xi) For all t ^ s*, ift and t + 1 are in different states onTk + 1, then the state oft

on 7fc+i lexicographically precedes the state of t + 1 on Tk+ί.
(xii) IfTk + ίtt = φ but Tk+u + 1Φ09 then l h ( Γ k + l f t + 1 ( 0 ) ) = h t ( Γ k + u + 1 ) =

h\.(TmΛ)for all m ̂  k and Tk+U does not transmit any pairs.
(xiii) For allt^s*,ifTk+lΛ = 0 then Tk+ίft-1 transmits a pair if and only ift is

not in state <0,0> on Tk+1.

Proof. Immediate from the construction. D

In Sect. 4, we will construct a function g of degree < 0' such that ^ [ 0 , g] ~ if.
We will force g to have degree ^ 0' by defining a recursive sequence of strings
{αs: seN} such that g = limsαs. We will then have to show that dom(#) = N. This
will be accomplished by finding a path Γ through a tree of trees, and showing that
g = (J{Γy(0): y cz Γ}. The preservation of potential focal points is crucial for the
verification of this fact, and the steps in tree constructions requiring that we take
type 0 extensions with height restrictions related to the previous trees will allow us
to preserve these focal points.

2.9(ii) is the central clause for the preservation of focal points, but in order to
apply this clause, the process of transmission and reception of pairs must satisfy
certain properties. 2.3(i)-(v) will yield these properties for reception of pairs. 2.9(iii)
will allow us to show that the processing procedure for pairs leading to the
transmission decision at a given stage has the right properties. It will then follow
that we either define an <e, /j>-differentiating tree which contains g, or an
extension tree containing g which is <e,y>divergent.
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2.15 Lemma. Fix e, i, j , k, s, s*eN, and let

Tk+1 = Όifϊ({Tmy. m^k&t^ s},e9ij,s*)

be defined as in 2.13 through the recursive approximation {Tk+U: t^ s*}. For each
t ^ s*, assume that {Tmy. m ̂  k&s* ^ r ^ /} is special. Then ifTk φ 0, Tk+ι = 0,
and no sufficiently large t is in state <0,0> on Tk +:, then there are ξe^f and i ̂  2 such
that Tk+Ur transmits <Γk(ξ), ι) for all sufficiently large r and ?Exif(Tk, ξ) is either
finite or (β,f)-diver gent.

Proof. We note that there are only finitely many states which t ^ 51* can occupy on
Tk+1. Furthermore, if t ^ s* and Tk+ u = 0, then t is in some state o n Γ k + 1 , and by
2.14(xiii), Γ f c + l f ί_i transmits some pair unless / is in state <0,0> o n Γ H 1 . Hence by
2.14(x) and (xi), there is a stage r and a pair <α, /> with i ̂  2 such that every stage
t ^ r is in a fixed state and for each such t, Tk+lft-1 transmits <α, />.

First assume that / ̂  1. Fix t ^ r. If Tktt φ TKt-15 then by 2.9(iii), TKt is a type /
extension of Tktt _ i for α and htίΓfc^) = ht(Tm)i) for all m ^ k. Hence by 2.14(ix), ί
and t + 1 are in different states on !Γfc+1, contradicting the choice of r. Hence
Tk,t = TKr for all t^r. By 2.14(iv), there is a ξ e Sfs such that Tk(ξ) = α. PExtf(Tk, ζ)

is now seen to be finite.
Assume that ie {2,3}. Then / = 2. By 2.14(ixb), there are ξ eίfs and xeN such

that α = ΓkiΓ(ξ), and for all σ c Ext(Γ fc,ί,^*), Φ^O >(JC)T. Hence PExtf(Tk9ξ) is
<^,7>-divergent. 0

The other trees needed for the construction of g are weak ^-splitting trees. These
trees are constructed in the next section.

3. Splitting Trees

The remaining type of requirement which will have to be satisfied deals with
controlling the degree of Φg

e where g is constructed so that ^ [ 0 , g] ^ if. Such
requirements are satisfied through the use of splitting trees. As in Chap. VII, we will
prove interpolation lemmas which will enable us to construct splitting trees. We
restate Lemma VII.3.2, the GLB Interpolation Lemma, for the reader's
convenience.

3.1 GLB Interpolation Lemma. Let i,j, k ^n and σ, τ, pe&} be given such that
UiΛUj = uk, lh(σ) > 0, lh(τ) = lh(p), and τ=kp. Then there is a sequence
τ = τ 0 , . . . , τm = p such that for all p ^ m, lh(τp) = lh(τ), σ * τp e Sfy, and
?O Ξ i T i =jT2 = i " ' =jTm.

As we try to build a weak ^-splitting subtree Γ* of T, we will face the following
situation. We will be given strings μ, vEdom(Γ) such that lh(μ) = lh(v), and will
want to find strings σ and τ such that <Γ(μ * σ), T(v * τ)> forms an ^-splitting; we
wish to erect these strings on Γ* while preserving the weak uniformity of T*. Since
we will have to combine old plateaus to form new plateaus, we cannot succeed
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as in Chap. VII merely by considering the case in which lh(μ) = 1. We thus try to
reduce the problem which we now face to the situation of Chap. VII by fixing the
least y such that μ(y) Φ \{y), fixing / and j such that μ(y) = i and v(y) =j, and
requiring, for all k, that if / = k j then σ = k τ. The extension maps will then depend
on the value of the corresponding string at y. We thus need a new definition of
extendibility, and must prove a new Extendibility Interpolation Lemma.

3.2 Definition. Let ij,meN, σ,τe^ and μ,ve&f be given such that m + 1 =
lh(μ) = lh(v). Fix the least y such that μ(y) Φ v(y). Assume that:

(i) lh(σ) = lh(τ).

(ii) μ(y) = i&v(y)=j.

(iii) Vk^n(i=kj^>σ =kτ).

Let % = {oce&j : lh(α) = lh(μ)}. We say that <σ, τ> is extendible for <μ, v> if there is
a map θ: % -> {ξ: lh(£) = lh(σ) & 0m + ί * ξ e ̂ f) such that the following conditions
hold:

(iv) θ(μ) = σ&θ(v) = τ.

(v) Vfc < Λ Vj8, y e #(j8 = k y - θ(β) =

The following lemma enables us to find extendible branchings under suitable
hypotheses.

3.3 Extendibility Interpolation Lemma. Let i, j , meN and σ, τ, μ, ve&} be given
satisfying 3.2(i)-(iii) with m + 1 = lh(μ) = lh(v). Then there is a λ such that
\h(λ) = lh(σ), 0 m + 1 * λe^f and both <σ, λ} and <λ, τ> are extendible for <μ, v>.

Proof Fix i,j9 y, σ, τ, μ, v as in the hypothesis of Lemma 3.3. By Lemma VII.3.8
(the previous Extendibility Interpolation Lemma), there is a λ such that
lh(/ί) = lh(σ), 0 m + 1 *λe&} and both <σ, λ} and <A, τ> are j-extendible for </,y>.
Let ^o a n d <Ai be the corresponding extension maps. Let ^ = { α e ^ :
lh(α) = lh(μ)}. For m ̂  1 and δe<W, define θm(δ) = ̂ m(δ(j;)). For all β, ye<% and

β=ky^ β(y) = k yOO ^ ^M(i8(y)) = k φm(y(y)) ~ θm(β) = k θn(y).

It is now easily verified that θ0 and θi witness the extendibility of <σ, λ) and (λ, τ>
respectively for <μ, v>. D

We now construct a typical splitting tree. The reader will find a thorough
understanding of Lemma VII.3.10 to be very helpful. We try to motivate each step
of the construction in detail, naming each step and keeping track of the progress of
the construction at stage t.

3.4 Splitting Tree Construction. Let m',s'eN be given, and let {Tmy. m < m'&
t ^ s'} be an array of trees. Fix k ^ n and e, s*eN such that s* ̂  s' and fix
β a ΓW'_i. Let Tm = U{Γm>ί: ί ^ $'} for all m < m', and let Γm>ί receive the set
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Smit + 1. We construct a tree

Tm = Sp({Γm/. m < m'&ct^ s'}, e, k, β, s*, {Smy m ^ m'&t > s*})

as the union of an increasing sequence of trees {Tm>y. t ^ s*} where

Tm',t = Sp f({Γm f Γ: m < m'&s' ^r^t}, e, k, β, s*, {Smym *ζ m ' &

s* < r ^ t}).

Tm> will be a weak e-splitting subtree of Tm _ x for A: above /? whose construction
begins at stage s* and which receives Sm'ft at stage / > s*.

We will proceed by induction on the set of stages {t: t ^ s* — 1}. Stages will be
placed in states according to the progress being made in the construction of a given
level of the splitting tree. States will be triples <r l 9 r 2, r3) ordered lexicographically.
Unless either t is in state <0,0,0> or all steps in the construction are completed at the
end of stage t, we will set Tm>tt = Tm>Λ-γ.

We begin by placing s* — 1 in state {0,0,0} and setting ΓW',s*-i = 0. Fix
t + 1 ^ s*, and assume by induction that Tm^t has been defined. We indicate how to
define Tm.%t + 1 . W e begin stage t + 1 with Step 0 if tis in state <0,0,0>. Otherwise, we
begin state t + 1 with Step 1.

Step 0. Define Tm (0). Define

{β if βcTm>-ltt&δ = Φ&lh(β) = ht(TOtt)&t+l=s*
m ' ί + 1 Q otherwise.

If Tm>tt + i = 0, Πs placed in state {0,0,0) and Tm ^ does not transmit any strings to
Tm'-i,t. Proceed to the next stage. Otherwise, proceed to Step 1.

Step 1. Express Preference. If Sm>tt + 1 does not satisfy 2.3(i)-(v) or if Tm>tt does not
prefer any element of Sm>>t+ί, place t in state {0,1,0). Tm>Λ does not transmit any
strings to Tm _ u . Proceed to the next stage. Otherwise, fix {oc, /*> e Sm>tt +1 such that
Tm>tt prefers <α, /*">. If Tm»ίt-ι also preferred <α, ί*> eSm>tt, proceed directly to the
point in the construction at which stage / ended. (Thus if stage t ended within a last
step, substep, or subsubstep, we proceed directly to the beginning of that step,
substep or subsubstep, with everything in the construction which has been defined
at stage t unchanged at stage t + 1.) Otherwise, let α* = α if /* = 1, and let α* be the
longest focal point of Tm>tt such that α* c α if /* = 0. (In the latter case, 2.3(ii)
implies the existence of such a focal point.) α* is tentatively designated as the next
focal point of Tm. We now begin a new splitting level for Tm. We thus require that
Tm> _ i,r be a type /* extension of Tm. _ u _ λ for α* with ht(Γm^ _ u ) = ht(Γ0, r). If this is
not the case, place t in state {1,0,0), let Tm>Λ transmit <α*,/*> to Tm>-ίtt, and
proceed to the next stage. Otherwise, we continue stage t + 1 of the construction,
letting T be a type 2 extension of Tm t for α* such that T c Tm>-U. Such an
extension must exist inside a type /* extension of Tm -ltt-1.

If t is not placed in state < 1,0,0>, let {ξ\ Ά^p} be the set of all strings ξ such that
α* c T'(ξ) and T'(ξ)l and is terminal on T. For each / ̂  p, fix ξ+ such that
Tm'-iMΐ) = T'(O' L e t {n°i' i ^ u} be a list of aΆηe&f such that η = ξ+ *j for
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some i^p andy <βlh(ξ'J). For each / ̂  v, let β°. = Tm.-U(γfi). {£?: i ̂  i;} starts
the splitting level for Tm, but must be extended to insure that we have the desired e-
splittings. We will do this as follows. Following a fixed recursive procedure, form a
list of all pairs {<)??, ]8?M>: j8? ψkβ°ju&u^ q). We will proceed inductively through
steps {u + 2: w *ζ q], building {)8J + 1 = Γm,_ u(ηu. + ι) :i^v} at step u + 2 such that:

(1) V/^t ;(# + 1Ξ>j8y).

(2) ViJ^i;(lh(/?r+ 1) = lh(/ίJ+1)).

(3) <^u

+ x, 0J + x > form an e-splitting.

(4) ViJ < i V/w < /ifa° = Mf/° - ff+1 =mj8J + 1)

Note that conditions (2) and (4) will hold with 0 in place of u + 1 once we show that
Tm> -1 is weakly uniform. We now proceed to the next step.

Step u + 2. Define {βu

t

 + 1: i ̂  v} satisfying (l)-(4). This step has several substeps.
Two interpolations may be needed, so we must always work above level 1 of Tm _ x.
So far, we have only guaranteed that level 0 of Tm -X has been defined. Thus we
begin with Substeps 0 and 1.

Substep 0. Specialize the sequence of trees for βu

iu. If there is a β" ^ β" such that
βu

iu cz Tm.-U and lh(jβ^) = ht(ΓOfί), fix the least such βu

iu = Γm>_lff

M(#u) under some
fixed recursive one-one correspondence of TV with <9} and proceed to the next
substep. (Note that if Tm _ u is a type 0 extension of Tm _ u _ 1 of the same height as
TOtt, then βu

iu will exist.) Otherwise, place t in state <w + 2,0,0), let Γ m V transmit
<α*,0> to Tm'-U, and proceed to the next stage.

Substep 1. Define level 1 of?Extf(Tm>-u,ffu). If Tm>-U is a type 1 extension of
Γ m < _ u _ ! for βu

iu and ht(Γm _1 } ί) = hl(T0Λ), go to the next substep. In this case,
Tm> - ι,t(ήu

iu * 0 ) | and is a potential focal point of Tm _ u which is not a focal point of
Tm> _ u . Otherwise, place ί in state <w + 2, 7,0>, let Γm%ί transmit (βu

iu, 1 > to Γm' _ u ,
and proceed to the next stage.

Substep 2. Find an e-splitting ofβu

iu. Fix ^ e &} such that ^"u = η"u * ̂ , and for ally < v,
define ή» = ηuj*ή. Since β°iuΨkβ°ju, there is a lea"st j ; < l h ( ^ ? ) such that
η°iu{y)φkη°ju{y). Fix this >> and fix the greatest element wmeL for which
ηQ

iu{y)ΈΞmηo

ju(y). Let ub = um A uk. Search for an e-splitting mod b on
PExtj(Γm' _ u , J?"M * 0). (We will then interpolate to get an e-splitting mod m or an e-
splitting modfc.) If no such e-splitting exists, place t in state <w + 2,2,0}, let Tm»Λ

transmit <Γm'_ift(jftM*0),3> to Γ m _ u , and proceed to the next stage.
Suppose that e-splittings mod b exist. Let <yό', //> be the least e-splitting mod b

found at stage / (under some fixed recursive one-one correspondence of TV with 5^).
Fix x such that Φψ{x)l φ ΦΊ

e

{(x)\ and go to the next substep.

Substep 3. Place Tm>-ίtt(ήΊu) in the last plateau ofTm.-u. We wish to use the GLB
Interpolation Lemma to transform {y^y'l} into an e-splitting modk or an e-
splitting modm. The procedure for obtaining such an e-splitting involves searching
through an extension tree Γ* of Tm _ u for e-splittings. In order for the sequence of
trees to remain special, we must define Γ*(0) to be a potential focal point of Tm _ l f t .
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Thus we require that Tm.-U(fju

iu)
 b e i n t h e l a s t P l a t e a u o f Tm.-U with

ht(Γm< -1 ί) = ht(Γ 0,). If this is the case, then there are y\ 3 γ" for i < 1 such that
lh(/0) = ih(y;) = ht(ΓOit), y'Q =bγ'19 and y\ c YExXj(Tm.-U9ή

u

iu*Q). Fix such
γ'.= Tm>-ltt(ζ'i) a n d proceed to the next substep. Otherwise, place t in state
(u + 2,3,0\ let Tmt transmit <α*,0> to Γm<_ u, and proceed to the next stage.

Substep 4. Interpolate to get an e-splitting modm. By the GLB Interpolation Lemma
(3.1), there are arrays {v[\ i^w&j^w - 1} and {δj: i^w&j^w - 1} satisfying
(5)-(9) below for; = 0.

(5) Vi,Γ<w(lh(v/) =

(6) ζ'0 = ^*0*v^&

(7) Vί

(8) Φ$(x)l

(9) vi=mv{=kvi=m'- =kvl

We proceed through the sequence of subsubsteps {j: 1 ^y"^ 2w — 2}, con-
structing {vj: i ^ w} and {̂ ': / < w} satisfying (5)-(9) at subsubsteps 2/ - 1 and 2/.
Note that it is not necessary to follow this procedure for j = w since ΦfH*)| . At the
end of subsubstep 2w — 2, we will either have an e-splitting mod k or an e-splitting
modm on PExt/ (!Γm'_!,„/}£).

Subsubstep 2j— 1. Define δj satisfying (8). Institute a search in
P E / T V _ u , ή"M * 0 * vj"x) for v e Sff such that

If no such v exists, place / in state <w + 2,4,2j — 7>, let Γm'?ί transmit <δj~1,2> to
Γ m _ l r , and proceed to the next stage. Otherwise, fix the least such v (under some
fixed recursive one-one correspondence of TV with Sfj). For all i ^ w, let
vj = vj~1 * v. Proceed to the next subsubstep.

Subsubstep 2j. Place α* in the last plateau ofTm-lft. We will want to define (5j+}
satisfying (8) withy + 1 in place of/. Thus we will search for such a δ = δjX \ on an
extension tree Γ* of Tm>-U and, failing to find δ, we will use Γ* as the next tree in
our sequence of trees. Since this new sequence will have to be special, Γ*(0) will
have to be a potential focal point of Tm _ x. We insure that this is the case by taking a
type 0 extension of Tm _ u if necessary. Thus if α* is not in the last plateau of Tm _ u

orifht(Γm '_1 > t) Φ hti Γo,,), we place ίin sta/e <w + 2,492j}, let Tm>tt transmit <α*,0>
to Tm _ l f ί , and proceed to the next stage. Otherwise, fix the least v* e £ff (under some
fixed recursive one-one correspondence of N with ^f) such that v* Ώ. v
and l h ( Γ m ' _ l f f ( ^ u * 0 * vj* v*) = ht(ΓOfί). For all / < w, let vj = vj* v* and 5/ =
Tm _ i,r(f7"u * 0 * v/). Proceed to the next subsubstep if j < w — 1.

Suppose that j =w-l. Then there is a least / ̂  w such that <(5I

W~1,(5I

W

+"1

1>
e-splits on x, since <<?£"x, (5^~x> e-splits on x and ΦfJ "̂ '(Λ:)! for ally ^ w. Fix this ί.
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If / is odd, then we have found an e-splitting mod k on PExtf(Tm _ u , ^") and the
construction of Tm is terminated at this point. If / is even, let γ0 = iδ™"1 and
7i = K+i1' N o t e t h a t <fo,fi> ^-splits Γm '_ l f ί(^M)modm, and that, by (8)'and (7),
0*vι

w~1, 0* vr-^eSff. Hence yo,fi <= PExtf(T^-ίtt9ήl). By the last subsubstep,
lh(f) = lh(ίi) = ht(Γ 0,). Proceed to the next substep, defining ζjS&f by

Substep 5. Interpolate to get an extendible e-splitting modm. The e-splitting modra
<Jo? ί i > of Tm - ι,t(ήu

iu) will only be useful if it is appropriately extendible above β"u.
Let λ0, λ2e9f be defined by ζ0 = ή"u*λ0 and ζx = ήu

iu*λ2. Since lh(^u) > o/ϊt
follows from the Extendibility Interpolation Lemma (3.3) that there is a λ± such that
ήΊ^λiE&f, lh(Ai) = \h(λ0), and both <A0,Ai> and (λuλ2} are extendible for
(ήu

iu,ή
u

ju}' Note that 7"m'-i,t(^7"M*^i)l In order to make use of these extendible
branchings, we must force

<Tm -ut{ήu

iu * λj)> Tm - Urjt * V i)>

to be an e-splitting for j = 0 or j = I. This will be the case if

We try to achieve this last condition for some λ ^ λi in the first subsubstep of
Substep 5.

Subsubstep 0. Extend the interpolant to get a convergent computation on x. Search for
σ a PExt /(7m ' _ u , ή"u * λγ) such that Φσ

e(x)[. If no such σ is found, place t in state
<w + 2, J, 0>, let ΓW'/transmit < Tm>Λ(ήu

iu * AJ, 2> to Tm _ 1?ί, and proceed to the next
stage. Otherwise, fix the least such σ (under some recursive one-one correspondence
of TV with £fs). Let σ=Tm- Ut(ήl * λ1 * X). Let; = 0 if <Γm^ _ u(ήu

iu * /l0), σ> ^-splits
on x, and lety = 1 otherwise. Note that if/ = 1, then <σ, Γm' _ i,tW" * ^2)) ^-splits on
x. Before we can define the extension map above Tm>-U(ήu^, we will need
Tm>-i,t(ήu

iu) to be in the last plateau of Tm.-U with h\.{Tm-lj) = ht(Γ0,t) This is
achieved in the next subsubstep.

Subsubstep 1. Place βu

ju in the last plateau ofTm> _ u . If βu

ju is not in the last plateau of
Tm>-U or if h t ί Γ ^ . / t ) Φ ht(ΓOfί), place ί in j ί α ^ <w + 2,5, 7>, let Γm%f transmit
<α*, 0> to Γm'_ i>ί5 and proceed to the next stage. Otherwise, there is a λ' 3 1 such
that ht(Γ0, t) = lh(Γm'_ 1 > t ( ^ u * λj+1 * A')|) Fix the least such A' (under some fixed
recursive one-one correspondence of N with Sff) and proceed to the next
subsubstep.

Subsubstep 2. Force convergence to enable transfer of e-splittings. Search for τ c
PExt/(Tm _ u , τy"M * λj+1 * A') such that Φτ

e(x)l. If no such τ is found, place / in state
(u + 2,5,2\ let Γm'tί transmit <Tm. _ l f ί ( ^ u * /Lj+ ί * A'), 2> to Tm. _ 1>f, and proceed to
the next stage. Otherwise, fix the least such τ = Γm- _ u ( ^ u *A_/+1 * λ") (under a fixed
recursive one-one correspondence of TV with Sty. Let 7* = 0 if either 7 = 0 and
Φσ

e(x) = Φτ

e(x) or if/ = 1 and Φσ

e(x) φ Φτ

e(x), and let j * = 1 otherwise. (J* is used to
indicate that we have an ^-splitting extending <Γm'_i>ί(?7"M*λJ +i/ *),τ>.) The
extension map will be defined once we have an appropriate e-splitting in the last
plateau of Γ m - U . This is achieved in the next two subsubsteps.
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Subsubstep 3. Place βu

ju in the last plateau ofTm> _ u . If βu

ju is not in the last plateau of
Tm.-U or if h\(Tm.-?tt) φ ht(Γθ 5 ί), place t in state (u + 2,5,3}, let Tm.tt transmit
<α*,0> to Tm>-U, and proceed to the next stage. Otherwise, proceed to the next
subsubstep in order to define {βu

c

 +1: c ^ v}.

Subsubstep 4. Define {βu

c

 + 1:c ^ v}. There are two cases, depending on the values of
j and j * . The ^-splitting on x which we have obtained as the beginning of an
extension of <β"M,β"M> extends (Tm>-.u(ήu

iu*λc), Tm>-U(ήu

ju* λd)} for some c and d.
j andy* determine λc and λd according to the following table:

<λcλf>

0

1

0

<λo,λi>

<λ2,λ2>

1

<λlΛl>

<λi,λ2>

Fig. 3.1

Case l.j=j*. If7 = 0 then < Γm-_ u ( # u * Ao * Γ ) , Tm -U(fju

ju*λx*λ")y is an e-
splitting modm, and if7 = 1, then <Γm, _ u(fj»u * λx * λ"), Tm _ ̂ (rj^ * λ2 * λ")} is an
^-splitting modm, and for A:* e {0,1}, <Γm/_ i,,(^tt*λk**λ"), Γm̂  1 lff(

M|/^ * Ak* +! * λ")>
is extendible for (ήu

iu,ή
u

ju} By Subsubstep 3, we may assume that ht(7Όft) =
lh(7"m-_ i,ί(>ϊ"M * λ0 * λ")) else we replace λ" with some A'" 3 λ" having this property.
Let θ be the extension map for (ή"u,ή

u

ju)

Case 2.jΦj*. In this case, <Tm.-u(Xl*^*X"), Tm,-Ut(ηu

ju*λd*λ")} is an e-
splitting modra for some de{\,2}. Fix this d. Again by Subsubstep 3, we may
assume that lh(Γ m ' - l f t (# t t * λλ * λ")) = ht(ΓOfί). We note that if we set θ(ή^) =
λd*λ" for all c ^ v, then θ is an extension map of (Tm>-ί t(ή" * λd*λ"),
^ _ u ( ^ ; u * Λ d * r ) > for <^u,ί7jM>.

In both cases, let ηu

c

 + 1 = ήu

c*θ(ήΐ) and βu

c

 + ί - Tm>.u{ηu

c

 + ι) for all c*ζv.

Proceed to the next step if u < q. If u = q, place t in state (0,1,0}, with Γ m V having
no transmission. Extend T to Tm>tt + ί as follows:

1 m ,ΐ + iW =

t

if

if δ = ξ'c,*d' for some d'eN8ιη0

c =

otherwise.
*d'

Proceed to the next stage, fl

We have tried to make the construction of a weak e-splitting tree for k above
follow, as closely as possible, the scheme used to construct e-splitting trees in Chap.
VII. There are certain key differences which arise when we work below 0', which we
note.

Since Tm _ x is not total, we must try to take type 1 extensions of Tm _ u in order
to make the domain of Tm _ u sufficiently large. Type 0 extensions are taken either
in order to be able to interpolate or in order to have Tm> _ u defined on the domain
of an extension map, or to force all trees to have infinitely many plateaus. The
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accomplishment of this last goal will not become evident until the next section, since
it depends on the mechanics of the transmission of strings. This goal seems to be
necessary in order to produce a function g whose domain is all of TV and such that
^ [ 0 , g] - &- Of course, we have already commented on the need to make Tm

weakly ^-splitting rather than fully ^-splitting. Two other differences should be
noted. The GLB Interpolation Lemma is applied within the construction of the
tree. This is done since we cannot effectively know whether or not there are e-
splittings mod k on Tm>-ί9 and if such ^-splittings are found, k was chosen
incorrectly. Thus k must be chosen during the construction, and we try to produce
e-splittings mod k whenever possible. Finally, the Extendability Interpolation
Lemma produces an extension map θ which does not generally give rise to a
uniform tree because of the way in which y was chosen. This choice was dictated by
the need to produce an ^-splitting level for k on Tm.

The next two lemmas specify properties of the weak ^-splitting trees for k which
we have just constructed. These properties will be used in our construction of an
initial segment of ££[0,0'] which is isomorphic to $£. The first lemma specifies
details of the construction of the weak ^-splitting trees, while the second lemma
specifies properties which will hold if suitable assumptions are made about
constructions of other trees. The properties specified by the next lemma fall into
four categories. The first two properties specify the type of tree which was defined.
The next three properties aid with the verification of 2.3(i)-(v). We then have two
properties dealing with the preservation of focal points and six properties which
specify how information is processed. These latter properties will be useful in
verifying that sequences of trees are special.

3.5 Lemma. Let rri9 s', k, e9 s*eN, βetf , {Tmy. m<m'&t^s'} and {SW)ί:
m ^ m'& t > s*} be as in the hypothesis of 3.4. For all t ^ s*, let α*(ί) be the α*
chosen at stage /, Step 1 of 3.4. For all t ^ s*, let

Tm>,t = Spt({Tmy. m < rn'&s' ^ r ^ t}9e9k9β,s*, {Smy. m ^ ni&

s* <r ^ /})

and Tm> = U{Γm>r: t ^ s*}. Then the following conditions hold:
(i) For allt> s*9 TmΛ <= Tm.-U\ and for all t > s*9 Γ m V extends r m V _ x .

(ii) Tm is recursive and weakly uniform and if Tm> has no e-splittings mod k
then Tm is weak e-splitting for k.

(iii) For all t ^ s* there is at most one pair <α, i) such that Tm>Λ transmits <(α, />.
For this pair, α c Γ m . _ 1 ) t and α*(ί) c: α, and ifi = 0 then α*(ί) = α.

(iv) For all αe<9/ and t^s*, if Tm t transmits <α, 0> then lh(α) <

(v) For all α e Sff9 i e {1,2,3} and t^ s*, if Tm>ft transmits <α,/> and t and t + 1
are in different states on Tm, then for all m < m\ a is a potential focal point ofTmΛ

which is not a focal point of Tmt.
(vi) For all t~^s*, oie&f and ie{2,3}, if Tm>,t transmits <α, /> then

lh(α) > ht(Γm ,) .
(vii) For all t ^ s*9 ifTm.ttφ)l then Γm%ί(0) = β c Tm -U.
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(viii) For all t ^ s*, oceέff and i ̂ 3,if Tm>Λ and Tm>Λ _ i prefer the same pair and
Tm' t _! transmits <α, ϊ), then t and t + 1 will be in different states on Tm exactly when
one of the following conditions holds:

(a) / < 1 and Tm>-U is a type i extension of Tm>-ίtt-ι for α such

(b) i = 2, α = Tm'-ι t-i(ζ), aγιd for a specified xeN, there is a
δ c= P E x t / T V - u ^ ) such that Φf(x)|.

(c) i = 3, α = Γm _ l f ί _ χ(£), 6 w as /w Step u + 2, Substep 2 where it is de-
cided to transmit <α, />, #«d ίλere zs 0« e-splitting mod 6 0«

(ix) For all t > s*9 ifTm.,t + 1 φ Tm.tt then h t (Γ w V + 1) = ht(Γ m .- l i t ) = ht(ΓOft)
and Tm't does not transmit any pairs. If in addition, Tm>Λ Φ 0, then Tm tt prefers some
<α,/>, Tm'Λ + x is a type i extension of Tm>ttfor α, and for all δ a Tm>tt + ί - Tm>tt9

δ ^ α*(0
(x) If Tm>t transmits a pair, then Tm t prefers a pair.

(xi) For all t ^ s*, ifTm>Λ-X and Tm ̂ prefer the same pair and t and t + 1 are in
the same state on Tm, then either Tm^t-1 and Γ m V transmit the same pair, or neither
tree transmits a pair.

(xii) For all t ^ s*, ifTm'Λ-X and TmΛ prefer the same pair and t and t + 1 are in
different states on Tm>, then either the state oft on Tm lexicographically precedes the
state oft+\on Tm or Γ w V + 1 Φ Γ m V .

(xiii) For all t > s*, ifβ a Tm _ u , Tm>Λ-γ prefers some pair, reception of pairs by
Tm',t-\ satisfies 2.3(i)-(v), and Tm Λ-γ has no transmission, then Tm>tt Φ Tm Λ-γ.

Proof. The proof is a routine but tedious check of the construction of 3.4 which we
leave to the reader. D

3.6 Lemma. Let m', s', k, e, s*eN, βeSff, {Tmy. m < m' Setts'} and {Sm,t:
m ^ m'Set > 5*} be as in the hypothesis of 3.4. For all t > 5*, let α*(ί) be the α*
chosen at stage t + 1, Step 1 of 3.4. For all t ^ 5*, let

Tm',t = Spf({Γm,Γ: m < m'8ιs' ^ r ^ t},e9k9β,s*9 {Smy. m ̂  m'&

s* < r ^ t})

andTm = \J{Tmy. t ^ s*}. Assume that for all t ^ s*, {Tmy.m ^ m'&s* < r ^ t} is
special. Also assume that for all sufficiently large t, reception of pairs by Tm t satisfies
2.3(i)-(v), that TmΛ prefers <α, />, and that Tm is finite and has no e-splittings mod k.
Then there are λe£ff and j ^ 3 such that Tm>r transmits <Γm'_1(λ),y> for all
sufficiently large r andPΈxtf(Tm' _ 1 ? λ) is either finite, or (e, n}-divergent, or has no
e-splittings mod b for some b such that ub < uk.

Proof. We note that there are only finitely many states which t can occupy on Tm if
Tm',t prefers <α, /> for all sufficiently large t. By the hypotheses, every sufficiently
large / occupies some state on Tm, and transmits some pair. Hence by 3.5(xi) and
(xii), there is a stage r and a pair <β,y> such that every stage t ^ r is in a fixed state
and for each such t, Γm,t_ ί transmits <βj>. The Lemma now follows from 3.5(viii)
and 2.9(iii) in a way similar to the proof of Lemma 2.15. D

We now have the trees needed to construct an initial segment of ̂ [0,0 '] which is
isomorphic to if. The construction of the initial segment is presented in the next
section.
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4. The Construction

In this section, we present a full approximation construction which produces a
function g such that ^ [ 0 , g] ~ if. The basic outline of the construction in terms of
priorities is similar to that of the construction given in the proof of Theorem XI.2.2.
Thus we will have a tree of trees &~, and will choose, at stage s of the construction, a
string ys a 3Γ. 2Γ will be finite branching, and priorities will be used to show that the
path Γ through ZΓ defined by Γ = lim sups ys (the sup is taken in terms of the
priority ordering) has infinite length. Strings on <F which are of higher priority than
those contained in Γ will be chosen only finitely often. Strings on ZΓ which are of
lower priority than those contained in Γ will not be allowed to have much of an
influence on the construction of g, as they will be cancelled when a higher priority
path is later followed, and the action they have caused within the construction will
be masked. Thus g will be viewed in terms of how it sits within the trees Ty for y a Γ.
We now define priorities.

4.1 Definition. Let h: N -• N be defined by h(2ί) = n+l and h(2i + 1) = 2 for all
ieN. Given γ, δ e 5^, we say that y has higher priority than δ if either there is a least x
such that y(x) Φ δ(x) and for this x, y(x) < δ(x), or y c δ. If Γ is given such that
Γ ί k e £% for all k e N, then we extend priorities to Γ, letting δ have higher (lower)
priority than Γ if for all but finitely many k, δ has higher (lower) priority than Γ Γ k.
Trees are indexed by elements of <9£, and we let the priority of a tree be the priority of
its index.

The trees {Ty: y cz Γ} are defined to satisfy certain requirements. Thus if
lh(y) = 2e + 1, then Ty will either be e-splitting for some k ^ n or <e, n}-divergent.
And if lh(y) = 2e + 2 and (m, ij} is the eth triple under some recursive one-one
correspondence of N with N x {{ij>: ij ^ n & u x ^ ŵ } which we now fix for the
remainder of this section, then Tγ will either be (jn, ij'}-differentiating or ( m j ) -
divergent.

Trees will be designated at certain stages of the construction as either initial
trees, extension trees, differentiating trees, or splitting trees for some k ^n.
Designations may be cancelled, so that Ty may be designated differently at stage s
and stage t. At a given stage s, the designation of Ty is the last previous designation
given to Ty which has not yet been cancelled.

We recall the mechanics of the reception and transmission of pairs from Sects. 2
and 3. Initial trees transmit nothing, and respond immediately to the information
which they receive. Extension trees transmit exactly what they receive. As long as a
differentiating tree is empty, it ignores what it receives, but triggers new
transmissions; once it becomes non-empty, it behaves like an extension tree.
Splitting trees process what they receive, and transmit at most one pair the pair
transmitted is determined by the processing procedure. Reception and transmission
of information is arranged so that {Ty:.y a Γ} will be a special sequence which
satisfies 2.3(i)-(v). The lemmas of Sects. 2 and 3 will then be used to show that these
trees have the desired properties.

The choice of ys e £fh depends on the reception and transmission of information.
Strings originating on a differentiating tree must be traced through the processing
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mechanism of splitting trees in order to determine ys. The following definition is
used in that determination.

4.2 Definition. Let β, δe^h be given such that β c δ. Let seN be given such that
7 ^ = 0 and TδtS is designated as a differentiating tree. The sequence {<σy,/y>:
β c γ d δ} is a transmission sequence at stage s + 1 if the following conditions hold :

(i) TδtS transmits (σδ-,iδ-} and iδ- e{0, 1}.
(ii) For all y such that β c y c δ, if 7y,s is designated as a splitting tree, then:

(a) Tys transmits <σy-,zy-> and iy- e {0,1}.
(b) 7 y s prefers <σy, /y> and σy c Γy s.

(iii) For all y such that /? cz y a δ, if TytS is designated as either an extension or a
differentiating tree, then TytS satisfies (iia) and (iib) and <σy-,/y-> = <σy,/y>.

The transmission sequence {<σy, /y>: β c y c δ} at stage s + 1 is a triggering
sequence at stage 5 -h 1 if it satisfies:

(iv) Either β = 0 or for some ξ such that β ̂  ξ ^ δ,s and s + 1 are in different
states on Tξ and TβtS does not transmit any pair <α, /> with i ̂  1.

We say that 7^ triggers Tβ at stage s + 1 if there is a triggering sequence
{<σy, i y ) : j ? c y c (5} at stage s + 1. We call Tδ a trigger at stage s + 1 if there is a
β c <5 such that 7^ triggers 7^ at stage s + 1.

A transmission sequence is a sequence of pairs transmitted down through the
tree of trees, each pair instructing the tree which receives it to take a type / extension
of itself for some / ̂  1. Such a sequence triggered by Tδ triggers Tβ if one of three
situations occurs. The first situation is that β = 0. Thus the transmission sequence
can be extended no further. However, 7 0 immediately responds by producing the
desired extension, so the construction of an earlier Tξ with ξ c δ can proceed
beyond the point at which it had stalled, thus allowing us to make progress towards
defining Tδ(β). The second situation in which Tδ triggers Tβ is if Tβ has no
transmission. This will only occur because Tβ has responded to the instruction it
received at the previous stage by producing the desired extension. Thus progress is
made towards defining Tδ(0) as in the previous case. The final situation in which Tδ

triggers Tβ is when Tβ transmits <α, /> with ie {2,3}. In this case, α = Tβ-(ξ), and we
are prevented from making more progress towards defining Tδ(0) by the need to
find either a i c PExtf(Tβ-,ξ) such that Φτ

e{x)[ for some specified e and x, or an e-
splitting on PExtj(7^ -, ξ) for k for a specified e and k. If such strings are found at a
later stage, then the transmission of Tβ changes, and we continue making progress
towards defining Tδ(Φ). If no such strings are found, we need not define Tδ(Φ), but
must insure that our sequence of trees satisfying the various requirements contains
PExtf(Tβ-,ξ). We will therefore change our guess at the path through the tree of
trees when this happens, directing it along a path inhabited by PExtf(Tβ-,ξ).

We are now ready to construct a function g such that ^ [ 0 , g] ~ if. Along with
the trees and their designations, a string ys e % and an approximation αs to g will be
specified at stage s.

4.3 The Construction. Stage 0: Designate 7 0 > o as Init({S05f: / > 0}). Let

α0 = 7o = 0

Stage s + 1. For all β such that TβtS is designated, the information received by TβtS at
stage s + 1 is the information transmitted by those TδtS such that β = δ~ at stage
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s. Fix the tree Tδ of highest priority such that Tδ is a trigger at stage s + 1. If no such
Tδ exists, proceed to Case 2. Otherwise, fix β c £ such that Γ5 triggers 7^ at stage
s + 1, and let {<σy, iy}: β ̂ y a δ} be the corresponding triggering sequence. Note
that there is only one possible choice for Tβ. Proceed to Case 1.

Case 1. Cancel all trees of lower priority than Tδ and their designations. Also cancel
all information transmitted by trees of lower priority than Tδ. Those y for which Ty

is still designated at stage s + 1 are called active at stage s + 1. For all y which are
active at stage s + 1, let SytS+ί be the information received by Γ y s at stage s + 1
from non-cancelled trees. For these y, TViS+ x will have the same designation as Γy>s,
and will be defined as the next step in the approximation to the tree so designated as
in the definitions of these trees in Sects. 2 and 3. Note that the triggering sequence
{<σy, iy}: β c y cz δ} has not been cancelled. We proceed by subcases, depending on
how Tδ triggers Tβ at stage s + 1. If TβfS is designated as a splitting tree or if β = δ,
let <α*, /*> be the information transmitted by TβtS if any information is transmitted.
Note that if /* is defined, then /* e {2,3}.

Subcase 1. i* = 2. L e t α s + 1 = α* = Tβ-tS(ξ*). Lety s + 1 = s(β) and designate Tys+ί as
the following extension tree:

Tyβ+ι = Ext(Tβ-,ξ*9s+l).

Begin building T7s+l.

Subcase 2. i* = 3. In this case, TβtS+ί is designated as an ^-splitting tree for k for
some eeiV, k ̂ n, and s + 1 is in state (u + 2,2,0) on Tβ searching for an e-
splitting mod b for some b < n such that ub < uk. Let α s + 1 = α* = Tβ-tS(ξ*). Let
ys+ι = s(β). lib = 0, designate Tys+ί as in Subcase 1 and if b φ 0, designate Tys + ί as
the following ^-splitting tree for b:

Tys+1 = S p ( { Γ ί t f : ξ a ys+1&t^ s + l},e,b9aL*,s + 1, {Sξy. ξ c 7 s + 1 &

t>s+ 1}).

Begin building T7s + 1.

Subcase 3. β = δ and TδtS has no transmission. In this case, s + 1 will be in state

<3,1> on Tδ. Let α s + 1 = TδtS+1φ) and ys+ι = δ.

Subcase 4. Otherwise. Then TβtS will be designated either as the initial tree or as a
splitting tree, and has no transmission. Let α s+i = σβ and y s + 1 = δ.

Case 2. For all y such that TytS is designated, let TytS+1 have the same designation as
T7tS9 and define TytS+1 as the next step in the approximation to the tree so designated
as in the definitions of Sects. 2 and 3 let SytS+ί be the information received by Ty tS at
stage s + 1. There are two subcases.

Subcase 1. lh(ys) = 2e. Let α* = α s + 1 = TysS(Φ) and ys+ι = y s*0. Set b = n and
designate Tys + ί as in Case 1, Subcase 2. Begin building Tys + 1.

Subcase 2. lh(ys) = 2e + 1. Let (jn9 ij} be the eth triple under the ordering fixed
earlier. Set y s + i = 7 s * 0 and designate Tys + 1 as the following <ra, i,j}-



246 XII. Initial Segments of ^[0, 0']

differentiating tree:

Tys+ί = Diff({Γίif: { g ] i ϊ & ί > j + l},m9ij,s+ 1).

Let ocs+1 = ΓyβiS(0). Note that Tys + uS+ί = 0.

In both cases, we say that TβtS+1 is newly designated \ϊ TβfS+ x is designated and
either TβtS is not designated or TβtS is cancelled at stage s + 1.

This completes the construction. Define Γ by Γ = limsup sy s where the sup is
taken over the priority ordering, and g = lims αs. We will need to prove the
following facts about Γ and g:

(1) lh(Γ) = oo.

(2) dom(0) = N.

From (2) and the definition of g, it will then follow that g < 0'. (1) will allow us to
use the trees along the path specified by Γ to show that ^ [ 0 , g] ~ S£. (2) will follow
fairly easily once we prove

(3) g = {J{Tγ(0):yczΓ} where Ty = lims Ty,s.

For we will show that if lh(y) ̂  2, then lh(Γy- (0)) < lh(Γy(0)).
The proof of (3) will involve an analysis of transmission sequences. When a tree

is newly designated, its definition depends on the trees defined at the previous stage
of the construction. In order to preserve specialness of sequences of trees, we will
have to show that trees remain unchanged except through the direct action of
triggering sequences.

4.4 Lemma. Fix λ, δ e Sff such that λ c δ and Tδtt is designated. Then:
(i) If Tλι receives <α, /> with i < 1, then there is an η ZD λ and a transmission

sequence {(σβ, iβy: λ <Ξ β c η} at stage t + 1.
(ii) Ifξ~ = λ~, Tλtt is not cancelled at stage t + 1, ξ has higher priority than λ,

and Tξjt transmits <α, z), then ze{2, 3}.
(iii) If Tλt is not cancelled at stage t + 1, ( α , / ) e S λ ) t + i and i ̂  1, then Tλx

prefers <α,/>.
(iv) Suppose that Tδtt-ι is designated but not cancelled at stage t, that

S = {(σβ, iβy: λ c β cz δ} is a transmission sequence at stage t, and that for all ξ such
that λ a ξ <= δ, t and t — 1 are in the same state on Tξ. Then S is a transmission
sequence at stage t + 1.

(v) Suppose that TδΛ-ι is designated but not cancelled at stage t, that
S = {(σβ> iβ}' λ <Ξ: β a δ} is a transmission sequence at stage t, and that Tλt does not
transmit any <α,/) with i^\. Let ξe^ be given such that λ a ξ <= δ, Tξt is
designated as a splitting tree or as an empty differentiating tree, and suppose that
either t and t + 1 are in different states on Tξ or Tξ^ + ι Φ Tξt. Then Tλt is a type iλ

extension of TλJ-1 for σλ and ht(Tλt) = ht(Γ0 ) ί _ x).
(vi) If TδΛ is not cancelled at stage t + 1, S = {(σβ,iβ}: λ c β c δ} is a

transmission sequence at stage t, and Tλt is a type iλ extension of Tλt_γ for σλ with
\\ί{Tλt) = ht(T0tt-ι), then either δ = λ and Tλt has no transmission, or there is a ξ
such that Tδ triggers Tξ at stage t + 1.
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(vii) IfTλt is not cancelled at stage t + 1 and Tλtt + ί Φ Tλu then there are η ̂  λ
and ξ ^ λ such that Tη triggers Tξ at stage t + 1 and TηΛ is not cancelled at stage
t + 1 and for all v of lower priority than η, Γv?ί + 1 is not designated.

Proof We proceed by induction on t. The lemma follows easily for t = — 1.
(i) We proceed by induction on those λ such that Tλt is designated, with lower

priority strings coming first. Since only finitely many trees are designated at stage /,
the ordering on which the induction is carried out is well-founded. Assume that Tλt

receives <α, /> with / ̂  1. Then Tλt receives and prefers some pair <σΛ, iλ}, and
there is a ξe^h such that ξ~ = λ and Tξtt transmits <σΛ, zΛ>. If Tξt is designated as
an empty differentiating tree, then {<σA, iλ}} is a transmission sequence at stage
t + 1. If Tξt is designated as an extension tree or as a non-empty differentiating tree,
then by 2.12(ii) and 2.14(iii) respectively, Tξt receives (σλ, iλ}. And if Tξjt is
designated as a splitting tree, then by 3.5(x), Tξt must receive and prefer some (βj>
withy ^ 1. Thus in all cases, it follows by induction that there is an η ̂  ξ and a
transmission sequence {{σβ,iβ}: ξ^zβczη} at stage / - h i . Hence {{σβ,iβ}:
λ c β c η} will be a transmission sequence at stage t + 1.

(ii) Assume that ξ~ = λ~, ξ has higher priority than λ, and Tξt transmits
<α,/>. Without loss of generality, we may assume that λ = s(ξ), since if Tλt is
designated, then Tsiξht must also be designated. Fix the greatest r ^ t such that Tλr

is newly designated. Since λ Φ λ~ * 0, Case 1, Subcase 1 or 2 of the construction of
4.3 must be followed, Tξr transmits a unique <α,/> with ie{2,3}, and there is a
transmission sequence S = {{σβjβ}\ ξ c β <z η} for some η 3 £ at stage r.
Furthermore, Γξ>r is designated as an empty differentiating tree or as a splitting tree.
If t = r, then we are done. Otherwise, we assume by induction that for all v such that
ξ c v c 77 and all s such that r ^ s < ί, s and 5 + 1 are in the same state on Tx and
ΓVfS is not cancelled at stage s + 1. Applying (iv) inductively, we see that S is a
transmission sequence at stage t + 1, hence for all v such that ξ <^ v ̂ η,t and t + 1
are in the same state on Γv. If / and t + 1 are in the same state on Tξ, then by 2.14(x)
and 3.5(xi), TξΛ transmits <α, />. Otherwise, since t and t + 1 are in different states
on Tξ and 5 is a transmission sequence at stage t + 1, Tη is a trigger at stage ί + 1.
Hence Tλt is cancelled at stage t + 1, contrary to the hypothesis of (ii).

(iii) We proceed by induction on those λ such that Tλt is designated, with lower
priority strings coming first. Let <α, /) e SλJ + 1 be given, with 1'^ 1. Fix the lowest
priority η such that TηΛ is designated and not cancelled at stage / - h i , with η~ = λ.
By (ii), Tηft transmits <α, />. If 7^, is designated as an empty differentiating tree or as
a splitting tree, then by 2.14(iv) and 3.5(iii), <α, /> is the unique transmission of Tηtt9

so Tλt must prefer <α, />. And if Γ M is designated as an extension tree or as a non-
empty differentiating tree, then by 2.12(ii) and 2.14(iii), ( α , / ) 6 S , i ί + i, so by
induction, Tηtt prefers <α,/>. Hence Tλt must prefer <α,/>. (Since <α,/> was
arbitrary, we have shown that there is at most one <α, /> e SλΛ + x such that / < 1.)

(iv) Suppose that Tδtt-χ is designated but not cancelled at stage /, that
S = {(σβ, iβ}: λ c β cz (5} is a transmission sequence at stage /, and that for all ξ
such that λ cz ξ c δ, t and / — 1 are in the same state on Tξ. Then an induction
argument on {ξ: λ <= £ c <5}, longer strings first, using (iii), 2.12(ii), 2.14(iii) and (x)
and 3.5(xi) shows that for all ξ such that λ cz ξ ςz δ, Tξft and Tξt _ x transmit the same
pair. Hence S is a transmission sequence at stage / - h i .
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(v) Suppose that Tδtt-ι is designated but not cancelled at stage t, and that
S = {(σβ, iβ}: λ c β d 6} is a maximal transmission sequence at stage t. Let £ e £fh

be given such that λ <= £ c S, Tξt is designated as a splitting tree or as an empty
differentiating tree, and either t and t + 1 are in different states on Tξ or
^,r +1 ^ Tξt. Fix the longest ^ such that λ<^η a ξ and 7^,- γ is designated as an
initial tree or as a splitting tree. Note that by choice of ξ9 Tλt-ί is designated as an
initial tree or as a splitting tree, so η exists. By 2.14(xii) and 3.5(ix), Tξt = Tξt - 1 . By
2.14(ixa), 3.5(viiia), 2.12(ii) and 2.14(iii), Tηtt is a type iξ extension of Tηtt-ι for σξ

and ht(TηJ) = ht(T0,t _ J . Furthermore, 77 = A, else <σ ,̂ /̂ > would be defined, and so
by 3.5(ix), we would have TnΛ — Tηtt-1.

(vi) Let S = {{σβ, iβ): λ c β a δ} be a transmission sequence at stage t, and
assume that Tλt is a type /λ extension of Tλt- x for σλ with ht(Γλ>ί) = ht(Γ 0 f ί_ i). If
A = <5, then by 2.14(xii), Tλt has no transmission. Assume that λ Φ δ, and fix fhe
shortest η => λ for which Tη is designated as an empty differentiating tree or as a
splitting tree. By 4.2(iii), Tηtt _ x transmits <σA, iλ}9 so by 2.14(ixa), 3.5(viiia), 2.12(ii),
2.14(iii) and since Tηyt is not cancelled at stage t + 1, t and t + 1 are in different
states on Γ̂  as long as Tη%t receives (ση, iη}. In any case, it follows from (iv) that there
is a longest v such that η ̂  v ̂  δ and t and t + 1 are in different states on Tv. Hence
for some ξ c v, Tδ triggers Tξ at stage t + 1.

(vii) Suppose that ΓA r is not cancelled at stage t + 1 and Tλtt + 1 φ Tλt. Fix the
longest ξ ^ λ such that Tξt is designated as an empty differentiating tree, a splitting
tree, or the initial tree. By 4.2(iii), Γξ?ί + 1 Φ Tξtt. We note that by Step 0 of 3.5, if
Tξtt φ 0 and r is the greatest stage ^ t such that Tζr is newly designated as a splitting
tree, then Tξr Φ 0 (else Tξtt = Tξtt + ί = 0). If Tξtt is not designated as an empty
differentiating tree, then by 3.5(ix) and 2.8(i), Tξt must receive and prefer some
<α, /> e Sξtt+ι with / ̂  1. By (i), there is a highest priority η ̂  ξ and a transmission
sequence {{σβ,iβ}: ζ ^ /? c η} at stage ί + 1. Since Γξ>ί + 1 ^ Γξiί, it follows from
2.14(xii) and 3.5(ix) that TξΛ has no transmission, and t and t + 1 are in different
states on Tξ. Hence Tη triggers Tξ at stage t + 1. 7^, cannot have been cancelled at
stage / + 1, else <α, i}φSξjt + ί. Hence Γ̂  is the unique trigger at stage t + 1, and
Case 1, Subcase 3 or Subcase 4 of 4.3 is followed at stage t + 1. But then if v has
lower priority than η, then Tvt is cancelled at stage t + 1, and TxΛ + γ cannot be newly
designated at stage t + 1. Hence Tvt +! cannot be designated if v has lower priority
than η. 0

The proof of (3) will require that Γy(0) be a focal point of Tδ for all δ c y. A
crucial step in the verification of this fact is that reception of pairs satisfies 2.3(i)-(v).
2.3(i)-(iv) will follow from the lemmas of Sects. 2 and 3. We turn our attention to the
verification of 2.3(v). We will have to consider the relationship between 7^,(0), the
pair transmitted by Tξtt, and ΓΛr(0) whenever ξ~ = λ~ and ξ has higher priority
than λ. We specify this relationship along with some other useful facts about the
construction of 4.3 in the next lemma.

4.5 Lemma. Fix λ e «Ŝ , σ e Sfy, t e N and i ̂  3 such that λ Φ 0 and Tλt is designated.
Then:

(i) If Tλt transmits <σ,/>, then σ a Tλ t. If, in addition, Γ A ί (0) | , then
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(ii) If λ φ λ~ *0 then Tp{λ)t transmits a unique pair <σ, />. For this pair,
ie {2,3}, lh(σ) > ht(Γp ( λ ) f f) and Tλ,t(fi)l = σ.

(iii) // λ Φ λ~ *0 α/u/ 7 ^ , ( 0 ) 1 , ί*έ?/i 7^,(0) =5 7 ^ , ( 0 ) and lh(Γλf(0)) >

(iv) For all ξe£fh, ifξ~=λ , ξ has higher priority than λ, and Tξtt transmits
<σ, />, then Γλ f f(0) ^ σ <wirf /e {2,3}.

( v ) I f < β , j > , <7,k>eSλ,t + ί and <βj> Φ < γ , k } , then β ^ y ory^β. If, in
addition, ke{0,1}, then β c y α m / y e { 2 , 3 } .

(vi) 7/7^, r e c e n t <σ,0>, ίλέτi lh(σ) < ht(ΓAft).
(vii) IfTλt receives <σ, 0>, β c <j α«ί/β w a potential focal point ofTλt, then β is a

focal point of Tλt.
(viii) T/T^, w«ew/y designated, thendom(ΓAr) c {0} andifTλt = 0, ί/ze«either

Tλt is designated as a differentiating tree or Tλ t = 0.

Proof We proceed by induction on t, and then by induction on those λ such that Tλt

is designated, with lower priority λ considered first. Fix t, λ, σ and / as in the
hypothesis of the lemma.

(i) Assume that Tλt transmits <σ,/>. If Tλt is designated as an empty
differentiating tree, then (i) follows from Lemma 2.14(iv). If Tλt is designated as an
extension tree or as a non-empty differentiating tree, then by 2.12(ii) and 2.14(iii)
respectively, there is an/ e ^ i such that η~ = λ and TηΛ transmits <σ, />. Applying
(i) by induction to η, we see that σ a Tλt c Γ r ( s o σ 2 Tλt(0). Finally, if Tλt is
designated as a splitting tree, then (i) follows from Lemma 3.5(iii) since
7^(0)1 c α*(0

(ii) Fix λ φ λ~ *0 such that Tλx is designated. First consider the case where
Tλt is newly designated. Then Case 1, Subcase 1 or Subcase 2 of the construction of
4.3 is followed at stage t, and by (i) and 3.5(vi), Tp{λ)a-ί transmits a unique pair
<σ, />, ie{2,3}, lh(σ) > ht(Γp ( A ) f ί_ 1), ΓA ? ί(0)| = σ, and there is a δ ̂  p(λ) such that
Tδ triggers Tp{λ) at stage t and Tδ is not cancelled at stage /. Let S be the transmission
sequence from Tδ to Tp(λ) at stage t. By 4.4(v), 4.4(vii), 3.5(viii) and 2.14(ix), t and
t + 1 are in the same state on Tη and TηΛ = TηΛ-1 for all η such thatp(λ) ^η ^ δ.
Hence by 3.5(xi) and 2.14(x), Tp{λht also transmits <σ, />. Hence (ii) holds.

Now assume that Tλt is not newly designated. Since Tλt is designated, Tλt-X is
designated and not cancelled at stage t. We assume by induction that S is still a
transmission sequence at stage t — 1. By 4.4(v), 4.4(vii), 3.5(viii) and 2.14(ix), t and
t — 1 are in the same state on Tp{λ); and by 2.14(x), 3.5(xi) and 4.4(iv), S is a
transmission sequence at stage t, and Tp{λ)tt transmits <σ,/>.

(iii) Assume that λ φ λ~ *0 and that 7 ^ , ( 0 ) 1 . By (ii), Tp(λht has a unique
transmission <σ,2> or <σ,3>, 7^(0) - σ, and lh(σ) > hi(Tp{λu). By (i),

σ => 7Tp(A),t(0).

(iv) Fix ξ such that ξ~ = λ~, ξ has higher priority than λ, and TξΛ transmits
<σ,/>. Define s\ξ) = s(ξ) and sk+1(ζ) = s(sk(ξ)). There must be a it such that
λ = sk(ξ), and for all j ^ /c, TSJ{ξht must be designated. By (ii), Ts{ξht(Φ) = σ and
ze{2,3}. Iterating (iii), we see that 7^,(0) - TsHξht(0) 3 3 Γs(ξ)ft(0) = σ.

(v) Assume that (β,j} Φ (y,k)eSλ,t+1. Then Γ Λ j ί + 1 is not newly de-
signated, else S^t + i = 0. Hence TλΛ is not cancelled at stage t + 1. Thus there are

such that £~ = η~ = λ, Tξt transmits <β,y >, and TnΛ transmits <y,Λ>. If
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he{0,1}, then by (iv), either ξ has higher priority than η andy'e {2,3}, or £ = η.
Assume first that ξ has higher priority than η. (A similar proof will work if η has
higher priority than ξ.) Then η φ η~ * 0. By (i) and (iv), β c 7^(0) £ y. Finally,
assume that ξ = η. Then by 3.5(iii) and 2.14(iv), Tξt cannot be designated as a
splitting tree or as an empty differentiating tree. Hence Tξtt is designated either as an
extension tree or as a non-empty differentiating tree. By 2.12(ii) and 2.14(iii), Tξtt

receives both (β,j} and (y,k}. Hence (v) follows by induction.

(vi) Let Tλt receive <σ,0>. Then there is a ξe^h such that ξ~ = λ and Tξtt

transmits <σ,0>. If Tξtt is designated as an extension tree or as a non-empty
differentiating tree, then by 2.12(ii), 2.14(iii) and induction, lh(σ) < ht(Tξft) ^
ht(Tλt). If Tξft is designated as an empty differentiating tree or as a splitting tree,
then by 2.14(v) and 3.5(iv), lh(σ) < ht(Γλ>f).

(vii) A potential focal point β of Tλt will be a focal point of TλΛ if and only if
lh(β) < ht(Γ λ r ). Let Tλt receive <σ,0>, and let β c σ be a potential focal point of
Tλ t. By (vi), lh(σ) < ht(Tλ t). Since β c σ , \h(β) < ht(Tλ t). Hence β is a focal point

of>Afί.
(viii) Let Tλt be newly designated, with Tλx Φ 0. First assume that Case 1,

Subcase 1 or Subcase 2 of the construction of 4.3 is followed at stage /. Then
TP(λ),t -1 is designated either as an empty differentiating tree or as a splitting tree and
is not cancelled at stage t and there is a δ 3 p(λ) such that Tδ triggers Tp{λ) at stage /
and Tδ is not cancelled at stage t. By 4.2(iv), 4.4(v), 2.14(xii) and 3.5(ix), t and t — 1
must be in different states on Tp{λ). Hence by (i), there is a pair <σ, /> transmitted by
Tpiλ)t-i such that σ cz Tλ- ,_ l 5 so Γ Λ ί (0) | = σ. By 2.14(xii), 3.5(ix) and 4.4(vii),
lh(σ) = h t ί ^ - ^ O = ht(Γλ'-,t). Hence dom(Γλ i t) = {0}.

If Case 2, Subcase 2 of the construction of 4.3 is followed at stage t, then Tλt is
designated as a differentiating tree. Otherwise, Case 2, Subcase 1 of the
construction of 4.3 is followed at staged, and yt-ι = λ~. By 4.4(vi), either TV,,-! is
newly designated or Tλ-J-1 Φ Tλ-t-2 = 0, and Tλ-tt-ι is designated as a
differentiating tree. Hence by 4.4(vii), 2.14(xii) and induction, dom(Tλ-t- x) c {0}
and ΓΛff c Γ λ- f ί_!. Hence dom(ΓA5ί) c {0}. fl

We now turn our attention to proving that the construction generates special
sequences of trees in which reception of strings satisfies 2.3(i)-(v). The proof will
involve conditions about the preservation of focal points, as well as conditions
about the mechanics of transmission and reception of pairs.

4.6 Lemma. Let λe^ and teN be given such that Tλt is designated. Then:
(i) If δ has lower priority than λ9 Tδ>t is designated but not cancelled at stage

t + 1, {(σβ,iβ}: ξ c β a δ} is a transmission sequence at stage t + 1, Tξt transmits
<σ, />, and Tλ,t + 1φ)l, then Tλtt+1(0) c σ .

(ii) IfTξt +1 is designated, TξΛ +1(0)|, ξ has lower priority than λ, and Tλi +1(0)|,

(iii) Reception of pairs by Tλt satisfies 2.3(i)-(v).
(iv) If for all ξ c λ, β is a potential focal point ofTξiU andfor all <α,/>e*S ; u+1,

either ie {2,3} or β c α, then β is a potential focal point of Tλtt+i.
(v) {Tξtt + ί: ξ ^ λ&t ^ s ^ t + 1} is special.

(vi) If Tλft + 1 Φ 0, then for all ξ c A, ΓA>ί + 1(0) w α potential focal point of
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Proof. We proceed by induction on t. The lemma follows easily for t = — 1.
(i) Fix δ of lower priority than λ such that Tδtt is designated but not cancelled

at stage t + 1. Fix a maximal transmission sequence S = {(σβ, iβ}: ξ c β c= (5} at
stage t + 1. Since 5 is a transmission sequence, 7^, is designated as an empty
differentiating tree, hence δ = δ~ *0. Thus if λ has higher priority than <5, then
either λ = δ~ or λ has higher priority than δ~. By 2.14(iv), TV ,(0)1, else we have
nothing to show. We note that Tλt(Φ)l and Tλt is not cancelled at stage / + 1, else
Tδtt would be cancelled at stage / + 1. It thus follows inductively from (ii) that
Tλ,t+1(0) = 7^,(0) c Tδ-0). Let < σ r , / r > be the transmission of Tξtt if such a
transmission exists. It suffices to show that for all β such that ξ~ c β c δ,
Tδ-tt(0) ^ σβ-. We proceed by induction on {β: ξ~ a β c <S}? longer strings first. If
7^ is designated as an empty differentiating tree, then β = δ, so by 2.14(iv),
Tδ-it(0) ^ σδ-. If Tβ is designated as an extension tree or as a non-empty
differentiating tree, then by induction, Tδ-t(φ) ^ σβ = σβ-. And if Tβ is designated
as a splitting tree, then by 3.5(iii), α*(7 + 1) c σ^_. By (vi) and 4.5(vii), Tδ-0) is a
potential focal point of TβΛ and if ̂  = 0, then ?V,r(0) is a focal point of Tβtt. Hence

Wί)£α*(ί+l)£σr

(ii) If ξ / yt +!, then TξΛ + x is designated if and only if Tξt is designated and not
cancelled at stage t + 1. Hence if ξ has higher priority than λ, then applying (ii) by
induction, we see that Γ^r + 1(0) = 7^,(0) c 7^f(0) = Γ ξ j ί + 1(0). Assume that
£ = y f + 1. If Case 2 of the construction of 4.3 is followed at stage ί + 1, then
£ = ξ ~ * 0, so either ξ ~ = λ or λ has higher priority than ξ ~. By induction and since
Γ^ + i <= Γξ- i f, Γ λ t f + 1(0) = Γλtf(0) cz Γ r § f (0) c Γξtt + 1(0). Otherwise, Case 1 of the
construction of 4.3 is followed at stage t + 1, and there is a δ => ξ~ and a
transmission sequence {{σβ,iβ}: p(ξ) ̂  β a δ} such that TξJ+ί(0) = σξ. By the
cancellation procedure and since Tδtt = 0, λ has higher priority than δ. Hence by (i),
Γ A f f + 1 ( 0 ) c ( T ί = Γ 5 t f + 1(0).

(iii) 2.3(i), (ii), and (v) for Tλt follow from 4.5(i), 4.5(vi) and 4.5(v) respectively.
Let Tλt receive <α, /> with ίe {1,2,3}. Fix the shortest ξ => 2 such that Γξ>ί transmits
<α, /> and 7^r is designated either as a splitting tree or as an empty differentiating
tree. If either Tξt is newly designated or if t and t + 1 are in different states on Tξ,
then by 3.5(v) and 2.14(vi), for all η c A α is a potential focal point of TnΛ which is
not a focal point of 7^,, so 2.3(iii) and 2.3(iv) hold for Tλt. We must now verify
2.3(iii) for subsequent stages. 2.3(iii) will follow for Tλt by induction unless
Tλt Φ TλΛ-γ. Thus assume that Tλt Φ Tλt-λ. Since Tξyt-i transmits <α,/> and
TξΛ-γ is not cancelled at stage t, it follows from 4.4(iii) that T^t-X prefers <α,/>.
Applying (v) inductively, we see that Tλt is a type / extension of Tλt _ x for α such
that ht(Γλf f) = ht(Γβ.f) Since Tλtt^Tβtt-l9 ht(ΓAff) = ht(Γ0, r_i). Hence by
2.14(ixa) and 3.5(viiia), t and t + 1 are in different states on Tξ, a case which has
already been considered.

(iv) We proceed by induction on lh(A), shorter strings first. Assume that for all
ξ c λ, β is a potential focal point of TξyU and that for all ( α , / ) 6 ^ ( t + i, either
ie {2,3} or β c α. If Γλ?r + ! = ΓA>ί then j5 is a potential focal point of Tλtt + 1. Assume
that Tλt +! ̂  ΓA?ί. If Tλt is designated as an initial tree or as a splitting tree, then by
2.8(i) and 3.5(ix), Tλt receives and prefers some <α, /> and 7\,ί + I is a tYPe /extension
of Tλι for α. By 4.5(vii), for all p c ΓΛjί + x - ΓΛ>ί, j? c p. Hence β is a potential focal
point of Tλt +!. Tλt Φ 0, else β would not be defined. Suppose that Tλι is designated
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as an extension tree or as a non-empty differentiating tree. Then Tλ-tt is designated
and receives all pairs which Tλt receives. Let Tλ-tt receive <α, /> with / < 1. Then
there is a ξ such that ξ~ = λ~ and Tξt transmits <α, />. By the construction of 4.3, λ
cannot have higher priority than ξ. It now follows from 4.5(iv) that for all <α, />
received by Tλ-tt, either β c α or /e{2,3}. Hence (iv) follows by induction.

(v) If λ = 0, then it follows from Remark 2.10 that {Tηy. η<^λ&t^s^
t+ 1} is special. Assume that λ Φ 0. 2.9(i) for {Tηy. η ̂  λ& t ^ s ^ t + 1} follows
from 2.12(i), 2.14(i) and 3.5(i). 2.9(ii) for {7^: >/ c λ& ί < .s < / + 1} follows from
(iv). We now verify 2.9(iii) for {Tηy. η ̂  λ&t ^ s ^ t + I}.

We proceed by induction on lh(2), shorter strings first. Thus we may assume
that {TηfS: η c λ& t ^ s ^ t + 1} is special. We assume that Γλ>ί+1 / TλΛ or that
7^, is newly designated. If Tλt + x is designated as an initial tree, a splitting tree or an
empty differentiating tree, then it follows from 2.8(i), 3.5(ix), and 2.14(xii) that
hi(Tλtt + ί) = ht(Γ 0 f ), Tλt has no transmission, and if Tλt = 0 or if Tλtt + ί is newly
designated, then it follows from 4.5(viii) that Tλt receives and prefers some <α, />
and Tλt +1 is a type / extension of Tλt for α. By 4.4(vii), we cannot have TΆtt +1 Φ TηΛ

for any η a λ. Hence ht(Tλtt+ί) = ht(Tηtt + ί) for all η c λ, and 2.9(iii) holds in this
case.

Suppose that TλJ + 1 is designated as an extension tree or as a non-empty
differentiating tree. First suppose that ΓA ί + 1 is newly designated. Then Case 1,
Subcase 1 or Subcase 2 of the construction of 4.3 is followed at stage t + 1, and by
4.5(viii), άom(TλΛ + J = {0}. By 4.5(ii), Tp(λ)Λ must newly transmit some <τj> with
j e {2,3}, hence by the proof of (iii), τ is a potential focal point of TηΛ which is not a
focal point of TηJ for all η c A~, and Γ A ί has no transmission. Hence
ht(ΓA,f + 0 = ht(Γ0, j . Again it follows from 4.4(vii) that ht(Tλit + 1) = ht(Tηft + 1) for
all η c X. Next suppose that Γ A ί + 1 is not newly designated. Fix the longest ξ a λ
such that TξΛ is designated as the initial tree or as a splitting tree. Then Tξ>t + : # Tξt

so by induction, htίΓ^f + i) = ht(77

05ί + 1 ) , Γξ?r receives and prefers some <α, /> and
Tξit + 1 is a type / extension of Tξt for α. By 2.12(ii) and 2.14(iii), it suffices to show
that Tλt receives <α, />. But this follows from 4.5(iv) and induction, as if λ~ = ξ,
then by the construction of 4.3, there can be no η such that Tηtt is designated,
η~ = ξ, and λ has higher priority than η.

(vi) Fix λ such that T^t+l(0)[. First suppose that Tλt +1 is newly designated or
that Tλtt = 0. By 4.5(viii)i dom(ΓAff + 1) = {0}. By (v) and 2.9(iii), ΓAfί + 1(0) is a
potential focal point of TξΛ + x for all ξ ^ λ. Otherwise, Tλt +1(0) = 7^,(0) which, by
induction, is a potential focal point of TξΛ for all ξ c X. By (iv), it suffices to show
that for all ξ c A and <α, iyeSξtt + l9if i ̂  1 then ΓA,r + 1(0) c α . Let <α, ΐ)eSξΛ + ι be
given with / ̂  1. By 4.4(i) and 4.4(iii), there is a transmission sequence {{σβ,iβ}:
ξ c jg c: (5} for some £ => ξ at stage ί + 1, with <σξ, iξ} = <α, /> and Tδtt = 0. If λ has
higher priority than δ, then by (i), Γ λ ί + 1(0) c σξ = α. We cannot have A = (5, as
Tδjt = 0, so by 4.5(i), Sδtt + i = 0. We complete the proof by assuming that δ has
higher priority than λ and obtaining a contradiction. Fix the longest η such that
η c (5 and 77 c A. Then £ c ^. Hence /̂  ̂  1, contradicting 4.4(ii). D

We are now almost ready to prove that lh(Γ) = 00. This fact will follow from
the next lemma about triggering sequences and their effect on the definition
of γs.
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4.7 Lemma. Let δe6^h and teN be given such that TδΛ is designated. Then:
(i) IfTδtt = 0 then Tδtt is designated as a differentiating tree. If in addition, ηe£fh

is given such that η~ = δ, then TηΛ is not designated.
(ii) If TδiS is not cancelled at stage s + 1 for all s ^ t, then {s: ys = δ} is finite.

Proof, (i) We proceed by induction on /. (i) clearly holds for t = 0. We assume by
induction that (i) holds for t — 1 in place of t.

Since at most one tree Tyut is newly designated at stage ί, we need only verify (i)
for δ = yt when Tyut is newly designated. We assume the following as an additional
induction hypothesis:

(4) If Tyttt = 0, then either there is a ξ c yt such that Tξt Φ Tξtt-ι and Tyt

triggers Tξ at stage /, or Tya is newly designated and transmits some pair.

We analyze the construction at stage t. First assume that Case 1, Subcase 1 or 2
is followed at stage t. Then there is a δ such that Tδ triggers Ty- at stage t and Tγ-,, _ x

transmits <τ,/> with /<Ξ{2, 3}. Furthermore, τ = ΓVt>ί(0) c T7t-tt, so T7t-tt φ 0 and
(i) holds. Since TΊut φ 0, (4) must also hold.

Next assume that Case 1, Subcase 3 or 4 is followed at stage t. Then no trees are
newly designated at stage t, so (i) follows by induction. These subcases can be
followed only if Tyt triggers some Tξ at stage t and Tξ>t^1 has no transmission. If
Subcase 3 is followed, then ξ = yt9 hence by 2.14(xiii), 4.6(v) and 2.9(iii), T7tίt Φ 0, so
(4) holds. And if Subcase 4 is followed, then (4) follows from 2.8(i) if ξ = 0 and from
4.6(iii) and 3.5(xiii) iίξφQ.

Suppose that Case 2 is followed at stage t. Then Tyut is newly designated. If
Subcase 1 is followed and Tγ-tt φ 0 then Tyut Φ 0. If Subcase 2 is followed, then by
4.6(v), 2.9(iii) and 2.14(xiii), TΊut will have a transmission if Tya = 0 and
Ty-j= Tyt-tt-i φ Ty-tt-2. Note that y~ = yt.ίm Hence by 4.3, both (4) and (i) will
follow once we show that Ty-J-1φφ. If γt_1φγ~_ί*0, then by 4.5(ii),
Tyt_ut-ι φ 0. Suppose that γt-ί = γ ~ * 0. We apply (4) by induction. There are two
cases to consider.

First suppose that Tyt_ut-1 is newly designated. Then by (4), if Tyt_ut-X = 0,
there is a longest transmission sequence S at stage t from Tyt_ί to Tξ. If ξ = 0, then S
is a triggering sequence, so Case 2 would not be followed at stage /. If Tξit-1

transmits <τ,/>, then ie{2,3} by the maximality of S, and as the transmission
sequence did not exist at stage t — 1, t — 1 and t — 2 are in different states on Tξ.
Again, S is seen to be a triggering sequence, so Case 2 could not have been followed
at stage t. Otherwise, 0 c ξ c yt_λ and TξΛ-λ has no transmission. By 2.14(xiii),
4.6(iii)and(v), and3.5(xiii), Tξtt-1 φ Γ ί > ί_2. Hence by 4.4(vi) there is an η such that
Tyt_i triggers Tη at stage t. Again we see that Case 2 could not have been followed at
stage t. We must therefore conclude, in this case, that Tγt_ltt-1 φφ.

Finally, suppose that Tyt_ut-λ is not newly designated at stage t — 1. If
Tyt_ut-ι = 0 , then it follows from (4) and 4.4(vi) that Tyt _ 1 triggers some Tη at stage
/, so Case 2 is not followed at stage /. Hence again we conclude that Tyt_ut-ι Φ 0.

(ii) Suppose that TδΛ is designated and TδtS is not cancelled at any stage
s + 1 > /. If s > t and ys = δ, then Tδ = 0 must be a trigger at stage s. We proceed
by induction on {β: β ̂  δ}, longer strings first. For each such /?, we show that
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{s: Tδ triggers Tβ at stage s} is finite, thus proving (ii). First suppose that β = δ. If
r > s> t and Tδ triggers Tδ at stages r and s, then by 2.14(xi) and 2.14(xiii), the state
of s on Tδ lexicographically precedes the state of r on Tδ. Since there are only finitely
many possible states, by 2.14(x), there must be a stage t(δ) > t and a pair (σδ-, ίδ- >
such that for all s ^ t(δ), s and t(δ) are in the same state on Tδ and TδtS transmits
(σδ-,iδ-y. Thus Tδ cannot trigger Tδ at any stage s > t(δ). If ίδ- e {2,3}, then Tδ

cannot be a trigger after stage t(δ), so the proof of (ii) is complete.
Assume by induction that {s: Tδ triggers Tβ at stage s} is finite. We will have the

following induction hypothesis:

(5) There is a stage t{β) > t and a sequence {<σA, iλ}: β~ ^ λ a δ} which is a
transmission sequence for all s ^ t(β).

(5) has been verified in the preceding paragraph for β = (5. Note that 7^ - s is not
cancelled at any stage s + I > t. Hence we may define Tβ- = U{Tβ-tS: s > t} and
designate it in the same way in which Tβ-tt is designated. If Tβ- is designated as an
extension tree or as a non-empty differentiating tree, then by 2.12(ii), 2.14(iii) and
induction, Tβ-S transmits (σβ-,iβ-} for all s^t(β). Furthermore, Tδ cannot
trigger Tβ-. Hence t(β~) = t(β) and (5) holds. If Tβ- is designated as an initial tree,
then β~ = 0 and Tδ triggers T0 at stage t(β). By (5) and 2.8(i), Tδ triggers some Tη at
stage t(β) + 1 with 0 <= η c δ, contrary to the choice of t{β). Hence if β~ = 0, we
have completed the verification of (ii).

The remaining case is when Tβ- is designated as a splitting tree. By 4.4(iii), Tβ-tS

prefers (σβ-Jβ-} at all stages s ^ t(β). If r > s ^ t(β) and Tβ-tf and Tβ-tS transmit
different pairs, then by 3.5(xi), r and s must be in different states o n Γ r ; by 3.5(xii),
the state oϊs on Tβ - lexicographically precedes the state of r on Tβ -, unless there is a
stage u such that s <u^r and Tβ-tU φ Tβ-tU-1. If no such stage w exists, then all
sufficiently large stages must be in the same state on Tβ-9 so t(β~) must exist as
specified in (5). But if u exists, then by (i), Tδ would trigger some Tη at stage u + 1
with β~ a η c δ, contrary to the choice of t(β). Hence (ii) must hold. 0

The lemmas just proved enable us to verify the success of the construction. We
first show that Γ is an infinite path through <%.

4.8 Proposition. lh(Γ) = oo. Furthermore, there are y(m)e^h and t{m)eN such
that:

(i) lh(y(m)) = m.
(ii) For all t ^ t(m), either yt => γ(m) or yt has lower priority than y(m).

(iii) {r: yr ZD y(m)} is infinite.

Proof. We proceed by induction on m. (i)-(iii) are easily verified for m = 0. Assume
that (i)-(iϋ) hold for m = k — 1. Since {y e £ζ: lh(y) = k} is finite, it follows from (iii)
that there is a y(k) => y(k - 1) of highest priority such that \h(y(k)) = fcandys ^ y{k)
for infinitely many s. Fix a stage t(k) such that Tγikhs is not cancelled at any stage
s ^ t(k). By (ii) for m = k - 1, it follows that Γy(fc_ 1 M is not cancelled at any stage
s ^ t(k — 1), hence by 4.7(ii), t(k) must exist, (i) and (ii) are now easily verified for
m = k. And (iii) is immediate from the choice of y(k) and 4.7(ii).

We now note that Γ = U{y(ra): meN}, so by (i), lh(Γ) = oo. D
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For each βe^h such that β has higher priority than Γ and Tβtt is designated at
infinitely many stages t, it follows from 4.8 that there is a least stage t(β) such that
TPtt is not cancelled at any stage t > t(β), TβΛβ) is designated, and if there is a
t ^ t(β) such that Tβtt(0)l then TβΆβ0)[. For such β, let Tβ = U{Tβ,t: t > t(β)}, and
let Tβ have the same designation as TβMβ).

Let 0(x) = lims ocs(x) for all x for which this limit is defined. We now show that
lh(0) = oo.

4.9 Proposition. lh(g) = oo α«J g ̂  0'.

Proof. Since {αs: seN} is recursive, if \h(g) = oo then g ̂  0'. We show that
\h(g) = oo in a two part proof. Let g* = U{Γy(0): y c Γ } . We first show that
lh(g*) = oo and then show that g = g*.

Let y cz Γ be given such that y Φ 0 and lh(y) is even. If y = y~ *0, then by
2.14(viii), lh(Γy(0)) > lh(Γy-(0)). And if y = y~ * 1 then there is a pair <α, /> such
that Γy-^cί transmits <α, /> at all sufficiently large stages, ie{2,3}, and Γy,f(0) = α.
By 2.14(vii), lh(Γy(0)) > lh(Γy-(0)). Hence lims{lh(Γy(0)): lh(y) = *&y c Γ} = oo.
Since Ty ̂  Ty for all y c Γ such that y / 0, lh(^*) = oo.

We will show that g = #* by proving that for all y c Γ such that lh(y) is even and
all t 2* /(y), Γy(0) c αf. Fix such a y. By 4.8(ii), for all t ^ /(y), either αf - Tδjt(0) for
some (5 of lower priority than y, or there is a (5 of lower priority than y such that
Tδtt-ι is designated but not cancelled at stage t, {ζσβ,iβ): ξ ^ β cz δ} is a
transmission sequence at stage t, Tξίt-1 transmits <σ, /> and α, = σ. Hence by 4.6(i)
and 4.6(ii), Γy(0) c α,. D

We are now ready to prove the main theorem of this chapter.

4.10 Theorem. Let $£ be a finite lattice. Then there is a function g of degree ^ 0' such
that 2[0, g] - jSf.

Proof By 4.9, it suffices to verify 1.15(i) and 1.15(ii). Fix m e Nand ij < n such that
ut ^ Uj. Let <ra, /j'> be the eth triple in the ordering described earlier in this chapter.
Fix y cz Γ such that lh(y) = 2e + 2, and let y* = y " * 0. Then Ty* is designated as an
<ra, /^-differentiating tree. If y = y*, then since lh(#*) = oo, Γy(0)|, so by 2.14(i),
Tγ is <m, ίj>-differentiating. Otherwise, y = y" * 1 and y~ cz Γ, so since
lh(#*) = oo, Γy-(0)i. By the construction, Γ y V will transmit <Γy(0),2> at all
sufficiently large stages and 7^*0 = 0- Since gczTy-, Ty- is infinite, and if
Ty-(η) = Γy(0), then PExtf(Ty-,η) is infinite since Γy(0) cz g. Hence by 2.14(xiii)
and 2.15, Ty is <ej>-divergent. Thus 1.15(i) holds.

Fix e e N a n d y cz Γ such that lh(y) = 2 ^ + 1 . Let y = y~ *m. We verify 1.15(ii)
by induction on k. We also assume the following induction hypothesis:

(6) There is a sequence un = uno > unί > > unk of elements of i f such that
Ty-*k has no ^-splittings mod«k, and Ty-*k is designated as an e-splitting
tree for nk.

The induction hypothesis is easily verified for k = 0, as no tree has e-splittings
modwn. By 3.5(i), Ty-*k is an e-splitting tree for nk. Hence if Ty-+k is infinite, then
k = m, and 1.15(ϋ) will hold. Otherwise, Ty-*k is finite, so Ty-*ik+1) must be
designated. Hence Ty-*k must transmit some <α,/> at all sufficiently large stages
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with ie {2,3}, so by 3.5(x), Ty-*k must prefer some pair. If Ty{η) = α, then since
α c ^ c Γ Γ , PExtf(Ty-,η) is infinite. Hence by 4.6(iii), 4.6(v), 3.6 and the
construction, either y = y~ *(/c + 1) and Ty is <e, π>-divergent, or there are no e-
splittings moάnk+ι on Tγ-*ik + ί) for some nk + 1 such that wΠk + 1 < unk. lϊ nk+ι Φ 0,
then (6) holds for k + 1 since Ty-*{k + υ is designated as an ^-splitting tree for nk+ί.
And if «fc+1 = 0 , then Γy-*(fc+i) n a s n o ^-splittings modO, so Tγ-^{k+1) is an e-
splitting tree for 0. Since if is finite, the induction must terminate with Ty satisfying
1.15(ii). 0

The methods introduced in this chapter can be combined with the methods of
previous chapters to prove generalizations of Theorem 4.10. Some generalizations
of this sort are discussed in the next section.

5. Generalizations and Applications

The methods introduced in this chapter are compatible with methods used to prove
many of the theorems about minimal degrees. Thus similar theorems can be proved
for other initial segments of the degrees. The proof of Theorem 4.10 can also be
extended to embed other usls as ideals of ^[0,0 ' ] . We discuss such results in this
section. We will not give any complete proofs. Rather, we will sketch the changes
which need to be made in the proof of Theorem 4.10 in order to prove the more
general results. We will also discuss applications of these results.

The first category of generalizations which we consider deals with embedding
infinite usls which have a least element as initial segments of ^ [0 ,0 ' ] . Not all
countable usls with least elements can be embedded in this manner. In fact, by
Theorem VIΠ.2.2, if g ^ 0' then ^ [ 0 , g] is g ( 3 ) ^ 0 ( 4 ) presentable. Furthermore, by
IV.3.11, if ^ [ 0 , g] is a lattice, then g e L 2 so ^ [ 0 , g] is g ( 3 ) = 0 ( 3 ) presentable. Shore
[1981] has shown that ^[0,0 '] has no presentation of degree < 0 ( 4 ), so there is no
nice characterization of the initial segments of ^[0,0 '] in terms of the jumps of
degrees of presentations. We will show that if if is a 0 ( 2 ) presentable usl with least
element, then there is a g ^ 0' such that ^ [ 0 , g] ~ 5£. We will lead up to this result,
beginning with recursively presentable usls.

5.1 Theorem. Let 3? be a recursively presentable usl with least element. Then there is a
g ^ 0' such that S£ ^ 0[O, g].

Sketch of Proof. The proof of Theorem 4.10 readily combines with that of Theorem
VIII. 1.8. Set up a recursive list of all requirements, and a recursive increasing
sequence {i^ : ieN} of finite lattices such that the embedding <£ x d> J?i + ί preserves
the ordering and least upper bounds of S£^ with if = U{ifj: ieN} having universe
N. The sequence {^-.ieN} gives rise to a uniform sequential lattice table for if. If
we allow our trees to increase in width as we progress from tree to tree to make use
of the lattice table as in Theorem VIII. 1.8, then this modification to the proof of
Theorem 4.10 and B.3.29 will yield a proof of the above theorem. D

The proof of Theorem VI.4.6 can be adjusted to use Theorem 4.10 to obtain the
following result due to Epstein [1979] and Lerman.
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5.2 Corollary. Th(®[0,0']) is undecidable.

The characterization of the degree of Th(^[0,0 ;]) was obtained by Shore
[1981], and relies on Theorem 5.1.

5.3 Theorem. Th(^[0,0']) has degree 0 ( ω ), the degree of the first order theory of
arithmetic.

The outline of the proof of Theorem 5.3 is the same as that of Theorem VIII.3.5.
We need a way to code arithmetic through a lattice, and embed that lattice below a
degree d as an initial segment. The lattice must be given in a sufficiently effective
way so that exact pairs below 0' will be available for the ideals which need to be
picked out. Shore defines distributive lattices with this property, and proves an
Exact Pair Theorem (see Theorem III.8.6) which produces exact pairs for the
necessary ideals. Theorem 5.1 allows us to embed such lattices as initial segments
below 0' and thus prove Theorem 5.3.

Shore's Exact Pair Theorem can be used to pin down the sets which are coded by
exact pairs in certain intervals of degrees. Using the translation of arithmetic
provided by Theorem VIII.3.5 into the theory of various intervals of degrees, Shore
[1981] obtains the following results.

5.4 Theorem, (i) ^[0,0'] ψ
(ii) 0[O,O'] #^[0 ' ,0 ( 2 ) ] .

(iii) If a ^ 0', then every presentation of the usl @[0, a] has degree ^ a ( 3 ).
(iv) Ifa^O' then every presentation of the usl £^[a, a'] has degree ^ a(4).

Theorem 5.1 can also be used to obtain the following improvement on Theorem
VIΠ.4.1 (Shore [1981]).

5.5 Theorem. If 2' = &'[b, oo) then b ( 3 ) = 0 ( 3 ).

The ideas mentioned in the sketch of proof for Theorem 5.1 can be extended to
embed 0' presentable usls with least elements as ideals of ^ [ 0 , 0 ' ] .

5.6 Theorem. Let 5£ be a 0'presentable usl with least element. Then there is ag ^ 0'
such that <£ ~ ®[0,g].

Sketch of Proof Changes must be made to the sketch of proof for Theorem 5.1 to
take the non-recursiveness of if, and hence the non-recursiveness of the set of
requirements into account. By the Limit Lemma, there are recursive approxi-
mations to each of these sets. Whenever such an approximation changes its value
for a given requirement or finite lattice in the approximation to if, we cancel the
part of the construction which was performed using the information which was just
changed, and pick up from the last stage at which everything performed during the
construction through that stage still seems to be correct based on current
information. This cancellation agrees well with the construction carried out in Sect.
4, and is performed as the first step at every stage of the construction. The proof of
the theorem now follows very closely the proof of Theorem 4.10 with this
cancellation taken into account. Note that Appendix B.3.28 allows us to extend the
sequential lattice table for S£{ to one for i? i + 1, so this revised construction can be
carried out without changing any trees based on correct information about if. D
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We now discuss the modifications to the above proof which will allow us to
embed 0 ( 2 ) presentable usls with least element as ideals of ^[0,0 ' ] .

Let <£ be a 0 ( 2 ) presentable usl. Then there is a sequence^ c JS?X c of finite
usls which is recursive in 0 ( 2 ) such that i f = U{JSP£: /e N}. The fact that {j^ :ieN} is
recursive in 0 ( 2 ) implies, by two applications of the Limit Lemma, that there is a
recursive array {J?ijy. iJ,keN} such that for each ieN, J^ = lirnjlimk jSfίsJ sfc.
Fixing / e TV, we thus have an array as in Fig. 5.1 such that if we look at the limit J£fj
along columny, then £^fj = i ^ for all but finitely manyy e N. And if jSf ̂  = jSff, then
&iJtk = S£χ for all but finitely many keN.

cp* cp* cp*
~Z ί ,0 ~Z i,l -** i,2

Fig. 5.1

We list all potential requirements (differentiating requirements of the form
φ0 o > φ 0<ι> are listed for all / and j), in a recursive list {JRt: /e JV}. We try to satisfy
requirement Rt with respect to the sequence of trees generated by the tables for a
sequence of lattices {^Jk'.j ^ /} for various choices of k > i. We will try to satisfy
Ri with {JCfy.j ^ /} at stage k only if either k = /or {if*k_i :y < /} # {^*k:y ^ 0-
Since, for ally and all sufficiently large m and k, J£Jk = if*m, only finitely many
such attempts will be made.

Since the sequences {J£*k:j ^ /} are recursive only in 0', we will approximate to
them recursively, using {JSfj jfc>l. :j ^ /} at stage r. If such a sequence changes for fixed
k between stages r and s, we cancel what we have done since stage r, and begin with a
new attempt to satisfy Rι with the new sequence. Since, for ally and k, there is an r
such that for all t ^ r, J£jXt = JSf *k, again only finitely many cancellations will be
required.

The first few steps of the construction will proceed as follows. We will keep
trying to satisfy Ro on i?o,o,ί using a tree T% 0 , cancelling what we have done

whenever J£?o,o,i + I # %,o,ί Eventually, JS?o,oft = <^o,o f° r a1^ ̂  ̂  r ' s o w e w i ^ m a k e

a final attempt to satisfy Ro through <£% 0 . We now try to use i f J x and if J x to
satisfy both Ro and ̂ ^ We approximate to S£%Λ and i f * x using ifo,i,r

 a n ( l «^fi,i,ίas

before, arriving at final lattices. If 5£%Λ Φ £?*^ we define α0 = ΓJfO(0) and try to
satisfy ^ 0 using a tree Γ* x with respect to the table for 5£% ί, with α0 cz Γ* 4 and we
attempt to satisfy Rί using a subtree T\Λ c Γ*>x defined in terms of the tables for
5£%Λ and i f * ̂  (Without loss of generality, we can arrange that <£\ γ extends <£% 1 5

and that all elements mentioned in any Rt are in ££*v) If ^£% 1 = $£% 0, then we
make no new attempt to satisfy Ro. By Appendix B.3.28, we can extend the table for
J£%0 to one for Ϊ£\Λ, and so satisfy Rx on a subtree of T$ 0 . Thus we will eventually
satisfy Rt for ^ if its conditions are consistent with the ordering of J^, and
construct a sequence of subtrees satisfying all requirements for {^ :ieN}. We have
thus sketched a proof of the following theorem.
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5.7 Theorem. Let Jg be a 0 ( 2 ) presentable usl with least element. Then there isag^ 0'
such that <£ ~ ®[0,g].

Suppose that we start with a usl if, and produce g ^ 0' such that ^ [ 0 , g] ~ if.
We would like to locate g in the high/low hierarchy. If i f is 0' presentable, it will
follow from the Jump Theorem or the existence of such a g below an arbitrary non-
zero recursively enumerable degree that it is possible to find g e L! in this case. Since
narrow subtrees and e-total subtrees can be introduced into the construction and
produce no new complications, their use as in Chap. V.3 enables us to produce such
a g e L 2 — Li. Hence:

5.8 Theorem. Let i f be a 0 ( 2 ) presentable usl with least element. Then there is a
g e L 2 - Li such that ^[0,g] ~ i f

Note that if the ^£ of Theorem 5.8 is a lattice, then by IV.3.11, the corresponding
g must lie in L 2.

The proof which we have presented for the Cooper Jump Inversion Theorem
(Theorem X.2.1) makes use of an oracle of degree 0', and so cannot be combined
with the recursive approximation proof of Theorem 4.10. However, Cooper's
[1973] original proof of this theorem proceeds by recursive approximation, and can
be combined with the construction of Sect. 4 by approximating to the trees used in
Chap. X instead of those used in this section. The resulting proof is similar in nature
to producing g below a non-zero recursively enumerable degree, a construction
which we will sketch. We will need if to be a O'-presentable lattice, essentially since
the proof requires that we determine whether we are looking at a sequence of trees
(and hence a table) for the true approximation to ^£. We state the jump theorem
here without proof.

5.9 Theorem. Let if' bea 0' presentable usl with least element, and let d ^ 0' be given.
Then there is a degree g such that ^ [ 0 , g] ~ if and g' = d.

5.10 Corollary. Let if' be a 0' presentable usl with least element. Then there is age Li
such that @[0,g] ^ <£.

We now turn our attention to finding specified initial segments below fixed
degrees. Two such theorems were proved for minimal degrees. If d is a degree,
then either of the following conditions guarantee the existence of a minimal degree
below d:

(1)

(2) d / O&d is recursively enumerable.

The proof of (1) used an oracle construction which cannot be combined with the
proof of Theorem 4.10. We do not know if such a result holds for arbitrary finite
lattices. However, if d e Hj then Cooper [1973] has produced a minimal degree ^ d
through a proof which proceeds by recursive approximation. Posner [1980]
presents an easier proof of this kind. Either of these proofs can be combined with
the proof of Theorem 4.10 to yield:

5.11 Theorem. Let ^ bea 0'presentable usl with least element, and let άeHibe given.
Then there is a g ^ d such that ^ [ 0 , g] ~ ^£.
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The proof of (2) in Theorem XI.2.2 uses a construction which proceeds by
recursive approximation and is compatible with the proof of Theorem 4.10. Hence
we can prove a generalization of (2) which will imply Corollary 5.6.

5.12 Theorem. Let J£ be a 0' presentable usl with least element and let a Φ 0 be a
recursively enumerable degree. Then there is a g ^ a such that ^ [ 0 , g] ~ if.

Sketch of Proof. Let A be a recursively enumerable set of degree a, and let
{as: seN} be a recursive enumeration of 4̂. yl will permit αs to change to α s + 1 if
αs ^ x, where x is the least y such that α s(j) Φ αs+ ̂ j ) . If no such j exists, then ̂ 4
permits the change.

It is best now to view the construction of the trees as proceeding simultaneously
with the construction of {αs: seN}. If there is no trigger at stage s + 1, then it can
easily be verified that α s + i ^ αs so no problems arise. So let us consider trees
involved in triggering sequences. If such a tree is designated as an extension tree or is
non-empty and is designated as a differentiating tree, then no changes need to be
made.

We first consider Tδ designated as a differentiating tree with Tδ = 0. We require
that A permit all transmissions of Tδ in the following sense. Let Tδ transmit <α, /> at
stages. If/ e{0,1}, then this is only allowed if as ^ Tδ-(Φ). And if / = 2, then A must
permit αs to change to α. If transmissions are disallowed, begin constructing a new
attempt at a differentiating tree above αs, proceeding as before but replacing Tδ-(0)
above with αs. This process continues as long as the obstacles to all trees are due to
permitting. New states are inserted to reflect the wait for permitting, and earlier
attempts have higher priority. Cancellation follows the priority ordering, but if a
lower priority attempt reaches a later state than a higher priority attempt, then the
higher priority attempt is cancelled. Since only finitely many states exist, if we look
at the greatest state in which infinitely many attempts terminate (assuming that
permitting is always the obstacle to the attempt), we see that attempts in this state
are never cancelled. Hence if we wait for A to permit on larger and larger strings,
then we can compute A recursively, and so obtain a contradiction. Hence
differentiating trees will have the right properties, i.e., a last successful attempt
will be made, and this tree will be used at all sufficiently large uncancelled
stages.

Consider Tδ designated as a splitting tree. We assure the construction of an
appropriate tree as in the preceding paragraph once several comments are made. If
Tδ wants to transmit <α, 3> at stage s, then this transmission is allowed if αs permits
α. TδΛ may receive many pairs <α, /> for ie {0,1} at stage t. It prefers the pair of
highest priority (in terms of its transmission sequence) for which A permits the tree
to change state. If A will not permit a certain transmission and Tη is the
corresponding trigger, then the new attempt begun is an attempt to replace Tηtt with
another differentiating tree. Thus a notion of characteristic must be defined for a
transmission sequence, listing the state of each pair along the way (state 0 is
specified for trees with no states such as extension trees). The argument about states
in the previous paragraph becomes an argument using the ordering of the finitely
many possible characteristics.

If Tδ is designated as an initial tree, then preference must be redefined as in the
preceding paragraph. Otherwise, the construction of this tree is unchanged.
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As we stated, each time a new attempt is started, it must be above αs. We will
always be able to choose some β 3 αs which is a potential focal point of Γ0 but not a
focal point of T0J at which to begin this attempt. Thus the sequences of trees will
still be special. No other changes are required in the construction. D

Shore [1981] uses Theorems 5.11 and 5.12 combined with theorems about exact
pairs to characterize the degree of Th(^[0,a]) for a e H i and for a ^ O and
recursively enumerable. The proof is along the lines sketched for the proof of
Theorem 5.3. Epstein [1979], [1981] had previously obtained the undecidability of
Th(0[O,a]) for

5.13 Theorem. Th(0[O,a]) has degree 0 ( ω ) if either:
(i) a e H , .

(ii) a ^ O & a ύ recursively enumerable.

All the results of this section can be relativized. Care must be taken, when
talking about arithmetic, to include the definability of certain degrees in the
hypothesis of some of the relativizations.

We have just touched on some of the applications which can be made using
initial segments results for the degrees below 0' and other classes of degrees. We
refer the reader to Nerode and Shore [1980], Shore [1981] and [1981a], and
Epstein [1979] and [1981] for proofs of the applications mentioned in this section
and some further results.




