Chapter 111
The Jump Operator

The jump operator is a naturally defined function taking each degree to a larger
degree. Itis also very closely related to the arithmetical hierarchy. We will study this
relationship, as well as some algebraic structures whose universe is the set of degrees
and on which the jump operator acts as a function.

The jump operator also allows us to pick out certain natural degrees other than
0. Thus we are presented with certain natural intervals of degrees for which we can
ask questions similar to those answered in Chap. II. We begin our study of local
degree theory, i.e., the study of bounded intervals of degrees in this chapter. Many
of the results proved throughout this book are local results which allow us to prove
global theorems about the degrees.

1. The Arithmetical Hierarchy

The arithmetical hierarchy coincides with the 3,/V, hierarchy of sentences for the
language of recursion theory specified below. It is introduced in this section, and
characterizations of certain levels of this hierarchy are given.

There is one basic relation and one basic function for which we want symbols in
our language for recursion theory. The first is the graph of the function ¢ of the
Enumeration Theorem. The other is any one-one recursive correspondence
n: N? - N.niscalled a pairing function. We will sometimes denote 7 by n,, and note
that for n > 2, we can recursively define 7,,,: N"*' —» N by

7'[n+1(aO, .. ,an) = 7'5(7.l:n(aOa By . 1), (1,,).

The underlying language for recursion theory is the language of the pure
predicate calculus with equality, together with:

(1) For each ne N, a constant symbol # whose interpretation is 7.

(2) A five place relation symbol ¢ whose interpretation is the graph of the
function of the Enumeration Theorem, i.e., {{ag,e, x,5,y>: ¢(0, €, x,5)| = y}.

(3) A function symbol 7 of two places whose interpretation is the pairing
function 7. '

Henceforth, we will identify each symbol in this language with its interpretation.

1. The Arithmetical Hierarchy 35

Note that the above language is recursive. ¢ maps ¥ x N> — N, but we have a
recursive one-one correspondence of & with N, so can treat ¢ as a map N* - N
under this correspondence.

Given any recursive relation R, we recall that yy is the characteristic function of
R. If Ris a k-place relation, then we can effectively pass from R to the one-place
relation R* defined by

NE R(ny,...,n)< NE R¥*(mi(ny,...,m)< (g, ...,n)) = 1.

Furthermore, yrz = ¢, for some ee N and yj is total. Hence

xr(n) = 1< 35(p(0,e,n,5)] = 1) <=VYiVy(p(D,e,n,)] =y —>y=1).

Since the domain of ¢ is recursive, we now see that every recursive relation has both
an V; and 3, expression in this language. It is easily verified that any relation
expressible in both V; and 3; form is recursive.

The language for recursion mentioned above is closely connected with the local
structure theory of the degrees. We thus introduce notation to distinguish the 3, and
Vv, sentences of this language from those of other languages.

1.1 Definition. Let S be a formula in the above language. We say that Sis 20 if Sis 3,,
SisI1?if SisV,,and Sis A?if Sis both % and I1°. Given R < N*, we say that Ris 2°
(112, A? resp.) if there is a 20 (I, A? resp.) formula S of the language such that for
all ay,...,a,eN

R(ay,...,a,)<=Say,...,a,).
Similarly, given f: N* —» N, we say that fis Z° (I1°, 4° resp.) if the relation
R(xls" "xn+l)©f(x1"":xn) = Xn+1

is 29 (M2, A9 resp.). The classification {7, IT?, 42:n > 0} is called the arithmetical
hierarchy.

The arithmetical hierarchy has the following nice closure properties.

1.2 Remark. Let R, S < N* be Z? relations. Then RU S and RN S are X relations,
and N* — R is a II? relation.

1.3 Remark. Let R = N" be a recursive relation, and let m e N be given. Define the
relation S = N"~ ! by

S(xl’ cee axn—l)éax < m(R(X, X15en- >xn—1))‘

Then Sis a recursive relation. Hence the class 2 is closed under bounded existential
quantification. Since X is closed under negation, it is also closed under bounded
universal quantification.

36 III. The Jump Operator

1.4 Remark. For all ne N and all Z° relations S < N*, there is a ITJ_, relation
R = N**! such that

VX1 ey X(S(xy, .-y X)) <> AX(R(X, X1,y - - -5 X0)))-

We leave it to the reader to prove this remark (Exercise 1.16).
We now define a relativized version of the arithmetical hierarchy.

1.5 Remark. Given any function f: N*¥ » N, we can expand our language by adding
a symbol f to our language to be interpreted as the function f. If we follow the
procedure of Definition 1.1 to define X/, I/, and 4/, we obtain the arithmetical
hierarchy relativized to f.

The recursively enumerable sets have been studied extensively by recursion
theorists. We will, however, touch on these sets only peripherally in this book. Soare
[1978] contains a survey of results in this area, and Soare [1984] is an excellent
source from which to learn about recursively enumerable sets.

1.6 Definition. Let f/: N* - N and 4 = N be given. 4 is said to be recursively
enumerable in fif A = () or A is the range of a function recursive in f. A4 is said to be
recursively enumerable if A is recursively enumerable in some recursive function.
(Note that 4 is recursively enumerable if and only if A is recursively enumerable in
every recursive function.) A degree d is recursively enumerable (in f) if d is the degree
of a set which is recursively enumerable (in f).

The next two propositions present alternate definitions of the recursively
enumerable and recursive seis.

1.7 Proposition. Let f:N* > N and A< N be given. Then the following are
equivalent:
(i) A is recursively enumerable in f.
(ii) A is the domain of a partial function 6 which is computable from f.
(ii1) A is the range of a partial function 6 which is computable from f.

Proof. Exercise 1.17. |

1.8 Proposition. Let f:N*— N and A< N be given. Then the following are
equivalent:

(1) A is recursive in f.

(ii) Both A and N — A are recursively enumerable in f.

Proof. Exercise 1.18. 1
The next theorem relates recursive enumerability to the arithmetical hierarchy.

1.9 Theorem. Let f: N* - N and A < N be given. Then the following are equivalent :
(1) A is recursively enumerable in f.
(i) AeX].

Proof. (1)=(ii): Let A be recursively enumerable in f. If 4 =0 then
x€A<>3x(x # x)so Ae 21 If A # 0, let g be a function recursive in f with range A4.

1. The Arithmetical Hierarchy 37

Then
yeAd<3x(g(x) = y).

As g is in our language, AeXJ.
(i) = (i): If 4 = @ then the resultisimmediate. Assume that A # 0, and fixa e 4.
Since A e X/, there is a relation S recursive in f such that

xe€ A - 3z(S(x, 2)).

Let {<u;,v;>:ie N} be a recursive enumeration of N2. Define g: N - N by

4(0) = {ui if u,v;)eS,

a otherwise.

g is clearly recursive in fand has range 4. [

1.10 Corollary. Let f:N*— N and A< N be given. Then the following are
equivalent:

(1) A is recursive in f.

(i) Aed’.
Proof. Recall that for all B< N, Be 2 <> N — BeIlJ. Hence by Proposition 1.8
and Theorem 1.9,

A is recursive in f<>both 4 and N — A are recursively
enumerable in f<> A4, N — AeXZ[<AeXINII{<Aea]. |

The final result of this section, the Limit Lemma, characterizes the class of 49
functions. It is stated in terms of the following definition.

1.11 Definition. Let /: N**' — N and g: N* — N be given. We say that g = lim, fif
(1) Xy, X 3sVE = s(f(8 x50, X)) = g(Xq, .., Xk)-

We say that lim, fexists if there is a function 4: N* — N such that (i) holds with 4 in
place of g.

1.12 Limit Lemma. Let f: N — N be given. Then the following are equivalent:

(i) feds.

(ii) There is a recursive function g: N* — N such that f = lim,g.
Proof. (i) = (ii): Let {{y;,s;>:ie N} be a one-one recursive enumeration of N2. By
Remark 1.4, fix a recursive relation S € N* such that

S(x) = y < IsVUS(x, y, 5, 1)).

For each u, xe N, define i(u, x) = pi[Vt < u(S(x, y;, s, £))]- Since fis total, we see
that i is a total recursive function. Define g(u, x) = y;u,) for all u, xe N. It is easily
verified that f = lim,g.

38 III. The Jump Operator
(ii) = (i): Let f = lim, g, where ¢ is recursive. Then
f(x) = y<=3sVt 2 s(g(t, x) = y) = Vs3t = s(g(t, x) = y).

Hence fe49. |

1.13 Corollary. Let A = N. Then A€ A9 if and only if there is a recursive function
f:N? = {0, 1} such that for all xe N

xe A< lim, f(s,x) = 1.

Proof. Fix A = N. Then 4 € A9 if and only if the characteristic function of A isa 49
function. Apply the Limit Lemma. |

There is a version of the Limit Lemma for functions f: N* —» N for all k£ > 1
which is proved by making the obvious modifications to the proof of the Limit
Lemma. The Limit Lemma can also be relativized as follows.

1.14 Lemma. Let f:N— N and h: N* > N be given. Then the following are
equivalent:
(i) fedh.

(i) There is a function g: N* — N recursive in h such that f = lim,g.
Proof. Exercise 1.19. [

1.15 Remarks. The results of this section are contained in Post [1944] with the
exception of the Limit Lemma and its variants which were proved by Shoenfield

[1959].
1.16-1.22 Exercises

*1.16 Show that for all ne N and all Z? relations S = N¥, thereis a IT)_, relation
R = N**1 such that

Vxq, . o X (S(xy, - .o x) < Ax(R(X, X4, - - 5 Xi)))-

(Hint: Use a recursive one-one correspondence between N and N*.)

1.17 Letf:N— Nand 4 < N be given. Prove the equivalence of the following
conditions:
(i) A is recursively enumerable in f.
(ii) A is the domain of a partial function which is computable from f.
(iii) 4 is the range of a partial function which is computable from f.

1.18 Letf: N > Nand A < N be given. Prove the equivalence of the following
conditions:

(i) A is recursive in f.

(ii) Both 4 and N — A are recursively enumerable in f.

1.19 Let f:N— N and h:N¥ > N be given. Prove the equivalence of the
following conditions:

(i) fe 4.

(i) There is a function g: N2 — N which is recursive in 4 such that f = lim,g.

2. The Jump Operator 39

1.20 Letf: N — N be a total Z° function for n > 1. Show that fis IT and hence
that f'is 4.

1.21 Show that if A4 is an infinite recursively enumerable set, then there is a one-
one recursive function with range 4.

1.22 Show that if 4 is an infinite recursive set, then there is a one-one
function f enumerating A4 in order of magnitude, i.e., f has range A4 and

Vx, y(x <y = f(x) <f(»)).

2. The Jump Operator

The jump operator is a strictly increasing function from D to D. We will define the
jump operator in this section, and examine its relationship to the arithmetical
hierarchy.
2.1 Definition. Given f: N > N, define /" = {e: ®/(e)|}. f" is called the completion
of f.
2.2 Definition. Given f: N — N, define /* = {{e, x): ®/(x)|}.

The following theorem describes relationships between f, f* and f*.

2.3 Theorem. Let A = N and f,g: N — N be given. Then:
(1) f' is recursively enumerable in f.

i) f &1 f.

(i) f* =1 f*.

(iv) If A is recursively enumerable in f, then A is recursive in f'. Hence f < f".

W) Iff<rgthenf <rg.
Proof. (i) ecf'<3dye Noce (06 < f& P(e)| = y). Hence by Theorem 1.9, f” is
recursively enumerable in f.

(ii) Assume that f/” <, f for the sake of obtaining a contradiction. Then by
Proposition 1.8, N — f” = {e: #/(e)1} is recursively enumerable in f, hence by
Proposition 1.7, N — ' = dom((P{;) for some pe N. We now note that

/(P <=peN — f'<>pedom(P)) < D} (p)],

a contradiction.
(iii) Clearly f" <1 f*. By clause (v) of the Enumeration Theorem, there is a
recursive function 4: N2 — N such that

; s
(p'{ (Z) — {1 1f ¢x(y)l,
= 1 otherwise.

Now
(x,y)ef* < 0L(y)| < h(x,y)edom(®],)< h(x,p)ef".

Hence f* < f".

40 III. The Jump Operator

(iv) Let A be recursively enumerable in f. By Proposition 1.7, 4 = dom(®/) for
some e€ N. Hence

xe A< dl(x)| = (e, xDef*

s0 A <rf*=qf" Letting f= A4, we see that f <1 f.
(v) Suppose that f < g. By (i) and Proposition 1.7, /" = dom(®) for some
eeN. Since f <rg, there is a pe N such that &/ = &7, so f’ = dom(®?). Now

xef = @)(x)| < <{p,x>eg*

sof'<pg*=7g. |
From Theorem 2.3(v), we note that if f = ; g then ' = ;- ¢'. Thus the completion
operator induces the following well-defined operator on D.

2.4 Definition. Let ae D be given. Then a’, the jump of a, is the degree of A’ for any
Aea.

The completion and jump operators can be iterated as follows.

2.5 Definition. Let /: N — N be given. Define ™, the nth completion of f, inductively
as follows: f© = f, and for n > 0, f"*1 = (f™). Given aeD, define a®, the nth
Jjump of a as follows: Choose 4 ca. Then a® is the degree of A™.

The following theorem relates nth completions to the arithmetical hierarchy.

2.6 Theorem. Let f N — N and A <= N be given. Then
(i) AeZX), <> A is recursively enumerable in f™.
(ii) (Post’s Theorem) Ae Al <A<t f™.

Proof. (1) We proceed by induction. If n = 0, then (i) follows from Theorem 1.9.
Suppose by induction that (i) holds for n. Assume first that 4 is recursively
enumerable in /™. Then 4 = dom(®/™) for some ee N. Hence

1) xed<3IyeNIoe L (PUx)| =y&a < f™).
Furthermore,
@) o cfMeVi<lh) (o) =1 ief™)&(6G) = 0 — i¢ /™).

By Theorem 2.3(i), f™ is recursively enumerable in £~ 1), hence by induction,
f™eZ!. It now follows from (1), (2) and Remarks 1.2 and 1.3 that 42/, ,.
Conversely, assume that 4 € 2/, . By Remark 1.4, thereis a I1/ relation S < N2

such that
(3) xe Ao 3y(S(x,).

Hence N2 — Se 2/, so by induction, N? — Sis recursively enumerable in /"~ V. By
Theorem 2.3(iv), N> — S is recursive in f™; so S must also be recursive in /™. By
(3), AeX{™, hence by Theorem 1.9, 4 is recursively enumerable in /.

(ii) Immediate from (i) and Proposition 1.8. 1

3. Embeddings and Exact Pairs Below 0’ 41

Post’s Theorem will usually be applied, implicitly, in the following way. The
only non-effective steps in the construction of a set 4 will be the need to answer
certain X ¢ questions, posed in a uniform way. Post’s Theorem will then imply that 4
has degree less than or equal to 0'.

The degree 0’ is uniquely situated within the degrees as being simultaneously the
degree of a recursively enumerable set and the jump of another degree. Some
properties of the degrees below 0’ will be discussed in the next section.

3. Embeddings and Exact Pairs Below (f

Some of the theorems proved in Chap. II for the degrees are also true for the degrees
below 0. The theorems which are reexamined in this section are those whose proofs
for the degrees below 0’ depend on little more than combining the proof given in
Chap. II with a bounding principle for forcing.

3.1 Notation. Let a,beD be given such that a<b. Dja,b] will denote
{deD:a < d < b}, and DJa, o0) will denote {deD:d > a}. Notation for other
intervals of degrees such as D[a, b), D(a, b], D(a, b), and D(a, o0) is interpreted in the
obvious way. This notation is also carried over to structures, so, for example,
P[a,b] will denote {DJa,b], <).

We now present a bounding principle which transforms global structure
theorems into local structure theorems.

3.2 Bounding Principle. Let aeD, a set I of requirements, a notion of forcing
(F, <), peF and a function f: F x J — F be given. Assume that:

(1) The sets 7 and F have degree < a, as does the relation < and the function f.
(i) Vge FVTe 7 (f(q,T) < & f(g,) I- T).

For each Te T, let Cr = {qeF:q|l- T}, and let € = {Cy:Te T }. Then there is a
sequence py = py = - -+ of elements of F such that

(i) po = p.
(iv) {i,p>:p = p;} has degree < a.
(v) G ={qeF:q > p; for some i} is a €-generic set.

Thus if h is a function which can be computed from { p;:ie N} through the use of an
oracle of degree a, then h has degree < a. In particular, if F is a set of partial functions
uniformly of degree < a, P = U{dom(p): pe F} has degree < a,andg:F x P — Fis
a function of degree < a such that for all qeF and xeP, ¢g(q,x) < q and
xedom(g(q, x)), then we can choose {p;:ie N} so that G has degree < a.

Proof. For the first part of the proof, we follow the proof of the Existence Theorem
(I1.2.8) for €-generic sets, except that p, , ; is specified by finstead of being picked
arbitrarily. (ii) allows us to prove a density lemma in this way. (iii) and (v) are easily
seen to be satisfied, and (iv) now follows from (i).

42 III. The Jump Operator

h defined as in the hypothesis of the principle will automatically have degree
< a. If P has degree < a, then we can choose {p;:ie N} as in the proof of
Theorem I1.2.9 using f to determine p,,,,; and g to determine p,.,,. Then
UG(x) = y <> paxt2(x) =y, so by (iv), UG has degree < a. [

The application of the Bounding Principle to some of the results in Chapter II is
straightforward. When the proof of the Density Lemma produces a function f of
degree < 0, then 3.2(i) is easily verified, and 3.2(ii) is just the Density Lemma.
Hence it is important to determine the effectiveness of the passage from a condition
p and a requirement R to a condition ¢ < p which forces R.

We first classify the finite posets which can be embedded into 2[0,0']. The
crucial step in this classification is the existence of a countable set of independent
degrees in D[0, 0’}

3.3 Theorem. There is a countable set {a;:ie N} of independent degrees such that
a; <0 forallieN.

Proof. Proceed essentially as in the proof of Theorem I1.3.6. We construct a set
A <= N? such that for all e, ie N, the requirement R, ;: <1>g‘[’] # A; is satisfied. We
note that we can recursively extend a condition to one converging on a given
argument, so by the Bounding Principle, it suffices to show that there is a function f
of degree < 0’ such that for all Yy eF and e,ieN, ¥ = f(Y,R,;) = 0eF and
S, R.)) |- R.;. Wenote that in the proof of Theorem I1.3.6, Fis a space, so we can
recursively order F x % as {{0;,6;):ie N}. The definition of 0 in the proof of
Theorem I1.3.6 depends on whether

1) I0eFIceAHO 2y &o = 0[7]&<Dg(x)l),

for a specified x depending recursively on . By Theorem 1.9, S = {{y,e,i>: (1)
holds for , e and i} is recursively enumerable, hence by 2.3(iv), S has degree < 0'. If
{Y,e,iy ¢S, then we set f(Y, R, ;) = y; and if (i, e, i) €S, then we search for the
least j such that 6, 2 y, g; = 01 and ®%(x)| (noting that such a j will be found
through a recursive search) and set F(i, R, ;) = 8;. fis easily seen to have degree
<0. 1

As in Section I1.3, the following corollaries can now be drawn.
3.4 Corollary. Let % = (U, <) be a finite poset. Then U <> D.
3.5 Corollary. Th(2[0,0']) N3, is decidable.

Having discussed the localization of the embedding theorems of Sect. 11.3, we
turn our attention to the extension theorems of Sect. I.4. Some of the extension
theorems of that section are false in 2[0, 0], while others require new proofs. The
new proofs will be presented in subsequent sections. For the remainder of this
section, we concentrate primarily on a local version of Theorem I1.4.8, the Exact
Pair Theorem for Countable Ideals. The Exact Pair Theorem is false in 2[0, 0], but
a weak version is true and can be used to show that 2[0,0’] is not a lattice. We first
demonstrate the falsity of the Exact Pair Theorem in 2[0,0'].

3.6 Corollary. There are 2%° many ideals 1 of 2[0,0'] such that for all a,b <0,
I#{d:d<a&d<b}.

3. Embeddings and Exact Pairs Below 0’ 43

Proof. Choose a countable set {a;: i e N} of independent degrees < 0’ as in Theorem
3.3. For each S = N, let

Is = {deD:3F < S(Fis finite & d < U{a;:ie F})}.
It is easily verified that for all S = N I is an ideal, and that
2 VS, T< NS # T- I #Ip).

A counting argument will now complete the proof of the corollary.
{S:S§ = N}| = 2% > N,. [D[0,0']| = Ny, so [D[0,0'] x D[0,0']] = N,. Thus by (2),
there are 2%° many ideals of D[0,0’] and only countably many possible exact pairs
for such ideals. Hence 2%° many ideals of D[0, 0] cannot have exact pairs below
0. 1

The major problem we face in trying to use the Bounding Principle to localize
extension theorems to DJ0, 0'] is that it may be impossible to define f{f, R) = 6 so
that f(0, R) |- Rand fe 49. In all the theorems considered in Section I1.4, if we start
with a poset 7 = (T, <) of degrees and representatives Beb for all beT, the
definition of f(0, R) depends on the truth value of a % sentence for some such B
rather than on the truth value of a X9 sentence. Hence if there is a set 4 = N2 of
degree a which effectively provides a set of representatives for T, i.e., if there is a
function g: N - N of degree < a such that, letting T = {b;:ie N}, then for all
i,je N, if g(i) = jthen AU has degree b;, then the Bounding Principle will tell us that
the particular extension theorem is true in 2[0,a’]. In particular, the following
local version of the Exact Pair Theorem is seen to be true for the reasons mentioned
above.

3.7 Theorem. Let A = N*? have degree a with a’ = 0'. Let
I={d<0:3F c N(Fis finite &d < A")}.

Then there are degrees byc < 0’ such that 1 = {deD:d < b&d < c}.

In order to show that 2[0,0’] is not a lattice, we proceed as in Sect. I1.4. Thus we
must produce an ideal I of 2[0, 0'] with no greatest element to which the Exact Pair
Theorem applies. The ideal used in Sect. 11.4 was generated by an infinite
independent set of degrees. In order to apply Theorem 3.7, however, we need a set
A < N? such that 4 has degree a, a’ =0, and {A":ie N} is an infinite set of
independent degrees. Additional requirements must therefore be incorporated into
the proof of Theorem 3.3 in order to insure that A" has degree 0’. One way in which
this can be accomplished is to require A4 to force its jump.

3.8 Definition. Let 4 = N be given. We Say that A forces its jump if for all ee N, there
is a ¢ = % such that ¢ = 4 and either

® Pi(e)]

or

(i) V1 2 a(Pi(e)T).

44 III. The Jump Operator

3.9Lemma. Let A = N be given such that A forces its jump. Let A have degree a. Then
a’'=auvl. Henceifa<(0, thena' =0

Proof. By Theorem 2.3(iv) and (v), au0’' < a’. To see that a’ <aul, we
enumerate {o: o < A}, shorter strings first, and for each such o, ask whether 3.8(i)
or 3.8(ii) holds. Since A forces its jump, we eventually find a shortest ¢ such that
3.8(i) or 3.8(ii) holds, using 4 and ¢ oracles. Now ee A’ < d%e)|. Hence
a<avl. I

We now construct an infinite set of independent degrees which can be used to
show that 2[0,0] is not a lattice.

3.10 Theorem. There is a set A = N2 such that:
(1) A4 has degree < 0.
(i1) A forces its jump.
(ili) {A4"Y):ie N} is an infinite set of independent degrees.

Proof. We modify the proof of Theorem 3.3 by adding requirements {T,:ee N}
whose satisfaction will guarantee that A4 forces its jump. Our notion of forcing is
again (F, 2) where F = {¢ = N?:dom(o) is finite}. Since N? is a space, we can
treat g€ F as a subset of N. The new requirements are defined as follows:

3) T,:doe %(0 = A& o and e satisfy either 3.8(i) or 3.8(ii)).

For £eF, we define & || T, as in (3) but with ¢ in place of 4. By the proof of
Theorem 3.3 and the Bounding Principle, it suffices to show that there is a function
f:Fx N—F of degree <0 such that for all £eF and eeN, ¢ = f(£,e) and
f(&¢, e) |l T..Fix such £ and e. We ask if there is a o € % which is compatible with &
such that @%(e)|. Such a questionis a ¢ question, so can be answered by a § oracle.
If the answer to this question is no, then we let (£, e) = &, and note that 3.8(ii) is
satisfied for f(¢, e) in place of 6. If the answer to this question is yes, we search for the
least such ¢ under some fixed recursive one-one correspondence of N with %,
noting that a () oracle can identify such a 6. We let f(&, €) be a common refinement
of ¢ and &, and note that 3.8(i) is satisfied for f{(&, e) in place of o. f'is now seen to
have all the desired properties. [

The following corollary is now proved in the same way as Corollary 11.4.10,
using Theorem 3.10 to provide the countable independent set of degrees, and
Theorem 3.7 instead of the Exact Pair Theorem. Note that by Lemma 3.9, we can
apply Theorem 3.7 in this situation.

3.11 Corollary. 2[0,0'] is not a lattice.

All the theorems and corollaries of this section have relativized versions. We
leave these to the reader to formulate and prove, the proofs being straightforward.

Exact pairs for ideals of 2[0,0’] can be obtained under less restrictive
assumptions on the set of representatives for generators of such an ideal than were
placed in the hypothesis of Theorem 3.7. The proof requires more powerful
techniques, and will be given in Sect. 8. In the next section, we will characterize the
range of the jump operator on certain classes of degrees.

4. Jump Inversion 45

3.12 Remarks. The theorems proved in this section were proved at the same time as
their global counterparts. Theorem 3.3 was proved by Kleene and Post [1954], and
Theorem 3.7 and Corollary 3.11 were proved by Spector [1956].

3.13 Exercise. Let BebeD, f: N - N and a countable ideal I of 2[0,b] be given
such that for all CeceD,

celo3eeN(C <1 97},).

Show that there is an exact pair {a,d) for I such that a,d < b’ Uf.

4. Jump Inversion

The methods which have been used to this point can be combined with new coding
techniques to characterize the range of the jump operator both on D and on DJ0, 0’].
We first characterize the degrees which are jumps of other degrees.

The sets constructed in this section will force their jumps. The description
of the constructions is nicely given in terms of the following sets. Let
P ={{o,edeH x N:o and e satisfy 3.8(1)} and let Q = {(0,edDeF x N:o and e
satisfy 3.8(ii)}. Note that P is recursively enumerable as is (% x N) — Q. Hence

)] P<0&Q<0O.

The first construction which we present constructs a set by alternately forcing its
jump on an integer and coding another set into the string. This type of procedure
will also be used to prove other theorems. The following principle replaces the
Bounding Principle in such constructions.

4.1 Bounding Principle for Forcing and Coding. Let C = N and - % x N - % be
given. Define {a,€ %:ne N} as follows: ag = 0, and o, . ; = o, * f(a,, n) * C(n). Let
A =U{a,:neN}. Then

(i) A<fuC

(i) C<fuA

Proof. (i) is immediate from the definition of {a,:neN}. We verify (ii) by
inductively computing C(r) using an f oracle and an 4 oracle. Suppose by induction
that a, has been computed. Use the f oracle to compute f(a,, n) = 0. Next use the 4
oracle to find 1€ % such that «, * 6 = © = 4 and lh(z) = lh(e,) + lh(s) + 1. Then
0,1 =7 and C(rn) = t(lh(z) — 1). [

We now characterize the range of the jump operator.

4.2 Friedberg Jump Inversion Theorem. Let ¢ € D be given. Then there is an a€ D such
thata’ =avul’ =cul.

Proof. Fix a recursive one-one correspondence of N with %. Definef: % x N - %
by f(o,n)=1 where t is the least element of % (under the above

46 III. The Jump Operator

correspondence) such that (g * 7,n) € Pif such a t exists, and t = () otherwise. Since
P is recursively enumerable, f < 0’. Fix C = N such that Cec. Let oo = and
Ops1 = Oy * f(0n, 1) * C(n), and let 4 = U{a,,:ne N}. Itiseasily verified that 4 forces
its jump, so by Lemma 3.9,2’ =au0’. Since 0’ <au 0 and 0' < cu 0, it follows
from the Bounding Principle for Forcing and Coding that cu 0’ =au 0. [

4.3 Corollary. Let ce D be given. Then the following are equivalent:
(1) JaeD(a’ = c).
(i) ¢ =0

Proof. (i) = (ii): Immediate from Theorem 2.3(v).
(ii) = (i): By the Friedberg Jump Inversion Theorem. [

The following is a relativization of Theorem 4.2. Its proof is straightforward,
and is left to the reader (Exercise 4.15).

4.4 Corollary. Let de D and ce D[d, oo] be given. Then there is an a € D|d, 00) such
thata’ =aud =cud'.

The next corollary follows easily from Corollary 4.4 and induction. We leave its
proof to the reader (Exercise 4.16).

4.5 Corollary. Let ne N and ceD be given. Then there is a degree a such that
a®=a00® = cu0™.

The proof of Theorem 4.2 can be repeated for other recursively enumerable sets
in place of P. For example, if ee N and we let P, = {{o, s):5€ W?} and repeat the
proof of Theorem 4.2 with P, in place of P, then we obtain the following result.

4.6 Theorem. Let ec N and C < N be given such that the degree of C is = 0'. Then
there is a set A such that A® W# =.C.

Theorem 4.6 has the following consequence for C = ¢'. W# is viewed as the
construction of a set recursively enumerable in 4 which possesses a certain property
for all 4. Suppose that for all A = N, 4 < W#. Then if the property is degree
invariant, Theorem 4.6 tells us that ¢’ has this property with respect to some set of
degree < 0’. A sample application of this result is now given.

4.7 Corollary. There is a degree a < 0 such that a' = 09,

Proof. We prove in Sect. 7 that there is an ee N such that forall A = N, 4 < W4
and 4’ = (W4)'. If we choose C = ' in Theorem 4.6, then there is a set A = N of
degree a such that 4 <; W4 =@ for which a’ = (0') = 0®. |

In Chap. IV, we will investigate a hierarchy defined by jumps of degrees < 0'. In
order to show that this hierarchy does not degenerate, we will need a stronger
version of Theorem 4.6 which allows us to choose A4 to be recursively enumerable
when C = (/. We will prove this result in Sect. 7.

Let J[0,0°] denote the range of the jump operator on D[0,0’]. We will prove a
local version of the Friedberg Jump Inversion Theorem, and so obtain a
characterization of J[0,0’]. We cannot use the proof of the Friedberg Jump
Inversion Theorem, however, since that theorem produces degrees in D[0, 0'] only if
those degrees have jump equal to 0'.

4. Jump Inversion 47

Certain restrictions can immediately be placed on the degrees in J[0,0’]. It
follows from Theorem 2.3(v) that for all ce J[0,07],

@ 0<c

Furthermore, since any degree which is recursively enumerable in b < d must also
be recursively enumerable in d, it follows from Theorem 2.3(i) that for all
ceJ|0,0],

3) ¢ is recursively enumerable in 0.

We will show that J[0,0'] is just the set of all degrees which satisfy (2) and (3).

A new coding strategy is needed to invert the jump operator on D[0,0']. We will
construct a set 4 = N? of degree < 0’ whose definition depends on a set C which is
recursively enumerable in ¢ such that:

4 VneN(neC — {x: A"(x) # 1} is finite.
5 VYne N(n¢ C — {x: A™(x) # 0} is finite.

The following lemma shows that, under these circumstances, C <1 A4'.

4.8 Lemma. Let A = N? and C < N be given such that (4) and (5) are satisfied. Then
C<A.

Proof. ne C—3IxVy = x(A"(y) = 1) > Vx 3y > x(A4"(y) = 0). Hence Ce 44. By
the relativization of Post’s Theorem, C < A’. |

Before we characterize J[0,0’], we give the following definition.

4.9 Definition. Let {x,: x,s€ N} be an array of numbers, and let m € N be given. We
say that lim inf; x; = m if m is the least element of N such that {s: x; = m} is infinite.
We say that liminf, x; = oo if for all ke N, {s: x; = k} is finite.

We now characterize J[0,0’]. The proof that this characterization is correct
differs from previous proofs in that it depends on a priority ordering of
requirements. Thus instead of designating a particular step of the construction as
the step at which a given predetermined requirement is satisfied, we have a situation
where each requirement, while unsatisfied, tries to manipulate the construction at
all sufficiently large steps in order to satisfy itself. The requirement of highest
priority which, at a given step, can make some progress towards satisfying itself is
the one chosen to determine the action taken at that step. We will show that each
requirement is so chosen only finitely often, so that we will have the opportunity to
try to satisfy all requirements.

4.10 The Shoenfield Jump Inversion Theorem. Let ¢ € D be given such that c satisfies
(2) and (3). Then there is an a < 0’ such that a’ = c.

Proof. Fix ceD satisfying (2) and (3). We construct a sequence of partial
functions {a:se N} such that for all seN, o:N?2—{0,1} and o, S o, ;.
A =U{os:se N} will be the desired set of degree a. By (3), ¢ is recursively

48 III. The Jump Operator

enumerable in 0’ so we can fix a set C e ¢ which is recursively enumerable in ¢ and a
one-one function f recursive in ' whose range is C.

Since N2 is a space, we may identify N2 with N and so treat any partial function
with domain N? as if it had domain N. For such a partial function 6 with domain
N2, it will thus make sense to say ¢ < 0 for o€ %.

{as:s€ N} will be defined so that (4) and (5) are satisfied by 4 and C. We will
thus be able to conclude from Lemma 4.8 that ¢ < a’. The strategy to make a’ < ¢
will be to satisfy requirements which attempt to make A4 force its jump, but subject
to constraints imposed in order to satisfy (5). Recall that P = {<g,e): ®J(e)|} and
0 = {{o,e):V1 2 a(P(e)T)}. We establish the following requirement for each
eeN:

(6) R,:306 < A({a,e>eP or {a,e)e Q).

We say that 0: N?> — {0, 1} satisfies R, if (6) holds with 6 in place of 4.

Along with {a,:se N}, we define a sequence {i;:se N}, letting i;,, be the
requirement which we try to satisfy at stage s + 1 of the construction. It will be the
case that lim inf; i; = 00, so we will be able to satisfy all requirements. We begin the
construction by defining a, = ¢ and i, = 0. The construction now proceeds as
follows:

Stage s + 1. Find the least i < s, if any, such that a; does not satisfy R; and such that
there is a finite 0: N? — {0, 1} which satisfies the following conditions:

@) dom(f) Ndom(a,) = 0.
) o U O satisfies R;.
O] Vj < i VYxe N(6(j, x)| — 0(J, x) = 0).

If such i and 6 exist, let i, ; = i and let 6, be the least § (under some fixed recursive
one-one correspondence of N with {iy: N2 — {0,1}:dom(y) is finite}) which
satisfies (7)-(9). Otherwise, let i;, ; = s + 1and 6, = . Let B, ; = o, U 0;. It follows
from (7) that f,. is well-defined.

We define o4, as follows:

Bs+1(j’x) lf ﬁs+1(jsx)l

if Bov1(,)T &f(s) =)

if Bos1(,)T &f(s) #j&J,x < s
1 otherwise.

. 1
O‘s+1(]ax)= 0

This completes the construction. The imposition of (9) will allow us to show that
(5) is satisfied. However, it also prevents us from immediately satisfying (6). For if
f(t) =j < i for some t > s, then (9) will no longer apply to j as we will be filling
column j with 1sat stage ¢. Hence once such a constraint is removed, we may then be
able to find 0 satisfying (7)-(9), and also ¢ = 6 such that {(g,j> € P. Since
satisfaction of requirements cannot be finally determined until f produces enough
information about C, priorities are used to choose i; so as to allow an attempt at the
satisfaction of each requirement after f has produced all needed information
about C.

4. Jump Inversion 49

Fix je N. If iy =j < s for some s, then o satisfies R;, hence for all 1 > s,
satisfies R;. Thus {s: i; = j} is finite, so lim inf; i; = co. We now note that by (9) and
the second line of the definition of o, ;, (4) and (5) are satisfied. Hence ¢ < a’.

The definition of {a,:s€ N} is seen to be recursive in ¢/ since P, Q and f are
recursive in §'. Hence 4 = U{a,: s€ N} has degree < 0. 4 is readily seen to be total
from the second and third lines of the definition of a,, ;.

We complete the proof of the theorem by indicating how to compute A4’
recursively from C. Let ee N be given. Using a C oracle, we can find a stage s such
that for all t > s, f(¢) > e. Fix the least stage r > ssuch that i, > e. Thenforallj < e
and xe N, if 6,(J, x)1 then A(j, x) = 0. Hence if there isa ¢ = A such that (g,e) e P,
then either o,_, satisfies R, or i, = e and «, satisfies R,. Since r can be found
recursively from a C oracle, and since we can determine whether or not o, satisfies
R, from a @ oracle (note that dom(a,) is recursive), it follows from (2) that
a’<e |

The following corollary is now immediate.

4.11 Corollary. Let ce D be given. Then there is an a < 0 such that a’ = ¢ if and only
if ¢ 2 0" and c is recursively enumerable in ()'.

The degree a constructed in both the Friedberg and Shoenfield Jump Inversion
Theorems can also be subjected to other restrictions. Some of these restrictions are
discussed in the exercises. Other jump inversion theorems have been proved using
more powerful techniques than those discussed so far. Sacks [1963a] has shown
that the range of the jump operator on the recursively enumerable degrees is J[0, 0'],
and Cooper [1973] has shown that the range of the jump operator on the set of
minimal degrees (those degrees d > 0 whose only predecessor is 0) is D[0’, 00).

Suppose that a, be D are given. The theorems which we have proved can be used
to determine the extent to which the configuration of a and b specifies the
configuration of a’ and b’. By Theorem 2.3(v), if a < b then a’ < b’. The next
corollary shows that all the remaining possibilities can occur.

4.12 Corollary. There are a,be D such that:
(i) a<banda <b'.
(ii) a<banda’ =V’
(iii) a|band a’ <b’.
(iv) albanda’ =b'.
(v) alband a’|b'.

Proof. (i) Choose a =0 and b = 0'. By Theorem 2.3(iv), a’ =0'=b < b'.

(ii)) Let a = 0 and let b be the degree of the set 4 constructed in Theorem 3.10.
Then a <b and by Lemma 3.9, a’=b' = 0".

(iii) By the Friedberg Jump Inversion Theorem applied to ¢ = 0%, there is a
degree b such thatb’ =bu 0’ = 0¥, Let a = 0’. Then a’ < b’. Now a # 0% and by
Theorem 2.3(ii), b # 0®. Hence a|b.

(iv) Leta and b be the degrees of the sets A!°! and A"! constructed in Theorem
3.10. Then alband a’=b" = 0".

(v) By the relativized version of Theorem 3.3, there are incomparable degrees
¢,d > 0. By the Friedberg Jump Inversion Theorem, there are degrees a and b such

50 III. The Jump Operator

thata’ = cand b’ = d. a and b must be incomparable, else by Theorem 2.3(v), ¢ and
d would be comparable. [

Given a,beD, we now ask about the relationship between a’ U b’ and (a U b)".
Sincea < aubandb < aub, Theorem 2.3(v) tellsusthata’ ub’ < (aub)’. Andif
a < b, then Theorem 2.3(v) tellsus thata’ U b’ = (a U b)’. The next corollary tells us
that all remaining possibilities can occur.

4.13 Corollary. There are a,beD such that a|b and:
(i) a’ub ' =(aub).
(i) a"ub’ < (aub)'.

Proof. (i) Choose 4 asin Theorem 3.10. Let a be the degree of A°!, let b be the degree
of A1) and let ¢ be the degree of 4. Thena,b < canda’ = b’ = 0’. Hencea’ U b’ =
0=cand 0’ <(aub) <.

(i1) Apply the Friedberg Jump Inversion Theorem to ¢ = 0" to obtain a degree
asuchthata’ =au0 =0".Letb=0".Thena'ub’' = 0" while(aub) =0°. 1

Corollary 4.12 and Corollary 4.13 tell us that certain 3, sentences are true in the
language for 9%’ = (D, <, uU,’)>. However, it is not known whether Th(2%') N 3,
is decidable. In fact, it is not known whether Th(2') N3, is decidable, where
2' = <D, <,"). Theinability to determine the truth of the following V, sentence is a
major stumbling block in deciding these classes of sentences:

Ve,deD(c,d > 0’ & ¢|d & ¢, d recursively enumerable in 0’
—Jda,beD(a,b< 0 &a’"=c&b =d&(aub) =cud)).

(It follows from 4.11 that this sentence is V,.) If we drop the relation < however,
then Jockusch and Soare have shown that the corresponding elementary theory is
decidable. We leave the proof of this result to the reader (Exercise 4.21).

The methods of this section are extended in the next section to obtain results
about maximal antichains of D[0,0’]. Those methods will allow us to prove even
more general jump inversion theorems than are mentioned in the exercises below.

4.14 Remarks. Theorem 4.2 was proved by Friedberg [1957], and Theorem 4.10
was proved by Shoenfield [1959]. Corollary 4.5 was proved by Selman [1972], but
an easier proof appears in Jockusch [1974]. Theorem 4.6 was proved by Jockusch
and Shore [1983].

4.15-4.24 Exercises

*4.15 LetdeD and ¢ > d be given. Show that there is a degree a > d such that
a’=avud =cud.

*4,16 Letne N and c¢,deD be given. Show that there is a degree a > d such that
a® = aud® = cud®. (Hint: Apply 4.15 in an induction proof.)

4.17 Characterize the set J[0,0®] = {d: JacD[0,0®](a’ = d)}.

4.18 Letne N andb,ceD be given such that b > 0. Show that there is a degree a
such thata’ =au 0’ = cu 0 and b £ a. (Hint: Fix Beb and construct 4 asin 4.2

4. Jump Inversion 51

so that A satisfies all requirements of the form ®# # B. If b £ ¢, then the
construction of 4.2 automatically satisfies these requirements. If b < ¢, then in
order to satisfy such a requirement recursively in ¢ u 0, search for o, T > a, and
x € Nsuch that @(x)| # @X(x)|.Ifnosuch o, v and x exist, show that forall C = N,
if o, = C then &€ is recursive.)

A binary treeis a function T: % — % such that for all o, 1€ %: (i) If ¢ = 7 then
T(6) = T(z) and; (ii) If o|t then T(0)|T(z). If T is a tree and 4 = N, then
T(A4) = U{T(6): 06 = A} is a subset of 4. (Note that by (i), T(A4) is well-defined.)

4.19 Construct a binary tree 7T such that for all 4,B< N, if A # B then
T(A) # T(B) and T(A) = T(A) u 0'. (Hint: Proceed as in the proof of Theorem 4.2
except that a tree is defined instead of a sequence. Thus at the nth step, those 6 € %
such that Ih(¢) = n are used to do the coding part for T(¢) (instead of using C to do
the coding). In addition, for each ee N, establish a requirement which asserts that
for all g,7€ %, if Ih(c) = lh(r) = e then for all 4 > T(¢) and B o T(z), ¢ # B.
Take care to satisfy this requirement when {7(c):lh(c) = e} is defined.)

4.20 Show that for each ¢ = (', there are infinitely many aeD such that
a’ =au 0 = c. (Hint: Use Exercise 4.19.)

4.21 (Jockusch and Soare). Prove that Th({D, ")) is decidable. (Hint: Start with
the language of the pure predicate calculus with equality together with a one-place
function symbol f'to be interpreted as the jump operator. Add definable function
symbols f" for each ne N where f"(x) = x™ and definable relation symbols R,(x)
for each ne N where R,(y) = 3x(f"(x) = y). Recursively axiomatize the theory
using a relativized version of Exercise 4.20 to generate some of the axioms and to
show that Th(<D,")) satisfies all the axioms. Show that the set of axioms is
complete. Conclude that Th({D,")) is decidable.)

4.22 Letc,deD be given such thatd < 0’, ¢ > d’ and c is recursively enumerable
in 0'. Prove that there is a degree a < 0’ such thatd < a and a’ =c.

4.23 Let b,ceD be given such that 0 <b <0, ¢ >0, and c¢ is recursively
enumerable in 0'. Show that there is a degree a < 0’ such thata’ = cand b & a. (See
hint to Exercise 4.18.)

Exercises 4.22 and 4.23 mention possible restrictions which can be placed on the
degree a constructed in the Shoenfield Jump Inversion Theorem. Other potential
restrictions come to mind. If e,f < 0’, can we construct a < e? Can we construct
a £ f? We will show in the next chapter that it is not always possible to construct
a < e. Methods introduced in the next section will allow us to construct a £ f. The
proofs of Exercises 4.22 and 4.23 can be combined and extended to prove the
following result.

4.24 Let B, E = N? be given such that B, E < (/. Assume that for all ie N and all
finite F = N, B & E'¥). Let ceD be given such that ¢ > 0', ¢ is recursively
enumerable in 0’ and ¢ > (E™)’ for every finite F = N. Show that there is a degree
a < 0’ such that: (i) a’ = ¢; (ii) for all ie N, B" « a; (iii) for all ie N, E" < a. (See
Fig. 4.1.)

52 II1. The Jump Operator

Fig. 4.1

5. Maximal Antichains and Maximal Independent Sets
Below ('

2[0,0'] has two trivial maximal antichains, {0} and {0'}. Since D[0, 0’] is countable,
all antichains of 2[0,0'] are countable. We will show in this section that all non-
trivial maximal antichains of 2[0, 0] are infinite. In contrast to this, we will show
that 2[0,0'] has finite non-trivial maximal independent sets.

We present two proofs that every non-trivial maximal antichain of 2[0,0] is
infinite. The first proof uses the methods introduced in Sect. 4, but is non-uniform
in nature. The second proof is uniform, and relies on two new ideas, one of which is
used in the construction of a finite non-trivial maximal independent set of 2[0,0'].

5.1 Theorem. Let a,,...,a,_,€D(0,0') be given. Then there is a degree be D(0,0")
such that for all i <n —1, b|a;.

Proof. Let ay, ...,a,_,€D(0,0") be given. For each i < n — 1, fix 4; = N such that
A;ea;. We construct functions fq, ..., f,: N - [0,2xn + 1] such that:

)] Vi<a(f;<0).
@ Vij<n® <fUf).
3) Vi<n—1Vj<n(a;).

Suppose that (1)-(3) hold. There cannot be i,j < nand k < n — 1 such that both
f; < a, and f; < a, else f; Uf; < ay, s0 by (2), 0’ < a, contradicting the choice of
a,eD(0,0). Hence there must be at least one i < » such that for all k <n — 1,

f; £ a,. By (1) and (3), we can then set b = f; to prove the theorem.
For each ee N, j < nand i < n — 1, establish the requirement

Re,i,j:¢£f # A;.

5. Maximal Antichains and Maximal Independent Sets Below 0’ 53

Recursively order these requirements as {P;:se N}. Let se N and 6€%,,, be
given. Let x =1h(o) and let P,=R,;; If there are t7,pe%,,, such that
I (x)] # PI**(x){, fix the least such (z, p) (under some fixed recursive one-one
correspondence of N with &2) and let g(s,s) be the first ne{z, p} such that
®I*(x)| # A(x). Otherwise, let g(a,s) = 0; in this case, it follows that for all
f:N —[0,2n + 1] such that ' > ¢ if ¢/ is total, then @/ is recursive, hence # A4;.
Note that g has degree < 0'. It follows from the Enumeration Theorem that

“ Vh > g xg(0,s)(P; # A).

For each i< n, we will define a sequence of strings {a!:se N} such that
U{ai:se N} = f;. We begin by setting o} = (. Given se N, let P, = R, ;; define
o, = o xg(ad) x k! where

K {21’ if se@

T 2i+1 if s¢d.
By the proof of the Bounding Principle for Forcing and Coding, g < 0, so (1) holds.
By (4), we see that (3) holds. We now verify (2). To decide whether se @ from f; and

J; oracles, we find the sth integer x in order of magnitude such that fi(x) # fi(x).
Then se® — fi(x) =2i. |

The following corollary is now immediate.
5.2 Corollary. Every non-trivial maximal antichain of 2[0,0'] is infinite.

The nonuniformity of the proof of Theorem 5.1 is due to the fact that we cannot
identify a j < n such that f;|a; for all i <n — 1. The next proof of Theorem 5.1
attacks requirements more directly. The proof utilizes a slowdown procedure
together with a domination lemma.

5.3 Definition. Let f, g: N — N be given. We say that f dominates g if {x: g(x) = f(x)}
is finite.

5.4 Upward Domination Lemma. Let de D and aeD(d,d’] be given. Then there is a
function g of degree a which is not dominated by any function of degree < d.

Proof. Fix A = N such that 4 ea. By the relativized version of the Limit Lemma,
there is a function A#: N> - N which is recursive in d such that for all xeN,
A(x) = limg A(s, x). Define g: N - N by

©) g9(x) = ps = x[Vy < x(h(s, y) = A(y)].

(g is called the computation function for A relative to h.) It is easily verified that
dug=a.

Under the assumption that the lemma is false, we obtain a contradiction. Thus
choose a function fof degree < d which dominates g. Without loss of generality, we
may assume that f(s) = s and f(s) > g(s) for all s N. The contradiction is obtained
by showing that 4 <rf, so a < d. Fix xe N. To compute A(x), find an s > x such
that

(6) Vte N(f(s) < t < f(f(5)) > h(t, x) = h(f(s), x)).

54 III. The Jump Operator

Such se N must exist since lim, A(¢, x) exists, and can be found recursively from an
oracle of degree d. By choice of s and f,

() J(s) < g(f(5)) <S(S(9))

It now follows from (5)~(7) that A(x) = A(g(f(s)), x) = h(f(s), x), the latter giving a
computation of A(x) recursively from an oracle of degree d. 1

5.5 Definition. Let o, 7, pe % and e N be given. We call <z, p) an e-splitting of ¢
on x if

(i) Py(x)] # D).

(i) 6 =1, 0 < p.
5.6 Second Proof of Theorem 5.1. Let a,,...,a,_,eD(0,0) be given. For each
i<n—1,fix A; = N of degree a;. Since a; < 0’ < a for all i < n — 1, the Upward
Domination Lemma allows us to pick a function f; of degree 0’ which is not
dominated by any function of degree < a; for each such i. Thus the function
f: N — N defined by f(x) = max({fi(x):i < n — 1})is a function of degree 0’ which
is not dominated by any function of degree a; for any i < n — 1.

We define a sequence of strings {f,: se N} and let B = U{f,: se N}. B will have
degree < 0, and b = B will be the desired degree. It suffices to satisfy the following
requirements for each e,ie N:

(®) P.:0%#B
) Q. P # A

We order the set of all such requirements recursively as {P;:se N}.

In order to use the Upward Domination Lemma, we must avoid making a
commitment of the form B(x) = y too early. Thus we slow down the definition of f3;,
letting 1h(B,) = s. When we try to force a requirement to be satisfied, we may be
prevented from doing so immediately because the extension we need to make is too
long. We therefore establish targets for requirements, namely strings which can be
used to satisfy the requirements. Priorites determine which requirement heads
towards its target at a given stage of the construction.

Given €% and k, se N, we define ¢(o, k, 5), the k-target for o at stage s as
follows:

Case 1. Ry = P, ;. Search for T = A; such that lh(z) < f(s) and ®i(s)| if such a ¢
exists. If t does not exist or if lh(s) # s, then g(o,k,s) = . If 7 exists and
lh(o) = s, let g(o, k, s) be the least £ €% such that o = &, 1h(£) = lh(s) + 1, and
D(s) # &(s). Note that the definition of g in this case is given using only an oracle of
degree < 0.

Case 2. R, = Q. ;. Ask if there is an e-splitting of ¢. Note that this question can be
answered by an oracle of degree 0. If no such e-splitting exists, set g(o, k, s) = . If
there is such an e-splitting, fix the least {t, p, x) € #3 x N (under some recursive
one-one correspondence of N with #% x N) such that (z, p) e-splits ¢ on x. Let
g(o, k, 5) be the first & € {t, p} such that ®5(x) # A4,(x). Again note that the definition
of g requires only the use of an oracle of degree 0.

The construction proceeds as follows: Set S, = 0 and i, = 0.

5. Maximal Antichains and Maximal Independent Sets Below 0’ 55

Stage s + 1. Fix the least k € N such that R, is not yet satisfied and g(f;, k, s) = B. If
no such k exists, let B+ ; = B;*0 and iy, ; = s + 1. Otherwise, let iy, ; = k and let
Bs+1 be the unique ¢ €% such that B, = & = g(B,, k, s) and 1h(§) = Ih(,) + 1. If
Bs+1 = g(Bs, k, s) then R, becomes satisfied at stage s + 1.

This completes the construction. We note thatif i, ; = kand R, = P, ; then R,
becomes satisfied at stage s + 1. If i, ; = k and R, = Q. ;, then either R, becomes
satisfied at stage s + 1 or g(Bs+1,k,5 + 1) = g(Bs, k,5) o B and $0 i1y < is4g.
Furthermore, in the latter case, if j, > i;., for all 1 > s+ 1, then R, becomes
satisfied at some stage ¢t > s. It follows from an induction proof and the fact that if
R, becomes satisfied at stage ¢ then i; # k for all s > ¢, that liminf, i, = co.

We complete the proof of the theorem by verifying that (8) and (9) hold for all
e,ieN. Fix e,ieN.

First consider P,; = R,. If ®is not total, then (8) holds. So assume that ¢2:is
total. For each xe N, define

o) = pt[3re %t < 4, & Py(x)] &1h(r) = 1)].

Note that f! is recursive in A4;, so there are infinitely many se N such that
f(s) = fi(s). For each such s, g(B;, k, s) © .. Since liminfi; = oo, there is a re N
such that i, ,; > k and g(f,, k, t) > B,. But then by the construction, R, must be
satisfied at some stage s < ¢, else #,,, < k. Hence (8) holds.

Now consider Q,; = R;. If R, is satisfied, then (9) holds. If R, is not satisfied,
then since lim inf; i; = oo, there must be 8, = B which has no e-splittings. We show
that either @2 is not total or @2 is recursive. Since 4; is not recursive, &5 # 4,.
Hence (9) will hold.

To compute @2(x), search for g€ % such that o 2 g, and ¢%(x)|. Since @2 is
total, such g must exist and can be found recursively. Since there are no e-splittings
of B, @3(x) = @%(x). This procedure computes ¢ recursively. |

The next theorem will produce a maximal independent set of 2(0, 0’) having two
elements. The proof uses the Upward Domination Lemma and a forcing and
coding argument. The recovery of the coding depends on the following lemma.

5.7 Lemma. There is arecursive sequence {1;:i€ N} of elements of &, such that for all
i,jGN, lf‘l ?éj then qulj

Proof. The sequence {4;:ie N} defined by
0 if x<i,
Ai(x) =<1 if x=i
1 if x>i
for all xe N is easily seen to have the desired properties. [

5.8 Join Theorem for 0'. Let be D(0,0’) be given. Then there is a degree ac D(0,0)
such thata’ =0’ =aub.

Proof. Let beD(0,0’) be given and fix a set B of degree b. By the Upward
Domination Lemma, we can fix a function g of degree b which is not dominated by
any recursive function. Fix a set C of degree 0 and let {A;:ie N} be a sequence of

56 III. The Jump Operator
strings as in Lemma 5.7. Let

P={{o,epe% x N:®(e)|}
and let
Q0 ={{o,e)e%h x N:VteHh(t 20— D))}

We have previously noted that P is recursively enumerable as is the complement of
Q,so both Pand Q havedegree < 0'. Fix arecursive enumeration {{a;, ¢;>:i€ N} of
P and let P° = {{o,e;):i < s} for all se N.

In order to apply the Bounding Principle for Forcing and Coding, we must
define the function f. For each 0 €% and e€N, let

j(o,e) = pk[{c * A, ed e Q or It 2 7 % L ({1, e) € PIW)].

J(o, e) must be defined since g is not dominated by any recursive function, and the
function A: N —» N defined by

h(i) = pm[3t 2 6 * 1({7,e) e P™)]

is recursive whenever (g * 4,,e> ¢ Q for all ke N. Let

0 * Ajg,e) if (o* j-j(a,e); eyeQ,
O*T otherwise

flo,e) ={

where (o *1,e) is the first element enumerated in P9U?) such that t 2 Aj,,.).

Define ay = @ and a4 ; = o, * f(o, 5) * C(s) for all se N, and 4 = U{a,:s€N}.
Since j and g have degree < 0, fhas degree < 0’. Hence by the Bounding Principle
for Forcing and Coding, a = A < 0. It follows easily from the definition of 4 that
A forces its jump. Hence by Lemma 3.9, a’ = 0"

We compute C from 4 and B oracles as follows. Assume by induction that we
have found a,, and we wish to compute C(x). As {J;:ke N} is a recursive set of
pairwise incompatible strings, we can use the A oracle to find the unique k£ € N such
that o, * A, = A. Fix this k. We now use the B and A4 oracles to determine whether
there is a ¢ = A such that ¢ 2 o, * 4, and o € P*®. If the answer is yes, fix the least
such ¢; if the answer is no, let ¢ = a, * A;. In either case, the 4 oracle now gives us
the unique reN such that oxrc 4; a,,; =0*r and xeC-r=1. Thus
C<;A®B,soaub=0".Sinceb#0,a#0.Sincea’=0,a#0". [

5.9 Corollary. Fvery be D(0,0') is part of a maximal independent subset of 2[0,0']
consisting of two elements.

Proof. Given be D(0,0’) choose a as in the Join Theorem for 0’. Then a | b and for all
¢c<0, c<aub. Hence {a,b} must be a maximal independent subset of
2[0,0]. 1

The Upward Domination Lemma can be generalized in such a way so as to
allow the construction of a joining each of finitely many beD(0,0’) to 0'. This
generalization is discussed in the exercises.

5. Maximal Antichains and Maximal Independent Sets Below 0’ 57

Other related theorems such as meet theorems and complementation theorems
have also been proved. We list some of these results:

Meet Theorem (Shoenfield [1966]). For all be D(0,0’) there exists aeD(0,0’) such
thatanb = 0.

Complementation Theorem (Posner and Robinson [1981], Posner [1981]). For all
be D(0, 0) there exists aecD(0,0") such thatanb=0and aub=20".

A proof of the Meet Theorem combines Theorem 5.1 and the existence of a
minimal degree below 0’ which is proved in Chap. IX. The proof of the
Complementation Theorem involves a split into cases depending on the location of
b in the high/low hierarchy. This hierarchy is introduced in the next chapter.

5.9 Remarks. Theorem 5.1 was proved by Shoenfield [1959]. The slowdown
technique was introduced by Shoenfield [1966]. The Upward Domination Lemma
was proved by Miller and Martin [1968]. The Join Theorem was proved by Posner
and Robinson [1981].

5.10-5.22 Exercises

510 Leta <0 and 4 = N be given such that Aea. Let h: N2 — N be given such
that 4 = lim; 4, and let f/ be the computation function for A relative to A.

(1) Show that f = a.

(i1) Show that f'is not dominated by any function of degree b < a.

Let C = D be given. We say that C is uniformly of degree < b if there is a set
B = N? of degree < b such that C = U{B":ie N}.

5.11 Let C < DJ|0,0'] be given such that C is uniformly of degree < 0'. Show that
there is a degree ae D(0,0') such that a¢ C.

5.12 (Shoenfield [1959]) Show that there is a degree < 0’ which is not the degree
of a recursively enumerable set. (Hint: Use Exercise 5.11.)

5.13 (Shoenfield [1959]) Leta < 0’ and g: N — N be given such that g = a. Let
h:N? - N be given such that g = lim,4 and # is recursive.
The modulus function f for g relative to h is defined by

S(x) = ps[Vt = sVy < x(h(t,y) = g(»))].

(1) Show that g < f.
(i1) Show that a is the degree of a recursively enumerable set if and only if there
is a function g* of degree a with modulus function f such that f < g.
(iif) Conclude that there is a degree d < 0’ such that no function g of degree d
has a modulus function of degree d.

5.14 Let beD(0,0) be given. Show that there is a degree ae D(0,0’) such that
anb=20.

5.15 Let be D(0,0’) be given such that b’ = 0. Show that there is a degree acD
such thatanb=0and aub =10

58 III. The Jump Operator

The next two exercises use the techniques introduced in this section to extend the
Shoenfield Jump Inversion Theorem.

5.16 Letb,ceD begivensuchthat0 <b < 0’ < cand cisrecursively enumerable
in 0’. Show that there is a degree a < 0’ such that a’ = ¢ and a|b.

5.17 LetdeD be given such that 0’ < d and d is recursively enumerable in 0. Let
A,B,C = D be given such that:
(i) A, B, and C are uniformly of degree < 0'.
(ii) C is an ideal of D.
(iii)) VbeBVec,y,...,c,e C(b £ U{c;:j < n}).
(iv) For every finite F= N, d > (U{c;:ie F}).
Show that there is a degree e < 0’ such that ¢’ = d and:
(v) VeeC(c < e).
(vi) YbeB — {0}(b £ e).
(vii)) YacA — {0'}(e £ a).

Fig. 5.1

5.18 (Yates [1967]) Show that there is a degree d € D(0, 0') which is incomparable
with every recursively enumerable degree except 0 and 0'.

5.19 Show that for all n > 2, there is a maximal independent subset of D(0,0’)
consisting of n degrees. (Hint: Start with a set of n — 1 independent degrees
obtained from Theorem 3.10.)

5.20 (Posner and Robinson [1981]) Let ay,...,a, < 0" and 4,,...,4, < N be
given such that for all i < n, 4; has degree a;. For each i < n, let g; be a computation
function for A; relative to some #4;, and define g:N—> N by g(x)=
min({g;(x): i < n}). Show that g is not dominated by any recursive function. (Hint:
Proceed by induction on n, showing that if fis a recursive function which dominates
g and f does not dominate g,, then f dominates min({g;: i < n}), thus obtaining a
contradiction.)

6. Maximal Chains Below 0’ 59

5.21 (Posner and Robinson [1981]) Let by,...,b,eD(0,0') be given. Show that
there is a degree asuch thata’ = 0’andaub; = 0’ for all i < n. (Hint: Use Exercise
5.20.)

5.22 Let A, B = D be given such that 0¢ B and A and B are uniformly of degree
< 0’ (see Fig. 4.1). Show that there is a degree e which satisfies:
i) e=0.
(ii)) YacA(euva =0).
(iii) VbeB — {0}(e £ b).

6. Maximal Chains Below 0’

Theorem 3.3 implies that 2[0, 0'] has infinite chains. For let {a;: i€ N} be an infinite
set of independent degrees in D[0, 0'] and for eachne N, letb, = U{a;:i < n}. Then
{b,:ne N} is an infinite chain of 2[0,0]. We will show, in this section, that all
maximal chains of 2[0,0"] are infinite.

In order to characterize the size of maximal chains of 2[0,0'], we need to show
that for every ne N and every chain C = {d;: i < n} of 2[0, 0], there is an element
d, ., ,eD[0,0] — C such that {d;:i < n + 1} is a chain of degrees. We will show in
Chap. XII that we cannot always hope to find such a d, , , between d; < d; unless
d; = 0’. Thus our strategy will be to prove that for all d < 0’, there is a ce D such
thatd < ¢ < 0'. The proof of the existence of this ¢ will depend on the fact that 0’ is
recursively enumerable in d. We will prove a theorem which implies that no
recursively enumerable set can have minimal degree (i.e., it cannot be the case that
D(0,d) = 0 if d is recursively enumerable), and relativize this result to obtain the
existence of c.

6.1 Theorem. Let a > 0 be a recursively enumerable degree. Then there are degrees
bo,bl <a such that bOIbl'

Proof. Let A be a recursively enumerable set of degree a and let f: N — N be a one-
one recursive function which enumerates 4. Let g be the computation function for
A corresponding to f; i.e., for each x e N, g(x) is the least se N such thatforall ¢ > s,
f(®) > x. Then xe A<= xe A9 = {f(y):y < g(x)}, s0 A <rg.

We construct sets By, By < N and let by and b, be the respective degrees of B,
and B,. B, and B, are constructed to satisfy the following requirements for each
eeNandi<1:

P.;:®5% 2B _.

We define a priority ordering of requirements, letting P, ; have higher priority than
P, ; if either e < n or both e = n and i < j. We use elements of &3 to force the
satisfaction of requirements, letting

{60,010 |l P> 3x < lh(o, -) (PL(X)| # 01-i(X)).

We fix a recursive ordering {{¢},d5)>:s€ N} of &3.

60 III. The Jump Operator

Fori < 1, we construct the set B; = U{f!: s N} as follows. We begin by setting
BY = B9 = 0. At stage s, we search for e < s, i < 1 and ¢ < g(s) such that:

¢9) Vi< 1(ot o BY).
@ 06,0 |- Pe,i.
3) $Bo» B I P,

If nosuch g, e and i are found, let §;*! = B5 % 0 for i < 1. Otherwise, from all such e,
i and ¢, we first fix e and i for which such a ¢ exists for P, ; of highest priority, and
then fix the least ¢ for the e and i which have just been chosen. For i < 1, we set
B =l

SinceIh(i " ') > lh(p;) forallse Nand i < 1, B; = Nfori < 1. The construction
of By and B, isrecursiveing < 1 4, so By, B; <1 A. We proceed by induction on the
priority ordering of requirements, showing that all requirements are satisfied.

Fix ee N and i < 1| and assume that all requirements of higher priority than P, ;
are satisfied. By (3) and the Enumeration Theorem, if me N and j < 1 then P,, ;can
be selected to determine ;' at most at one stage. Hence we may fix s € N so that for
all ¢ > s, neither P, ; nor a requirement of higher priority than P, ; determines f;. If
By, B I P.;, then P, ; is satisfied. Otherwise, for all ¢ > s, {5, B\) |- P.;. We
obtain a contradiction under the assumption that @2 is total and equal to B, _;.
Under this assumption, for all ¢#>s, there is a least A(f)e N such that
otV a" |- P, and ot o B! for k < 1. Given ¢ > s, we show how to compute

t+1 h(7) and g(¢) recursively from i and f for all k < 1. This will imply that g,
and hence 4, is recursive, contradicting the hypotheses of the theorem.

Given f;, and f}, we search for the least r € N such that (1) and (2) hold with r in
place of z. By the assumption that P, ; is not satisfied, such an r will be found, and
h(t) = r. Since our assumption implies that (3) holds for ¢ in place of s, it must be the
case that A(f) > g(t), so g(¢)is the least u < h(f)suchthat 4* I ¢t + 1 = A" } ¢+ 1.
Having determined ¢(t), the construction can now recursively determine §,*! for
k<1 1

Since the degrees by and b, constructed in Theorem 6.1 are incomparable, they
are nonrecursive and neither equals a. We can thus conclude:

6.2 Corollary. Let b # 0 be a recursively enumerable degree. Then there is a degree ¢
such that 0 <c <b.

Theorem 6.1 and Corollary 6.2 have straightforward relativizations. We state
these relativizations, and leave the proofs to the reader.

6.3 Theorem. Let a,b e D be given such that a < b andb is recursively enumerable in a.
Then there is a ceD such that a < ¢ <b.

The characterization of maximal chains of 2[0,0'] follows from Theorem 6.3.
6.4 Corollary. Every maximal chain of 2[0,0'] is infinite.

Proof. Let C=23y<a; < -+ <a, be a chain of 2[0,07]. If a, # 0, then
C* = Cu {0'} properly extends this chain. If a, = 0’, then since 0’ is recursively

7. Classes of Degrees Determined by the Jump Operation 61

enumerable, 0’ is recursively enumerable in a,_,, so by Theorem 6.3, there is a
degree a, , ,€D[0,0'] — C such thata,_,;<a,,,<0.C*=Cu{a,, ,}isthena
chain of 2[0,0’] which properly extends C. Hence 2[0,0'] has no finite maximal
chains. [~

6.5 Remarks. Corollary 6.4 has been noticed by many people. The proof given here
for Theorem 6.1 uses a method introduced by Shore. Other theorems about the
degrees below a recursively enumerable degree appear in Yates [1966].

6.6—6.8 Exercises

6.6 Let a > 0 be a recursively enumerable degree.
(1) Prove that there is an infinite set {b;: ie N} of independent degrees such
that b; < a for all ie V.
(i1) Prove that every finite poset can be embedded into 2[0,a].
(iii) Prove that Th(2[0,a]) N3, is decidable.

6.7 Let a > 0 be a recursively enumerable degree.

(i) Simultaneously construct an ideal I of 2[0, a] with no greatest element and
an exact pair <b,c) for I such that b, ce D|0, a].

(ii) Prove that 2[0,a] is not a lattice.

6.8 Let a > 0 be a recursively enumerable degree. Show that there is a set B of
degree b < a such that B forces its jump. Conclude that b’ = 0'.

7. Classes of Degrees Determined by the Jump Operation

Hierarchies of classes of degrees determined by the jump operation will be discussed
in Chap. IV. This section is devoted to proving results which imply that this
hierarchy is nondegenerate. We prove an effective version of Theorem 4.6 in which
the set constructed is recursively enumerable.

The construction of a recursively enumerable set 4 cannot make use of a non-
recursive oracle. Hence, in general, we cannot construct 4 = U{a,e % : se N}.
Rather, we must enumerate elements of N into 4 during the construction. We thus
construct a recursive sequence {o,: se N} of strings such that if i< then
o '(1) € a; '(1)and 4 = U{a, '(1): se N}, where 6~ (p) = {x: a(x) = y}. We will
use the following notation.

7.1 Notation. Let 6,7€% be given. We say that ¢ <7 if lh(s) < lh(r) and
a” (1) (D).

7.2 Remark. Let {a,e % : s€ N} be a recursive sequence of strings such that for all
i, jeN, if i <j then a; < o;. Then lim, o is a recursively enumerable set.

Proof. xelimga, > Jie N(a;(x) = 1). Apply Theorem 1.9. 1

A sequence of strings, {a: s€ N} will be defined in an attempt to satisfy certain
requirements. For each ee N, we may try to satisfy the following requirements:

62 III. The Jump Operator

P A+d,
Q. ecW? (ie., PX(e)l).

Such requirements have been encountered before. However, in this setting, once a
forces the satisfaction of a requirement, we may enumerate some x < lh(a,) into 4
via o,, and so injure the satisfaction of the requirement. Each requirement may
specify restraints in order to try to avoid injury. However, in order to satisfy all
requirements, we must occasionally violate such restraints. A priority ordering of
requirements will determine when such violations may occur, and insure the
satisfaction of as many requirements as possible. We thus will try to satisfy the
highest priority requirement whenever possible, ignoring all restraints, and so allow
injuries to lower priority requirements. Once this is done, the next requirement in
the priority ordering takes over. Since it is possible for a requirement never to
require any action in order to become satisfied, we cannot recursively predict the set
of injuries which will occur.

The requirement P, will be satisfied as follows. During the course of the
construction, numbers x will be appointed as followers of P,. Such followers may be
cancelled, and in no case may P, have more than one follower at a given stage. The
purpose of the follower x is to try to witness @,(x)| # A(x). Thus P, imposes
restraint to keep x out of 4 as long as ®%(x)7, and if and when this computation
converges, decides whether or not to place x into 4. If a requirement of higher
priority than P, either restrains x or causes x to be placed into 4, then P, receives a
new follower. Requirements of higher priority than P, will act only finitely often, so
P, will have a final follower which will either cause it to be satisfied or witness the
fact that @, is not total.

The requirement Q, is used to make sure that W has degree < 0. Q, is satisfied
as follows. We seek to find o such that ee W. If ¢ < s or no such s exists, the
restraint u(e, t) is set equal to 0. Once such an o is found, the requirement imposes
restraint u(e,s) = lh(a,), trying to guarantee that o [lh(es) = o, I Ih(e,) for all
t = s, and so insure that the requirement is satisfied. The restraint remains in effect
forever unless some higher priority requirement enumerates a new x < lh(o,) into A4,
at which point the restraint begins this definition process anew.

We will also code a set K of degree 0’ into 4 and show that K can be recovered
from A @ W#. This coding will also respect the restraint imposed by higher priority
requirements, and will impose restraint to preserve the location for coding,
protecting that location from being used by requirements of lower priority.

Before proceeding further, we define notation which aids in the description of
the interaction of the restraint function with the definition of A.

7.3 Notation. Let 0,7€% and re N be given. We say that ¢ <, 7 if 6 <1 and
chtr=1lr.
We now note that

1) If o satisfies a requirement Re {P,,Q.: ec N}, m = lh(a),
and for all ¢t > s, o, =, &, then R is satisfied.

The jump hierarchy which we will discuss has classes

L,={a<0:a®=0", H,={a<0:a%=0"*"},

7. Classes of Degrees Determined by the Jump Operation 63

and

I={a<0:VneNO® <a® < 0®+")}.

We wish to show that all classes of the form L, — L,,, H,+; — H, and I are non-
empty. The proof of this fact relies on an effective version of Theorem 4.6.

7.4 Theorem. Let ne N be given. Then there is a non-recursive recursively enumerable
set A such that A® W4 =,0.

Proof. We construct a recursive sequence {a: s€ N} of binary strings such that for
all i, je N, if i <j then a; < a;. By Remark 7.2, 4 = lim, o, will be a recursively
enumerable set. 4 will be constructed to satisfy the requirements in {P,: e N} and
Q.: ee N} whenever possible, and we will also code a recursively enumerable set K
of degree 0’ into 4. Let f be a one-one recursive function which enumerates K, and
let K* = {f(x): x < s}.

For each ee N, let S, be the requirement which codes e into 4. We establish a
priority ordering {R;: ie N} of all requirements mentioned above, letting R; have
higher priority than R; if i < j. Each requirement has a restraint function r(i, s)
associated with it at the end of stage s, protecting it from interference by lower
priority requirements.

Following ideas introduced by Rogers [1967], we will use movable markers to
describe the construction. If R; = P,, then A; will be a marker whose location A(Z, s)
at stage s is the follower of P, which is currently designated. If R; = S, then A; will
be a marker whose position A(i, s) will designate the current location for coding into
A whether or not ee K.

We say that o satisfies P, if &, (A(i,s))| # as(A(,s))|, where P, = R; and
D, (x) = ®>(x). (0° is the string consisting of s consecutive 0s.) We say that f§
satisfies R; = Q, if @%(e)].

We say that R; requires attention at stage s + 1 if either:

2) R, = P,or R; = S, and A, does not have a position at the end of stage s,
or o, does not satisfy R; and either:

A3) Ri=P. &, (A, 5))!; or

6] R, = Q. &3Be FA(h(P) = Ih(es) + 1 & f satisfies Q,
&Vm g i(as <r(m,s) B)

For B as in (4), we say that R; requires attention through f at stage s + 1.
The construction proceeds as follows. At stage 0, we set ao = @ and r(e,0) = 0
for all ee N. No marker is assigned a position.

Stage s + 1. We proceed by cases.

Case 1.s + 1 = 2k + 1. Wecode Kinto 4 at this stage. Let f(k) = eand let S, = R;.
Let oy, be the string of length max({lh(x) + 1, A(i,s) + 1}) Gf A(i,s)T then
Ih(ots+ 1) = lh(e) + 1) such that

64 II1. The Jump Operator

os(x) if x <lh(e) & x # A(i, s),
te(x) =4 1 it x=AiGs),
0 otherwise.

For all je N, marker A; remains where it is unless j > 7 in which case this marker is
removed from its position, and we define

r(j,s) if j<i,
0 otherwise.

r(j,s+ 1) ={

Thus we are coding K into 4 and cancelling everything done for requirements of
lower priority than R;, since such requirements may just have been injured.

Case 2. s + 1 is even. Let R; be the requirement of highest priority which requires
attention at stage s + 1. (There will always be a requirement satisfying (2).) We
again proceed by cases.

Case 2a. (2) holds for R;. Let og,; =a,+x0 and let r(j,s + 1) = r(j,s) and
AJ,s + 1) = A(j,s) for all je N such that j i Let A(i,s + 1) =lh(a.;) and
r(i,s + 1) = A(i,s + 1) + 1. Thus we are placing the highest priority marker which
has no current location on a position which is beyond all restraints and which has
not yet entered 4, and are setting restraints to prevent this marker position from
being placed into 4 by a requirement of lower priority than R;.

Case 2b. (3) holds for R;. Let R; = P,. We proceed as in Case 1. Thus we satisfy P,,
and cancel everything done for requirements of lower priority than R;, since such
requirements may just have been injured.

Case 2c. (4) holds for R;. Let R; = Q.. Fix the least (under some fixed recursive
one-one correspondence of N with %) such that R; requires attention through f at
stage s + 1. Let a4, = B. For all je N, marker 4; remains where it is unlessj > i in
which case A4; is removed from its position. Define

r(j, $) if j<i,
r(jss + 1) = < Th(e) if j=1,
0 otherwise.

Thus we satisfy Q,, and cancel everything which has been done for lower priority
requirements.

This completes the construction. We note that if R; has higher priority than R;,
A(i, s)| and A(j,s)l, then A(i,s) < A(j,s). We now show that each requirement is
injured only finitely often.

7.5 Lemma. For allie N there is a least stage s such that for all t > s andj < i, R; does
not determine the action taken by the construction at stage t.

Proof. We proceed by induction on i. Assume that the lemma holds for all j < i, and
lets(i — 1) = 0if i = 0, and let s(/ + 1) be the stage produced by the lemma for i — 1
otherwise.

Assume first that R; = P,. Then A; does not have a position at the end of stage
s(i — 1), so by (2) and the induction hypothesis, R; determines the action taken by
the construction at stage s(i — 1) + 1, when A, is given a position not yet in 4 which

7. Classes of Degrees Determined by the Jump Operation 65

is protected by the restraint function r(i, s(i — 1) + 1). This position and restraint
remain unchanged at all later stages, and by the construction, no requirement of
lower priority than R; can place this marker position into 4. Thus R, can determine
the action taken by the construction at at most one later stage, that occurring if (3)
holds.

Assume next that R, = Q.. Then R; can only require attention at stage
t > s(i — 1) when (4) holds, at which stage o, satisfies R; and restraints are imposed
to protect this satisfaction from injury by requirements of lower priority than R;.
Hence R; never again requires attention.

Finally, assume that R; = S,. As in the first case, R; determines the action taken
by the construction at stage s(i — 1) + 1 at which stage A; is assigned a final
position. R; can determine the action taken by the construction at most at one more
stage, that occurring if f(t) =e. |

For all ie N, let s(i) be the stage given by Lemma 7.5 for i. We note that by the
construction, neither the marker position for A; nor the restraint function for R;
changes after stage s(i), so for all ie N both r(i) = lim, r(i, s) and A(i) = lim; A(i, 5)
exist, the latter limit being defined only if R; = P, or S, for some e e N. By the Limit
Lemma, the functions r, 4, and s all have degree < 0’. We also note that

®) Vit 2 s(i)(o 2 vy %si)-

Since the construction is recursive, it follows from (5) and 7.2 that A has degree
<0.

We next show that 4 is not recursive. It suffices to show that for all ee N, P, is
satisfied. Fix ee N and let P, = R;. If a satisfies P,, then by (5), 4 satisfies P,.
Otherwise, it must be the case that @,(A(i))1, else if this computation converges and
outputs the value &, then if k£ # 0, R; never requires attention after stage s(i) and
A(A(()) = 0; and if k = 0, then we set A(A(i)) = 1 at stage s(i). In either case, R; is
satisfied.

We next show that W4 has degree < 0'. This fact follows easily, since (5) implies
that ee Wi & oy, satisfies Q, = R,. We thus conclude that 4 ® W4 <. K.

We complete the proof of the theorem by showing that K <, 4 @ W#. We
proceed by induction on i, simultaneously computing A(i), r(i), and s(i), and if
R; = S,, we decide at step i whether or not ee K. Consider step i of the induction.
We proceed by cases.

Suppose first that R;=P,. Then A(i)=A(,s(i—1)+1) and r(i)=
r(i,s(i — 1) + 1).s(i) = s(i — 1) + 1 unless A(i) € 4, in which case, s(i) is the stage at
which A(i) was placed into 4.

Next suppose that R;=Q,. Then A(i) is undefined. If e¢ W, then
s(i) = s(i — 1) and r(i) = 0. If ee W, let s be the least stage > s(i — 1) such that a
satisfies Q,. Then r(i) = r(i, s), and s(i) = s.

Finally, suppose that R;=S,. Then A(i)=A(,s(i— 1)+ 1) and r(i) =
r(i,si — 1) + 1). s(i) =s(i — 1) + 1 unless A(i)e 4, in which case, we find the
unique k such that f(k) =e. If 2k + 1 < s(i — 1), then s(@) =s(i@— 1)+ 1 and
ecK<wee K" If 2k + 1 > s(i — 1), then s(i)) =2k + 1 and ec K< A(i)e 4. |

Theorem 7.4 relativizes to any set X. The proof of this relativization is uniform
in n and X. We summarize these facts.

66 III. The Jump Operator

7.6 Theorem. There is a recursive function f such that for all ne N and X < N, the
Sfollowing conditions hold:

i X< W%,

i) WX, @WVie=,X.
Furthermore, if for all Y = N, Y <1 WY, then
(iif) WWim =, X'

Proof. The proofs of (i) and (ii)) are straightforward relativizations of the
corresponding proofs in Theorem 7.4. The only modification which needs to be
made in the construction is to build 4 so that 4(2m) = X(m) for allme N. We leave
the verification of these conditions to the reader.

Let Y= W%,. If Y <1 W}, then by (ii)

WWim=W! =, YO WY =1X". I

Theorem 7.6 is most useful under the assumption that forall X = N, X <, WX,
If we let X = @, then the theorem implies that there is a correspondence as in Fig. 7.1
which preserves all uniform degree invariant properties. Thus the jumps of 4 are
related to the jumps of @) in exactly the same way as the jumps of (' are related to the
jumps of B. The next two lemmas make this latter statement precise.

o (b/ =7 W,],B
I |

Wn = A Wf(n) = B
| |
0 0

Fig. 7.1

7.7 Lemma. Let m,ne N be given such that the following conditions hold for all
Xc N:

0 X<pWwX
() (WEm™ =, xm,

Let f be as in Theorem 7.6. Then the following conditions hold for all Y = N:

(i) Y<p WY,
(v) (WY)m D =y,
V) Ifm>0and VX = N(W¥)™ ™V %1 X™) then (WY,)™ 5 Y™

Proof. (iii) Immediate from Theorem 7.6(i).
(iv) By (i) and Theorem 7.6(iii),

6 Wi, < Wlim=,Y.

7. Classes of Degrees Determined by the Jump Operation 67

Hence by (ii) applied to X = W}’ and Theorem 7.6(iii),

(n)

(W)™ = (WEIe)™ =7 (Y)Y =7 Ym0,
(v) Assume that m > 0 and that
@) VX © N(WHm=1D £, xm),
Let X = W7, in (7). Then by (6),

Y™ = (YD = (W)™ =D (Y ™.

Lemma 7.7 is used to show that if H,, — H,,—; # O then L,,,; — L, # 0. The
next lemma is used to show thatif L., +; — Ly, # O then H,, 4, — H,, # 0. Its proof
is similar to the proof of Lemma 7.7.

7.8 Lemma. Let m,ne N be given such that the following conditions hold for all
Xc N:

0 X<t Wk

(11) (WX)1m+ 1) ETX(m+1).

Let f be as in Theorem 7.6. Then the following conditions hold for all Y = N:

(i) Y < WY,

iV WY (m+1) = Y(m+2).
Sm) T

V) VXS NOWH™ =1 X™) then (WY,)™ &7 Y™+,

Proof. (iii) Immediate from Theorem 7.6.
(iv) We note that (6) again follows from (i) and Theorem 7.6(iii). Hence by (ii)
applied to X = W7} and Theorem 7.6(iii),

(W)™ D = p (W Fm)m D = (Y)m*D = Y2,
(v) Assume that
® VX = N((W)™ &+ X™).

Let X = WY

Y in (8). Then by (6),

YD =0 (Y)W = (W)™ g (W)™]
We are now ready to prove the nondegeneracy of the hierarchy.

7.9 Theorem. For all me N, Hp oy —Hp # 0 and Ly oy — Ly, # 0.

Proof. Fix fgiven by Theorem 7.6. We note that Ly = {0} and Hy = {0'}. Fixee N
such that for all X € N, WX = X". Then for all X < N, X < WX. We proceed

68 II1. The Jump Operator

by induction on m. At the end of step m of the induction, we assume that we have
ne N such that for all X = N:

©) X< WX
(10) (WXym = o+ D,
(1) m>0— (WX)m=D g xm,

For m = 0, the induction hypotheses hold for n = e. (9), (10) and (11) allow us to
apply Lemma 7.7, and conclude that for all Y = N, if & = f(n) then:

(12) Y<p W
(13) (WYHm+h = yom+),
(14) (W™ &4 Y.

Hence W?(")eLn“ — L,. (12),(13) and (14) allow us to apply Lemma 7.8, and
conclude that forall X = N, if r = f(k) then (9), (10) and (11) hold for m + 1in place
of m and r in place of n. Thus W?‘ 1 € Hm+1 — Hy, and the induction hypotheses are
verified. [

In order to show that I # @, we must state a different form of the relativization
of Theorem 7.4. We note that the set W, defined in Theorem 7.6 was obtained as
X @ A for some set 4, and we let this set 4 be obtained as WX where g is also a

g(n)
recursive function. We then conclude:

7.10 Theorem. There is a recursive function g such that for allne N and X = N, the
following conditions hold:

@ X< X® W;‘(n).
(ii) XOWE ®WXWom =, X'

g(n)

7.11 Theorem. T # §.

Proof. We will apply the Recursion Theorem to show that I # @. For each ee N and
XS N, let J(X) = X ® W¥. We define iterates of the operator J, by induction;
JoX)= X and J*"(X) = J(J"(X)). We note that for all ee N,

JJoX) = J(XOWE) =X® W), & WEWoeo

g(e) gle)

so by Theorem 7.10(ii),
(15) VeeN VX S N(JoJyofX) =1 X').

By the Recursion Theorem, there is an ee N such that for all X< N,
WX =W}, Henceforall X € N, J.(X) = Jy(X). For this e, we use SJ(X) in place
of J,(X). (SJ stands for semi-jump; two consecutive applications of the operator
yield the jump. It is coincidence that this operator was discovered by Shore

8. More Exact Pairs 69
and Jockusch.) It follows from Theorem 7.10(i) and (15) that for all X = N:

(16) X <. SJ(X).
a7 SIAX)=,X.

The following computation uses (16) and (17):

X =7 ST(X) <7 ST (X) = SIPSI(X)) <7 ST>"+3(X)

= T .X('l + 1).
Thus in particular, SJ(@) has degree in I. [

7.12 Remarks. The finite injury priority method which is used in the proof of
Theorem 7.4 was discovered by Friedberg [1957a] and Muchnik [1956]. Theorem
7.4, its relativizations, and the proofs of this section are due to Jockusch and Shore
[1983]. Theorem 7.9 was initially proved as a corollary of the Sacks Jump Inversion
Theorem [1963a]. Theorem 7.11 was proved independently by Lachlan [1965] and
Martin [1966] using the Sacks Jump Inversion Theorem. Sacks [1967] sub-
sequently found an easier proof using the Recursion Theorem and the Sacks Jump
Inversion Theorem. The proof of the Sacks Jump Inversion Theorem is more
difficult than those presented in this section.

7.13 Exercise. Let e N be given, and let B be a recursively enumerable set of degree
b such thatb’ = 0’. Show that thereisaset A > Bsuchthat A @ W# =, (. (Hint:
Build 4 forcing its jump by a proof combining forcing and coding B into A. If an
element enters B causing injury to a forcing requirement, then that requirement may
again require attention and impose restraint on a location assigned to code ne . In
that case, assign a new coding location for ne) beyond the new use, but keep the
old coding location available. Always code at smallest unrestrained location, and
code late if a location becomes unrestrained, even if coding has already been done at
a different location.)

8. More Exact Pairs

In Sect. 3, we showed thatif ae D and 4 = N?is a set of degree a, then there is an
exact pair <b,c) for the ideal generated by {4'!: ie N} such that b,c < a’.
Equivalently, if X = N is a recursive set and I is the ideal generated by {®{: ie X},
then there is an exact pair b, ¢ < a’ for L. In this section, we improve this result by
obtaining the same conclusion under the assumption that X e 4. Note that this
result is best possible for X. For if b,c < a’ is an exact pair for I, then there is a
sentence defining {i: @ is total & &/ < B& ¢ <1 C} (where Beb, Cec)whichis
>59C Hence any ideal below a having an exact pair below a’ must be generated as
above by some XeX{ = Z4.

70 III. The Jump Operator

For the rest of this section, fix a recursive one-one correspondence of N with N2,
letting n correspond to {ng,n;).

We begin by analyzing sets X e X7.
8.1 Lemma. Let A, X = N be given such that X € 24. Then there is a set B < N? such
that B is recursively enumerable in A and:

0] xeX=In(n, = x& B™ = N).
(i) x¢ X = Vn(ng = x - B™ is finite).

Proof. Since X € 24, there is a relation R = N* which is recursive in 4 such that

xe X< 3InVyIz(R(x,n,y, 2)).
Place

me B" < Vy < m3z < s(R(no, ny, y, 2)).

Let B = U{B™: se N} for all ne N. Clearly, B is recursively enumerable in 4. (i)
and (ii) now follow from the X4 definition of X and the definition of B. [

Lemma 8.1, together with the priorities on % which we now define, are used to
obtained the desired characterization of sets in 2.

8.2 Definition. Given o, T € %, we say that ¢ has higher priority than 1 if ¢ precedes t
in the lexicographical ordering of binary strings, i.e., either ¢ = 7 or ¢t and
a(x) < 7(x) for the least x such that o(x) # t(x).

Given Xe X4, we will want to define I': N — {0, 1} characterizing X. We thus
view % as a tree ordered by inclusion, and I as a path through this tree. I is defined
uniformly from a sequence of elements of % as follows:

8.3 Definition. Let S = {y,: se N} be a sequence of elements of %. For each se N,
define f, to be a string f of highest priority (if such a string exists) satisfying the
following conditions:
1) Ih(p) =s.
(i) {s:p < y,} is infinite.
(iii) {s: 7, has higher priority than g} is finite.
Let I's = U{f,: se N}.

8.4 Lemma. s is a function from an initial segment of N into {0, 1}. Furthermore,
Ih(I's) < oo if and only if there is some y < I's such that {s: y, = y} is infinite.

Proof. Note that B, = . We proceed by induction on . Let f, be given such that
B = B, satisfies 8.3(i)-(iii). Note that

) {s:ys 2B} ={s:ps=BIU{s: 72 B+ 0} U{s: p,2 B, 1}.

Since, for ie {0, 1}, B, has higher priority than f, * i, it follows from 8.3(iii) and (1)
that B, , cannot be defined if {s: y, = f,} is infinite, in which case f, is undefined for
all r > ¢t + 1. Hence in this case dom(I") = [0, ¢].

8. More Exact Pairs 71

Suppose that {s: y, = f,} is finite. Then by 8.3(ii) and (1), there is a least i such
that {s: y, 2 B, *i} is infinite. Let B, = B, i. It easily follows that f = .,
satisfies 8.3(i) and (iii). Furthermore, since, if y has higher priority than f,, then y has
higher priority than B, xi if and only if y = §, or y 2 f,*j for some j < i, 8.3(iii)
follows from f = fB,+,. [

We are now ready to characterize X e 2%.

8.5 Proposition. Let A, X = N be given such that X € 24. Then there is a set of binary
strings S = {ys: s€ N} which is recursively enumerable in A and has the following
properties.

@) Ih(I's) = co.
(i) Vy < I's3s(ys = y &Vt > s (y, has lower priority than v)).
(1i1) xe X<3In(x = no & I's(n) =0).

Proof. We will define S so that I' is the characteristic function of {n: B™ is finite},
where B is obtained from 4 and X as in Lemma 8.1. S = {y,: se N} will be defined
by induction on s. At each stage s of the induction, every o€ % will either be
dormant, active, or discharged. We begin by specifying that @ is active and that every
other o€ % is dormant.

Stage s. Each active o€ % receives a check for ne N if lh(e) <5, o(n) = 0 and
B — B 5 @ (here {B,: se€ N} is an enumeration of B which is recursive in 4 and
must exist since B is recursively enumerable in 4). An active ¢ is eligible at stage s if
for all n < Ih(o) such that o(n) = 0, ¢ has received a check for n which has not been
cancelled.

Let y, be the binary string of highest priority which is eligible at stage s. (There
will always be an active string 7 such that t(n) = 1 for alln < 1h(z), so eligible strings
will exist. Also, only finitely many strings will be active at stage s, so vy, is well-
defined.) y, becomes discharged. All checks assigned to strings of lower priority
than y; are cancelled. The strings of higher priority than v, retain their designations.
Each string of lower priority than y, becomes dormant unless it is of the form 7 = i
for some discharged 7 and i€ {0, 1}, in which case it becomes active.

This completes the induction step. Let S = {y,: se N}. Let y = I'g be given, and
fix a stage se N so that for all ¢ > s, y, does not have higher priority than y. If for
some ¢ > s y, =y, then y, is discharged at stage ¢, and by choice of s, remains
discharged for all r > ¢. In any case, {r: y, =y} is finite so by Lemma 8.4,
Ih(I's) = oo and (i) holds.

For all 6e %, if y, 6 then § is discharged before stage ¢ and this discharged
status of d is not changed before stage z. Hence for y = I's, by the above paragraph
there must be a last stage s such that y, is discharged during stage s, i.e., y, = y. If for
some ¢ > s y, has higher priority than y, then since {u: y, 2 y} is infinite, y would
again have to be discharged at some stage r > ¢ contrary to our assumption. Hence
no such ¢ can exist, and (ii) holds.

Let x € N be given such that x ¢ X. Fix ne N such that n, = x. By Lemma 8.1(ii),
{s: B™ — B % @} is finite. Hence only finitely many ¢ such that ¢(n) = 0 can

72 III. The Jump Operator

receive checks for n. Thus for all but finitely many discharged g, if 1h(¢) > n then
on)=1,s0 I's(n) =1.

Finally, let x e N be given such that xe X. By Lemma 8.1(i), fix ne N such that
no = x and B™ is infinite. Let y = I's be given such that Ih(y) = n. To show that
I's(n) = 0, it suffices to show that {s: y, = y x 0} is infinite. Suppose this not to be the
case in order to obtain a contradiction. Fix s such that for all ¢ > s, y, has lower
priority thaty = 1. Thenforall# > sand 6 = y % 0, the status of § remains unchanged
during stage ¢. Fix § of shortest length which is not discharged at stage s such that

P(x) if x<n,
dx)=<0 if x=n,
1 if n<x<I1h(d).

Then ¢ must be active at all sufficiently large stages since its predecessor in the
priority ordering is discharged at all sufficiently large stages. Since y = I's and since
B™ is infinite, § must accumulate checks for all # such that §(n) = 0, and none of
these checks can be cancelled. Thus ¢ is eligible at some stage t = s, s0 y, = é or y,
has higher priority than §. But this contradicts the choice of 5. [

We are now ready to prove a strong local version of the Exact Pair Theorem.

8.6 Theorem. Let A, X = N be given such that X € 27 and for all xe X, 2 is total.
Let A have degree a and for all xe X let a, be the degree of ®%. Let I = {deD:
~3F = N(Fisfinite & d < u{a;: i€ F})}. Then there is an exact pair {cy, ¢y for 1 such
that ¢cy,¢q < .

Proof. Fix notation as in the statement of the theorem. Let S = {y,: se N} be
obtained from Proposition 8.5 for Xe 24" = 4. For je {0, 1}, we construct a set
C; = U{¢j: se N}. The degrees ¢y and ¢, of C and C, form the exact pair for I. We
establish the usual requirements for an exact pair construction:

Pi: l€X=>¢;4 <TC0&¢;4 STcl.
Q;: If ¢¢° = ¢S1 and PL0 is total
then &5° < @ {®Pf: jeF} for some finite F = X.

In order to prove the theorem, it suffices to show that P; and Q; are satisfied for all
ie N, and that ¢y,¢; < @',

For each je {0, 1}, we will construct C; = N2. However, we identify N2 with N
recursively, so we can treat a string o € % as if it were a finite subset of N2. We also
have a one-one recursive correspondence {g;: ie N} of &% with N; so for 6 € %, we
will speak about C!!in place of C 5'] the correspondence being given by C'! = CI,
Finally, we treat each C! as if it consisted of elements of N°>.

We will code @ into C; for i€ X as follows. Since i€ X, we will have some ne N
such that I'(n) = 0 and no=1i. Lety=1T"1n+ 1; & will be coded into C". For
each xeN, there will be a triple of the form (z, x, <DA(x)>eC[” and for all but
finitely many triples <z, x, > € C¥), y = ®{(x). This strategy will allow us to satisfy
P,. The coding is done at those stages ssuch that y =y, and at the xth such stage, a
triple of the form (z, x, #(x)) is placed into C%, where z is chosen so that no
decision has previously been made about placmg this triple into C').

8. More Exact Pairs 73

In order to prevent unwanted triples from entering % when attempts to satisfy
0., are made, we require that such attempts respect strings of sufficiently high
priority. Thus at all sufficiently large stages, only strings containing information
about C% which is consistent with this coding procedure are allowed as extensions.
This type of constraint allows us to satisfy P; without imposing undue hardship on
the satisfaction of Q,,.

We begin by setting 50 0 for je{0,1}, and assigning 0 to ¢ for each s %.
(The number x assigned to 0;in % designates the next pair {x, ®;(x)) to be coded
into CE"']) Stage s of the construction has two steps: The first step attempts to make
progress towards satisfying P, for certain k& < lh(y,); and the second step attempts
to satisfy Q, for k£ = lh(y,).

Stage s, Step 1. We proceed by induction on {k: k < lh(y,)}. For each such %, let
T =75 [k = 0. Let nj = & for je {0, 1}. At the kth step of the induction, % will
have previously been defined for je {0, 1}. Fixje {0, 1}. If y(k) = 0 and k, = i, then
we try to code @7(x) into C; by placing a number of the form (z, x, @/(x)) into C[*
where x is the number currently assigned to 7. (There will also be implicit restraints
which try to keep numbers not of this form out of C E"‘]) We first use the 4’ oracle to
determine whether @7(x)|. If not, or if y,(k) # 0, set #t*' = k. If so, find an
extension " ! of 1 for which there is a unique y > lh(n") such that 7l =1,
and this unique y is of the form (m, {z, x, ®#(x)>) for some ze N. A551gn x+ ltor,
in place of x. When the induction is complete go to Step 2. (Note that we must use
the A’ oracle, since it is possible that y,(k) = 0 but k¢ X, so ®; may not be total.
Also, we do not want to code all of @ into C; during one stage, since if k ¢ X, we
may defeat the theorem by coding in too much.)

Step 2. We try to satisfy Q, for k = lh(y,). Let <ko, k;) = {(n,m). We will try to find
x € N and extend our definitions of C, and C; to force #€°(x) # ®S'(x). This must
be done without violating the restraints alluded to in Step 1. Thus the extensions S,
of n& and B, of n% which we define must respect y,, i.e., for alli, ye Nand je {0, 1}, if
(i, yyedom(p;) — dom(n) and Bi(<i,y>) = | and o; has higher priority than y,,
then o; < y,, y5(i) = 0, and if y = <z, x, x*) then @{(x) = x*. (In other words, f§;can
only code elements into C[‘"] for o; of relatively hlgh priority if the information
coded in by such an element is consistent w1th <D’;)

If there are extensions f, of n’ and B, of #* and x € N such that f, and 8, respect
75 and @P°(x) £ PP1(x), find the least such pair (B, B> (under some fixed recursive
one-one correspondence of &3 with N) and let £3*! = ; for je {0, 1}. Otherwise,
set 55“ = ;1] for je{0,1}. Note that if B, and ,BI exist, then they can be found
recurswely in A'.

This completes the construction. We now verify that P; and Q; are satisfied for
all ie V.

Given ke N, fix y = Iy such that lh(y) k. Fix se N as in Proposition 8.5(ii).
Then for all £ > s and je{0,1}, £,"" is an extension of ¢! which respects y. Let
Ckoskyy = (nym). If @S0 = @C: and both @C° and &C! are total, then there can be
no n-splitting <f,, 8> of goin Wthh both strings respect y. To determine whether
an n-splitting of & respects y requires knowledge only of @ {®;*: y,(i) = 0}. Hence
we see as in previous proofs that @¢° < ;. E for some E whose degree is in I. Hence Q;
is satisfied.

74 III. The Jump Operator

Finally, suppose that x € X. Then by Proposition 8.5(iii), there is an ne N such
that ny = x and I's(r) = 0. Fix such an n, and fix y = I's such that lh(y) = n and
se N as in Proposition 8.5(ii) for y. Then for all ¢t > s and je {0, 1}, ‘f’” is an
extension of ¢! which respects y. Hence {<z,y,y*)> € C/1: ®Z(y) # y*} is ﬁmte and
forall ye N there is a ze N such that {z,y, X y)>e C”] Hence for all but finitely
many ye N and all je {0, 1},

P(Y) = y* <= 32(Cz, 9, y*) € CPN) = VwVz(w # y* - (z,y, w) ¢ CY).

Thus &% € 4%/ so ¢4 <, Cj, and P, holds. [

Theorem 8.6 can be extended in a different direction by finding an exact pair for
I below certain h < a’. This extension is discussed in Exercise 1V.4.17.

8.7 Remark. Theorem 8.6 was proved by Shore [1981] extending a result of Nerode
and Shore [1980] in which it was assumed that Xe 25.

8.8 Exercise. Show that the type of coding of @ into the sets being constructed
which was used in proofs of previous exact pair theorems cannot be used to prove
Theorem 8.6. (For if xe X if and only if for all je {0, 1} there is a k € N such that
{y: C¥(y) # ®#(y)} is finite, then XeX%.)

