
Chapter III

The Jump Operator

The jump operator is a naturally defined function taking each degree to a larger
degree. It is also very closely related to the arithmetical hierarchy. We will study this
relationship, as well as some algebraic structures whose universe is the set of degrees
and on which the jump operator acts as a function.

The jump operator also allows us to pick out certain natural degrees other than
0. Thus we are presented with certain natural intervals of degrees for which we can
ask questions similar to those answered in Chap. II. We begin our study of local
degree theory, i.e., the study of bounded intervals of degrees in this chapter. Many
of the results proved throughout this book are local results which allow us to prove
global theorems about the degrees.

1. The Arithmetical Hierarchy

The arithmetical hierarchy coincides with the 3n/Vn hierarchy of sentences for the
language of recursion theory specified below. It is introduced in this section, and
characterizations of certain levels of this hierarchy are given.

There is one basic relation and one basic function for which we want symbols in
our language for recursion theory. The first is the graph of the function φ of the
Enumeration Theorem. The other is any one-one recursive correspondence
π:N2 -• N.π is called a pairing function. We will sometimes denote π by π 2 , and note
that for n ^ 2, we can recursively define πn +1: Nn+ 1 -> N by

The underlying language for recursion theory is the language of the pure
predicate calculus with equality, together with:

(1) For each neN, a constant symbol n whose interpretation is n.
(2) A five place relation symbol φ whose interpretation is the graph of the

function of the Enumeration Theorem, i.e., {(σ,e,x,s,y}:φ(σ,e,x,s)l =y).
(3) A function symbol π of two places whose interpretation is the pairing

function π.
Henceforth, we will identify each symbol in this language with its interpretation.
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Note that the above language is recursive, φ maps <f x N3 -> TV, but we have a
recursive one-one correspondence of έf with TV, so can treat φ as a map TV4 -» TV
under this correspondence.

Given any recursive relation 1?, we recall that χR is the characteristic function of
R. If R is a A -place relation, then we can effectively pass from R to the one-place
relation R* defined by

N\= R(nu ... ,nk)oN\= R*(πk(nu .. .9nk))oχR(πk(nu ... ,nk)) = 1.

Furthermore, χR = φe for some eeN and χR is total. Hence

χR(n) =lo3s(φφ9e9n,s)l = l)oWy(φΦ,e9n9t)l = y-*y = 1).

Since the domain of φ is recursive, we now see that every recursive relation has both
an Vi and 31 expression in this language. It is easily verified that any relation
expressible in both Vi and 3χ form is recursive.

The language for recursion mentioned above is closely connected with the local
structure theory of the degrees. We thus introduce notation to distinguish the 3n and
Vπ sentences of this language from those of other languages.

1.1 Definition. Let S be a formula in the above language. We say that S is Σ® if Sis 3n,
Sis Π°n if Sis Vπ, and Sis Δ°n if Sis both Σ > n d 17°. Given R c N\ we say that R is Σ°n

(17°, Δ°n resp.) if there is a Σ°n (17°, Δ°n resp.) formula S of the language such that for
all au...,aneN

R(au...,an)oS(au...,an).

Similarly, given/: Nk -• N, we say that/ i s Σ°n (17°, Δ°n resp.) if the relation

R(X\, . . . , Xn + i)

is Σ° (17°, zl° resp.). The classification {Σ°n, 17°, Zl°: n ^ 0} is called the arithmetical
hierarchy.

The arithmetical hierarchy has the following nice closure properties.

1.2 Remark. Let R, S ^ Nk be Σ°n relations. Then R U S and 1? Π S are Γ° relations,
and Nk - R is a 17° relation.

1.3 Remark. Let i? c iV" be a recursive relation, and let m e TV be given. Define the
relation S^TV"" 1 by

S(xί9..., xn- 0 o 3x ^ m(l^(x, x 1 ? . . . , xπ_ 0).

Then S is a recursive relation. Hence the class Σ°o is closed under bounded existential
quantification. Since Σ° is closed under negation, it is also closed under bounded
universal quantification.
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1.4 Remark. For all neN and all Σ°n relations S c N\ there is a Π°n_1 relation
R^Nk+1 such that

We leave it to the reader to prove this remark (Exercise 1.16).

We now define a relativized version of the arithmetical hierarchy.

1.5 Remark. Given any function/: Nk -• N, we can expand our language by adding
a symbol f to our language to be interpreted as the function /. If we follow the
procedure of Definition 1.1 to define Σζ, Π{, and A{, we obtain the arithmetical
hierarchy relativized to f.

The recursively enumerable sets have been studied extensively by recursion
theorists. We will, however, touch on these sets only peripherally in this book. Soare
[1978] contains a survey of results in this area, and Soare [1984] is an excellent
source from which to learn about recursively enumerable sets.

1.6 Definition. Let / : Nk -> N and A c N be given. A is said to be recursively
enumerable inf'iϊA = 0 or A is the range of a function recursive in/. A is said to be
recursively enumerable if A is recursively enumerable in some recursive function.
(Note that A is recursively enumerable if and only if A is recursively enumerable in
every recursive function.) A degree d is recursively enumerable (inf) if d is the degree
of a set which is recursively enumerable (in / ) .

The next two propositions present alternate definitions of the recursively
enumerable and recursive sets.

1.7 Proposition. Let f: Nk -»N and A c N be given. Then the following are
equivalent:

(i) A is recursively enumerable inf.
(ii) A is the domain of a partial function θ which is computable from f

(iii) A is the range of a partial function θ which is computable from f

Proof Exercise 1.17. D

1.8 Proposition. Let f:Nk -» N and A c N be given. Then the following are
equivalent:

(i) A is recursive inf.
(ii) Both A and N — A are recursively enumerable in f

Proof. Exercise 1.18. D

The next theorem relates recursive enumerability to the arithmetical hierarchy.

1.9 Theorem. Letf: Nk -• N and A c TV be given. Then the following are equivalent:

(i) A is recursively enumerable inf.
(ii) AeΣ{.

Proof, (i) => (ii): Let A be recursively enumerable in /. If A = 0 then
XEAO 3X(X Φ x) so A G Σ{. \ΐA Φ 0, let g be a function recursive in/with range A.
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Then

yeAo3x(g{x)=y).

As g is in our language, A e Σ{.
(ii) => (i): If A = 0 then the result is immediate. Assume that A ^ 0, and fix a e A.

Since ^ e Σ{, there is a relation S recursive in / such that

Let {<«ΐ, ι?f>: /eTV} be a recursive enumeration of TV2. Define g: TV -• TV by

if (Mf^^eS,

[α otherwise,

g is clearly recursive i n / a n d has range 4̂. D

1.10 Corollary. Let f:Nk -• TV and A ^ N be given. Then the following are
equivalent:

(i) A is recursive in f
(ii) AeΔ{.

Proof. Recall that for all B c N, BeΣ{oN - BeΠ{. Hence by Proposition 1.8
and Theorem 1.9,

A is recursive in /<=> both 4̂ and N — A are recursively
enumerable in foA, N — A e Σ{ <=> A e Σ{ Π Π{ <=> A e zl{. D

The final result of this section, the Limit Lemma, characterizes the class of Δ°2

functions. It is stated in terms of the following definition.

1.11 Definition. Let/: Nk+ * -> N and g: Nk -> N be given. We say that # = lim s/if

(i) V*i,..., xk 3s Vί ^ s(/0, x i , . . . , xk) = 6f(xi,..., xk)).

We say that lims /exists if there is a function h:Nk ̂  N such that (i) holds with h in
place of g.

1.12 Limit Lemma. Let / : TV -• TV Z>£ #/ι;e«. 77ze« the following are equivalent:
(i)/eJ°.

(ii) There is a recursive function g: N2 -+ N such that f— lims#.

Proof (i)=>(ii): Let {(yhSi}:ieN} be a one-one recursive enumeration of TV2. By
Remark 1.4, fix a recursive relation S c TV4 such that

For each W,XGTV, define /(w,x) = μ/[V/ ^ w ^ x , ^ , ^ , ί))]. Since/is total, we see
that / is a total recursive function. Define g(u, x) = yi(u,x) for all u,xeN. It is easily
verified t h a t / = limM#.
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(ϋ)=>(i): L e t / = limsg, where g is recursive. Then

fix) = y<>3sVt> s(g(t,x)=y)oVs3t^ s(g{Ux) = y\

Hence feΔ°2. 11

1.13 Corollary. Let A <Ξ N. Then AeA\ if and only if there is a recursive function
f: N2 -* {0,1} such that for all xeN

xeA<=> lims f(s, x) = 1.

Proof Fix A c N. Then AeA® if and only if the characteristic function of A is a J °
function. Apply the Limit Lemma. D

There is a version of the Limit Lemma for functions / : Nk -• TV for all A: ̂  1
which is proved by making the obvious modifications to the proof of the Limit
Lemma. The Limit Lemma can also be relativized as follows.

1.14 Lemma. Let f'.N^N and h:Nk-^N be given. Then the following are
equivalent:

(i)feAh

2.
(ii) There is a function g:N2 -• N recursive in h such that / = lims0.

Proof Exercise 1.19. 0

1.15 Remarks. The results of this section are contained in Post [1944] with the
exception of the Limit Lemma and its variants which were proved by Shoenfield
[1959].

1.16-1.22 Exercises

*1.16 Show that for all n e N and all Σ° relations S c Nk, there is a 77̂ _ x relation
R^Nk+1 such that

V * ! , . . . , XkiSix! ,...,xk)o 3x(R(x, X i , . . . ,

(Hint: Use a recursive one-one correspondence between TV and Nk.)

*1.17 Let/: Nk -• N and A c N be given. Prove the equivalence of the following
conditions:

(i) A is recursively enumerable in /.
(ii) A is the domain of a partial function which is computable from /.

(iii) A is the range of a partial function which is computable from /.

*1.18 Let/: Nk -• N and A c N be given. Prove the equivalence of the following
conditions:

(i) A is recursive in /.
(ii) Both A and TV — A are recursively enumerable in /.

*1.19 Let f:N-*N and h:Nk^N be given. Prove the equivalence of the
following conditions:

(ϊ)feAh

2.
(ii) There is a function g:N2 -• N which is recursive in h such t h a t / = lim s#.
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1.20 Let/: N -> N be a total Σ° function for « ̂  1. Show that/is 77° and hence

that/is J°.

1.21 Show that if A is an infinite recursively enumerable set, then there is a one-
one recursive function with range A.

1.22 Show that if A is an infinite recursive set, then there is a one-one
function / enumerating A in order of magnitude, i.e., / has range A and

2. The Jump Operator

The jump operator is a strictly increasing function from D to D. We will define the
jump operator in this section, and examine its relationship to the arithmetical
hierarchy.

2.1 Definition. Given/: N-> N, define/' = {e: Φf(e)l}.f is called the completion

off.
2.2 Definition. Given/: N-> N, define/* = {<e,x

The following theorem describes relationships between//' and/*.

2.3 Theorem. Let A ^ N andfg:N-• N be given. Then:

(i) / ' is recursively enumerable inf.

(iϋ)/'=τ/*.
(iv) If A is recursively enumerable inf then A is recursive inf. Hence f^τf.
(v) Iff^τgthenf^τg'.

Proof (i) eeffo3yeN3σe^(σ ^f&Φσ

e(e)l=y). Hence by Theorem 1.9,/' is
recursively enumerable in /

(ii) Assume that / ' ^ Γ / for the sake of obtaining a contradiction. Then by
Proposition 1.8, N —/' = {e:Φ{(e)|} is recursively enumerable i n / hence by
Proposition 1.7, N — f = dom(Φ£) for some peN. We now note that

a contradiction.
(iii) Clearly/' < Γ / * . By clause (v) of the Enumeration Theorem, there is a

recursive function h:N2 -• N such that

I t otherwise.

Now

<*, J> e/* o Φ{(y)[ o h{x,y) e dom(Φ((x y)) <̂ >Λ(x, j ) e/'.

Hence/* ^ Γ / ' .



40 III. The Jump Operator

(iv) Let A be recursively enumerable in/. By Proposition 1.7, A = dom(Φ f) for
some e e N. Hence

so A ^ τ / * =τf' Letting/= A, we see t h a t / < τ / ' .
(v) Suppose that f^τg. By (i) and Proposition 1.7,/' = dom(Φ{) for some

eeN. S ince/^ Γ g, there is a peN such that Φ{ = Φ9

p, so/ ' = dom(Φp. Now

xefoΦβ

p(x)lo<j>,x>eg*

sof'^τg*=τg'. 0

From Theorem 2.3(v), we note that if/ = τg then/' = Γ # ' . Thus the completion
operator induces the following well-defined operator on D.

2.4 Definition. Let a e D be given. Then a', the jump of a, is the degree of v4' for any
Aea.

The completion and jump operators can be iterated as follows.

2.5 Definition. Let/: N -• iVbe given. Defΐne/(/ι), the «ί/z completion of/ inductively
as follows:/(0) = / and for n > 0,/ ( M + 1 ) = (/(M))' Given aeD, define a(n), the nth
jump of a as follows: Choose A ea. Then a(n) is the degree of A{n).

The following theorem relates nth completions to the arithmetical hierarchy.

2.6 Theorem. Let f: N -> N and A <Ξ N be given. Then
(i) AeΣf

n+ιoA is recursively enumerable inf(n\
(ii) (Post's Theorem) AsΔf

n + 1oA ^τf
in).

Proof, (i) We proceed by induction. If n = 0, then (i) follows from Theorem 1.9.
Suppose by induction that (i) holds for n. Assume first that A is recursively
enumerable in/ ( n ). Then A = dom(Φ{(n)) for some eeN. Hence

(1)

Furthermore,

(2) σ a /<"> o Vι < lh(<τ)((σ(/) = 1 -> i ef(n)) & (σ(i) = 0 -> i ^/ ( n ))).

By Theorem 2.3(i),/(M) is recursively enumerable in/ ( / 1 " 1 } , hence by induction,
fn)eΣ{. It now follows from (1), (2) and Remarks 1.2 and 1.3 that AeΣf

n + ι .
Conversely, assume that A e Σf

n + λ. By Remark 1.4, there is a Πf

n relation S ̂  N2

such that

(3) xeA^ly(S(x,y)).

Hence N2 — SeΣ{, so by induction, N2 — Sis recursively enumerable in/ ( π~ 1 }. By
Theorem 2.3(iv), N2 — Sis recursive in/ ( π ); so Smust also be recursive in/(M). By
(3), AeΣ[(n\ hence by Theorem 1.9, A is recursively enumerable in/(M).

(ii) Immediate from (i) and Proposition 1.8. D
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Post's Theorem will usually be applied, implicitly, in the following way. The
only non-effective steps in the construction of a set A will be the need to answer
certain Σ° questions, posed in a uniform way. Post's Theorem will then imply that A
has degree less than or equal to 0'.

The degree 0' is uniquely situated within the degrees as being simultaneously the
degree of a recursively enumerable set and the jump of another degree. Some
properties of the degrees below 0' will be discussed in the next section.

3. Embeddings and Exact Pairs Below 0'

Some of the theorems proved in Chap. II for the degrees are also true for the degrees
below 0'. The theorems which are reexamined in this section are those whose proofs
for the degrees below 0' depend on little more than combining the proof given in
Chap. II with a bounding principle for forcing.

3.1 Notation. Let a,beD be given such that a <; b. D(a,b] will denote
{ d e D : a < d < b } , and D[a, oo) will denote {deD.d^a} . Notation for other
intervals of degrees such as D[a, b), D(a, b], D(a, b), and D(a, oo) is interpreted in the
obvious way. This notation is also carried over to structures, so, for example,

will denote <D[a,b], <>.

We now present a bounding principle which transforms global structure
theorems into local structure theorems.

3.2 Bounding Principle. Let aeD, a set ZΓ of requirements, a notion of forcing
(F, ^ >, psF and a function f:F x 3~ ̂ >F be given. Assume that:

(i) The sets ZΓ and F have degree ̂  a, as does the relation ̂  and the function f
(ii) VqeF\/Te^(f(q, T) ^ q&f(q, T)\\- T).

For each Te f, let Cτ = {qeF\q\\- T}9 and let % = {Cτ: TE <T}. Then there is a
sequence p0 ^ p1 ^ of elements of F such that

(iii) p0 = p.
(iv) {</,/?>:/? = Pi} has degree ^ a.
(v) G = {qeF:q ^ Pi for some i) is a %'-generic set.

Thus ifh is a function which can be computed from {pi'.ieN} through the use of an
oracle of degree a, then h has degree < a. In particular, ίfFis a set of partial functions
uniformly of degree < a, P = U {dom(/?) :peF} has degree < a, and g:F x P -+ Fis
a function of degree < a such that for all qeF and xeP, g(q9x) ^ q and
xedom(g(q,x)), then we can choose {pi'.ieN} so that G has degree < a.

Proof. For the first part of the proof, we follow the proof of the Existence Theorem
(Π.2.8) for ^-generic sets, except that/?π + 1 is specified by/instead of being picked
arbitrarily, (ii) allows us to prove a density lemma in this way. (iii) and (v) are easily
seen to be satisfied, and (iv) now follows from (i).
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h defined as in the hypothesis of the principle will automatically have degree
^ a. If P has degree < a, then we can choose {pi'.ieN} as in the proof of
Theorem II.2.9 using / to determine p2s+i a n d g to determine p2s + 2- Then
\JG(x) = yopix+i(χ) = y > s o by (iv), UG has degree < a. D

The application of the Bounding Principle to some of the results in Chapter II is
straightforward. When the proof of the Density Lemma produces a function/of
degree ^ 0', then 3.2(i) is easily verified, and 3.2(ii) is just the Density Lemma.
Hence it is important to determine the effectiveness of the passage from a condition
p and a requirement R to a condition q ^ p which forces R.

We first classify the finite posets which can be embedded into ^[0,0']. The
crucial step in this classification is the existence of a countable set of independent
degrees in D[0,0'].

3.3 Theorem. There is a countable set {a^ieN} of independent degrees such that
a ^ O ' for all ieN.

Proof Proceed essentially as in the proof of Theorem 11.3,6. We construct a set
A c N2 such that for all e, ieN, the requirement Rei: Φ^ [ ' ] Φ A x is satisfied. We
note that we can recursively extend a condition to one converging on a given
argument, so by the Bounding Principle, it suffices to show that there is a function/
of degree ^ 0' such that for all φeF and e,ieN, φ ^f(φ,ReJ) = θeF and
f(φ, Re4) I f- Rei. We note that in the proof of Theorem II.3.6, Fis a space, so we can
recursively order F x 5^ as {<#,-, σ^ /eTV}. The definition of θ in the proof of
Theorem II.3.6 depends on whether

(1) 3θeF3σεy2(θ Ώφ&σ^ θm8ιΦσ

e(x)l\

for a specified x depending recursively on φ. By Theorem 1.9, S = {(φ, e, />: (1)
holds for φ, e and /} is recursively enumerable, hence by 2.3(iv), S has degree ^ OMf
(φ, e, /> $ S, then we set f(φ, ReJ) = φ and if (φ, e, /> e S, then we search for the
least j such that 0, 2 φ, σ} c θli] and Φσ

e

j(x)i (noting that such ay* will be found
through a recursive search) and set F(φ,Re,) = θj.f is easily seen to have degree
< 0\ I

As in Section II.3, the following corollaries can now be drawn.

3.4 Corollary. Let 91 = < t/, <> be a finite poset. Then °U a> 2.

3.5 CoroUary. Th(^[0,0'])Π3 1 is decidable.

Having discussed the localization of the embedding theorems of Sect. II.3, we
turn our attention to the extension theorems of Sect. II.4. Some of the extension
theorems of that section are false in ^[0,0 '] , while others require new proofs. The
new proofs will be presented in subsequent sections. For the remainder of this
section, we concentrate primarily on a local version of Theorem Π.4.8, the Exact
Pair Theorem for Countable Ideals. The Exact Pair Theorem is false in ̂ [0,0'], but
a weak version is true and can be used to show that ̂ [0,0'] is not a lattice. We first
demonstrate the falsity of the Exact Pair Theorem in

3.6 Corollary. There are 2*° many ideals I o/®[0,0'] such that for all a,b < 0',
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Proof. Choose a countable set {aj :ieN} of independent degrees < 0' as in Theorem
3.3. For each S c TV, let

F c S(Fis finite & d ^ u{a, :zeF})}.

It is easily verified that for all S c N ls is an ideal, and that

(2) VS,T

A counting argument will now complete the proof of the corollary.
\{S: S c N}\ = 2*° > No |D[0,0']| = Ko, so |D[0,0] x D[0,0']| = Ko Thus by (2),
there are 2X° many ideals of D|0,0'] and only countably many possible exact pairs
for such ideals. Hence 2X° many ideals of D[0,0'] cannot have exact pairs below
0'. 0

The major problem we face in trying to use the Bounding Principle to localize
extension theorems to D[0,0'] is that it may be impossible to define ββ, R) 3 θ so
that/(0, R) 11- R and/E A\. In all the theorems considered in Section II.4, if we start
with a poset 3~ = <T, < > of degrees and representatives Beb for all beT, the
definition of/(0, R) depends on the truth value of a Σf sentence for some such B
rather than on the truth value of a Σ° sentence. Hence if there is a set A <= N2 of
degree a which effectively provides a set of representatives for T, i.e., if there is a
function g:N-> N of degree < a such that, letting T = {bi'.iεN}, then for all
iJeN, ifg(i) = j then AU] has degree b i ? then the Bounding Principle will tell us that
the particular extension theorem is true in £^[0,a']. In particular, the following
local version of the Exact Pair Theorem is seen to be true for the reasons mentioned
above.

3.7 Theorem. Let A c N2 have degree a with a' = 0'. Let

I = {d < 0': 3F<= N(Fis finite &d < AIF|)}

Then there are degrees b,c < 0' such that 1= {deD:d<b&d^c}.

In order to show that ^[0,0 '] is not a lattice, we proceed as in Sect. II.4. Thus we
must produce an ideal I of ^[0,0 '] with no greatest element to which the Exact Pair
Theorem applies. The ideal used in Sect. II.4 was generated by an infinite
independent set of degrees. In order to apply Theorem 3.7, however, we need a set
A ^ N2 such that A has degree a, a' = 0', and {A{i]:ieN} is an infinite set of
independent degrees. Additional requirements must therefore be incorporated into
the proof of Theorem 3.3 in order to insure that A has degree 0'. One way in which
this can be accomplished is to require A to force its jump.

3.8 Definition. Let A ς: Λf be given. We say that A forces its jump if for all e e N, there
is a σ c y2 such that σ a A and either

(i) Φ°e(e)l

or

(ii) Vτ =>
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3.9 Lemma. Let A <Ξ Nbe given such that A forces its jump. Let A have degree a. Then
a' = a u 0'. Hence if a ^ 0', then a' = 0'.

Proof By Theorem 2.3(iv) and (v), a u O ' ^ a ' . To see that a ' ^ a u O ' , we
enumerate {σ:σ en A}, shorter strings first, and for each such σ, ask whether 3.8(i)
or 3.8(ii) holds. Since A forces its jump, we eventually find a shortest σ such that
3.8(i) or 3.8(ii) holds, using A and 0' oracles. Now eeA'oΦσ

e{e)[. Hence
0

We now construct an infinite set of independent degrees which can be used to
show that ^ [ 0 , 0 ' ] is not a lattice.

3.10 Theorem. There is a set A c N2such that:
(i) A has degree < 0'.

(ii) A forces its jump.
(iii) {Ali]:ieN} is an infinite set of independent degrees.

Proof. We modify the proof of Theorem 3.3 by adding requirements {Te:eeN}
whose satisfaction will guarantee that A forces its jump. Our notion of forcing is
again <i% 3 > where F = {σ c N2: dom(σ) is finite}. Since N2 is a space, we can
treat σ e F a s a subset of N. The new requirements are defined as follows:

(3) Te:3σe ^2{σ c A & σ and e satisfy either 3.8(i) or 3.8(ii)).

For ζeF, we define ξ \\- Te as in (3) but with ξ in place of A. By the proof of
Theorem 3.3 and the Bounding Principle, it suffices to show that there is a function
f.Fx N->F of degree < 0' such that for all ξeF and eeN, ξ ^f(ξ,e) and
f(ξ, e)\\- Te. Fix such ξ and e. We ask if there is a σ e ^2 which is compatible with ξ
such that Φσ

e{e)[. Such a question is a Σ ° question, so can be answered by a 0' oracle.
If the answer to this question is no, then we let/(ξ, e) = ξ, and note that 3.8(ii) is
satisfied for/(£, e) in place of σ. If the answer to this question is yes, we search for the
least such σ under some fixed recursive one-one correspondence of N with Sf2>
noting that a 0' oracle can identify such a σ. We let/(ξ, e) be a common refinement
of σ and ξ, and note that 3.8(i) is satisfied for/(^, e) in place of σ./is now seen to
have all the desired properties. D

The following corollary is now proved in the same way as Corollary Π.4.10,
using Theorem 3.10 to provide the countable independent set of degrees, and
Theorem 3.7 instead of the Exact Pair Theorem. Note that by Lemma 3.9, we can
apply Theorem 3.7 in this situation.

3.11 Corollary. ®[0,0'] is not a lattice.

All the theorems and corollaries of this section have relativized versions. We
leave these to the reader to formulate and prove, the proofs being straightforward.

Exact pairs for ideals of ^ [ 0 , 0 ' ] can be obtained under less restrictive
assumptions on the set of representatives for generators of such an ideal than were
placed in the hypothesis of Theorem 3.7. The proof requires more powerful
techniques, and will be given in Sect. 8. In the next section, we will characterize the
range of the jump operator on certain classes of degrees.
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3.12 Remarks. The theorems proved in this section were proved at the same time as
their global counterparts. Theorem 3.3 was proved by Kleene and Post [1954], and
Theorem 3.7 and Corollary 3.11 were proved by Spector [1956].

3.13 Exercise. Let B e b e D, /: N -* TV and a countable ideal I of ^[0, b] be given
such that for all CeceD,

Show that there is an exact pair <a,d> for I such that a ,d^b 'u f .

4. Jump Inversion

The methods which have been used to this point can be combined with new coding
techniques to characterize the range of the jump operator both on D and on D|0,0'].
We first characterize the degrees which are jumps of other degrees.

The sets constructed in this section will force their jumps. The description
of the constructions is nicely given in terms of the following sets. Let
P = {(σ,e}e&2 x N:σ and e satisfy 3.8(i)} and let Q = {<σ, e) e 5ζ x N: σ and e
satisfy 3.8(ii)}. Note that P is recursively enumerable as is (Sf2

 x N) — Q- Hence

(1) P ^ 0 ' & Q < 0 ' .

The first construction which we present constructs a set by alternately forcing its
jump on an integer and coding another set into the string. This type of procedure
will also be used to prove other theorems. The following principle replaces the
Bounding Principle in such constructions.

4.1 Bounding Principle for Forcing and Coding. Let C c N andf: Sf2 x N -• 5ζ be
given. Define {απ e Sf2: n e N} as follows: α0 = 0, and ocn + ί = ocn */(απ, ή) * C(n). Let
A = U{oLn:nEN}. Then

(i) A^fuC.
(ii) C^fuA.

Proof (i) is immediate from the definition of {an:neN}. We verify (ii) by
inductively computing C(n) using an/oracle and an A oracle. Suppose by induction
that oin has been computed. Use the/oracle to compute/(απ, ή) = σ. Next use the A
oracle to find τ e ^ 2 such that an*σ cz τ <^ A and lh(τ) = lh(απ) + lh(σ) + 1. Then
(xn +1 = τ and C(n) = τ(lh(τ) - 1). D

We now characterize the range of the jump operator.

4.2 Friedberg Jump Inversion Theorem. Let ceΌbegiven. Then there isanaeΌsuch
that a' = a u θ ' = c u θ ' .

Proof Fix a recursive one-one correspondence of TV with Sf2- Define/: 5^ x N -> 5ζ
by /(σ, ή) = τ where τ is the least element of 5ζ (under the above
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correspondence) such that ( σ n , « ) e P if such a τ exists, and τ = 0 otherwise. Since
P is recursively enumerable, f < 0'. Fix C c N such that Cec. Let α0 = 0 and
ocn + 1 = ocn */(αn, ή) * C(«), and let A = U{απ:« e TV}. It is easily verified that ̂  forces
its jump, so by Lemma 3.9, a' = a u 0'. Since O ' ^ a u O ' and O ' ^ c u 0', it follows
from the Bounding Principle for Forcing and Coding that c u θ ' = a u θ ' . D

4.3 Corollary. Let ceD be given. Then the following are equivalent:
(i) 3aeD(a' = c).

(ii) c > 0'.

Proof. (i)=>(ii): Immediate from Theorem 2.3(v).
(ii) => (i): By the Friedberg Jump Inversion Theorem. 0

The following is a relativization of Theorem 4.2. Its proof is straightforward,
and is left to the reader (Exercise 4.15).

4.4 Corollary. Let deD WceD[d, oo] be given. Then there is an aεD[d, oo) such
that a' = a u d ' = cud ' .

The next corollary follows easily from Corollary 4.4 and induction. We leave its
proof to the reader (Exercise 4.16).

4.5 Corollary. Let neN and ceD fc given. Then there is a degree a such that
a ( n ) = a u 0 ( n ) = cuθ ( n ) .

The proof of Theorem 4.2 can be repeated for other recursively enumerable sets
in place of P. For example, if e e N and we let Pe = {<σ, s}: s e Wσ

e} and repeat the
proof of Theorem 4.2 with Pe in place of P, then we obtain the following result.

4.6 Theorem. Let eeN and C ^ N be given such that the degree of C is ^ 0'. Then
there is a set A such that A © Wf =TC.

Theorem 4.6 has the following consequence for C = 0'. Wf is viewed as the
construction of a set recursively enumerable in A which possesses a certain property
for all A. Suppose that for all A c TV, A ^ τ W*. Then if the property is degree
invariant, Theorem 4.6 tells us that 0' has this property with respect to some set of
degree ^ 0'. A sample application of this result is now given.

4.7 Corollary. There is a degree a < 0' such that a' = 0(2).

Proof. We prove in Sect. 7 that there is an e e N such that for all A c TV, A < τ Wf
and A' = τ (Wf)'. If we choose C = 0' in Theorem 4.6, then there is a set A c N of
degree a such that A < τ Wf = Γ 0 ' for which a' = (0')' = 0(2). D

In Chap. IV, we will investigate a hierarchy defined by jumps of degrees ^ 0'. In
order to show that this hierarchy does not degenerate, we will need a stronger
version of Theorem 4.6 which allows us to choose A to be recursively enumerable
when C = 0'. We will prove this result in Sect. 7.

Let J[0,0'] denote the range of the jump operator on D[0,0']. We will prove a
local version of the Friedberg Jump Inversion Theorem, and so obtain a
characterization of J[0,0']. We cannot use the proof of the Friedberg Jump
Inversion Theorem, however, since that theorem produces degrees in D[0,0'] only if
those degrees have jump equal to 0'.
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Certain restrictions can immediately be placed on the degrees in J[0,0']. It
follows from Theorem 2.3(v) that for all ceJ[0,0],

(2) 0' *S c.

Furthermore, since any degree which is recursively enumerable in b ̂  d must also
be recursively enumerable in d, it follows from Theorem 2.3(i) that for all
ceJ[0,0'l,

(3) c is recursively enumerable in 0'.

We will show that J[O,O'j is just the set of all degrees which satisfy (2) and (3).
A new coding strategy is needed to invert the jump operator on D[0,0']. We will

construct a set A <= N2 of degree ^ 0' whose definition depends on a set C which is
recursively enumerable in 0' such that:

(4) V/i ε N(n ε C -• {x: A[n](x) Φ 1} is finite.

(5) VneN(nφC->{x: A[n\x) Φ 0} is finite.

The following lemma shows that, under these circumstances, C ^TΆ.

4.8 Lemma. Let A <= TV2 and C c N be given such that (4) and (5) are satisfied. Then
C < A ' .

Proof. neC^lxVy ^ x(A[n](y) = \)<^Vx3y ^ x(A[n\y) = 0). Hence CeAA

2. By
the relativization of Post's Theorem, C ̂  A'. D

Before we characterize J[0,0'], we give the following definition.

4.9 Definition. Let {xs :x,seN}be an array of numbers, and let m e N be given. We
say that lim infs xs = m if m is the least element of N such that {s: xs = m} is infinite.
We say that liminfsxs = oo if for all keN, {s:xs = k) is finite.

We now characterize J[0,0']. The proof that this characterization is correct
differs from previous proofs in that it depends on a priority ordering of
requirements. Thus instead of designating a particular step of the construction as
the step at which a given predetermined requirement is satisfied, we have a situation
where each requirement, while unsatisfied, tries to manipulate the construction at
all sufficiently large steps in order to satisfy itself. The requirement of highest
priority which, at a given step, can make some progress towards satisfying itself is
the one chosen to determine the action taken at that step. We will show that each
requirement is so chosen only finitely often, so that we will have the opportunity to
try to satisfy all requirements.

4.10 The Shoenfield Jump Inversion Theorem. Let ceΌbe given such that c satisfies
(2) and (3). Then there is an a < 0' such that a' = c.

Proof. Fix c e D satisfying (2) and (3). We construct a sequence of partial
functions {αs: seN} such that for all seN, αs: N

2 -• {0,1} and as^ ocs+1.
A = U{as:seN} will be the desired set of degree a. By (3), c is recursively
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enumerable in 0' so we can fix a set Ce c which is recursively enumerable in 0' and a
one-one function/recursive in 0' whose range is C.

Since N2 is a space, we may identify N2 with N and so treat any partial function
with domain TV2 as if it had domain N. For such a partial function θ with domain
N2, it will thus make sense to say σ ^ 0 for σ e ^ .

{αs: seN} will be defined so that (4) and (5) are satisfied by A and C. We will
thus be able to conclude from Lemma 4.8 that c < a'. The strategy to make a' ^ c
will be to satisfy requirements which attempt to make A force its jump, but subject
to constraints imposed in order to satisfy (5). Recall that P = {<σ, e>: Φσ

e(e)[} and
Q = {<σ,e>:Vτ 3 σ(Φ*(V)|)}. We establish the following requirement for each
eeN:

(6) Re:3σ^ Λ « σ , e ) e ? o r ( α , e ) e β ) .

We say that 0: TV2 -> {0,1} satisfies Re if (6) holds with θ in place of A.
Along with {OLS:SEN}, we define a sequence {is:seN}, letting / s + 1 be the

requirement which we try to satisfy at stage s + 1 of the construction. It will be the
case that lim infs is= oo, so we will be able to satisfy all requirements. We begin the
construction by defining α0 = 0 and i0 = 0. The construction now proceeds as
follows:

Stage s + 1. Find the least / ̂  s, if any, such that αs does not satisfy Rι and such that
there is a finite Θ:N2 -• {0,1} which satisfies the following conditions:

(7) dom(θ) Π dom(αs) = 0.

(8) αs U θ satisfies Rt.

(9) V/ < i Vx e N(θ(j\ x)i -> θ(j, x) = 0).

If such / and θ exist, let is+1 = / and let θs be the least θ (under some fixed recursive
one-one correspondence of N with {φ:N2 -• {0, l}:dom(^) is finite}) which
satisfies (7)-(9). Otherwise, let is+ x = s + 1 and θs = 0. Let βs+ x = αs U 0S. It follows
from (7) that j j s + 1 is well-defined.

We define a s + i as follows:

if βs+1(J,x)i

if β,+iU,

if β,+ iU,
otherwise.

This completes the construction. The imposition of (9) will allow us to show that
(5) is satisfied. However, it also prevents us from immediately satisfying (6). For if
fit) =j <i for some / > s, then (9) will no longer apply to j as we will be filling
columny with Is at stage t. Hence once such a constraint is removed, we may then be
able to find θ satisfying (7)-(9), and also σ c f l such that <σ,y>eP. Since
satisfaction of requirements cannot be finally determined until/produces enough
information about C, priorities are used to choose is so as to allow an attempt at the
satisfaction of each requirement after / has produced all needed information
about C.
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Fix jeN. If is = j<s for some s, then αs satisfies Rj9 hence for all t ^ s, <xt

satisfies Rj. Thus {s : is = j} is finite, so lim infs is = oo. We now note that by (9) and
the second line of the definition of α s + 1 , (4) and (5) are satisfied. Hence c ^ a'.

The definition of {OLS:SEN} is seen to be recursive in 0' since P, Q a n d / a r e
recursive in 0'. Hence A = U{OCS:SEN} has degree ^ 0'. A is readily seen to be total
from the second and third lines of the definition of α s + 1 .

We complete the proof of the theorem by indicating how to compute A
recursively from C. Let e e N be given. Using a C oracle, we can find a stage s such
that for all t ^ s,f(t) ^ e. Fix the least stage r > s such that ir > e. Then for ally < e
and x E N, if θr(J, x) | then A(j, x) = 0. Hence if there is a σ a A such that <σ, e> e P,
then either α r_i satisfies Re or /r = e and αr satisfies i?e. Since r can be found
recursively from a C oracle, and since we can determine whether or not αr satisfies
Re from a 0' oracle (note that dom(αr) is recursive), it follows from (2) that
a' ^ c. 0

The following corollary is now immediate.

4.11 Corollary. Let c e D t e given. Then there is an a ^ 0' such that a' = c if and only
if c ^ 0' and c is recursively enumerable in 0'.

The degree a constructed in both the Friedberg and ShoenfΊeld Jump Inversion
Theorems can also be subjected to other restrictions. Some of these restrictions are
discussed in the exercises. Other jump inversion theorems have been proved using
more powerful techniques than those discussed so far. Sacks [1963a] has shown
that the range of the jump operator on the recursively enumerable degrees is J[0,0'],
and Cooper [1973] has shown that the range of the jump operator on the set of
minimal degrees (those degrees d > 0 whose only predecessor is 0) is D|0', oo).

Suppose that a, b e D are given. The theorems which we have proved can be used
to determine the extent to which the configuration of a and b specifies the
configuration of a' and b'. By Theorem 2.3(v), if a < b then a' < b'. The next
corollary shows that all the remaining possibilities can occur.

4.12 Corollary. There are a , b ε D such that:
(i) a < b and a' < b'.

(ii) a < b and a' = b'.
(iii) a I b and a' < b'.
(iv) a I b and a' = b'.
(v) a I b and a' | b'.

Proof (i) Choose a = 0 and b = 0'. By Theorem 2.3(iv), a' = 0' = b < b'.
(ii) Let a = 0 and let b be the degree of the set A constructed in Theorem 3.10.

Then a < b and by Lemma 3.9, a' = b' = 0'.
(iii) By the Friedberg Jump Inversion Theorem applied to c = 0(3), there is a

degree b such that b' = b u θ ' = 0(3). Let a = 0'. Then a' < b'. Now a Φ 0 ( 3 )and by
Theorem 2.3(ii), b # 0(3). Hence a |b.

(iv) Let a and b be the degrees of the sets Am and A[1] constructed in Theorem
3.10. Then a | b and a' = b' = 0'.

(v) By the relativized version of Theorem 3.3, there are incomparable degrees
c, d ^ 0'. By the Friedberg Jump Inversion Theorem, there are degrees a and b such
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that a' = c and b' = d. a and b must be incomparable, else by Theorem 2.3(v), c and
d would be comparable. D

Given a, b e D, we now ask about the relationship between a' u b' and (a u b)'.
Since a ^ a u b and b ^ a u b , Theorem 2.3(v) tells us that a ' u b ' ^ f a u b)'. And if
a < b, then Theorem 2.3(v) tells us that a ' u b ' = (au b)'. The next corollary tells us
that all remaining possibilities can occur.

4.13 Corollary. There are a,beD such that a|b and:
(i) a ' u b ' = (aub)'.

(ii) a ' u b ' < ( a u b ) ' .

Proof, (i) Choose A as in Theorem 3.10. Let a be the degree of A[0\ let b be the degree
of A[1\ and let c be the degree of A. Then a, b < c and a' = b' = 0'. Hence a ' u b ' =
0' = c' and 0' < (a u b)' ^ c'.

(ii) Apply the Friedberg Jump Inversion Theorem to c = 0" to obtain a degree
a such that a' = a u θ ' = 0". Let b = 0'. Then a ' u b ' = 0" while (aub) ' = 0(3). D

Corollary 4.12 and Corollary 4.13 tell us that certain 3! sentences are true in the
language for 9)<W = <D, <, u/>. However, it is not known whether Ίh(@Ψ) Π 31

is decidable. In fact, it is not known whether Th(^')Π3i is decidable, where
2' = <D, <, '>. The inability to determine the truth of the following V2 sentence is a
major stumbling block in deciding these classes of sentences:

Vc, d G D(c, d>0'&c|d&c,d recursively enumerable in (V

->3a,beD(a,b<ζO'&a' = c&b' = d&(aub)' = cud)).

(It follows from 4.11 that this sentence is V2.) If we drop the relation ^ however,
then Jockusch and Soare have shown that the corresponding elementary theory is
decidable. We leave the proof of this result to the reader (Exercise 4.21).

The methods of this section are extended in the next section to obtain results
about maximal antichains of D[0,0']. Those methods will allow us to prove even
more general jump inversion theorems than are mentioned in the exercises below.

4.14 Remarks. Theorem 4.2 was proved by Friedberg [1957], and Theorem 4.10
was proved by Shoenfield [1959]. Corollary 4.5 was proved by Selman [1972], but
an easier proof appears in Jockusch [1974]. Theorem 4.6 was proved by Jockusch
and Shore [1983].

4.15-4.24 Exercises

*4.15 Let deD and c ^ d be given. Show that there is a degree a ^ d such that

*4.16 Let n e N and c, d e D be given. Show that there is a degree a ^ d such that
a(n) = aud ( n ) = cud ( n ). {Hint: Apply 4.15 in an induction proof.)

4.17 Characterize the set J[0,0(n)| = {d: 3a e D[0,0(n)](a' = d)}.

4.18 Let n e N and b, c e D be given such that b > 0. Show that there is a degree a
such that a' = a u θ ' = cuO' and b ^ a. {Hint: Fix B e b and construct A as in 4.2
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so that A satisfies all requirements of the form Φj Φ B. If b £̂ c, then the
construction of 4.2 automatically satisfies these requirements. If b ^ c, then in
order to satisfy such a requirement recursively in c u 0', search for σ, τ =) αn and
xe N such that Φσ

e(x)[ φ Φτ

e(x)[. If no such σ, τ and x exist, show that for all C ^ TV,
if αn c: C then Φc

e is recursive.)

A binary tree is a function Γ: ^ -• ̂  such that for all σ, τ e 6f2: (i) If σ c τ then
Γ(σ) c Γ(τ) and; (ii) If σ\τ then Γ(σ)| Γ(τ). If Γ is a tree and A c TV, then

= U{Γ(σ): σ c Λ} is a subset of A. (Note that by (i), T(A) is well-defined.)

4.19 Construct a binary tree Γ such that for all A,B^N, if A Φ B then
T(A) Φ T(B) and T(A)' = T(A) u 0'. (/fc>if: Proceed as in the proof of Theorem 4.2
except that a tree is defined instead of a sequence. Thus at the «th step, those σe^2

such that lh(σ) = n are used to do the coding part for T(σ) (instead of using C to do
the coding). In addition, for each eeN, establish a requirement which asserts that
for all σ , τ e ^ 2 , if lh(σ) = lh(τ) = e then for all A ^ T(σ) and B => Γ(τ), ΦA

e Φ B.
Take care to satisfy this requirement when {T(σ):lh(σ) = e) is defined.)

4.20 Show that for each c ^ 0', there are infinitely many a e D such that
a' = a u θ ' = c. (Hint: Use Exercise 4.19.)

4.21 (Jockusch and Soare). Prove that T h « D , ' » is decidable. (Hint: Start with
the language of the pure predicate calculus with equality together with a one-place
function symbol/to be interpreted as the jump operator. Add definable function
symbols/" for each neN where fn(x) = x(n) and definable relation symbols Rn(x)
for each neN where Rn(y) = 3x(fn(x) = y). Recursively axiomatize the theory
using a relativized version of Exercise 4.20 to generate some of the axioms and to
show that T h « D , ' » satisfies all the axioms. Show that the set of axioms is
complete. Conclude that T h « D , ' » is decidable.)

4.22 Let c, d e D be given such that d ^ 0', c ^ <Γ and c is recursively enumerable
in 0'. Prove that there is a degree a ^ 0' such that d ^ a and a' = c.

4.23 Let b,ceD be given such that 0 < b < 0', c ^ 0', and c is recursively
enumerable in 0'. Show that there is a degree a < 0' such that a' = c and b £̂ a. (See
hint to Exercise 4.18.)

Exercises 4.22 and 4.23 mention possible restrictions which can be placed on the
degree a constructed in the Shoenfield Jump Inversion Theorem. Other potential
restrictions come to mind. If e,f < 0', can we construct a < e? Can we construct
a έ̂ f ? We will show in the next chapter that it is not always possible to construct
a ^ e. Methods introduced in the next section will allow us to construct a έ̂ f. The
proofs of Exercises 4.22 and 4.23 can be combined and extended to prove the
following result.

4.24 Let B,E^ N2 be given such that B, E ^ 0'. Assume that for all ieN and all
finite F g N, Bιi] ^TE

[F\ Let c e D be given such that c ^ 0', c is recursively
enumerable in 0' and c ^ (E lF1)' for every finite F c N. Show that there is a degree
a ^ 0' such that: (i) a' = c; (ii) for all ieN, B1M ^ a; (iii) for all ieN9 E[ ί | ^ a. (See
Fig. 4.1.)
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Fig. 4.1

5. Maximal Antichains and Maximal Independent Sets
Below 0'

0,0'] has two trivial maximal antichains, {0} and {0'}. Since D[0,0'] is countable,
all antichains of ^[0,0'] are countable. We will show in this section that all non-
trivial maximal antichains of i^[0,0'] are infinite. In contrast to this, we will show
that ί^[0,0'] has finite non-trivial maximal independent sets.

We present two proofs that every non-trivial maximal antichain of ^[0,0'] is
infinite. The first proof uses the methods introduced in Sect. 4, but is non-uniform
in nature. The second proof is uniform, and relies on two new ideas, one of which is
used in the construction of a finite non-trivial maximal independent set of ££[0,0'].

5.1 Theorem. Let a0,..., an _ x e D(0,0') be given. Then there is a degree b e D(0,0')
such that for all i ^ n — 1, b | a^

Proof. Let a0,..., an _ x e D(0,0') be given. For each i ^n — l,(ixAi^N such that
Ai e ai We construct functions / 0 , . . . , /„: N -» [0, In + 1] such that:

(1) Vi ^ /i(f, ^ 0').

(2) V/j^KO'^fiUfj).

(3) Vi ^ n - 1 V/ ^ /i(a, £ fj).

Suppose that (l)-(3) hold. There cannot be ij ^ n and k ^ n — 1 such that both
fi < ak and fj < ak else fi u fj < ak, so by (2), 0' ^ ak contradicting the choice of
akGD(0,0'). Hence there must be at least one / ̂  n such that for all k ^ n — 1,
fi ^ ak. By (1) and (3), we can then set b = ζ to prove the theorem.

For each eeN,j^n and i ^n — 1, establish the requirement
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Recursively order these requirements as {Ps:seN}. Let seN and σe£f2n + 2 be
given. Let x = lh(σ) and let Ps = Reij. If there are τ,ρe&2n + 2 such that
Φ°*τ(x)l φ Φσ

e*
p(x)l, fix the least such <τ,p> (under some fixed recursive one-one

correspondence of N with &Ίn + 2) and let g(σ,s) be the first ηe{τ,p} such that
Φe*η(x)l Φ Ai(x). Otherwise, let g(σ,s) = 0; in this case, it follows that for all

/ : iV -> [0,2/ι + 1] such that/=3 σ if Φ{ is total, then Φ{ is recursive, hence Φ A{.
Note that g has degree < 0'. It follows from the Enumeration Theorem that

(4) VΛ => σ * g(σ, s)(Φ^ / y4f).

For each i^n, we will define a sequence of strings {ocι

s\seN} such that

U{α^eiV} = / . We begin by setting α^ = 0. Given seN, let Ps = Re,ij', define
α U l = αs * #(αs) * ^s where

2/ if seφf

2 / + 1 if J ^ 0 ' .

By the proof of the Bounding Principle for Forcing and Coding, g < 0', so (1) holds.
By (4), we see that (3) holds. We now verify (2). To decide whether seφr from/ and
fj oracles, we find the sth integer x in order of magnitude such that/(x) φfj(x).
Then seφ' <-•/•(*) = 2/. D

The following corollary is now immediate.

5.2 Corollary. Every non-trivial maximal antichain o/i^[0,0'] is infinite.

The nonuniformity of the proof of Theorem 5.1 is due to the fact that we cannot
identify 3,j^n such that fj | ai for all / ̂  n — 1. The next proof of Theorem 5.1
attacks requirements more directly. The proof utilizes a slowdown procedure
together with a domination lemma.

5.3 Definition. Let/ g: N -• N be given. We say that/dominates g if {x: g(x) ^ f(x)}
is finite.

5.4 Upward Domination Lemma. Let d e D fl«rfa6D(d,d'l be given. Then there is a
function g of degree a which is not dominated by any function of degree ^ d.

Proof. Fix A c N such that i e a . By the relativized version of the Limit Lemma,
there is a function h:N2 -• N which is recursive in d such that for all xeN,
A ( x ) = l i m s h ( s , x ) . D e f i n e g : N ^ > N by

( 5 ) g(x) = μs> xtfy ^ x(h(s,y) = A(y)l

(g is called the computation function for A relative to h.) It is easily verified that
d u g = a.

Under the assumption that the lemma is false, we obtain a contradiction. Thus
choose a function/of degree < d which dominates g. Without loss of generality, we
may assume that/0) ^ s and/0) > g(s) for all seN. The contradiction is obtained
by showing that A < Tf so a < d. Fix xeN.Ύo compute A(x), find an s > x such
that

(6) W G N(f(s) ^ t ^ f(f(s)) -> h(t, x) = h(J(s\ x)).
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Such seNmust exist since lim,h(t, x) exists, and can be found recursively from an
oracle of degree d. By choice of s and /,

(7) f(s)^g(f(s))<f(f(s)).

It now follows from (5)-(7) that A(x) = h(g(f(s)), x) = h(f(s\ JC), the latter giving a
computation of A(x) recursively from an oracle of degree d. 0

5.5 Definition. Let σ, τ, p e £f and e e TV be given. We call <τ, p> an e-splitting of σ
on x if

(ίi) (7 c T, σ c p.

5.6 Second Proof of Theorem 5.1. Let a0,..., an_ !eD(0,0') be given. For each
• / < « — 1, fix >4f c ΛT of degree as. Since ai < 0' ^ a( for all / ̂  n — 1, the Upward

Domination Lemma allows us to pick a function /• of degree 0' which is not
dominated by any function of degree < ^ for each such /. Thus the function

f\N -• N defined byf{x) = max({/(x)\i ^n — 1}) is a function of degree 0' which
is not dominated by any function of degree ai for any i ^n — 1.

We define a sequence of strings {βs:seN} and let B = U{βs:seN}.B will have
degree ^ 0', and b = B will be the desired degree. It suffices to satisfy the following
requirements for each e^ieN:

(8) Pey.ΦfφB.

(9) QeΛ ΦξφAi.

We order the set of all such requirements recursively as {Ps:seN}.
In order to use the Upward Domination Lemma, we must avoid making a

commitment of the form B(x) = y too early. Thus we slow down the definition of βs,
letting Ih(j8s) = s. When we try to force a requirement to be satisfied, we may be
prevented from doing so immediately because the extension we need to make is too
long. We therefore establish targets for requirements, namely strings which can be
used to satisfy the requirements. Priorites determine which requirement heads
towards its target at a given stage of the construction.

Given σ e ^ and k, seN, we define g(σ,k,s), the k-target for σ at stage s as
follows:

Case 1. Rk = Pe4. Search for τ c At such that lh(τ) ^f(s) and Φτ

e(s)l if such a τ
exists. If τ does not exist or if lh(σ) Φ s, then g(σ, k, s) = σ. If τ exists and
lh(σ) = s9 let g(σ,k,s) be the least ξe^2 such that σ c ξ, lh(£) = lh(σ) + 1, and
Φτ

e(s) Φ ξ(s). Note that the definition of g in this case is given using only an oracle of
degree < 0'.

Case 2. Rk = Qei. Ask if there is an e-splitting of σ. Note that this question can be
answered by an oracle of degree 0\ If no such e-splitting exists, set g(σ, k, s) = σ. If
there is such an e-splitting, fix the least ( τ , p , x ) e ^ 2 x N(under some recursive
one-one correspondence of N with ^l x N) such that <τ, p> e-splits σ on x. Let
g(σ9 k9 s) be the first ξ e {τ, p} such that Φξ

e(x) φ At(x). Again note that the definition
of g requires only the use of an oracle of degree 0'.

The construction proceeds as follows: Set β0 = 0 and i0 — 0.



5. Maximal Antichains and Maximal Independent Sets Below 0' 55

Stage s + 1. Fix the least k e N such that Rk is not yet satisfied and g(βs, k, s) 3 ft. If
no such k exists, let ft+ x = βs * 0 and is+ί = s + 1. Otherwise, let 4 + : = k and let
ft+1 be the unique ξeSf2 such that ft c { c g(βs,k,s) and lh(£) = lh(ft) + 1. If
βs+i = #(ft> k, s) then 7?k becomes satisfied at stage s + 1.

This completes the construction. We note that if /s+1 = fc and i?k = Pei then i?k

becomes satisfied at stage s + 1. If zs+1 = k and Rk = Qei, then either Rk becomes
satisfied at stage s + 1 or g(βs+ί9k,s+ 1) = g(βs,k,s) => ft and so /s + 2 ^ /s + 1 .
Furthermore, in the latter case, if /, ̂  z s + 1 for all t ^ s + 1, then i?fc becomes
satisfied at some stage t > s. It follows from an induction proof and the fact that if
Rk becomes satisfied at stage t then is Φ k for all s > t, that liminfs/s = oo.

We complete the proof of the theorem by verifying that (8) and (9) hold for all
e,ieN. Fix e9ieN.

First consider Pei = Rk. If Φ^ is not total, then (8) holds. So assume that Φ^1 is
total. For each xeN, define

fe{x) = M3τe^2(τ cz Λ&Φτ

eWI&lh(τ) = *)].

Note that f\ is recursive in Ah so there are infinitely many seN such that
f(s) >fl

e(s). For each such s, g(βs,k,s) 3 βs. Since liminfs/s = oo, there is a teN
such that it + 1 > k and g(βt,k, t) => ft. But then by the construction, 7̂ k must be
satisfied at some stage s < t, else it+ί ^ k. Hence (8) holds.

Now consider Qei = Rk. If Rk is satisfied, then (9) holds. If Rk is not satisfied,
then since lim infs is= oo, there must be ft c 5 which has no e-splittings. We show
that either ΦB

e is not total or Φ* is recursive. Since At is not recursive, Φf Φ At.
Hence (9) will hold.

To compute Φf(x), search for oe£f2 such that σ ̂  ft and Φ^(JC)|. Since Φf is
total, such σ must exist and can be found recursively. Since there are no ^-splittings
of ft, Φξ(x) = Φσ

e(x). This procedure computes Φξ recursively. D

The next theorem will produce a maximal independent set of 0(0,0') having two
elements. The proof uses the Upward Domination Lemma and a forcing and
coding argument. The recovery of the coding depends on the following lemma.

5.7 Lemma. There is a recursive sequence {λι :ieN} of elements ofSf2 such that for all
U j6N, if i φ j then λt | λ y

Proof. The sequence {λi'.ieN} defined by

{0 if x < /,

1 if x = i,

t if x > i

for all x e TV is easily seen to have the desired properties. D

5.8 Join Theorem for 0'. Let b e D(0,0') be given. Then there is a degree a e D(0,0')
such that a' = 0' = a u b .

Proof. Let beD(0,0') be given and fix a set B of degree b. By the Upward
Domination Lemma, we can fix a function g of degree b which is not dominated by
any recursive function. Fix a set C of degree 0' and let {λt: ie N} be a sequence of
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strings as in Lemma 5.7. Let

P={(σ,e}e^2 x N:Φσ

e{e)[}

and let

Q = {<σ,e}ey2 x N: Vτe^2(τ =2 σ ^ Φ'

We have previously noted that P is recursively enumerable as is the complement of
Q, so both P and Q have degree ^ 0'. Fix a recursive enumeration {{σh ef> :ieN} of
P and let P s = {<σi? e(>: / ̂  s} for all seJV.

In order to apply the Bounding Principle for Forcing and Coding, we must
define the function /. For each σ e £f2 and e e N, let

j(σ, e) = μkl(σ * λk, e} e Q or 3τ 3 σ * λ k «τ, e>eP ί ( k ) ) ] .

y(σ, e) must be defined since g is not dominated by any recursive function, and the
function h:N^N defined by

h(ί) = μm[3τ 3 σ * λt((τ, e) e P m )]

is recursive whenever <σ * λk, e}φQ for all keN. Let

{σ*λj{σ,e) if (σ*λjiσte),eyeQ,

(σ * τ otherwise

where <σ * τ, e} is the first element enumerated in p^(σ^ such that τ 2 Λ^e)-
Define α0 = 0 and αs + ί = αs */(α s, J) * C(J) for all 5e N, and 4̂ = U{αs: se Λ }̂.

Sincey and gf have degree ^ 0',/has degree ^ 0'. Hence by the Bounding Principle
for Forcing and Coding, a = A < 0'. It follows easily from the definition of A that
A forces its jump. Hence by Lemma 3.9, a' = 0'.

We compute C from A and B oracles as follows. Assume by induction that we
have found αx, and we wish to compute C(x). As {λk:keN} is a recursive set of
pairwise incompatible strings, we can use the A oracle to find the unique keN such
that ax * λk a A. Fix this k. We now use the B and A oracles to determine whether
there is a σ a A such that σ 2 αx * λk and σ e P9(k). If the answer is yes, fix the least
such σ; if the answer is no, let σ = αx * λk. In either case, the A oracle now gives us
the unique reN such that σ * r c j ; α x + 1 = σ * r and x e C < - » r = l . Thus

O'. Since b # 0', a Φ 0. Since a' = 0', a # 0'. 0

5.9 Corollary. Every b e D(0,0') is part of a maximal independent subset
consisting of two elements.

Proof Given b e D(0,0') choose a as in the Join Theorem for 0'. Then a | b and for all
c ^ 0', c ^ a u b . Hence {a,b} must be a maximal independent subset of
^[0,0 ' ] . 0

The Upward Domination Lemma can be generalized in such a way so as to
allow the construction of a joining each of finitely many beD(0,0') to 0'. This
generalization is discussed in the exercises.
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Other related theorems such as meet theorems and complementation theorems
have also been proved. We list some of these results:

Meet Theorem (Shoenfΐeld [1966]). For all beD(0,0') there exists a e D(0,0') such
that a n b = 0.

Complementation Theorem (Posner and Robinson [1981], Posner [1981]). For all
beD(0,0') there exists aeD(0,0) such that a n b = 0 and a u b = 0'.

A proof of the Meet Theorem combines Theorem 5.1 and the existence of a
minimal degree below 0' which is proved in Chap. IX. The proof of the
Complementation Theorem involves a split into cases depending on the location of
b in the high/low hierarchy. This hierarchy is introduced in the next chapter.

5.9 Remarks. Theorem 5.1 was proved by Shoenfield [1959]. The slowdown
technique was introduced by Shoenfield [1966]. The Upward Domination Lemma
was proved by Miller and Martin [1968], The Join Theorem was proved by Posner
and Robinson [1981].

5.10-5.22 Exercises

5.10 Let a ^ 0' and A c N be given such that A e a. Let h: N2 -> N be given such
that A = limsh, and let/be the computation function for A relative to h.

(i) Show that f = a.
(ii) Show that/is not dominated by any function of degree b ^ a.

Let C ς D b e given. We say that C is uniformly of degree ̂  b if there is a set
B c N2 of degree ^ b such that C = u{BUI: ieN}.

5.11 Let C c D[0,0'] be given such that C is uniformly of degree ^ 0'. Show that
there is a degree aeD(0,0') such that

5.12 (Shoenfield [1959]) Show that there is a degree < 0' which is not the degree
of a recursively enumerable set. {Hint: Use Exercise 5.11.)

5.13 (Shoenfield [1959]) Let a < 0' and g: N -• N be given such that g = a. Let
h:N2^>Nbe given such that g = limsh and h is recursive.

The modulus function f for g relative to h is defined by

f(x) = μsp/t > sVy < x(h(t,y) = g(y))l

(i) Show that g < f.

(ii) Show that a is the degree of a recursively enumerable set if and only if there
is a function g* of degree a with modulus function / such that f ^ g.

(iii) Conclude that there is a degree d ^ 0' such that no function g of degree d
has a modulus function of degree d.
5.14 Let beD(0,0') be given. Show that there is a degree aeD(0,0') such that
a n b = 0.

5.15 Let b e D(0,0') be given such that b' = 0'. Show that there is a degree a e D
such that a n b = 0 and a u b = 0'.
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The next two exercises use the techniques introduced in this section to extend the
Shoenfield Jump Inversion Theorem.

5.16 Let b, c e D be given such that 0 < b < 0' ^ c and c is recursively enumerable
in 0'. Show that there is a degree a < 0' such that a' = c and a | b.

5.17 Let d e D be given such that 0' ^ d and d is recursively enumerable in 0'. Let
A , B , C ς D b e given such that:

(i) A, B, and C are uniformly of degree ^ 0\
(ii) C is an ideal of D.

(Hi) VbeBVco, . . . Λ e C ( b < u{Cj:y < n}).
(iv) For every finite F^N,ά^ (ufa: ieF))'.

Show that there is a degree e ^ 0' such that e' = d and:
(v) VceC(c^e).

(vi) VbeB-{0}(b^e).
(vii)

Fig. 5.1

5.18 (Yates [1967]) Show that there is a degree d e D(0,0') which is incomparable
with every recursively enumerable degree except 0 and 0'.

5.19 Show that for all n ^ 2, there is a maximal independent subset of D(0,0')
consisting of n degrees. {Hint: Start with a set of n — 1 independent degrees
obtained from Theorem 3.10.)

5.20 (Posner and Robinson [1981]) Let a 0 , . . . , a n < 0' and Ao,.. ,,An c N be
given such that for all / ̂  n, At has degree at. For each / ̂  n, let gt be a computation
function for At relative to some hh and define g:N^N by g{x) =
min({^(x): / ̂  n}). Show that g is not dominated by any recursive function. {Hint:
Proceed by induction on n, showing that if/is a recursive function which dominates
g and/does not dominate gn, then/dominates mind^-: / < «}), thus obtaining a
contradiction.)



6. Maximal Chains Below 0' 59

5.21 (Posner and Robinson [1981]) Let b 0 , . . . , bπ e D(0,0') be given. Show that
there is a degree a such that a' = 0' and a u bj = 0' for all / < n. {Hint: Use Exercise
5.20.)

5.22 Let A , B ς D be given such that 0 φ B and A and B are uniformly of degree
^ 0' (see Fig. 4.1). Show that there is a degree e which satisfies:

(i) e' = 0'.

(ii) VaeA(eua = 0')
(iii) V b e B - {0}(e > b).

6. Maximal Chains Below 0'

Theorem 3.3 implies that ^[0,0 ' ] has infinite chains. For let fa-JeN} be an infinite
set of independent degrees in D[0,0'] and for each n e N, let bn = u {ai: i : < n}. Then
{bn:neN} is an infinite chain of ^ [0 ,0 ' ] . We will show, in this section, that all
maximal chains of ^[0,0 '] are infinite.

In order to characterize the size of maximal chains of ^[0,0 ' ] , we need to show
that for every n e N and every chain C = {di: / ̂  n} of ^[0,0 ' ] , there is an element
dn + ! e D[0,0'] - C such that {di: i ^ n + 1} is a chain of degrees. We will show in
Chap. XII that we cannot always hope to find such a d n + 1 between di < dj unless
dj = 0'. Thus our strategy will be to prove that for all d < 0', there is a c e D such
that d < c < 0'. The proof of the existence of this c will depend on the fact that 0' is
recursively enumerable in d. We will prove a theorem which implies that no
recursively enumerable set can have minimal degree (i.e., it cannot be the case that
D(0, d) = 0 if d is recursively enumerable), and relativize this result to obtain the
existence of c.

6.1 Theorem. Let a > 0 be a recursively enumerable degree. Then there are degrees

bo>bi ^ a s u c n that bo l^1*

Proof. Let A be a recursively enumerable set of degree a and let/: N -• N be a one-
one recursive function which enumerates A. Let g be the computation function for
A corresponding to/, i.e., for each xeN, g(x) is the least seNsuch that for all t ^ s,
f{t) > x. Then xeAoχeA9ix) = {f{y)\y ^ g(x)}, so A ^τg.

We construct se.ts Bo, Bx c N and let b 0 and b ! be the respective degrees of Bo

and /?!. i?0 and B± are constructed to satisfy the following requirements for each
e G N and / ̂  1:

We define apriority ordering of requirements, letting Pei have higher priority than
PnJ if either e < n or both e = n and i <j. We use elements of !~P\ to force the
satisfaction of requirements, letting

We fix a recursive ordering {(σs

0, σ\}: seN} of £f\.
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For / < 1, we construct the set Bt = U{$: s e N} as follows. We begin by setting
β°0 = β° = 0. At stage s, we search for e ^ s, i ^ 1 and t < g{s) such that:

(2) ^ ^ M h Λ . i

(3) </«>lb^.

If no such σ, e and / are found, let β]^1 = β\ * 0 for z"^ 1. Otherwise, from all such e,
/ and ί, we first fix e and / for which such a t exists for Pe>£ of highest priority, and
then fix the least t for the e and / which have just been chosen. For i r < 1, we set

Since l h ( # + *) > lh($) for all s e N and / < 1, Bt c TV for / < 1. The construction
of Bo and 5 X is recursive ing ^ τ A, so Bo, B^ ^TA. We proceed by induction on the
priority ordering of requirements, showing that all requirements are satisfied.

Fix e e N and / ̂  1 and assume that all requirements of higher priority than Pei

are satisfied. By (3) and the Enumeration Theorem, ΊϊmeNandy' ^ 1 then PmJcan
be selected to determine βs

k

+ x at most at one stage. Hence we may fix s e N so that for
all t ^ s, neither Pei nor a requirement of higher priority than Pei determines β[. If
<βo,β\> Ih Pe,i, then PeΛ is satisfied. Otherwise, for all t ^ s, <j8ί

0,β\}\y- PeJ. We
obtain a contradiction under the assumption that Φf* is total and equal to Bί-i.
Under this assumption, for all t ^ s, there is a least h(t) e N such that
(σh

0

(t\σf]y I\- Pei a n d σh

k

(t) ^> β[foτ k^l. G i v e n / ^ 5, w e s h o w h o w t o c o m p u t e
β[+ \ h(t) and f̂(r) recursively from βι

0 and jŜ  for all Λ: ̂  1. This will imply that g,
and hence A, is recursive, contradicting the hypotheses of the theorem.

Given βι

0 and β\, we search for the least r eN such that (1) and (2) hold with r in
place of t. By the assumption that Pei is not satisfied, such an r will be found, and
h(ή = r. Since our assumption implies that (3) holds for t in place of s, it must be the
case that h(t) > g(t), so g(t) is the least u < h(t) such that Au ί t + 1 = Ah{t) f ί + 1.
Having determined g(t), the construction can now recursively determine β[+ * for
k^l. 0

Since the degrees b 0 and !>! constructed in Theorem 6.1 are incomparable, they
are nonrecursive and neither equals a. We can thus conclude:

6.2 Corollary. Let b Φtobe a recursively enumerable degree. Then there is a degree c
such that 0 < c < b.

Theorem 6.1 and Corollary 6.2 have straightforward relativizations. We state
these relativizations, and leave the proofs to the reader.

6.3 Theorem. Let a, b e D be given such that a < b andb is recursively enumerable in a.
Then there is a c e D such that a < c < b.

The characterization of maximal chains of ^[0,0 ' ] follows from Theorem 6.3.

6.4 Corollary. Every maximal chain 6>/^[0,0'] is infinite.

Proof. Let C = a0 < aj < < an be a chain of ^ [ 0 , 0 ' ] . If an Φ 0', then
C* = C u {0'} properly extends this chain. If an = 0', then since 0' is recursively
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enumerable, 0' is recursively enumerable in an_1 ? so by Theorem 6.3, there is a
degree an + 1 eD[0,0'] - C such that an_ λ < an + j < 0'. C* = C u { a n + 1} is then a
chain of ^[0,0 ' ] which properly extends C. Hence £^[0,0'] has no finite maximal
chains. D

6.5 Remarks. Corollary 6.4 has been noticed by many people. The proof given here
for Theorem 6.1 uses a method introduced by Shore. Other theorems about the
degrees below a recursively enumerable degree appear in Yates [1966].

6.6-6.8 Exercises

6.6 Let a > 0 be a recursively enumerable degree.
(i) Prove that there is an infinite set {Iv ieN} of independent degrees such

that bi < a for all ieN.
(ii) Prove that every finite poset can be embedded into £^[0,a].

(iii) Prove that Th(®[0,a])Π3i is decidable.

6.7 Let a > 0 be a recursively enumerable degree.
(i) Simultaneously construct an ideal I of ^ [ 0 , a] with no greatest element and

an exact pair <b,c> for I such that b, ceD[0,a].
(ii) Prove that ^ [ 0 , a] is not a lattice.

6.8 Let a > 0 be a recursively enumerable degree. Show that there is a set B of
degree b < a such that B forces its jump. Conclude that b' = 0'.

7. Classes of Degrees Determined by the Jump Operation

Hierarchies of classes of degrees determined by the jump operation will be discussed
in Chap. IV. This section is devoted to proving results which imply that this
hierarchy is nondegenerate. We prove an effective version of Theorem 4.6 in which
the set constructed is recursively enumerable.

The construction of a recursively enumerable set A cannot make use of a non-
recursive oracle. Hence, in general, we cannot construct A = Ό{aLseSf2'. seN}.
Rather, we must enumerate elements of TV into A during the construction. We thus
construct a recursive sequence {αs: seN} of strings such that if i^j then
αΓ^l) <= αΓ^lJandΛ = U{oL-\l):seN}9 where σ " 1 ^ ) = {*: Φ) = y) We will
use the following notation.

7.1 Notation. Let σ, τs^2 be given. We say that σ=^τ if lh(σ) ^ lh(τ) and

7.2 Remark. Let {αs e 5ζ: s e N} be a recursive sequence of strings such that for all
i,jeN, if i <j then α, •< α, . Then lim sα s is a recursively enumerable set.

Proof. xeX\msoίs<^HeN{aLi{x) = 1 ) . Apply Theorem 1.9. D

A sequence of strings, {αs: s e N) will be defined in an attempt to satisfy certain
requirements. For each e e N, we may try to satisfy the following requirements:
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Pe:AφΦe.

Qe:eeWA (i.e., ΦA(e)i).

Such requirements have been encountered before. However, in this setting, once αs

forces the satisfaction of a requirement, we may enumerate some x < lh(αs) into A
via α,, and so injure the satisfaction of the requirement. Each requirement may
specify restraints in order to try to avoid injury. However, in order to satisfy all
requirements, we must occasionally violate such restraints. A priority ordering of
requirements will determine when such violations may occur, and insure the
satisfaction of as many requirements as possible. We thus will try to satisfy the
highest priority requirement whenever possible, ignoring all restraints, and so allow
injuries to lower priority requirements. Once this is done, the next requirement in
the priority ordering takes over. Since it is possible for a requirement never to
require any action in order to become satisfied, we cannot recursively predict the set
of injuries which will occur.

The requirement Pe will be satisfied as follows. During the course of the
construction, numbers x will be appointed as followers ofPe. Such followers may be
cancelled, and in no case may Pe have more than one follower at a given stage. The
purpose of the follower x is to try to witness Φe(x)l φ A(x). Thus Pe imposes
restraint to keep x out of A as long as Φα

e

s{x)], and if and when this computation
converges, decides whether or not to place x into A. If a requirement of higher
priority than Pe either restrains x or causes x to be placed into A, then Pe receives a
new follower. Requirements of higher priority than Pe will act only finitely often, so
Pe will have a final follower which will either cause it to be satisfied or witness the
fact that Φe is not total.

The requirement Qe is used to make sure that WA has degree ^ 0'. Qe is satisfied
as follows. We seek to find αs such that ee WΛ

n

s. If t < s or no such s exists, the
restraint u(e, t) is set equal to 0. Once such an αs is found, the requirement imposes
restraint u(e, s) = lh(αs), trying to guarantee that αs Γ lh(αs) = α, \ lh(αs) for all
t ^ s, and so insure that the requirement is satisfied. The restraint remains in effect
forever unless some higher priority requirement enumerates a new x < lh(αs) into A,
at which point the restraint begins this definition process anew.

We will also code a set K of degree 0' into A and show that K can be recovered
from A © WA. This coding will also respect the restraint imposed by higher priority
requirements, and will impose restraint to preserve the location for coding,
protecting that location from being used by requirements of lower priority.

Before proceeding further, we define notation which aids in the description of
the interaction of the restraint function with the definition of A.

7.3 Notation. Let σ,τe«Sζ and reN be given. We say that σ=^ r τ if σ < τ and
σ t r = τ ί r.

We now note that

(1) If αs satisfies a requirement Re{Pe, Qe: eeN}, m = lh(αs),
and for all t ^ s, α, ̂ m α s , then R is satisfied.

The jump hierarchy which we will discuss has classes

Ln = {a < 0': a(n) = 0(n)}, H n = {a ^ 0': a(n) = 0(n + υ},
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and

I = {a < 0': V« e N(0in) < a(n) < 0(n + υ )}.

We wish to show that all classes of the form Ln + 1 - Ln, H n + x - H n and I are non-
empty. The proof of this fact relies on an effective version of Theorem 4.6.

7.4Theorem. Let neNbe given. Then there is a non-recursive recursively enumerable
set A such that A®W*=τψ.

Proof. We construct a recursive sequence {αs: s e N} of binary strings such that for
all i,jeN, if / <j then α, •< α,. By Remark 7.2, A = lim sα s will be a recursively
enumerable set. A will be constructed to satisfy the requirements in {Pe: e e N} and
Qe\eeN) whenever possible, and we will also code a recursively enumerable set K
of degree 0' into A. Let /be a one-one recursive function which enumerates K, and
\ctKs= {f{x)\ x^s}.

For each eeN, let Se be the requirement which codes e into A. We establish a
priority ordering {R^. ieN} of all requirements mentioned above, letting i?t have
higher priority than Rj if / < j . Each requirement has a restraint function r(i, s)
associated with it at the end of stage s, protecting it from interference by lower
priority requirements.

Following ideas introduced by Rogers [1967], we will use movable markers to
describe the construction. If Rt = Pe, then At will be a marker whose location λ(i, s)
Sit stage s is the follower of Pe which is currently designated. If Rt = Se then A{ will
be a marker whose position λ(i, s) will designate the current location for coding into
A whether or not e e K.

We say that αs satisfies Pe if Φes(λ(i,s))[ Φ ocs(λ(i,s))l, where Pe = Rι and
Φes(x) = Φ°e\x). (0s is the string consisting of s consecutive 0s.) We say that β
satisfies Rt = Qe if Φβ

n(e)[.
We say that Rt requires attention at stage s + 1 if either:

(2) Rt = Pe or Ri = Se and At does not have a position at the end of stage s,

or αs does not satisfy Rt and either:

(3) Ri = Pe&ΦeMUs))i;oτ

(4) ^ = Qe&3βeSf2Qh(β) = lh(αs) + 1 &β satisfies Qe

For β as in (4), we say that Rt requires attention through β at stage s + 1.
The construction proceeds as follows. At stage 0, we set α0 = 0 and r(e, 0) = 0

for all eeN. No marker is assigned a position.

Stage s + 1. We proceed by cases.

Case 1. s + 1 = 2k + 1. We code ^ in to A at this stage. Let/(&) = e and let Se = Rt.
Let α s + 1 be the string of length max({lh(αs) + l,λ(i,s)+ 1}) (if λ(i,s)"\ then
lh(α s + 1) = lh(αs) + 1) such that
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ί
αs(x) if x < lh(αs) &x Φ λ(i, s),

1 if x = A(z, 5),

0 otherwise.
For ally e N, marker Λj remains where it is unlessy > / in which case this marker is
removed from its position, and we define

r(j,s + 1) <
(0 otherwise.

Thus we are coding K into A and cancelling everything done for requirements of
lower priority than Rh since such requirements may just have been injured.

Case 2. s + 1 is even. Let Rt be the requirement of highest priority which requires
attention at stage s + 1. (There will always be a requirement satisfying (2).) We
again proceed by cases.

Case 2a. (2) holds for Rim Let α s + 1 = α s * 0 and let r(j\s + 1) = r(j,s) and
λ(J,s+ 1) = λ(J,s) for all jeN such that j Φ i. Let λ(i,s+ 1) = lh(α s + 1) and
r(/s s + 1) = λ(i, s + 1) + 1. Thus we are placing the highest priority marker which
has no current location on a position which is beyond all restraints and which has
not yet entered A, and are setting restraints to prevent this marker position from
being placed into A by a requirement of lower priority than Rt.

Case 2b. (3) holds for Rt. Let Rt = Pe. We proceed as in Case 1. Thus we satisfy Pe,
and cancel everything done for requirements of lower priority than Rh since such
requirements may just have been injured.

Case 2c. (4) holds for Rt. Let Rt = Qe. Fix the least β (under some fixed recursive
one-one correspondence of TV with Sfy s u c n t n a t &i requires attention through β at
stage 5 + 1 . Let αs+ x = β. For ally e TV, marker A } remains where it is unlessy > / in
which case Λj is removed from its position. Define

{ r(j,s) if j < /,

lh(αs+i) if j= U

0 otherwise.
Thus we satisfy Qe, and cancel everything which has been done for lower priority
requirements.

This completes the construction. We note that if Rt has higher priority than Rj9

λ(i,s)l and λ(j\s)l, then λ(i,s) < λ(j,s). We now show that each requirement is
injured only finitely often.
7.5 Lemma. For all ieN there is a least stage s such that for all t ^ s andj < /, Rj does
not determine the action taken by the construction at stage t.
Proof. We proceed by induction on /. Assume that the lemma holds for ally < z, and
let s(i — 1) = 0 if/ = 0, and let s(i + 1) be the stage produced by the lemma for / — 1
otherwise.

Assume first that Rt = Pe. Then At does not have a position at the end of stage
s(i — 1), so by (2) and the induction hypothesis, Rt determines the action taken by
the construction at stage s(i — 1) + 1, when At is given a position not yet in A which
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is protected by the restraint function r(i,s(i - 1) + 1). This position and restraint
remain unchanged at all later stages, and by the construction, no requirement of
lower priority than R x can place this marker position into A. Thus Rx can determine
the action taken by the construction at at most one later stage, that occurring if (3)
holds.

Assume next that Rx = Qe. Then Rx can only require attention at stage
t > s(i — 1) when (4) holds, at which stage α, satisfies Rt and restraints are imposed
to protect this satisfaction from injury by requirements of lower priority than Rh

Hence R> never again requires attention.
Finally, assume that R( = Se. As in the first case, Rt determines the action taken

by the construction at stage s(i — 1) + 1 at which stage A x is assigned a final
position. Rv can determine the action taken by the construction at most at one more
stage, that occurring if/(/) = e. 0

For all ieN, let s(i) be the stage given by Lemma 7.5 for /. We note that by the
construction, neither the marker position for A-x nor the restraint function for Rt

changes after stage s(i), so for all ie N both r(ϊ) = \ims r(i,s) and λ(i) = \ims λ(i,s)
exist, the latter limit being defined only if Rt = Pe or Se for some e e N. By the Limit
Lemma, the functions r, λ, and s all have degree ^ 0'. We also note that

(5) Vί> 5(0(0, > Γ ( i ) α a ( ί ) ) .

Since the construction is recursive, it follows from (5) and 7.2 that A has degree

We next show that A is not recursive. It suffices to show that for all eeN, Pe is
satisfied. Fix eeN and let Pe = Rt. If αs( ί) satisfies Pe, then by (5), A satisfies Pe.
Otherwise, it must be the case that Φe(λ(O)T> else if this computation converges and
outputs the value k, then if k Φ 0, R{ never requires attention after stage s{ι) and
A(λ(i)) = 0; and if k = 0, then we set ^4(^(0) = 1 at stage s(i). In either case, R> is
satisfied.

We next show that W* has degree ^ 0'. This fact follows easily, since (5) implies
that ee W* <->α5(ί) satisfies Qe = Rt. We thus conclude that A@W* ^ τ K.

We complete the proof of the theorem by showing that ^ ^ r ^ φ W*. We
proceed by induction on /, simultaneously computing λ(i), r(i), and s(i), and if
Rt = Se, we decide at step / whether or not eeK. Consider step i of the induction.
We proceed by cases.

Suppose first that Rt = Pe. Then λ{ι) = λ(i,s(i - 1) + 1) and r(i) =
r(i, s(i — 1) + 1). s(i) = s(i — 1) + 1 unless λ(i) e A, in which case, s(i) is the stage at
which λ(i) was placed into A.

Next suppose that Ri = Qe. Then λ(i) is undefined. If eφW^, then
s(i) = s(i — 1) and r(i) = 0. If ee W*, let s be the least stage ^ s(i — 1) such that αs

satisfies Qe. Then r(i) = r(i, s), and s(i) = s.
Finally, suppose that Rt = Se. Then λ(ι) = λ(i,s(i — 1) + 1) and r{ϊ) =

r(i,s(i — 1) + 1). s(i) = s(i — 1) + 1 unless λ(i)eA, in which case, we find the
unique k such that f(k) = e. If 2k + 1 ^ s(i - 1), then s(i) = s(i — I) + 1 and
eeKoeeKs(i). If 2k + 1 > s(i - 1), then s(i) = 2k + 1 and eeKoλ{i)eA. 0

Theorem 7.4 relativizes to any set X. The proof of this relativization is uniform
in n and X. We summarize these facts.
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7.6 Theorem. There is a recursive function f such that for all neN and X c: TV, the
following conditions hold:

\ ) T *" f(n)'

00 Wf(n) ® ^nf(n) = T X -

Furthermore, if for all Y ^ TV, Y < τ Wγ

n, then

(in) W^f^=τX'.

Proof The proofs of (i) and (ii) are straightforward relativizations of the
corresponding proofs in Theorem 7.4. The only modification which needs to be
made in the construction is to build A so that A{2m) = X(m) for all meN. We leave
the verification of these conditions to the reader.

Let Y = Wx

{n). \ΪY<T Wγ

n, then by (ii)

w™*™ = wγ

n =TY® wγ

n =τx
r. i

Theorem 7.6 is most useful under the assumption that for all X c TV, X < τ Wx.
If we let X = 0, then the theorem implies that there is a correspondence as in Fig. 7.1
which preserves all uniform degree invariant properties. Thus the jumps of A are
related to the jumps of 0 in exactly the same way as the jumps of 0' are related to the
jumps of B. The next two lemmas make this latter statement precise.

0'
I

Wn = A

I
0

Fig. 7.1

7.7 Lemma. Let m,neN be given such that the following conditions hold for all

(i) X<TW
X.

(ii) (Wx){m) =τX
im+1).

Let f be as in Theorem 7.6. Then the following conditions hold for all Y c= N:

(iii) Y<τWγ

m.

(v) Ifm>0 and VZ c TV((0^)(m~ υ # τ Xim)) then (Wγ

f(n))
im) ψ τ Y{m).

Proof (iii) Immediate from Theorem 7.6(i).
(iv) By (i) and Theorem 7.6(iii),

(6) ]
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Hence by (ii) applied to X = Wγ

f(n) and Theorem 7.6(iii),

(wγ

f{n)y
m+1) =τ(wyγf^ym) = Γ ( r ) ( m ) =τ γ<m+1\

(v) Assume that m > 0 and that

(7) V J c i V p ^ - 1 ) #r^ ί m ) )

Let X = Wγ

f(n) in (7). Then by (6),

Lemma 7.7 is used to show that if H m - H m _ t Φ 0 then Lm + x - Lm Φ 0. The
next lemma is used to show that if Lm + x — Lm / 0 then H m + x — H m Φ 0. Its proof
is similar to the proof of Lemma 7.7.

7.8 Lemma. Let m.neN be given such that the following conditions hold for all
X^N:

(i) X<τW
x

n.

(ϋ) (WXym+l)-TX(m+l)^

Let f be as in Theorem 7.6. Then the following conditions hold for all Y ̂  TV:

(iii) Y<τW
Ύ

m.

(iv) (Wγ

fJ
m+ι^τY^ + 2\

(v) If MX c N((W*ym) =τX
{m)) then (WY

f(n)
(m) φ τ Y(m+ υ .

Proof (iii) Immediate from Theorem 7.6.
(iv) We note that (6) again follows from (i) and Theorem 7.6(iii). Hence by (ii)

applied to X = Wγ

f{n) and Theorem 7.6(iii),

(^/(«))(w+1) =τ(^^ym+1)=τ(yym+1)=τγ
{m+2).

(v) Assume that

(8) v z c N(( w%ym) # τ xim)).

Let X = Wγ

f{n) in (8). Then by (6),

We are now ready to prove the nondegeneracy of the hierarchy.

7.9 Theorem. For all meN, H m + 1 - H m Φ 0 αm/ Lm + 1 - Lm Φ 0.

/. Fix /given by Theorem 7.6. We note that L o = {0} and H o = {0'}. Fix e e N
such that for all X c N, Wx

e = X'. Then for all X c jV, JT < Γ »Ff. We proceed



68 III. The Jump Operator

by induction on m. At the end of step m of the induction, we assume that we have
n e N such that for all X c N:

(9) X<τW*.

(10) {WxJm)=TX
{m+ι\

(11) m > 0 -* (Wx)(m~ υ # Γ Z ( m ) .

For m = 0, the induction hypotheses hold for n = e. (9), (10) and (11) allow us to
apply Lemma 7.7, and conclude that for all Y c TV, if k =f(n) then:

(12) Y<ΎW\.

(13) ( ^ [ ) ( m + 1 ) = Γ r ( m + 1 ) .

(14) ( H ^ [ ) ( w ) # r r ( m ) .

Hence ^ J ( n ) e L n + 1 — Ln. (12), (13) and (14) allow us to apply Lemma 7.8, and
conclude that for all X <= N, if r =f(k) then (9), (10) and (11) hold form + 1 in place
of m and r in place of n. Thus WQ

f(k) e H m + x — H m and the induction hypotheses are
verified. 0

In order to show that I Φ 0, we must state a different form of the relativization
of Theorem 7.4. We note that the set W*(n) defined in Theorem 7.6 was obtained as
X® A for some set A, and we let this set A be obtained as Wx

{n) where g is also a
recursive function. We then conclude:

7.10 Theorem. There is a recursive function g such that for all neN and X <= N, the
following conditions hold:

(i) X<τX®Wx

(ny

(ii)

7.11 Theorem. T Φ 0.

Proof. We will apply the Recursion Theorem to show that 1 / 0 . For each eeNand
X c N, let Je(X) = X® Wx. We define iterates of the operator Je by induction;
j°e(X) = x and Jn

e

+1(X) = Je(Jn

e(X)) We note that for all eeN,

WX

g(e)

so by Theorem 7.10(ii),

(15) VeeN\fX^N(JeJg{β)(X) =TX').

By the Recursion Theorem, there is an eeN such that for all X ̂  N,
Wx = Wx

iey Hence for all X c N, Je(X) = Jg{e)(X). For this e, we use SJ(X) in place
of /e(X). (57 stands for semi-jump; two consecutive applications of the operator
yield the jump. It is coincidence that this operator was discovered by Shore
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and Jockusch.) It follows from Theorem 7.10(i) and (15) that for all X <^ N\

(16) X<TSJ(X).

(17) SJ2(X)=TX'.

The following computation uses (16) and (17):

X{n)=τSJ2n(X) <τSJ2n+1(X) = SJi2n\SJ(X)) <τSJ2n + 2(X)

Thus in particular, £7(0) has degree in I. 0

7.12 Remarks. The finite injury priority method which is used in the proof of
Theorem 7.4 was discovered by Friedberg [1957a] and Muchnik [1956]. Theorem
7.4, its relativizations, and the proofs of this section are due to Jockusch and Shore
[1983]. Theorem 7.9 was initially proved as a corollary of the Sacks Jump Inversion
Theorem [1963a]. Theorem 7.11 was proved independently by Lachlan [1965] and
Martin [1966] using the Sacks Jump Inversion Theorem. Sacks [1967] sub-
sequently found an easier proof using the Recursion Theorem and the Sacks Jump
Inversion Theorem. The proof of the Sacks Jump Inversion Theorem is more
difficult than those presented in this section.

7.13 Exercise. Let e e N be given, and let B be a recursively enumerable set of degree
b such that b' = 0'. Show that there is a set A > τ B such that A 0 W* = τ 0'. (Hint:
Build A forcing its jump by a proof combining forcing and coding B into A. If an
element enters B causing injury to a forcing requirement, then that requirement may
again require attention and impose restraint on a location assigned to code n e 0'. In
that case, assign a new coding location for n e 0' beyond the new use, but keep the
old coding location available. Always code at smallest unrestrained location, and
code late if a location becomes unrestrained, even if coding has already been done at
a different location.)

8. More Exact Pairs

In Sect. 3, we showed that if a e D and A ^ N2 is a set of degree a, then there is an
exact pair <b,c> for the ideal generated by {A[i]: ieN} such that b , c ^ a ' .
Equivalently, if X c Nis a recursive set and I is the ideal generated by {Φf: ie X),
then there is an exact pair b, c < a' for I. In this section, we improve this result by
obtaining the same conclusion under the assumption that XeΣ^. Note that this
result is best possible for X. For if b, c ̂  a' is an exact pair for I, then there is a
sentence defining {i:Φf is total &Φf ^τB&Φf ^TC} (where B e b, C e c) which is
ΣfΘ c . Hence any ideal below a having an exact pair below a' must be generated as
above by some XeΣf = Σ^.
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For the rest of this section, fix a recursive one-one correspondence of TV with N2,
letting n correspond to <«θ5«i>

We begin by analyzing sets XeΣ*.

8.1 Lemma. Let A,X c N be given such that Xe Σ*. Then there is a set B c N2 such
that B is recursively enumerable in A and:

(i) x e X => 3n(n0 = x&B[n] = N).

(ii) x φ X => Vn(n0 = x -* B[n] is finite).

Proof. Since XeΣ^, there is a relation R^ N* which is recursive in A such that

xeXolnMy 3z(R(x, n, y, z)).

Place

™o\/y ^m3z^ s(R(no,nuy,z)).

Let B[n] = U{B["]: seN} for all neN. Clearly, B is recursively enumerable in A. (i)
and (ii) now follow from the Σ* definition of X and the definition of B. 0

Lemma 8.1, together with the priorities on Sf2 which we now define, are used to
obtained the desired characterization of sets in Σ*.

8.2 Definit ion. G i v e n σ, τ e «9ξ, w e s a y t h a t σ has higher priority than τ if σ p r e c e d e s τ
i n t h e lexicographical ordering o f b i n a r y s t r i n g s , i .e., e i t h e r σ c i o r σ\τ a n d
σ(x) < τ(x) for the least x such that σ(x) Φ τ(x).

Given XeΣf, we will want to define Γ: N-> {0,1} characterizing X. We thus
view ̂  as a tree ordered by inclusion, and Γ as a path through this tree. Γ is defined
uniformly from a sequence of elements of Sf2

 a s follows:

8.3 Definition. Let S = {γs: seN} be a sequence of elements of 5ζ. For each seN,
define βs to be a string β of highest priority (if such a string exists) satisfying the
following conditions:

(i) lh(/f) = J.
(ii) {s:β c ys} is infinite,

(iii) {s: ys has higher priority than /}} is finite.
Let Γs = U{βs: seN}.

8.4 Lemma. Γs is a function from an initial segment of N into {0,1}. Furthermore,
lh(Γ s) < oo if and only if there is some y a Γs such that {s: γs = y} is infinite.

Proof. Note that β0 = 0. We proceed by induction on t. Let βt be given such that
β = βt satisfies 8.3(i)-(iii). Note that

(1) {s:ys 2 βt} = {s: ys = βt}U{s: ys 2 βt *0} U{^: ys 2 ft 1}.

Since, for ie {0,1}, j8t has higher priority than βt * /, it follows from 8.3(iii) and (1)
that βt +! cannot be defined if {s\ys = βt} is infinite, in which case βr is undefined for
all r ^ t + 1. Hence in this case dom(Γ) = [0, t~\.
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Suppose that {s: ys = βt} is finite. Then by 8.3(ii) and (1), there is a least i such
that {s: ysΏ βt*i} is infinite. Let βs+ί = β s*/. It easily follows that β = βt+ί

satisfies 8.3(i) and (iii). Furthermore, since, if y has higher priority than βt, then y has
higher priority than βt * i if and only if y = βt or y 3 βt *j for some j < i, 8.3(iii)
follows from β = βt+1. 0

We are now ready to characterize XeΣ*.

8.5 Proposition. Let A,X^ Nbe given such that XeΣ*. Then there is a set of binary
strings S = {ys: seN} which is recursively enumerable in A and has the following
properties.

(i) lh(Γs) = oo.

(ii) \Jy a Γs3s(ys = y&W > s (yt has lower priority than y)).

(iii) x e Xo 3n(x = no& Γs(n) = 0).

Proof We will define S so that Γs is the characteristic function of {n: Bln] is finite},
where B is obtained from A and X as in Lemma 8.1. S = {ys: s e N} will be defined
by induction on s. At each stage s of the induction, every σe^2 will either be
dormant, active, or discharged. We begin by specifying that 0 is active and that every
other σ eSf2 is dormant.

Stage s. Each active σ e ^2 receives a check for n e N if lh(σ) ^ s, σ(n) = 0 and
B["l j — B["] Φ 0 (here {Bs: s e N} is an enumeration of B which is recursive in A and
must exist since B is recursively enumerable in A). An active σ is eligible at stage s if
for all n < lh(σ) such that σ(n) = 0, σ has received a check for n which has not been
cancelled.

Let ys be the binary string of highest priority which is eligible at stage s. (There
will always be an active string τ such that τ(n) = 1 for all n < lh(τ), so eligible strings
will exist. Also, only finitely many strings will be active at stage s, so γs is well-
defined.) ys becomes discharged. All checks assigned to strings of lower priority
than ys are cancelled. The strings of higher priority than ys retain their designations.
Each string of lower priority than ys becomes dormant unless it is of the form τ * /
for some discharged τ and ie {0,1}, in which case it becomes active.

This completes the induction step. Let S = {ys:seN}. Let γ c Γs be given, and
fix a stage s e N so that for all t ^ s,yt does not have higher priority than y. If for
some t ^ s yt = y, then yt is discharged at stage t, and by choice of s, remains
discharged for all r ^ t. In any case, {r: yr = y} is finite so by Lemma 8.4,
lh(Γs) = oo and (i) holds.

For all δ e^2, if yt => δ then δ is discharged before stage t and this discharged
status of δ is not changed before stage t. Hence for γ cz Γs, by the above paragraph
there must be a last stage s such that ys is discharged during stage s, i.e., ys = y. If for
some t > s yt has higher priority than y, then since {«: yu 3 y} is infinite, γ would
again have to be discharged at some stage r ^ t contrary to our assumption. Hence
no such t can exist, and (ii) holds.

Let x e Nbe given such that xφX. Fix n e N such that n0 = x. By Lemma 8.1 (ii),
{s: B^lx - B["] Φ 0} is finite. Hence only finitely many σ such that σ(n) == 0 can
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receive checks for n. Thus for all but finitely many discharged σ, if lh(σ) > n then
σ(n)= 1, so Γs(n)= 1.

Finally, let x e N be given such that x e X. By Lemma 8.1 (i), fix n e N such that
n0 = x and B[n] is infinite. Let y c Γs be given such that lh(y) = n. To show that
Γs(n) = 0, it suffices to show that {s: ys ^ y * 0} is infinite. Suppose this not to be the
case in order to obtain a contradiction. Fix s such that for all t ^ s, yt has lower
priority that y * 1. Then for all / ^ s and δ ^ y * 0, the status of δ remains unchanged
during stage t. Fix δ of shortest length which is not discharged at stage s such that

δ(x) =

Then δ must be active at all sufficiently large stages since its predecessor in the
priority ordering is discharged at all sufficiently large stages. Since y a Γs and since
B[n] is infinite, δ must accumulate checks for all n such that δ{ή) = 0, and none of
these checks can be cancelled. Thus δ is eligible at some stage / ^ s, so yt = δ or yt

has higher priority than δ. But this contradicts the choice of s. 0

We are now ready to prove a strong local version of the Exact Pair Theorem.

8.6 Theorem. Let A,Xc Nbe given such that XeΣ* and for all xeX, Φ^ is total.
Let A have degree a and for all xeX let ax be the degree of Φ*. Let I = {deD:
3F <Ξ N(F is finite & d ^ u{aj: ie F})}. Then there is an exact pair <c0, c t }for I such
that co,Cj ^ a'.

Proof Fix notation as in the statement of the theorem. Let S = {ys: seN} be
obtained from Proposition 8.5 for XeΣf = Σ*. Fory'e{0,1}, we construct a set
Cj= U{ξsj: se N}. The degrees c 0 and cx of C o and CΊ form the exact pair for I. We
establish the usual requirements for an exact pair construction:

ζλ: If ΦC o = Φ C l and ΦCo is total

then Φ£o° ̂  τ © {Φf: jeF} for some finite F c X.

In order to prove the theorem, it suffices to show that Pt and Qt are satisfied for all
ieN, and that co,C! < a'.

For eachy'e {0,1}, we will construct C, c A^2. However, we identify N2 with N
recursively, so we can treat a string σ e 5^ as if it were a finite subset of N2. We also
have a one-one recursive correspondence {σt: ieN} of 5^ with iV; so for σ e ^ , we
will speak about Cψ in place of Cψ, the correspondence being given by C[p] = Cψ.
Finally, we treat each Cψ as if it consisted of elements of N3.

We will code Φf into C, for ieXas follows. Since /eX, we will have some n e N
such that Γ(n) = 0 and n0 = L Let y = Γ \ n + I; Φf will be coded into Cψ. For
each XG7V, there will be a triple of the form <z,x, Φf(x)> e Cj y], and for all but
finitely many triples <z, x, >>> 6 Cψ, y = Φf{x) This strategy will allow us to satisfy
Pi. The coding is done at those stages s such that y c ys, and at the xth such stage, a
triple of the form <z, x, Φf (x)> is placed into Cψ, where z is chosen so that no
decision has previously been made about placing this triple into Cψ.
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In order to prevent unwanted triples from entering Cψ when attempts to satisfy
Qm are made, we require that such attempts respect strings of sufficiently high
priority. Thus at all sufficiently large stages, only strings containing information
about Cψ which is consistent with this coding procedure are allowed as extensions.
This type of constraint allows us to satisfy Pt without imposing undue hardship on
the satisfaction of Qm.

We begin by setting ζ°. = 0 for je {0,1}, and assigning 0 to σ for each σ e ^
(The number x assigned to σt in Sf2 designates the next pair <x, Φf (x)> to be coded
into C[fί].) Stage s of the construction has two steps: The first step attempts to make
progress towards satisfying Pk for certain k < lh(ys); and the second step attempts
to satisfy Qk for k = lh(ys).

Stage s, Step 1. We proceed by induction on {k: k < lh(ys)}. For each such k, let
τ* = 7s ϊ & = σm L e t vβ = ζ) f ° r 7 e {0,1}. At the kth step of the induction, ηk will
have previously been defined for/e {0,1}. Fixy'e {0,1}. If ys(k) = 0 and k0 = i9 then
we try to code Φf (x) into C, by placing a number of the form <z, x, Φf (x)> into Cjτk l

where x is the number currently assigned to τk. (There will also be implicit restraints
which try to keep numbers not of this form out of C[?k].) We first use the A oracle to
determine whether Φf{x){. If not, or if ys(k) Φ 0, set ηkj + 1 = ηk. If so, find an
extension ηk +1 of ηk for which there is a unique y > \h(ηk) such that η)+ι{y)[ = 1,
and this unique y is of the form <ra, <z, x, Φf(x)}} for some zeN. Assign x + 1 to τk

in place of x. When the induction is complete, go to Step 2. (Note that we must use
the A oracle, since it is possible that ys(k) = 0 but kφ X, so Φf may not be total.
Also, we do not want to code all of Φf into C, during one stage, since if k φ X, we
may defeat the theorem by coding in too much.)

Step 2. We try to satisfy Qk for k = lh(ys). Let <λr0, kλ) = <n, m}. We will try to find
xeN and extend our definitions of C o and CΊ to force Φc

n°(x) Φ Φc^{x) This must
be done without violating the restraints alluded to in Step 1. Thus the extensions β0

oϊηk

0 and βx of η\ which we define must respect ys, i.e., for all i,y eNandje {0,1}, if
</,j;>Gdom(jβJ) — dom(ηk) and βj((i,y}) = 1 and σt has higher priority than ys,
then ϋi c yS5 ys(i) = 0, and if y = <z, x, x*> then Φfo(x) = x*. (In other words, βj can
only code elements into Cψ] for σt of relatively high priority if the information
coded in by such an element is consistent with ΦfQ.)

If there are extensions β0 oίηk

0 and βiOfηΊ and x e N such that β0 and βγ respect
ys and Φβ

n°(x) φ Φ^(χ)^ ^ l nd the least such pair (β0, βλ} (under some fixed recursive
one-one correspondence of £f\ with N) and let ξsj+ x = βj forje {0,1}. Otherwise,
set ξs.+ 1 = ηk forye{0,1}. Note that if β0 and βt exist, then they can be found
recursively in A.

This completes the construction. We now verify that Pt and Qt are satisfied for
all ieN.

Given keN, fix y cz Γs such that lh(y) = k. Fix seN as in Proposition 8.5(ii).
Then for all / ^ s andyejO, 1}, <ĵ .+ 1 is an extension of ξι. which respects y. Let
<&o, Λi> = <w, my. If Φc

n

Ό = Φ^1 and both Φc

n° and Φc

m

x are total, then there can be
no ^-splitting <β0, βxy of ξ* in which both strings respect y. To determine whether
an ^-splitting of ξs

} respects y requires knowledge only of © {Φf: ys{i) = 0}. Hence
we see as in previous proofs that Φ °̂ ^ T E for some E whose degree is in I. Hence Qt

is satisfied.
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Finally, suppose that xeX. Then by Proposition 8.5(iii), there is an neN such
that n0 = x and Γs(n) = 0. Fix such an n, and fix y c Γs such that lh(y) = n and
seTV as in Proposition 8.5(ii) for y. Then for all t ^ s and ye {0,1},^.+ 1 is an
extension of ξ*. which respects y. Hence {(z,y,y*} e Cψ: Φ*{y) Φ y*} is finite, and
for all y e N there is a z e N such that <z, y, Φ^(y)} e Cψ. Hence for all but finitely
many yeN and allye{0,1},

Φ y* -• (z,y, w> φ Cψ).

Thus Φ^GA^ SO Φ* ^T CJ, and P x holds. 0

Theorem 8.6 can be extended in a different direction by finding an exact pair for
I below certain h < a'. This extension is discussed in Exercise IV.4.17.

8.7 Remark. Theorem 8.6 was proved by Shore [1981] extending a result of Nerode
and Shore [1980] in which it was assumed that XeΣ*.

8.8 Exercise. Show that the type of coding of Φf into the sets being constructed
which was used in proofs of previous exact pair theorems cannot be used to prove
Theorem 8.6. (For if ceA'if and only if for allye{0,1} there is a keN such that
{y: Cf\y) Φ Φ*(y)} is finite, then




