
Chapter X

Jumps of Minimal Degrees

Jump inversion theorems are used to characterize the range of the jump operator on
various classes of degrees. In Chap. Ill, we proved two such theorems. The
Friedberg Jump Inversion Theorem classified J[0, oo), the range of the jump
operator on D[0, oo), as D[0', oo). And the Shoenfield Jump Inversion Theorem
classified J[090Ί, the range of the jump operator on D[0,0'], as D[0',0(2)l n {d: d is
recursively enumerable in 0'}. This chapter is devoted to a proof of the Cooper
Jump Inversion Theorem which classifies J(M), the range of the jump operator on
the class of minimal degrees, as D[0', oo). This result contrasts sharply with the
classification problem for J(M[0,0']), the range of the jump operator on the class of
minimal degrees below 0', a problem which is still unsolved. The natural analogy
would be to guess that J(M[0,0']) = D[0',0(2)] n {d: d is recursively enumerable in
0'}. However, by IV.3.6, if de J(M[0,0']) then d' = 0 ( 2 ), so this guess is incorrect.
Jockusch has conjectured that J(M[0,0']) = {d: d ^ 0' & d' = 0 ( 2 ) & d is recursively
enumerable in 0'}.

L Targets

The strategy for proving the Cooper Jump Inversion Theorem is to combine the
construction of a minimal degree using partial trees with the ideas introduced in the
proof of the Friedberg Jump Inversion Theorem (III.4.2), making certain
important modifications. One of these modifications involves defining a jump
target function, which we do in this section. The proof of Cooper's theorem is
presented in Sect. 2.

Given C ^ TV, we build a set A such that A' = τ C © 0' as the union of a sequence
{αs: s e N} of binary strings, through the use of an oracle of degree 0'. At stage e of
the construction, we try to resolve whether or not Φf(e)i. As, for s > e, αs will be
constrained to lie on certain partial recursive trees, we will not be able to ask an
oracle of degree 0' the same question as we asked in the proof of the Friedberg Jump
Inversion Theorem. For with most reasonable recursively defined conditions, the
search for a string which satisfies these conditions and which is not terminal on a
given partial recursive tree requires an appeal to an oracle of degree 0 ( 2 ). We
therefore ask a different question, and insure that the answer to the new question at
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stage e of the construction will be the same as the answer to the question "Φf(e)l ?".
We ask if we can find an extension α of αe for which Φ*e(e)l and which is potentially
on a certain tree T. Potentially will mean that we are looking at a recursive
approximation {Ts:seN} to T and we seek s e N and α of length ^ s which is either
on Ts or extends a terminal branch σ of Ts. In order to insure that the answers to the
two questions are the same, we require that if σ a A then α c ^ . Thus we define a
target function for T which, when given σ and e, outputs the e-target α towards
which any extension of σ on Γmust head at stages ^ e. The use of targets is similar
to that in III.5.6.

Given an index i for a partial recursive tree Th a recursive approximation
{TifS: seN} to Tt is generated in a natural way, where Tt = U{ΓίfS: s e N } , Γ ί s + 1

extends ΓίjS and Tis is finite for all seN. Similarly, λ e6f (the set of strings) can be
thought of as coding recursive approximations to {Γ,: i < \h(λ)} where λ(i) is an
index for the partial recursive tree Tt. Each tree used in this chapter is specified
through a particular recursive enumeration. Hence no confusion should arise when
we identify a partial recursive tree with an index for one of its enumerations, or if we
identify a finite sequence of partial recursive trees with λ e Sf coding indices for the
trees in the sequence.

The following definition will be useful in defining the jump target function.

1.1 Definition. Let Γbe a tree and let βe^2 be given. Then β is compatible with Γif
either β c T(ξ) for some ξ e 5^ such that T(ξ){, or β ID σ for some terminal σ c T.

Target functions point the way to leave a tree T if A must leave T. However, T
may be a subtree of another partial tree T* which A may also be forced to leave, so
Γ* must have its own target function. In order to successfully combine the use of
partial trees with target functions in this setting, these target functions will have to
be mutually consistent. Thus a target function for Γcannot consider Γin isolation.
Rather, it will depend on a finite sequence of trees Id2 = To 3 τί ^ 3 Tk= T.
We will need to specify an index for computing To = Id2 in order to begin the
construction. Thus we specify the particular recursive approximation {Id2,s: seN}
to Id2 defined by

iσ if lh(σ) ^ s
Id2 Jσ) = <

' [ | otherwise.

The target function used to prove the Cooper Jump Inversion Theorem is now
introduced. Recall that for all λe <f for which lh(λ) > 0, λ~ = λ \ (lh(λ) - 1). We
will also use λj to denote λ Γ j + 1 fory" < lh(/l). Thus if λ codes the sequence of trees
T0,Tί9...,Tm and j ^ m, then λj codes Γo, Tu ..., Ty

1.2 Definition. The jump target function f'.^x^xN1^^ is defined by
induction on lh(Λ,) — 1 for those λ e 6f coding sequences of trees {Tt: i ^m =
\h(λ) - 1} such that Ti + Us c Tis for all seN and / < m, and then by subinduction
on {s\ se N}. f(σ,λ,n,s) produces the w-target for σ at stage s with respect to the
sequence of trees coded by λ. This ^-target will specify a string τ which forces n into
the jump, i.e., Φx

n{ή)[. Fix a recursive one-one correspondence {σι\ ieN} of 5^ with
N such that for all iJsN, if lh(σt) < lh(σ7) then / < /
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Stage 0. lh(A) = 1 and A codes {Id2,s: s e N}. We proceed by induction on s, defining
/(σ, A, n, s) =f(σ, λ,n,s - 1) if s > 0 and/(σ, A, n, s - \)[. Otherwise, we search for
the least / such that σt c Id2, s, σ £ σ, and Φ ^ ( Λ ) | , and set/(σ, A, Λ, Λ) = σ, . If no such
/ exists, then/(σ, A, n, s)f. Thus at stage 0, we have defined targets for all strings of
length ^ s for which a potential target of length ^ s exists, as Γ0,s = Id2, s. By our
compatibility constraints, we will always choose targets at subsequent stages from
the list of targets already found, and so will only have to worry about making our
choices consistently at later stages.

Stage m > 0. \h(λ) = m + 1 and A codes {Tt: i ̂  m}. If there is a ξ e ίf2 such that for
all t, if Tmtt Φ 0 then Tm,t = PExt 2 (Γ m _ l f t ,ξ), let f(σ,λ9n9s) =f(σ,λ-,n,s) for all
σ, n and s such that σ <= Tms and/(σ, λ~,n,s)l. Otherwise, we assume by induction
that/(σ, λ~,n,s) has been defined for all σ e 5 ^ and n,seNsuch that/(σ, A",«,ί) | .

Substage s. Proceed by induction on lh(σ). If σ φ Tms (in which case a definition is
irrelevant) or either n > s or lh(σ) > s (and so a definition is premature), then
f{σ,λ,n,s)\. Thus fix σ a Tms such that lh(σ) < s and we TV such that n ̂  s. We
proceed by cases.

Case 1. f(σ,λ,n,s — 1) | and is compatible with TjfS for all j ^ m. Let
f(σ,λ,n,s) =f(σ,λ,n,s — 1). In this case, we preserve the previous definition,
which remains compatible with all trees of sufficiently high priority.

Case 2. Case 1 is not followed, lh(σ) > 0, and there is a δ c σ such that
/(<5, A, n,s)l 3 σ. Fix such a <5 of shortest length, and let/(σ, λ, n, s) = f(δ, A, n, s). In
this case, we define the ̂ -target of σ at stage s to be the same as the ̂ -target specified
by some δ a σ.

Case 3. Neither Case 1 nor Case 2 is followed and there is a τ =D σ such that
/(τ, λ,n9s — 1) | and is compatible with TjtS for ally ^ m. Fix the least such τ and let
/(σ, A, n, s) = /(τ, A, n, s — 1). In this case, we will later define /(τ, A,«, s) =
f(τ,λ,n,s — 1) through Case 1, and will want σ and τ to have the same ^-target.

Case 4. None of the first three cases is followed and there i s a y c Γ m _ l s such that
/(y,λ~,n,s)l Ώ. σ and is compatible with Tms. Fix the least such y and let
f(σ,λ,n,s) =f(y,λ~,n,s). In this case, we choose a suitable ^-target from the n-
targets of the previous tree.

Case 5. Otherwise. Then/(σ, A, n, s)t No definition is possible here if the ^-target of
σ is to force the jump on n and be compatible with Tj for all j ^ m.

For the remainder of this chapter, we fix / as the jump target function
introduced in Definition 1.2.

The next lemma summarizes the important properties of the jump target
function.

1.3 Lemma. The jump target function f is a partial recursive function with recursive
domain. Fix σ e ̂ , n, s e N and λe£f such that A codes {Tt: / ̂  m). If f(σ, A, n, s)[,
then:

(i) Φ^λ^s\ή)i & n^s & l h ( σ ) < j & d c Γ m i S & σ^f(σ,λ,n,s) &
/(σ, Ao, n, s) c TQ9S. (This condition places an effective bound on the domain off and
stipulates that the n-target of a string always extends that string and is on To.)
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(ii) lh(λ) > l^3ye^2(f(σ,λ,n,s) = f(y,λ~,n,s)). (Thus the range of f on
Tms is contained in the range of f on Γm_1>s.)

(iii) V/ ̂  m(f(σ,λ,n,s) is compatible with Tjs). (Thus the n-target for σ for a
particular tree is eligible to be placed on all previous trees in the sequence of trees.)

(iv) /(τ, λ,n,s — 1) j and is compatible with ThSfor all] ̂  m ->/(τ, λ, n, s)[ =
/(τ, λ, n, s — 1). (Thus once defined, n-targets do not change unless an incompatibility
with a previous tree in the sequence of trees is discovered.)

(v) \fδe^2(δ c σ & έ c TmrS -+f(δ,λ,n,s)l). (Thus the property of having an
n-target is closed under inclusion for strings on a given tree. Warning: It is possible for
ί c ( r c Tms and yet δ φ Tms. For δ cz Tms says that δ is in the range of Tms, but
δ cz σ cz TmtS says that δ is compatible with the range of Tms.)

(vi) Vτ cz Tms(Φτ

n(n)[ ->/(τ, λ, n, s)[ = τ). (Thus if τ forces the jump on n, then τ
has itself as an n-target.)

(vii) Vτ c Γm,s(σ ςz τ ^f(σ, λ, n, s) ->/(τ, λ, n, s)i =f(σ, λ, n, s)). (This con-
dition stipulates that ifτ is contained in the n-target ofσ, then τ has the same n-target
as σ.)

(viii) m > 0 ->f(σ,λ~9n9s)l. (Thus the assignment of n-targets to strings must
proceed tree by tree in the sequence of trees.)

(ix) lh(A) > 1 & σ terminal on Tms ->/(σ, λ, n, s) =/(σ, λ~,n, s). (Thus we can
specify y in (ii) when σ is terminal on Γm s.)

(x) 3ξey2\/t(Tm,tφφ^Tm,t = ?Ext2(Tm-Ut,ξ))^f(σ,λ,n,s)=f(σ,λ-,n,s).

Also, if m > 0 andf(σ,λ~,n,s)[ and δ c= σ and δ cz Tms, then:

(xi) Iff(σ,λ~9n,s) is compatible with Tms then f(δ,λ,n,s)[. (This condition
asserts that if there is an n-target of a string onTm-ι which is a suitable choice for the
n-target ofδ, then such an n-target from Tm-1 is chosen as the n-target for δ. There
may be many possible choices for the n-target for δ coming from Tm-U so we cannot
specify this n-target.)

Proof The proof is by induction, first on lh(/l), then on s, and finally on lh(σ). Fix
m, σ, n, s, λ and {λj :j^m} as in the hypothesis of the lemma. If/(σ, λ, n,s)l, then
φ/(σ,Λ,n,s)^| ^ induction and the definition o f / a t stage 0.

(i)-(xi) are easily verified if for some ξ e £f2 and all teN, if TmΛ Φ 0 then
Tmt = P E x t 2 ( T m _ u , ξ). Assume this not to be the case, and assume that
f(σ,λ,n,s)l.

(i) Immediate from Definition 1.2 and induction. It thus also follows that / is
partial recursive with recursive domain.

(ii) Assume that lh(/ί) ^ 1. If/(σ, λ9 n, s) is defined through Case 1 or Case 3 of
Definition 1.2, then there is a τ 3 σ such that /(σ, λ, n, s) =f(τ,λ,n,s — 1). By
induction on s applied to (ii), there is a y cz Tm-ιtS-ι such that/(τ, λ,n,s — 1) =
f(γ,λ~9n,s — 1). By Cases 1 and 3,/(y, λ~,n9s — 1) =f(τ,λ,n,s) is compatible with
Tjs for all j^m, hence applying (iv) by induction on λ, f(y,λ~,n,s) =

f(y, λ~, n, s — 1) = f(σ, λ, n, s). If/(σ, λ, n, s) is defined through Case 2 of Definition
1.2, then there is a δ cz σ such that /(σ, λ,n,s) =f(δ, λ,n,s). By induction,

f(δ,λ,n,s) =f(y,λ~9n,s) for some yczΓ m _ 1 ? s . Finally, (ii) is immediate if
f(σ,λ,n,s) is defined through Case 4 of Definition 1.2.

(iii) If we perform a case by case analysis of Definition 1.2, it will follow by
induction that/(σ,λ,n,s) is compatible with TjtS for ally ^ m.
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(iv) Immediate from Case 1 of Definition 1.2.

(v) Clear if \h(λ) = 1. Otherwise, we note that by (i), (ii) and (iii), there is a
y c Γm_1>s such that δ c σ ς^f(σ,λ,n,s) =/(y, λ~,n,s) and/(y, λ~,n,s) is com-
patible with Tms. Hence/(σ, λ9 n, s) will be defined through Case 4 of Definition 1.2
if it is not defined through an earlier case.

(vii) Let τ cz Tms be given such that σ cz τ cz f(σ9 λ, n, s). We note that/(τ, λ9 n, s)
will be defined through Case 2 of Definition 1.2 if it is not defined
through Case 1 of Definition 1.2, and, for Case 2, there will be a δ c Γ m s such that
<5ςτ and /(τ, A, n, s) = f(δ, λ9 n, s). Since δ c σ cz τ c /(<S, A, /ι, j) = /(τ, λ9 n, s),
applying (vii) by induction we see that/(σ, λ9«, s) = f(δ9 λ, n, s) = /(τ, λ9 n9 s). It thus
remains to consider the case where /(τ, λ, n, s) is defined through Case 1 of
Definition 1.2, and so/(τ, λ, n, s) = /(τ, λ,n,s — 1). We must now consider the case
which was used to define /(σ, A, n9s).

Suppose that/(σ, λ,n,s) was defined through Case 1 of Definition 1.2. Then
f(σ,λ,n,s) =f(σ,λ,n,s — \). Hence σ <= τ ^f(σ,λ,n,s) =f(σ9λ,n,s — 1). By in-
duction on s, f(τ,λ,n,s — 1) =f(σ,λ,n,s — 1). Hence/(τ,2,«,.y) =f(τ,λ,n,s — 1)
= f(σ,λ9n9s - 1) =f(σ9λ9n9s).

Suppose that /(σ, A, n, s) was defined through Case 2 of Definition 1.2. Then
there is a (5 cz σ of shortest length such that (5 cz Γm5S and/(σ, λ, n, s) =f(δ9 λ, n, s).
Thus ί c σ c ΐ c f(p9 λ, n, s) = /(<5, λ9 n, s), so by induction, we apply (vii) to δ and
τ to obtain /(τ, 2,«, J) = /(<5, A,«, 5) = /(σ, 2,«, 51).

Otherwise, we note that since/(τ, λ, n, s) is defined through Case 1 of Definition
1.2, τ can be used to define /(σ, λ, n, s) through Case 3 of Definition 1.2. Hence

f(σ,λ,n,s) will be defined through Case 3 of Definition 1.2, and
f(σ9 λ, n, s) =/(τ / , λ9n9s — 1) for some least τ' ZD σ such that/(τ', λ9n9s — 1)|. By (i)
and the hypothesis for this case, τ',τ ^f(σ9λ,n9s) =f(τf,λ,n,s — 1), so τ c τ ' or
τ' c τ. Since τ' was chosen to define /(σ, /I, Λ, j), τ' c τ. Hence τ' ^ τ ^f(σ9λ9π9s)
= f(τ\ λ,n,s — 1), so applying (vii) by induction on s9f(σ9 λ, n, s) = f(τ\ λ,n,s — 1)
= /(τ, λ9n,s-l)= /(τ, λ, n9 s).

(vi) Suppose that Φτ

n{ή)[. Fix the least t such that τ c Tmt. It suffices to show
that/(τ,A,Λ,0 = τ; for if r > ί and/(τ,λ,Λ,r - 1) = τ, then by (i), τ cz Γm,r_! c
Tmr, so τ is compatible with Tjr for ally ^ m. Thus by (iv),/(τ, λ, n, r) is defined in
Case 1 of Definition 1.2 and/(τ, λ,n, r) =f(τ9λ9n9r — 1) = τ.

(vi) follows easily if \h(λ) = 1. Assume that \h(λ) > 1. Fix the least r ^ / such
that for some δ c Tmr, f(τ9λ9n9t) =f(δ9λ9n9r)9 and the least δ ^Tm^r such that
δ c τ and/((5,2,«, r) =/(τ, A,«, t). We verify (vi) by showing that/((5, λ, w, r) = τ.
By choice of r9f(δ9 A,«, r) cannot be defined through Cases 1 or 3 of Definition 1.2.
By choice of δ, f(δ9λ9n9r) cannot be defined through Case 2 of Definition 1.2.
Hence f(δ,λ,n,r) is defined through Case 4 of Definition 1.2, and
f(δ9λ,n,r) = f(y,λ~9n9r) for the least 7 for which f(y,λ~,n,r) 3 δ. Since
f(τ,λ,n,ή =f(δ9λ,n9r) = f(y9λ~9n9r) Ώγ,τ by (i), 7 and τ are comparable. If
τ cz 7, then since γ cz Γ m _ u a n d τ cz TmΛ c Tm-U9 we conclude that τ cz Γ m _ l r . By
induction, f(τ9λ~9n9 r) = τ. By the minimality of γ and since (5 cz τ ? it follows that
7 cz τ, a contradiction. Hence 7 cz τ . But then by (i), y ςz τ ^f(τ,λ,n,ή =
f(y9λ~9n9r) so applying (vii),/(y,Λ.~,/ι,r) =f(τ9λ~9n9r) = τ. Hence/(τ, A, /ι, ί) =
f(y,λ~9n,r) = τ.
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(viii) Assume that \h(λ) > 1. By (ii), there is a y <z Γm_ l f 5 such that/(σ,λ,n,s)
= /(y, λ ",w, s). By (i), σ, y <= / ( σ , A,«, s) = /(y, A~, n, s) so σ and y are comparable. If
σ c y, then since/(y,Λ~,«,s)|, it follows from (v) that/(σ,λ~ 9n,s)l. Otherwise,
y c ffc/(y,r,/ι,ί), so by (vii),/(σ,λ",Λ,j)| =f(y9λ~9n9s).

Before proving (ix), we prove the following fact:

(1) σ terminal on Γm > s=> Vr ^ sV(5 c Γm,rVτ c Γm_1>r((5 c σ &

σ ςzf(δ,λ,n,r)&τ is least such that/((3,λ,n,r) =f(τ9λ~9n9r)->τ £ <j).

Fix r, (5, and τ as in (1). If/((5, /I, n, r) is defined through Case 1 of Definition 1.2, then
there is a τ' cz Γm-1>Γ_i such that/(δ,λ,Λ,r) =f(δ9λ9n9r - 1) =/(τ ' , ,T,H,r - 1).
By (iii) applied to/(<5, Λ,,«, r),f(δ, λ,n, r) = f(τ\ λ~,n,r — 1) is compatible with Tjr

for ally ^ m9 so we will have defined/(τ', λ~9n9r)= /(τ\ λ~9n9r — 1) through Case
1 of Definition 1.2. If f{τ,λ~,n,r) =f(δ9λ9n9r) =f(τ'9λ~9n9r)9 then by (i),
τ,τf ^f(τ,λ~,n,r) =f(τ',λ~9n,r) so τ and τ' are comparable. Hence by the
minimality o f τ , τ g τ'm Since τ' ^ σ by induction on lh(A), τ ̂  σ.

We now proceed by induction on lh(<5), assuming (1) for all δf a δ in place of δ
and also all δ such that/((5,λ9n9r) is defined through Case 1 of Definition 1.2.

Suppose that /(<5, A, n, r) is defined through Case 2 of Defintion 1.2. Then
f(δ, λ, n, r) = f(δf, λ, n, r) for some δ' cz δ. (1) for δ now follows from (1) for δ' since
δ' c δ c σ c /(σ, A, w, r) = f(δ\ λ, n9 r).

Suppose that f(δ9 λ, n, r) is defined through Case 3 of Definition 1.2. Then
f(δ, λ, n9 r) = f(β9 λ,n9r-l) for some β ID δ such that/()8, λ, n, r) = f(β, λ, n, r - 1)

is defined through Case 1 of Definition 1.2. By (i) and the hypothesis of (1),
β, σ ^/(<5, λ, n, r) =/(/?, λ, n, r) so β and σ are comparable. It also follows from (i)
and since/(/?, A,«,r)| that β cz Tmr. Since Tmr cz τms and σ is terminal on Γ m s , we
cannot have β 3 σ; hence β cz σ, ThusjS cz σ ςzf(δ,λ,n,r) =f(β, λ,n, r), so (1) for (5
follows by induction from (1) for β.

Suppose that/((5, λ, n, r) is defined through Case 4 of Definition 1.2. Since (5 c σ
and σ is terminal on Γm>s, if σ c Γm>r then by (i), if/(σ, λ~, w, r ) | , then it is compatible
with Tmr. Hence by the minimality of τ in Case 4 and (v), we cannot have T D σ. By
(i) and the hypothesis of (1), τ,σ ^f(δ,λ,n,r) =f(τ,λ~,n,r) so τ and σ are
comparable. Hence τ cz σ. And if σ φ Tmr then since τ and σ are comparable,
τ <= Tmr and σ c Tm,t, τ cz σ.

(ix) Suppose that \h(λ) > 1 and σ is terminal on Tms. By (ii),
/(σ, A,«,^) =/(y, λ", w,5) for some least y cz Γm_ 1>s. Applying (1) to δ = σ, we see
that y <= σ. Thus by (i), γ ̂  σ ̂ f(σ9λ,n,s) =f(y9λ~,n,s), so by (vii),
/(σ,λ",n,j)=/(y,λ",/i,j)=/(σ,λ,n,j).

(x) Immediate from the construction of Definition 1.2 at stage m > 0.
(xi) Fix δ, σ, λ and s as in the hypothesis of the lemma, and assume that m > 0

and f(σ9λ~,n,s)l and is compatible with Tms and δ ̂  σ and <5 cz: Tms. Then
/(<5, λ, A2, s) will be defined through Case 4 of Definition 1.2 if it has not previously
been defined. 0

The construction given in the next section depends on sequences of trees which
respect the jump target function. A preliminary definition is needed.

1.4 Definition. Fix σ e ^ 2 , n,seN and'λeίf such that λ codes {7^: i^m} and
σ ^ ΓTOfS. We say that σwΛ-αcf/i e 0^(7^:/ ^ m} at stages if σ czf(σ, Λ.,n,$)|andfor
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all e <n, either/(σ, λ, e, s ) | or σ = /(σ, λ9 e,s).s is <σ, n)-good on {Γ,: / ̂  m} if for
all e < n, σ is not e-active on {Γf: / ̂  m} at stage 5.

The w-active strings at a given stage are those for which action can be taken at
that stage to force n into the jump without ignoring similar desires for e < n. A stage
is <σ, «>-good if its desire to force n into the jump will not be injured by forcing e
into the jump for some e < n. The next definition tells us that a sequence of trees
respects the jump target function if it always acts to force the smallest possible
number into the jump, while not violating the properties needed to prove a
computation lemma.

1.5 Definition. Let λεSf code {7^: 1^ m). We say that {Γt: / ̂  m} respects /if the

following conditions hold:

(i) Fo = Id 2.
(ii) Vi < mVseN(Ti + ίtS c TUSSL TUS+X extends Γ i f S).

(iii) Vσ e £f2 Y/, n,se N(j ^m&n^s&σ is terminal on TjtS & σ is not terminal
on TjiS +! &σ is w-active on {Γj: i^j} at stage 5 ->/(σ, Ay,«,5) is compatible with
Γ M + 1 for all / ̂ j). (Recall that ^ = λ tj + 1.)

The crucial property of Definition 1.5 is (iii). This property states that if we
extend a tree in the sequence at a terminal string σ which is ^-active, then we must
follow the w-target of that string with our extension. It is this property which will
allow us to show that lim s/(σ, λ,n,s) exists for suitably chosen σ, λ and n.

Given a sequence of trees {Tt :ί^m} which respects/, the sequence will have to
be extended in various ways to sequences {7^: / < m + 1} which also respect/
Extensions letting Tm + ί be PExt2(Γm, ξ) or PDiff2(Γw, e) for some ξ e Sf2 or e e N are
easily obtained.

1.6 Definition. Let {Tis: s e N} be a recursive sequence of finite trees such that for all
seN, Tis +! extends Γ M and let T{• = U {Γ ι s: ^ G TV}. We define the approximation to
PExt2(ή,£)for Ϊ

1.7 Remark. Let {Tt: i ^ m} be a sequence of trees which respects/ Let Tm + ι =
PExt2(Γw, ξ) for some ξ e Sf2 such that Tm(ξ)[ and let the approximation to Tm + x be
given as in Definition 1.6. Then {Tt: i ^ m H- 1} respects/ (Note that 1.5(iii) follows
from 1.3(i) and (iii).)

Since ^-differentiating trees are just extension trees for which Γm + 1(0) is
carefully chosen, Remark 1.7 applies also to PDiff2(Tm, e). Splitting trees, however,
require more delicate approximations. We now indicate how to construct such
approximations for ^-splitting trees.

1.8 Lemma. Let eeNbe given. Let {Ti'.i ^m}bea sequence of trees which respects /
Then there is an e-splitting tree Tm + 1 = PSp2({7; : / ̂  m}9 ej) = U{Γm + 1 ) S: seN}
such that {Ti•: i ^ m + 1} respects / The approximation {Tm + 1y. seN} is recursive,
and an index for this approximation can be obtained uniformly and recursively from a
string λ which codes {Γ,: / < m}.
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Proof. We proceed by induction on {s: seN}. If s > 0, define Tm + ίtS(ξ) =
Tm+i,s- i(ξ) if Tm+ίtS- i (ξ) | . Suppose that either s = 0 or Tm+ Us. ^)l There are
three cases.

Case l.s^O and Γm, s(0)| and if s > 0 then r m s _!(0)T. In this case, Γw + 1 s(0) =

Case 2. s>0 and \h(ξ) > 0 and Γm + l f S _ 1 ( Γ ) 4 and Γ m + l f S _ 1 (ξ)ΐ . Let σ # =
Tm + i,s-i(ζ~)' Fix the least n < s, if any, such that σ # is w-active at stage s — 1 for
{Ti : * ̂  m + 1}. If such an « exists, let σ* = /(σ # , λ, n, s — 1) and if no such n exists,
let σ* = σ*. Search for the least <τ0, τ 1 ? x> GSf\ x N (under some fixed recursive
one-one correspondence of £f\ x N with N) such that x ^ s, lh(τt) ^ s, and
σ* c τf d Γ m s + 1 for / ̂  1, and <τo,τi> forms an ^-splitting on x. If no such
(τo,τux) exists, then Tm + ίtS(ξ)t Otherwise, fix <τ o ,τ l 5 x> and let Tm+ltS(ξ) = τ}

where ξ = ξ~ *j.

Case 3. Otherwise. Then Γm + l f S(ξ)T.

The lemma is now easily verified. (The proof that 1.5(iii) holds follows by
induction from the choice of σ* and 1.3(i) and (ix).) D

It follows from the proof of the Computation Lemma (V.2.6) that for all
branches g of PSp2({Γi: / < m}, e, f),g ^ Γ Φ9

e. It also follows from the definition of

(2) If σ is terminal on PSp2({ Γf :i ^m},e,f) and σ is ̂ -active for {Tt: / ̂  m}
at all sufficiently large stages and λ codes {Γt :i ^m} and lims /(σ, A, e, j ) ! ,
then there is no ^-splitting of lim s/(σ, A, e, s) on Tm.

The next remark notes that if we have a sequence of trees which respects/, then
every subsequence also respects /.

1.9 Remark. Let {Tt: /
: ̂  m + 2} be a sequence of trees which respects/. Let Tf = 7̂

for / < m and Γ* + 1 = Γ m + 2 . Then {Γf: i ̂ m + 1} respects/

The final lemmas of this section will be used to show that there is a question
which can be asked of an oracle of degree 0', the answer to which will determine
whether or not Φf(e)[ where A is the set of minimal degree which is constructed in
the next section. The following definition will be useful.

1.10 Definition. Let {Ti: / ̂  m} be a sequence of trees which respects/ Let α, β e £f2

and n, s e N be given such that α c Tms and α <Ξ β. Then β is n-desirable for α 6>«
{Ti\ i ̂  m} tfί stage s if there arey ^ m and y c TjiS such that:

(i) 3{ G < 2̂(£ c 7\fs(ί) &/(y, λj9 n, s)l = β).

( m

(ii) 3σ j + ! 3σm I /\ (σi is terminal on Γf s)&

In the construction of Section 2, Φ^(«) will converge if, and only if
/(α,,, λ, n, t(ri))l, which will be the case if, and only if αn has an w-desirable extension
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on {Tt: / ̂  k{n)} coded by λ (απ and k(n) are defined during the construction). The
equivalence of these conditions will follow from the remaining lemmas of this
section.

1.11 Lemma. Let {7̂ -: / < m} be a sequence of trees which respects f Fix neN and
OLE6^2 such that α cz Tms. Let seNandβe^be given such thatJ(a, λ, n9 s) = β. Then
β is n-de sir able for a on {7^: i ̂  m} at stage s. Furthermore, there are j ^ m and
y cz TjjS such that 1.10(i) is satisfied as well as:

( m

(i) Ξσ,- 3σw( f\ (σj is terminal on TitS)&
\i=j+ί

\

C L ^ σ m ^ σ m - 1 c . . . ςiσj = γ ̂  β & / \ f ( σ h λ h n , s ) = β ) .

Proof Fix the greatest 7 ^ m such that β cz TjjS(ξ) for some ζ e 5^. By 1.5(i), such &j
must exist. For all / ̂  m, fix the longest string σt cz Tis such that σf c β. By 1.3(iii),
β is compatible with Tis for all / ̂  m, hence σf must exist for all / < m and if
j < i ̂ m then σt must be terminal on Tis. Since TjtS Ώ. Tj+1>s =2 * => Tms and
α c TmtS, α c σ m c σm_ι ςz ςz σ . ςz β. By 1.3(vii) and (ix), )8 =f(ot,λ,n,s) =
f(σm, λ, n, s) = f(σm, λm-un,s) = f(σm -Uλm-Un,s) = = f(σh λj9 n, s). Hence
β is ^-desirable for on {T^. i ̂  m) at stage s as witnessed by y = σp and (i)
holds. D

1.12 Lemma. Let { Tt: i ̂ m} bea sequence of trees which respects f Fix n,seN and
(χe&2 s u c n that α c= Tms. Let β e 5^ be given such that β is n-desirable for α on
{Til i ̂  m) at stage s. Then f((x,λ,n, t)[.

Proof Fix j ^m and y = σj9 σj+1?..., σm as in Definition 1.10. We proceed by
induction on {i:j ^ / ̂  m}, showing that/(σ ί ? λh n, s)i. Since y = σj9 it follows from
1.10(i) that f(σj9λj,n,s)l. Assume by induction, that / < m and/(σ ί ?λ hn,s)[. By
l.lθ(ii), <τ£ =2 σi + 1 so by 1.3(v) and (xϊ),f(σί + 1,λi + 1,n,s)l. Hence we conclude that

f{θmΛm,n,S)[.
By l.lθ(ii), α c σm. Hence by 1.3(v),/(α, λ,n,s)l. 0

1.13 Remarks. The targets which we have used in this section are cdλXεά followers in
the literature. They were used by Cooper [1973] to prove a jump inversion theorem
for minimal degrees. Cooper defined the followers, the trees, and the set of minimal
degree stage by stage in a full approximation construction, and did not separate the
various definitions. We have separated the various definitions, and this will enable
us to give an oracle construction proof of the Cooper Jump Inversion Theorem.

2. Jumps of Minimal Degrees

We now characterize the range of the jump operator restricted to the set of minimal
degrees.
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2.1 Cooper Jump Inversion Theorem. Let ceΏbe given such that c ^ 0'. Then there is
a minimal degree a such that a' = a u θ ' = c.

Proof. Recursively in c, we will construct sequences of strings {αs: seN} and
{α*: s e N}, functions/:,/:*, t: N -• N, and an array of trees {Ts.:seN&i ^ k(s)} by
induction on {s: s e N}. α* and k* play roles similar to those played by αs and k in the
proof of Theorem IX.2.1, except that they consider the targets of the strings rather
than the strings themselves. Thus there are two steps in the construction. Given as

and k(s), the ^-target of αs determines αs* and k*(s) which are then used to determine
α s + 1 and k(s + 1).

Fix a set C of degree c. A = U{αs: seN} will be a set of minimal degree. Recall
that/ i s the jump target function.

The following induction hypotheses will be satisfied at the end of stage s of the
construction, where λ* will code {T*: i ^j} for ally ^ k(s):

(1) s^\ ->α s _! g α f . ! c=αs.

(2) * s <= Ts

k{sy

( 3 ) VseN(Γ0 = Id2).

(4) \/i<k(s)(Γi + ί^Tf).

(5) O 1 - > V / < Λ ( J ) ( 7 7 = Γ ? - 1 ) .

(6) {T*: i^k(s)} respects/.

The construction proceeds as follows:

Stage 0. Set k(0) = 0, T°o = Id2 coded by λ°0 = λ, and α0 = 0.

S'ία^^ j + 1. For ally ^ k(s), let λ) code {T]: / < j}. Let ί(.s) be the least stage ί such
that:

(7) t^t(s-l) if s> 0,

(8) αs cz rk ( s ) f (,

(9) If J > 0 then α ^ , ^ Γ ^ / ^ ^ ,

(10) /(αs,4(s),^,01,

if such a stage exists, and let t(s) be the least stage t satisfying (7)-(9) otherwise.
Define

Ά<*S9λ
s

k{s)9s,t(s)) if f(<x.s,λ
s

m,s,t(s))l

α s otherwise.

Find the greatest k ^ k(s) such that for some ^ e ^ , α s * c ΓJ(ξ). (By (3), k must
exist.) Let &*(s) = k. Let αs

+ be the string of shortest length such that
α* cz αs

+ c= TlHsy

Let r(s) be the greatest r ^ k*(s) such that αs

+ is not terminal on Ts

r. (Again by
(3), r must exist.) Define k(s + 1) = r(s) + 1, and Γ*+ 1 = Γ? for all / < k(s + 1).
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Fix ηse^2 such that Ts

r(s)(ηs) = αs

+. Let Xs+ί = PExt2(Γr^9ηs) and let

if i<k(s+l)

\s) if / = k(s + 1)&c = 0'
PExt2(Xs+\ C(s)) if / = k(s + 1) & c > 0'.

Let α s + 1 =

Γ + ι =flTΰii, i f r(s)<k(s)
k{s+1) iPSp 2 ({ Y>. + i:i*ίk{s+ 1)}, r(s\ / ) if φ )

The construction is now complete. Induction hypotheses (l)-(5) are easily verified.
And (6) follows from Lemma 1.8 and Remarks 1.7 and 1.9; again we note that
PDif f 2 (7» = PExt2(Γ, ξ) for some choice of ξe^2. By (1), A = U{αs: seN} c N.

Given e < seN, we will show that one of the following conditions holds:

(11) y/t^

(12) V ί > ( )

Furthermore, we will have to show that (11) holds if, and only if (11) holds for s + 1
in place of s. It will then follow that A forces e into the jump whenever possible, and
so we will be able to compute A from an oracle of degree a u 0'. We will verify (11)
or (12) by induction on s, introducing an intermediate step wherein one of these
conditions is verified for αs

+ in place of αs and r(s) in place of k(s) for each e ̂  s. The
next lemma will be used to show that (11) is inherited by α s + 1 from αs.

2.2 Lemma. Let λJ code α sequence of trees {Tt: i ̂  rrij} which respects ffor j ^ 1. Let
α, β, y e 5^ be given such that α <Ξ β c y? let e,ue N be given such that α cz TmQU and
y c Tmuuandassume thatΊt ^ u(f(oc,λo,e,t)l = β). ThenVt ^ u(f(y,λ\e, t)l = y).

Proof. Fix t ^ M. Since/(α, λ0, β, 0 = β, it follows from 1.3(i) that Φβ

e(e)[. Hence by

the Enumeration Theorem (1.3.l(i)), Φy

e{e)[. It now follows from 1.3(vi) that

/Cy,λi,e,O = y. 0

We now show that a condition of the same type as (12) is inherited by αs

+

from αs.

2.3 Lemma. Let e < seN be given and assume that (12) holds. Fix t ^ t(s), ke
{r: k*(s) ^ r ^ k(s)} and y cz Ts

kt such that y is the longest string on Ts

kt which is
contained in α* and assume that ifk> k*(s) then y is terminal on Ts

k t. Let λ code
{T\\i^k}. Then f(y, λ, e, Oΐ Furthermore,

(13) VW>/(5)(/(α s

+,^ ( s ),e,W)T).

Proof We first assume that f(y, λ, e, ί ) | = δ and obtain a contradiction. If
A<xs,λ

s

k{s)9s,t)i, then αs* = ocs which is on Ts

it for all ί ^ k(s). And if

/(α s, λ
s

k{s)9s, 01 = αs* = β9 then it follows from 1.3(iiί) that β is compatible with Ts

it

for all / ̂  k{s). Hence for all / such that k < i ̂  k(s), there is a unique σf ̂  α* such
that σj is terminal on Ts

it. By Lemma 1.11, δ is e-desirable for y on {ΓJ: / ̂  A:},
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producing a sequence {σ, : k* ̂  / < k) satisfying 1.11 (i). Since σf is terminal on T] t

for all / such that k < i ̂  k(s),

ocs c σ k ( s ) c σ k ( s ) _ i c ••• c j ^ j c y c ^ c •-. c σ r ,

so {σ,: k* ̂  i ̂  k(s)} witnesses the fact that δ is ^-desirable for αs at stage t. By
Lemma 1.12,/(αs, λ

s

k{s),e, / ) | , contradicting (12). Hence/(y, A, e, ί) j .
Let fc = fc*(s). Then by 1.3(v), since/(y, A, e, 0ΐ and y c α * c αs

+ ,/(α s

+, A, e, Oΐ
Hence (13) follows. 0

Lemma 2.3 yields no information when e = s. This case is covered in the next
lemma, where we show that one of the following conditions holds:

(14) W ̂  t(s + l)(/(α s

+ , A**(s), j , r)i - α s

+).

(15) V ^ ^

2.4 Lemma. L /̂ seNbe given, and assume that either (11) or (12) holds for each e < s.
Then either (14) or (15) holds.

Proof. If W ^ t(s)(f(as, λs

k(s), s, ί) | ) , then the lemma follows immediately (note that,
in this case, αs

+ = α* = αs, k*(s) = k(s) and ί(s + 1) ̂  ί(s)). Otherwise, we may fix
the least t ^ t(s) such that/(α s, AJ(S), J, / ) | = β. We proceed by induction, showing
that for all r ^ ί,/(αs, AJ(5), s, r)\ = β. It follows from (7) and (10) that t *ζ t(s + 1).

Assume, by induction, that r ^ / and/(α s, λ
s

k{s), s,r)[ = β. By Lemma 1.11, there
is a sequence {σ,: &*(s) ^ / ̂  k(s)} satisfying 1.1 l(i). By 1.1 l(i), αs c σk*{s) c j5 and
for each / such that fc*(5 ) < / ̂  k(s), αs c σt c )?, σf is terminal on Γ? r and
f(σh λs., s, t)l = β. For each e < s and / such that k*(s) < i < A:^), it follows from
(11), (12) and Lemmas 2.2 and 2.3 that σ, is not e-active on {T):j ^ /} at stage r.
Hence either β = αs or for all / such that k*(s) < i < k(s), σ, is ̂ -active on {Ty.j < /}
at stage r. Since, for each such /, {Ty.j ̂  /} respects/, β is compatible with Ts. r+ί

for ally ^ /, so by 1.3(iv),/(αs, λs

k{s), s,r + 1) | = β. Thus the induction is complete.
Since, Vr ̂  ί(/(αs, λ

s

k(s)9 s, r ) | = jS, we must have β = αs* c αs

+. Hence by Lemma
2.2 and (9), (14) must hold. 0

We now move from Ts

kHs) to Ts

r{s), showing that conditions (13) and (15) are
inherited.

2.5 Lemma. Fix e ̂  seN and suppose that either (13) or (15) holds. Then

(16) V ^ φ

Proof. Fix t ^ t(s + 1), and assume that /(α s

+, λs

r{s), e, t)l = β in order to obtain a
contradiction. Since αs

+ is terminal on Ts

jt for ally such that r(s) <j^ k*(s), β is
compatible with Ts

jt for all such j . Applying 1.3(xi) repeatedly, we see that
/ « , A^(s),e, 01, contradicting (13) or (15). 0

We now move from Ts

r{s) to Γ ^ + 1 ) 5 showing that (16) is inherited.

2.6 Lemma. Fix e ̂  seN, and assume that (16) holds. Then (12) holds for s + I in
place of s.
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Proof. Since k(s + 1) = r(s) + 1, it follows from (5) that T) = T)+ x for ally ^ r(s).
Hence by (16), W ^ t(s + l)(/(α s

+, λsjs)\ e, 0 ΐ) Suppose that for some t ^ t(s + 1),
/ ( α s + 1 , ^ ( ^ 1 ) ^ , 01 f° r t n e s a ^ e of obtaining a contradiction. By 1.3(viii),
/ ( α s + 1 , ^ Λ M ) l Since αs

+ <= « s + 1, it follows from 1.3(v) Λ a t / ( α s

+ , λ £ Λ M ) i ,
yielding the desired contradiction. D

The next lemma summarizes the facts proved relating to (11) and (12).

2.7 Lemma. Fix eeN. Then one of the following conditions holds:

(i) W > e Ίt> t{s)(f(μS9 λs

k(s), e9 0 1 = α s).

(ii) V^

Proof Fix eeiV. We assume, by induction, that the lemma holds for e0 in place of e
for each e0 < e. We then proceed by induction on {s: s > e).

First assume that s = e + 1. By Lemma 2.4, either (14) or (15) holds. If (14)
holds, then by Lemma 2.2 and (8), (11) holds. If (15) holds, then by Lemma 2.5, (16)
holds; hence by Lemma 2.6, (12) holds for s + 1 in place of s.

Assume that s > e + 1. By induction, either (11) or (12) holds for s — 1 in place
of s. If (11) holds for s — 1 in place of s, then by Lemma 2.2 and (8), (11) holds for s.
Suppose that (12) holds for s — 1 in place of s. By Lemma 2.3, (13) must hold for
s — 1 in place of s. By Lemma 2.5, (16) must hold for s — 1 in place of s. Hence by
Lemma 2.6, (12) must hold for s. This completes the induction step. D

We use Lemma 2.7 to show that a' = a u θ ' = c. Note that t(s) can be obtained
from αs

+_ 1 ? αs and λs

k{s) through the use of an oracle of degree 0'. For to determine
whether a string is on a tree at a given stage is a question of degree ^ 0'. Thus by
Lemma 2.7, once we have a stage t such that αs

+_ x and αs satisfy (7)-(9), then t(s) is
the least r ^ t such that/(α s, λ

s

k{s)9 s, r)[ if such an r exists, and t(s) = t(s — 1) (0 if
s = 0) otherwise. And we can determine whether 3r ^ t(f(aLs,λ

s

k{s)9s,r)l) from an
oracle of degree 0'. Hence A,k,k*,r,t and {Ts.:seN&i ^ k(s)} are recursive in a set
of degree c. Furthermore, the only use of a C oracle which cannot be replaced by an
appeal to an oracle of degree 0' is the use of C(s) in defining Ys

k^slir

We show that c < a u 0 ' < a ' ^ c . C can be computed from A and an oracle K
of degree 0'. If c = 0', then there is nothing to show. Assume that c > 0'. Suppose
that for all n < e, ocn, k(n), {Γ": / < k(n)} and t(n) have been computed. Then α*, αe

+

and Xe can be computed from K. Now C(e) = i if, and only if, Xe(i) cz A, so C{e) is
determined by A. To complete the induction, αe, k(e), {T\\ i < k{e)} and t(e) are
now determined by an appeal to the oracle K. Since this procedure is uniform in e,

By ΠI.2.3(iv) and (v), and since c ^ 0', a , 0 ' ^ a ' s o a u O ' ^ a'.
It has already been noted that απ, k(n), {Γ": / ̂  k(n)}, k*(n) and tin) can be

computed recursively in C uniformly in n. Thus in order to show that a' ^ c, it
suffices to verify the following fact:

(17)

Since Φ*(e)[ if, and only if Φa

e

s{e)[ for some seN, (17) follows from Lemma 2.7.
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The next lemma is the heart of the proof that A is a set of minimal degree.

2.8 Lemma. Let e,seN be given such that k(s) = e andk(i) > e for all t > s. Then

(i) W ^ s((xt <= Γe).

Furthermore, k(s + 1) = e + 1 and

(ii) Ts

e\\ is an e-splitting tree.

If there is a u > s + 1 such that k(u) = e + 1, then

(iii) there is a terminal y a Tu

e~+\ such that either

f(y,λ,u-\,t{u- 1))T or f(y,λ,u-l,t(u- l))j c «„

where λ codes {T"~1: i ^ e + 1}, flfld

(iv) W > u(k(t) > e + 1).

Sketch of proof With the exception of (iii), the proof of Lemma 2.8 is similar to the
proof of Lemma IX.2.2. The proof of (iii) follows from 1.3(vii). We leave the proof
of Lemma 2.8 to the reader. 0

It follows from Lemma 2.8(iv) that \imt k(t) = oo. Hence by 2.8(i)-(iii) and
condition (2) of the previous section, for all e e N, if Φf is total then either Φf is
recursive or A = τ Φf. Also, if c = 0', then it follows from the definition of α e + 1 that
A Φ Φe, so A is not recursive. This completes the proof of Theorem 2.1. 0

We now characterize the jumps of minimal degrees. The characterization
follows from Lemma IΠ.2.3(v) and Theorem 2.1.

2.9 Corollary. The following are equivalent:

(i) c is the jump of a minimal degree.

(ii) c ^ 0'.

The following corollary follows immediately from Theorem 2.1.

2.10 Corollary. There is a minimal degree a e L ^ Also, there are continuum many
minimal degrees in Ghx — L^

2.11 Remarks. Yates [1970a] constructed a minimal degree a such that a' = 0' as a
corollary to his theorem that every recursively enumerable degree bounds a
minimal degree. Yates' result is proved in the next chapter. Cooper [1973] proved
Theorem 2.1. Both Yates' and Cooper's proofs are full approximation style proofs
in that they do not use an oracle during the construction (which is recursively
performed).

2.12 Exercise. Let c, d e D be given such that c ^ <Γ. Show that there is a minimal
cover a of d such that a' = a u d ' = c.




