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Chapter V

Minimal Degrees

We now turn from the study of embeddings and extensions of embeddings into Q) to
the study of countable ideals of Q). We will eventually characterize the countable
ideals of 2 as those countable usls which have a least element. We begin, in this
chapter, by showing that the simplest non-trivial usl, the chain consisting of two
elements, is realized as an ideal of 3).

The methods of proof used in this part are the methods of forcing, but the
notions of forcing used differ from those which we have previously encountered.
The conditions of forcing here are trees, or equivalently, perfect closed sets in a
certain topological space.

1. Binary Trees

We introduce some of the trees which will be used as forcing conditions in this
section.

We recall some of the definitions dealing with strings for the reader who may be
beginning the book at this point. A string is a finite sequence of integers, and is
frequently treated as a function from a finite initial portion of TV into N. £f is the set
of all strings. Given strings σ and τ, the string σ* τ is the finite sequence σ followed
by the finite sequence τ; lh(σ), the length of σ, is the number of elements in the
sequence cr; and we use the notation σ \ τ if for some x < min({lh(σ), lh(τ)}), the xth
element of σ and the xth element of τ are different.

For the most part, we will be dealing with specific sets of strings. Thus given a
function/: TV -> TV, we let Sff be the set of all strings σ such that for all x < lh(σ),
σ(x) </(x). If / is a constant function, then we replace / by the unique number
in its range. Thus 5ζ is the set of all binary strings, i.e., finite sequences of Os
and Is.

1.1 Definition. Let/: N-> N be given. An f-tree is a map T: Sfs -+Sfs such that:

(i) V

(ii) V
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Γ(O*O) = Γ(O)*1

Γ(0*l) =

Γ(0)*0*l
Γ(l*0) =

Γ(l)*l*l
= Γ(l)*l*0*0*l

Fig. 1.1

In this chapter, we will restrict our attention to 2-trees or binary trees, i.e., the set
of trees mapping 5^ into 5^. We will drop the word binary in this chapter, using the
word tree with the understanding that we mean binary tree. Figure 1.1 pictures the
bottom levels of a typical tree.

Without loss of generality, it can also be assumed that trees preserve
lexicographical ordering; thus if σ lexicographically precedes τ, then T(σ) must
lexicographically precede Γ(τ). Although all trees which we use have this property,
we do not make this assumption. It is, however, convenient to keep this assumption
in mind when drawing pictures of trees.

1.2 Definition. Let T be a tree, and let σ e ̂  and/: TV -• N be given. We say that σ is
on Γ(write σ cz Γ) if σ = T(τ) for some τ e dom(Γ). We say that σ is compatible with
Γif there is a τ 3 σ such that τ cz T. We say that/'is on TXwrite/ cz T) if for all σ czf,
σ is compatible with T. If / cz T, we refer to / as a branch of T.

1.3 Remark. A tree is a function from a space into itself. Hence it makes sense to call
a tree T recursive (the function T is recursive) or recursive in the function g (the
function T is recursive in g).

We now define a simple tree which appears as a condition of our notion of
forcing.

1.4 Definition. The identity binary tree Id 2 : ^2 -> 5^ is defined by Id2(σ) = σ for all

1.5 Remark. Id2 is a recursive tree.

Trees are conditions of our notions of forcing. We now define the ordering of
these conditions.

1.6 Definition. Let T and T* be trees. We call Γ* a subtree of T (write Γ* c T) if
rng(Γ*) c rng(Γ).

We will frequently use the following types of subtrees of a tree T to force
requirements.

1.7 Definition. Let Γbe a tree and let σeόf2 be given. Define Ext2(Γ, σ), the subtree
of Textending T(σ), by Ext2(Γ, σ)(τ) = Γ(σ* τ) for all τ e ^ . Thus the branches of
Ext2(Γ, σ) are those branches of T which extend T(σ).
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1.8 Remark. Ext2(Γ,σ) is a subtree of T. Furthermore, for all g: N-> N, if T is
recursive in g then Ext2(Γ, σ) is recursive in g.

Our notions of forcing will be of the form < ^ c > where ZΓ is a collection of
trees. We will prove theorems by specifying a set of requirements to be satisfied (|=)
by a function/. Given a generic set G for a dense set of conditions, we will define the
set AG by

(1) feAGoVTeG(fczT).

The definition of forcing (| J-) for a requirement i? will always have the property
that for any tree T,

(2) if Γ | h * t h e n V / c = Γ ( / h t f ) ,

so the Satisfaction Lemma will hold. We will then have to verify the Density
Lemma.

(1) and (2) combine to show that every fe A G satisfies all requirements which
give rise to the generic set G. A major difference between this type of forcing and
forcing with perfect closed sets in Set Theory (see Sacks [1971]) is that we try to
force only certain rather simple requirements, while the use of forcing in Set Theory
is to force all sentences in an appropriate language.

If our notion of forcing is of the form < ^ c > where ZΓ is a set of/-trees and/
never takes the value 0, then it will always be the case that AG Φ 0, so we will not
have to worry about forcing this to be the case.

1.9 Lemma. Let < ^ c > be a notion of forcing where ZΓ is a set off trees ordered by
the subtree operation. Assume that for all xeN, f(x) φ 0. Let %> be a collection of
dense sets, let G be a ̂ -generic set, and define AG as in (1). Then AG Φ 0.

Proof. We proceed by induction on «, defining a sequence {σf e <9}: / 6 TV} such that
σ0 £ σx c , lh(σn) = «, and for all ieN and Te G, σt is compatible with T. We
begin by defining σ0 = 0. Suppose that σn has been defined. Define S c TV by

ieSoi <f(n)&3TeG (σn*i is not compatible with T).

If there is someye{/: / </(«)} — S, then σn + 1 = σn*j is compatible with every
TeG. We thus assume that S = {i: i </(«)} and obtain a contradiction. Since

f(n) ^ 1,5^0. For each ieS, choose T{ e G such that σn * / is not compatible with
7V Since G is generic, there is a common refinement (subtree) T of the {Γf: / < /(«)}.
But then for all / </(«), σn * / is not compatible with T. Since every string
compatible with a tree has an extension on that tree, this is impossible. D

In the next section, we will use trees to construct minimal degrees.

1.10 Remark. Shoenfield [1966] was the first to cast constructions of ideals of 2 in
terms of trees.

1.11-1.12 Exercises

1.11 Let Γbe a tree and let/: N -> {0,1} be given. Show that/c: T if and only if
there is a function g: 7V-> {0,1} such that, setting σn = g ί n, f= U{T(σn): neN}.
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1.12 (Lachlan) Give a topological proof of Lemma 1.9. {Hint: For each neN,
place the discrete topology on [0, /(«)) and note that, under this topology, [0, /(«))
is a compact space. By Tychonoff 's Theorem, the product of compact spaces is
compact, so P = x{[0,/(«)): neN} is compact under the product topology.
Identify every tree with its set of branches. Show that every tree is a closed subset of
P, and every generic set has the finite intersection property. Use the compactness of
P to obtain feAG.)

2. Minimal Degrees

We begin our characterization of the countable ideals of 2 by constructing a
minimal degree.

2.1 Definition. A degree a is minimal if a > 0 and D(0,a) = 0.

By Corollary 1V.3.6, all minimal degrees are in GL2. We now complement this
result by showing that minimal degrees exist.

We will use forcing to construct a minimal degree. The next lemma gives a
necessary and sufficient condition for a set A <Ξ TV to have minimal degree, in terms
of the requirements Pe and Qe for eeN, where

(1) Pe.AφΦe

and

(2) Qe: If Φf is total then either Φf is recursive or A ^τΦf.

2.2 Lemma. Let A c N be given, and let 01= {Pe:eeN}\J {Qe:eeN}. Then A is a
set of minimal degree if and only if A satisfies all requirements in $.

Proof. Immediate from Definition 2.1 and the Enumeration Theorem. D

The notion of forcing which we use to construct a set A of minimal degree is
< ^ c > where &~ is the set of all recursive (binary) trees and c is the subtree
relation. Note that < ^ c ) has a greatest element, Id2. Our aim will be to have A
satisfy every requirement R e 01. We will define forcing (| |-) in such a way so that for
a l lϋeΛ

(3) If T\ \- R then VΛ c T(A \= R).

It will then follow from Lemma 1.9 and Lemma 2.2 that there is a set A eAG and
that every set in AG has minimal degree.

We now begin the verification of (3) and the Density Lemma for every
requirement R e 01. We note that by the definition of AG, the verification of (3) will
prove the Satisfaction Lemma for any ^-generic set, where ^ = {CR: Re&} and
CR = {Te^T: T | h R}. We first consider Pe for eeN.
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2.3 Lemma. Let TeZΓ and eeN be given. Define

T\\- Peoeither Φe is not total or 3xeN(Φe(x)i Φ T(φ)(x)i).

Then (3) holds for R = Pe. Furthermore, there is a tree Γ* ^ T such that Γ* \\- Pe.

Proof (3) is immediate since if/ c T then Γ(0) c /. Fix Γe ^ and e e TV. If Φe is not
total, then T\\- Pe. Assume that Φe is total. By Definition 1.1 (ii), there is an xeN
such that T(0)(x)l Φ T(X)(x)\,. Fix such an x and the least σe{0,1} such that
T(σ)(x) Φ Φe(x). Let Γ* - E x t 2 ( 7 » . By Remark 1.8, T*e3~ and Γ* c Γ. Since

Before proving (3) and the Density Lemma for {Qe: e e N}, we introduce a new
class of trees and prove a lemma about these trees. We recall the following
definition.

2.4 Definition. Let σ,τ,pe^2 be given. We call <σ, τ> an e-splitting of p'ύ p a σ,
p a τ, and for some JCG^V, Φg(x)| ^ Φ*(X)1 For such an x, we call <σ,τ> an
e-splitting of p for x. If Γ is a tree and σ, τ c Γ, then we call <σ, τ> an e-splitting
of p o« Γ.

2.5 Definition. Let eeN be given. A tree T is an e-splitting tree if for all σe,cf2>
<Γ(σ*0), Γ(σ* 1)> is an e-splitting of T{σ).

The crucial fact about e-splitting trees is captured by the next lemma.

2.6 Computation Lemma. Fix eeN,h: N^ N and a tree T such that T is recursive in
h. Let A <= T be given such that Φf is total. Then:

(i) If there are no e-splittings on T, then Φf ^τh.
(ii) If T is an e-splitting tree, then A ^τΦf 0 h.

Proof (i) Fix e,h, T and A as in the hypothesis of the lemma. Given xeN, we
compute Φ*(x) by finding σe^2 such that σ c Γand Φσ

e(x)[. Such σ must exist since
Φf is total, and can be found recursively in h. Furthermore, there is a τ e ^2 such that
T C Γ , T C ^ and Φf(x) = Φτ

e(x)l. Since <σ, τ> cannot be an e-splitting of Γ(0) on x,
Φ°β(x) = Φl(x) = ΦA

e{x).

(ii) Fix e, h, Γand A as in the hypothesis of the lemma. Given y e N, we compute
A(y) using the Φf and /* oracles. If y < lh(Γ(0)), then since Γ(0) <=A, A(y) = T(φ)(y)
is computed using the h oracle. Suppose, by induction, that we have found σ e ^
such that lh(σ) = n and T{σ) a A, and so have computed A(y) for all y < lh(Γ(σ)).
Since <7Ί(σ* 0), Γ(σ* 1)> is an e-splitting of T(σ) on some x, we can use the h oracle
to find JCG Nsuch that Φj ( σ*O )(x)| # Φ j ^ x H . T h e n Φ ^ c) = Φ j ^ C * ) for exactly
oneye{0,1}. For this j , T(σ*j) c A. 0

In order to apply the Computation Lemma, we must be able to build e-splitting
subtrees whenever we cannot build subtrees without e-splittings. This is accom-
plished by the following theorem.

2.7 Existence Theorem for e-splitting Trees. Let eeN and TeZΓ be given. Assume
that

(i) Vp e ¥2 3σ, τ e ^ 2 « T(σ), Γ(τ)> is an e-splitting of Γ(p)).
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Then there is an e-splitting tree T* c= T. Furthermore, for any h: N -• N, if T is
recursive in h then Γ* is recursive in h.

Proof We proceed by induction on lh(σ). Fix a recursive one-one correspondence
of Sf\ x N with N, given by {<τ?,τj,Λj>: jeN}. We begin by defining
Γ*(0) = Γ(0). Fix σe&2 such that lh(σ) = n. We may assume by induction that
T*(σ) has already been defined. By (i), we can find the least j eN such that
<Γ(τ°), Γ(τ})> is an e-splitting of T*(σ) on Xj. Let T*(σ*k) = T(ή) for ke {0,1}.

It is easily verified that Γ* has the desired properties. D

2.8 Definition. Given e e Wand Te ZΓ such that 2.7(i) holds, we let Sp2(Γ, e) be the e-
splitting subtree of T constructed in the proof of Theorem 2.7.

Let e e N and Te 3~ be given. We say that T\\- Qe if either Γis an e-splitting tree
or there are no e-splittings on T. We can now verify (3) and prove the density lemma
for {Qe: eeN).

2.9 Lemma. Let TeZΓ and eeN be given. Then there is a tree T*eέF such that
T* c Γ, Γ* | h Qe, and for all AaT*,A[= Qe.

Proof Fix eeN and Te 3~. If there is a σe 5^ such that there are no e-splittings on
Ext2(Γ, σ), let Γ* = Ext2(Γ, σ). By Remark 1.8, Γ* e F and Γ* c T. Note that Γ*
was chosen so that Γ* 11- Qe. It now follows from the Computation Lemma that for
all A a T*, if Φf is total then Φ^ is recursive, so A \= Qe.

If no σ as above exists, then 2.7(i) holds, so by the Existence Theorem for e-
splitting Trees, S p 2 ( 7 » is defined: Let Γ* = S p 2 ( 7 » and note that T*e^~ and
Γ* c T Again, Γ* is chosen so that Γ * | | - β e . It now follows from the
Computation Lemma that for all A cz T*9 if Φ^ is total then A ^τΦf, so

A set of minimal degree can now easily be constructed.

2.10 Theorem. There is a minimal degree.

Proof By Lemma 2.2, it suffices to construct a set A <= N such that A satisfies all
requirements in M. For each Re0t, let CR = {Te3~\ T\\-R}, and let <g =
{CR: R e 01}. By Lemma 2.3 and Lemma 2.9, (3) holds and CR is a dense set for all
Re01. Hence by the Existence Theorem for ^-generic Sets, we can fix a ^-generic
set G, and by Lemma 1.9, we can fix AeAG.lt now follows from (3) that A satisfies
all requirements in 0ί. Q

The requirements chosen for the proof of Theorem 2.10 were the obvious ones.
However, it would have been sufficient to let ^ = {Qe:eeN}. We chose the above
presentation because it is more direct. We indicate how to show that each Pe is
satisfied if we only force {Qe: eeN} in Exercise 2.15.

Having constructed a minimal degree, we try to determine its location within D.

2.11 Theorem. There is a minimal degree a < 0 ( 2 ).

Proof. Construct a set of minimal degree directly by starting with Id2 and
constructing subtrees as before to force requirements in the order P0,Q0,
PuQu"' Since {e: Φe is total} is infinite, there are infinitely many subtrees
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in this sequence of trees Id 2 - To 3 7\ 3 such that Γi + 1(0) =3 7X0) (this will
happen when forcing Pe for infinitely many e) so a unique set A = U{ Γ, (0) :ieN} is
constructed. We now note that the particular choice of Ti+ί c T{ can be determined
by a 0 ( 2 ) oracle, and so complete the proof. In the case of Pe9 Ti + ι is defined in
Lemma 2.3, and the choice of Tt +1 depends only on knowing whether Φe is total. By
Lemma IV.3.2, a 0 ( 2 ) oracle can make this determination. In the case of Qe, Ti + ί is
defined in Lemma 2.9, and the choice of Ti+ί depends on whether or not 2.7(i) is
true. But 2.7(i) is a Π°2 sentence, uniformly in an index for the recursive tree Th so a
0 ( 2 ) oracle can again determine an index for Ti + i. 0

Minimal degrees also exist below 0', but are more difficult to construct. Such a
construction is carried out in Chap. IX, and minimal degrees below recursively
enumerable degrees and degrees in GHj are constructed in Chaps. XI and IX
respectively.

The above construction of a ^-generic set can be modified to obtain a large
number of minimal degrees.

2.12 Theorem. There are 2K o minimal degrees.

Proof. We construct a tree of trees, i.e. a function 3F: 5^ -• ?Γ such that for all

We will write Tσ for ̂ ( σ ) . Let {Ri\ ieN} be a recursive ordering of 01.
We begin by defining T0 = Id 2. Assume, by induction on lh(σ), that Tσ has been

defined, and fix ie {0,1} and n = lh(σ). Let Γσ+ι be a subtree of Ext2(Γσ, /) which
forces Rn. It is easily verified that we have defined a tree of trees.

For all B c N, let GB be the ^-generic set {Te3~\ 3σ a B(Tσ c T)}, and let AB

be a set obtained from GB. Then for all B ̂  N, AB has minimal degree.
Furthermore, for all B,C ̂  N,\ϊ B Φ C then ^4β Φ Ac. Since each degree contains
only countably many sets, {AB: B c TV} is a collection of minimal degrees of
cardinality 2*°. D

The following corollary of Theorem 2.12 was used in Corollary II.4.6.

2.13. Corollary. Q) has a maximal antichain of cardinality 2X o.

The techniques of this section can be extended to control the double jumps of
minimal degrees. We carry this out in the next section.

2.14 Remarks. Theorem 2.10 and Theorem 2.11 were proved by Spector [1956].
Theorem 2.12 and Corollary 2.13 were noted by Lacombe [1954]. Sacks [1971] was
the first to notice the connection between Spector's proof and forcing. Exercise 2.15
first appeared in Epstein and Posner [1978].

2.15-2.16 Exercises

2.15 (Posner's Lemma) Show that it is sufficient to force the requirements
{Qe: e e N} {Pe \eeN} will then automatically be satisfied. (Hint: We suppose that
AeAG is such that A = Φe, and obtain a contradiction. Define the partial
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recursive functional

\x if 3σaB(σφA)
Ψ(B)(x) = .

(I otherwise.

Then Ψ = Φt for some ieN. Show that AeAG implies that we failed to force Qh)

2.16 Construct a tree of trees such that, in the notation of Theorem 2.12, for all
B, C c N, AB is a set of minimal degree and if B # C then AB and 4̂C have different
degrees.

3. Double Jumps of Minimal Degrees

The methods introduced in the last section rely on a 0(2) oracle to determine how
constructions are to be carried out. Thus the local version of the theorem asserting
the existence of a minimal degree produces such a degree below 0(2), and more
powerful techniques are needed to produce a minimal degree below 0'. For similar
reasons, the methods introduced in the last section are not sufficiently powerful to
characterize jumps of minimal degrees, but can be used to characterize double
jumps of minimal degrees. A characterization of the jumps of minimal degrees is
deferred until Chap. X.

We begin this section by constructing a minimal degree a such that a ( 2 ) = 0(2).
The proof of this result can be modified to obtain a complete characterization of the
double jumps of minimal degrees as D[0(2), oo). We leave this characterization as an
exercise for the reader. We also begin to obtain a finer version of Corollary IV.3.6
which implies that all minimal degrees lie in GL2. Thus we construct a minimal
degree in GL2 — GL^ There are also minimal degrees in GL1? but a proof of this
fact requires methods which enable us to exercise some control over the jump of the
minimal degree constructed, so is deferred until Chap. IX.

We now indicate how to construct a set A of minimal degree a for which

a(2> = 0(2) B y L e m m a iv.3.2, it will suffice to insure that Tot(v4) ^ΓTot(0). For
each e e N, we require that A lie on a recursive tree T such that either

(1) VBa T(ΦB

e is total)

or

(2) MB c T(Φ* is not total).

The determination of whether (1) or (2) holds for a given eeN will be made,
uniformly in e, by an oracle of degree 0(2). Hence by Lemma IV.3.2, it will be the
case that a(2) ^ 0(2).

3.1 Definition. Let Γbe a tree and let e e N be given. Γis said to be e-total if (1) holds
and completely e-partial if (2) holds.
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Note that there are trees which are neither β-total nor completely e-partial for it
is possible for Φξ to be total for some, but not all branches of T.

For each e e N, we establish a requirement Ue which asserts that either (1) or (2)
holds. Thus a tree Γwill force Ue (T\\- Ue) if either Γis e-total or Γis completely
e-partial. The following lemma allows us to build e-total trees whenever we need
them to force the requirement Ue.

3.2 Lemma. Let eeN be given, and fix a tree T. Assume that

(i) VxeNVσe5ζ 3τe¥ 2(τ Ξ> σ & Φ e

Γ ( τ )O)|).

Then there is an e-total Γ* c T. Furthermore, for all h: N -• N,ifT is recursive in h
then Γ* is recursive in h.

Proof We proceed by induction on lh(σ) for α e ^ Fix a one-one recursive
correspondence {σt :ieN} of TV with Sf2- We begin by finding the least ie N such that
Φj ( σ i )(0) | and setting Γ*(0) = T(σi).

Fix σe£f2 such that lh(σ) = n. We may assume by induction that Γ*(σ) has
already been defined and that Γ*(σ) = T(η). Given /G{0, 1}, find the least; G N such
that Φτ

e

(σj\n + 1) | and η*i^ σj9 and set Γ*(σ*/) = Γ(σ7).
This completes the construction of 71*. It is easily verified that 7"* has the

desired properties. 0

3.3 Definition. Let eeN be given. Fix a tree Γfor which 3.2(i) holds. Then we let
Ύot2(T,e) be the tree constructed in Lemma 3.2.

We can now prove the Density Lemma for {Ue: eeN}.

3.4 Lemma. Let Te$~ and eeN be given. Then there is a tree T*eZΓ such that
Γ* c TandT*\\- Ue.

Proof If 3.2(i) holds, then we let Γ* = Tot2(Γ, e) and note that by Lemma 3.2, Γ*
has the desired properties. If 3.2(i) fails to hold, then for some σe^2, Ext2(Γ, σ) is
completely e-partial. Fix such a σ, and let T* = Ext2(^Γ, σ). By Remark 1.8,7"* <= T
and Γ * G ^ 7 Hence Γ* has the desired properties. D

If we include the requirements {Ue: eeN} in the list of requirements for the
construction of a minimal degree, then by Lemma 3.4, all these requirements will be
forced. Suppose that we have a recursive list of all requirements and are given Γand
asked to force Ue. Then if A is the final set of minimal degree and T =Tn, then

(3) eeΊot(A)oTn + ι = Tot 2 (7;,e)o3.2(i) holds.

Since an oracle of degree 0 ( 2 ) can decide whether 3.2(i) holds for Γand e uniformly
in Γand e, it follows from (3) that the decision as to whether or not e e Tot(/1) can be
made by an oracle of degree 0 ( 2 ). Since 0 ( 2 ) < a ( 2 ) for all a e D, we have just proved:

3.5 Theorem. There is a minimal degree a such that a(2 ) = 0 ( 2 ).

A proof combining the methods of Theorem 2.12 with those of Theorem 3.5 can
be used to show that for any set B c N, the set AB defined as in Theorem 2.12
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satisfies Λψ =TAB® 0 ( 2 ) = τ B © 0(2). We leave the details to the reader (Exercise
3.14), but state this result as our next corollary.

3.6 Corollary. Let d e D be given. Then there is a minimal degree a such that

Corollary 3.6 allows us to characterize the double jumps of minimal degrees.

3.7 Corollary. Let άeΌ be given. Then the following are equivalent:

(i) d ^ 0 ( 2 ).

(ii) d = a ( 2 ) for some minimal degree a.

We next prove that there is a minimal degree in GL 2 — GL^ In fact, there are
such degrees in L 2 — L l 5 but a proof of this fact requires that we construct a
minimal degree below 0', so is not carried out until Chap. IX. By Corollary IV.3.6, it
suffices to construct a minimal degree which is not in GI^, so it suffices to satisfy the
following requirements for all eeN:

We show that for any B ςz TV, we can force the requirements Kf in which B replaces
0' by using narrow subtrees.

Fix eeN. The idea behind the satisfaction of Ve is as follows. Given any
recursive tree T, there is a partial recursive functional Ψ such that

fO if A φ T
Ψ(A',x) = <

l\ otherwise.

An algorithm for computing Ψ(σ x) for σ e «9ζ is to check whether or not σ cz T. If
σ φ Γthen Ψ(σ;x) = 0 and if σ cz Γthen Ψ(σ; x ) | . For a given tree T, Ψ = Φfm for
some n(T)eN. Furthermore, n{T) can recursively be computed once we have an
index for T as a partial recursive function.

If Φ^ Θ Θ («(Γ)) | , then Ve is satisfied. The only problem occurs when
Φeθ0'(n(T))l = 0, thus predicting that n(T)φA' for A a T. The convergence of
Φf®0 (n(T)) requires only a commitment to a finite string σ cz A. Thus if we have
the ability to let A extend σ and then leave T, we could then change the value of
A'{n(T)) to 1. In order to achieve the flexibility to leave T, we carry out this
procedure on a narrow subtree of T instead of on T.

3.8 Definition. Let Γand Γ* be trees such that Γ* c T. We say that 7* is a narrow
subtree of T if for all σ cz Γ* there is a string τ c Γ - Γ * such that τ ZD σ.

Narrow subtrees are easy to construct, and such a construction is carried out in
the next lemma.

3.9 Lemma. Fix a tree T. Then T has a narrow subtree 7"*. Furthermore, Γ* can be
defined so that for all h: N-+ N, if T is recursive in h then Γ* is recursive in h.

Proof For each neN, let 0n be the string of length n such that 0n(x) = 0 for all x < n.
For each σ e ^ , define T*(σ) = T(σ 0 0n) where n = lh(σ). It is easily verified that
Γ* has the desired properties. D
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3.10 Definition. For any tree T9 let Nar(Γ) be the narrow subtree of T defined in
Lemma 3.9.

Given Tε £Γ and e e N, we say that T\\-Ve exactly if for all A a T, A f= Ve. The
Satisfaction Lemma for Ve is then trivial. We now prove the Density Lemma for Ve.

3.11 Lemma. Let TeZΓ and eeN be given. Then there is a tree T* e£Γ such that
Γ*<= TandT*\\- Ve.

Proof. Let n = «(Nar(Γ)) be the index for the functional Ψ defined before
Definition 3.8 for the tree Nar(Γ). We ask if there are strings σ c Nar(Γ) and τ cz 0'
such that Φσ

e

@τ(n)i = 0. If no such strings exist, we let Γ* = Nar(Γ). Then for all
A a T*9 Ψ(A; n)\ so A'(n) = 0 Φ Φj®Q\ή). If such strings exist, fix such a string σ.
Fix ξ,ηeSf2 such that T(ξ) = σ and η = ξ* 1 * 1, and let Γ* = Ext2(T9η). Then
T(η) ψ N a r ( Γ ) , s o f o r a l l A a T*9 φ ( A ; n ) l T h u s A \ n ) =\φQ = Φ ^ @ 0 ' ( n ) . I n
either case, we see that Γ* has the desired properties. D

Note that we could have replaced 0' with any set B c TV and the above proof
would yield the Density Lemma for Vf. Furthermore, an index for Γ* in Lemma
3.11 can be obtained from an index for T recursively in an oracle of degree 0(2).
Hence we can add the set {Ve: eeN} to the set of requirements used in the
construction of a minimal degree to obtain the following theorem.

3.12 Theorem. There is a minimal degree a such that a(2) = 0(2) and
aeGL 2 - GL^

To this point, we have used only recursive trees as conditions of our notion of
forcing. In the next section, we pass to non-recursive trees in order to obtain
relativizations of results already proved, and to work above ideals instead of single
degrees.

3.13 Remarks. The use of e-total trees and the proof of Theorem 3.5 are due to
Miller and Martin [1968]. Theorem 3.12 was proved by Sasso [1974].

3.14-3.15 Exercises

*3.14 Let deD be given. Construct a minimal degree a such that a(2) = a u 0 (2)

= d u θ ( 2 ) .

3.15 For all n ̂  2, show that there is a set A of minimal degree a such that
a ^ O ^ " 1 * but a'^O*""1*.

4. Minimal Covers and Minimal Upper Bounds

In this section, we introduce trees which code specified subsets of N into each of
their branches. These trees are used to relativize results previously obtained about
minimal degrees, and to obtain minimal upper bounds for countable subsets of D.

4.1 Definition. Let T be a tree and let B c N be given. T is said to be B-pointed if
T^TB and for every branch A of T9 B ̂ TA. T is said to be pointed if T is
C-pointed for some C ̂  N.
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^-pointed trees are useful for obtaining results about ^ [ b , oo) where B has
degree b. The following lemma will allow us to obtain 5-pointed subtrees of given
trees under suitable hypotheses.

4.2 Lemma. Let B,C ^ N be given and let T be a B-pointed tree. Then there is a
B © C-pointed subtree Γ* of T.

Proof. For each neN, let τn = C t n. Define Γ*(σ) = T(σ © τπ) where lh(σ) = n.
Clearly Γ* ^ τ B © C. If A c T*, then since T* <= T, A a T. Since Γis ^-pointed,
B ^τA,so T ^τA.Ύo recover C from A, we note that neC if and only if there is a
string ξ e 6f2 of length 2/i + 2 such that Γ(£) c A and <j;(2w + 1) = 1. Since

4.3 Definition. Let £, C c TV be given and let T be a ^-pointed tree. Let Pt(C, Γ)
denote the .5 © C-pointed subtree Γ* of T defined in Lemma 4.2.

Note that Pt(0, T) = Nar(Γ) for every tree T. We now relativize the definition of
minimal degree.

4.4 Definition. Let a, d e D be given. Then a is a minimal cover for d if a > d and
D(d,a) = 0.

Results about minimal degrees relativize to arbitrary degrees d e D , becoming
results about minimal covers of d. Only minor changes in proofs need to be made.
The set <F of forcing conditions becomes the set of D-pointed subtrees of Pt(Z), Id2)
where D is a set of degree d. The requirement Pe becomes ΦΏ

e Φ A, and the
requirement Qe becomes: If Φf is total then either Φf is recursive in D or A is
recursive in Φf © D. And instead of forcing Vf, we force Vf. All the lemmas and
theorems proved earlier in this chapter now go through with these changes. We list
some of the relativized results, leaving the verification of the results to the reader.

4.5 Theorem. Let d e D be given. Then there is a minimal cover a of d such that
a<2> = d(2) and aeGL2(d) - GLt(d).

4.6 Theorem. Let c,deD be given. Then there is a minimal cover a of ά such that
a(2 ) = a u d ( 2 ) = cud ( 2 ) .

4.7 Corollary. Let c, d e D be given. Then the following are equivalent:
(i) c ^ d ( 2 ).

(ii) c = a ( 2 ) for some minimal cover a of ά.

4.8 Theorem. For all d e D, d has 2N° minimal covers.

4.9 Corollary. For all deD, D[d, oo) has an antichain of cardinality 2Ko.

If we iterate the pointed subtree operation, then we can get minimal upper
bounds for countable sets of degrees.

4.10 Definition. Let S be a countable set of degrees. Then D[S, oo) = {deD: d ^ c
for all c e S}. A minimal upper bound for S is a degree c e D[S, oo) such that there is
no deD[S, oo) for which d < c.

Since a minimal upper bound for S is the same as a minimal upper bound for the
ideal generated by S, we restrict ourselves to the case where S is an ideal. Most of the
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results which have just been mentioned for D[d, oo) for all d e D have counterparts
for D[I, oo) for all countable ideals I of 2, if we replace minimal covers with
minimal upper bounds. We take as the set of forcing conditions, the set of all trees
which are ^-pointed for some B ^ N whose degree b lies in I. We use appropriate
modifications of previous requirements, except that the requirements {Pe: eeN}
are replaced with

for all e e N and B c N such that the degree of B lies in I. By Lemma 4.2, the set of
trees forcing each such requirement is dense, so we can construct a suitable generic
set G and take a set Ae AG. The degree a of A will be the desired minimal upper
bound. Hence:

4.11 Theorem. Let I be a countable ideal of Q). Then I has a minimal upper bound.

We now mention some additional results pertaining to minimal upper bounds
whose proofs are left to the reader.

4.12 Theorem. Let I be a countable ideal ofQ) with no greatest element. Then I has 2K°
minimal upper bounds.

Results about double jumps of minimal upper bounds can also be obtained, but
depend on how effectively we can list a set S c N2 such that {S[i]: ieN} generates
the ideal I.

4.13 Theorem. Let I be a countable ideal of 9) and feίSςD and d e D be given such
that S generates I and S is uniformly of degree ^ d. Then there is a minimal upper
bound a for I such that a ( 2 ) < d ( 2 ) and

4.14 Remarks. The results on minimal covers were obtained as immediate
corollaries of the results which they relativize. Theorem 4.11 was proved by Sacks
[1963].

4.15-4.16 Exercises

*4.15 Write out a detailed proof of the theorem that every degree has a minimal
cover.

*4.16 Write out a detailed proof that every countable ideal has a minimal upper
bound.

5. Cones of Minimal Covers

5.1 Definition. The set of arithmetical degrees, D a r i t h , is {deD: 3neN(ά < 0(n))}.
(Note that D a r i t h is the set of all degrees of sets which lie in the arithmetical
hierarchy.) A degree d is arithmetical if d e D a r i t h . We let @Λrith denote the poset
<D a r i t h , O .
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In this section, we use cones of minimal covers to show that 2 and 3Λrith have
different elementary theories.

5.2 Definition. Let d e D be given. Then d is a minimal cover if d is a minimal cover for
some b e D.

In Section 4, we showed that every b e D has a minimal cover. We now show that
not every a e D is a minimal cover. The proof relies on two facts:

(1) Given a, b, d e D, if a and b are both recursively enumerable in d, then a u b
is recursively enumerable in d.

(2) Given a, d e D, if a is recursively enumerable in d, then a is not a minimal
cover for d.

(1) follows easily from Definition III. 1.6 and (2) follows easily from Corollary
IΠ.6.3.

5.3 Theorem. For all neN, 0(n) is not a minimal cover.

Proof. Let 0 (0) denote 0. Fix n > 0. We suppose that 0(n) is a minimal cover for a and
obtain a contradiction. Fix the greatest k < n such that 0(k) ^ a. (Note that such a k
exists since 0(0) ^ a.) Then 0(k + 1 ) < 0(n) and a u θ ( k + 1 ) > a, so since 0(n) is a
minimal cover for a, a u 0 ( k + 1 ) = 0(n). By Theorem IΠ.2.3(i), 0 ( k + 1 ) is recursively
enumerable in 0(k), so since 0(k) ^ a, 0 ( k + ! ) is recursively enumerable in a. Also, a is
recursively enumerable in a. Hence by (1), 0(n) = a u 0 ( k + υ is recursively enumer-
able in a. But then by (2), 0(n) is not a minimal cover for a. D

Many other degrees are not minimal covers. Other examples will be constructed
in Chap. VIII. Our next main result will show that there is a degree d such that every
degree a ^ d is a minimal cover. Some preliminary results must first be stated.

5.4 Definition. A set S ς D is a cone if there is a degree d such that S = {aeD:
a ^ d } .

5.5 Definition. Expand the language for Recursion Theory introduced in Sect. III. 1
by adding new variables {Xt :ieN}, each to be interpreted as a function from Ninto
N, or equivalently, as an element of NN. The arithmetical hierarchy can now be
defined as before, where no quantification is allowed over these new variables. We
then call a set ^ c NN arithmetical if there is an arithmetical formula S(Xi) of this
expanded language such that for al\feNN, S{f)ofe(W.

The construction of a cone of minimal covers depends on the Axiom of
Determinateness for arithmetical subsets of NN. This axiom is now described.

5.6 Definition. Let ®J c NN be given. The Gale-Stewart game Gay is played by two
players, I and II, as follows: The players alternate moves, each picking an integer
n e N when his turn comes, with player I beginning. The game ends with a sequence
{«f: ieN} which can be viewed as an element of NN. Player I wins the game if this
sequence is in ^ player II wins otherwise. (Note that different players may win
different plays of the game G®.)

5.7 Definition. Let ^ c NN be given. A strategy is a function g: £f -> N. A player
follows the strategy g if whenever it is that player's turn to specify the next integer in
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the sequence, and the string σ has been played up to that point of the game, then the
player plays g{σ) at that turn. The strategy g is a winning strategy for a given player
if, under the assumption that the player follows g, the sequence constructed during
the game is an element of ^ . (Hence if the player follows the strategy, then he will
win no matter what the other player does.)

5.8 Definition. Let ty c NN be given. The game G® is said to be determinate if one of
the players has a winning strategy.

The Axiom of Determinateness states that for every ®j c NN, G^ is determinate.
This axiom is known to contradict the Axiom of Choice. However, the Axiom of
Determinateness is known to hold for a certain class of subsets oΐNN, the Borel sets,
a class which contains the arithmetical sets. We state this fact without proof.

5.9 Theorem (Martin [1975]). If ®J c NN is Borel then Gay is determinate. Hence if <Sf
is arithmetical, then G® is determinate.

5.10 Definition. A subset <& c NN is degree invariant if whenever A, B c TV are given
such that A e& and B =TA, then BeQJ. A game Gay is a degree game if ®J is degree
invariant.

The Axiom of Determinateness is used as follows to show that certain sets of
degrees contain cones.

5.11 Lemma. Let Gay be a determinate degree game. Then if player I has a winning
strategy for Gay then <& contains a cone and if player 11 has a winning strategy for Gay,
then NN — %/ contains a cone. {A subset of NN contains a cone if there is a cone of
degrees such that all elements ofNN of degree in the cone are elements of the original
subset of NN.)

Proof Without loss of generality, we may assume that player I has a winning
strategy g for Gay. Let d be the degree of g. We show that {fe NN: d ^ f} is a subset
of <&. Fix h e NN such that d ^ h. Consider the play of Gay with player I playing the
strategy g and player II playing h(n) at his «th move. Let feNN be constructed by
this play of the game. Then h^τf^τh@gso since d ^ h, f = τh. Since g is a
winning strategy for player I , / e ^ ; and since Gay is a degree game, he&. 0

Theorem 5.9 and Lemma 5.11 combine to give the following result.

5.12 Theorem. D contains a cone of minimal covers.

Proof. Let <& = {fe NN: f is a minimal cover}. We leave it to the reader to verify that
®j is an arithmetical set. By Theorem 5.9, Gay is determinate, so one of the players
has a winning strategy. By Lemma 5.11, it suffices to show that player II cannot
have a winning strategy for Gay.

We assume that player II has a winning strategy for Gay and obtain a
contradiction. Under this assumption, Lemma 5.11 implies that NN — ®J contains a
set <j? such that ̂  = { C : C e ^ } i s a cone. Fix d e c€. By Theorem 4.5, d has a minimal
cover b. Since b > d, b e 9ί so if/e NN has degree b, / G ty. Since Gay is a degree game,

yielding the desired contradiction. I

Theorem 5.12 and Theorem 5.3 combine to specify a sentence in the language of
posets which differentiates between 2 and ^ a r i t h .
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5.13 Definition. Let srf and & be structures which interpret the same language. Then
we say that s& and ^ are elementarily equivalent (write stf = @) if srf and $ satisfy
exactly the same sentences in the language.

5.14 Corollary. 3) and 3arith are not elementarily equivalent.

Proof. Let S be the sentence in the language of posets which asserts the existence of a
cone of minimal covers, i.e., S is

3dVα 3b(a ^ ί/ -• b < a& \/c(b < c ^ a -• c = a)).

By Theorem 5.12, 3) satisfies S. By Theorem 5.3, 3arith does not satisfy S. 0

The following definitions are needed for the subsequent discussion.

5.15 Definition. Let a, d e D be given. We say that a is a strong minimal cover for d if a
is a minimal cover for d and D[0, a) = D[0, d]. We say that a is a strong minimal cover
if a is a strong minimal cover for some beD.

5.16 Definition. S g D is an initial segment of D if for all d e S , D[0,dJ c S.

Much of the remainder of Part B of this book is devoted to classifying the
countable initial segments of 3). (This problem will be seen to be equivalent to
classifying the countable ideals of 3).) Theorem 2.10 was the first non-trivial initial
segment result to be proved. One might attempt to construct longer initial segments
of 3) by using strong minimal covers. Unfortunately, it is not known whether every
minimal degree has a strong minimal cover, although Simpson [1977] has shown
that many minimal degrees do have strong minimal covers. The following theorem
shows that a certain property of a degree guarantees that the degree will not have a
strong minimal cover. By the Friedberg Jump Theorem, 0' is a degree having this
property.

5.17 Theorem. Let d e D t e given such that for all c > d there is a h < c such that
b u d = c. Then ά does not have a strong minimal cover.

Proof Given c > d, find b < c such that b u d = c. Then b ^ d so c is not a strong
minimal cover for d. D

By the Friedberg Jump Theorem (relativized) the property given in the
hypothesis of Theorem 5.17 is possessed by all degrees in GH 0 , so no d e GH 0 has a
strong minimal cover. Jockusch [1980] shows that 2-generic degrees have this
property, and by Exercise IV.3.17, all degrees in GL 2 have this property. Shore has
independently constructed degrees with this property which are not in GH 0 . Hence
there are many degrees without strong minimal covers. Cooper has shown that
there is a non-zero recursively enumerable degree with a strong minimal cover.

The proof of Theorem 5.17 easily implies the following result.

5.18 Corollary. Let ύeΌ be given such that for all c ^ d there is a degree b < c such
that b υ d = c. Then no degree in D(d, oo) is a strong minimal cover.

5.19 Remarks. Theorem 5.3 was proved by Jockusch and Soare [1970]. In the same
paper it was shown, under the assumption that all Σ°5 degree games are
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determinate, that Theorem 5.12 holds. This proof preceded Martin's [1975] proof
of Borel Determinateness, so was not an outright theorem of Set Theory. After
Paris [1972] proved that all Σ% games are determinate, Jockusch [1973] found a
different game which was not a degree game but nevertheless yielded a cone of
minimal covers. Subsequently, Harrington and Kechris [1975] found a Σ® game
which implied the existence of a cone of minimal covers, and also computed a vertex
for this cone, the degree of Kleene's Θ (the degree of a complete Π\ set - the
superscript 1 allows the use of set quantifiers). Jockusch and Shore [1983a] then
found a smaller vertex, 0 ( ω ), for such a cone (0 ( ω ) is the degree of 0(ω), where 0(ω) is
defined by (0(ω))["] = 0{n) for all neN). Lemma 5.11 was proved by Martin [1968].

5.20-5.22 Exercises

5.20 Show that {/e NN: f is a minimal cover} is a £5 set.

5.21 Show that the arithmetical degrees form a usl.

5.22 Let b e D be given. Show that D[b, 00) contains a cone of degrees which are
minimal covers of degrees ^ b.




