
Part A

The Structure of the
Degrees

Chapter I

Recursive Functions

This chapter is introductory in nature. We summarize material which is normally
covered in a first course in Recursion Theory and which will be assumed within this
book. Recursive and partial recursive functions are introduced and Church's Thesis
is discussed. Relative recursion is then defined, and the Enumeration and Recursion
Theorems are stated without proof. The reader familiar with this material should
quickly skim through the chapter in order to become familiar with our notation. We
refer the reader to the first five chapters of Cutland [1980] for a careful rigorous
treatment of the material introduced in this chapter.

1. The Recursive and Partial Recursive Functions

The search for algorithms has pervaded Mathematics throughout its history. It was
not until this century, however, that rigorous mathematical definitions of algorithm
were discovered, giving rise to the class of partial recursive functions.

This book deals with a classification of total functions of the form/: N -> TV in
terms of the information required to compute such a function. The rules for
carrying out such computations are algorithms (partial functions φ: Nk -> N for
some k e N) with access to information possessed by oracles. The easiest functions
to compute are those for which no oracular information is required, the recursive
functions. Thus we begin by defining the (total) recursive functions, and then
indicate how to modify this definition to obtain the class of partial recursive
functions. The section concludes with discussions of Church's Thesis and of general
spaces on which recursive functions can be defined.

1.1 Definition. Let R^Nk+1. μy_(xu , x k j) e Λ] is the least y such that
(x 1 ? . . . , xk,y) E R if such a y exists, and is undefined otherwise. Henceforth, we will
refer to μ as the least number operator.

1.2 Definition. The class 0ί of recursive functions is the smallest class of functions
with domain Nk for some k e N and range TV which contains :

(i) The zero function: Z{x) = 0 for all xeN;
(ii) The successor function: S(x) = x + 1 for all xeN;

8 I. Recursive Functions

(i i i) T h e projection f u n c t i o n s : Pnj(x0, . . . , x n) = Xj f o r a l l n , x o , . . . , x n e N a n d

and is closed under:

(iv) Substitution: For all m, keN, if all of g(x0,...,xm), ho(yo,... ,yk),...,
hm(yo, • ••>}>*) a r e elements of 0ί, then

/ O o , ,yh) = θ(ho(yo,... , ^ k) , . . . , / / m (j 0 , . . ,J>fc))

is an element of &
(v) Recursion: For al l« e JV, if 0(xo> > •*«) and Λ(x0? > *n + 2) are elements of

^ , t h e n / (x 0 ? . . . ,xw + i) is an element of &, where

o> ...,*„> 0) =

and

..,xn,y, f(x0,..., xn,y));

(vi) The feβ^ί number operator: For all n e N, if ^(x0? > -̂ n? y) is a n element of
St and Vx0, , xn 3jfe(x0, , xn,y) = 1] then

f(x0,..., xπ) = μj[όf(x0, , xn, y) = 1]

is an element of 01.

An element of 0t is called a recursive function.

1.3 Definition. Fix «eΛf and let ^ be a countable class of partial functions of n
natural number variables. An enumeration of # is a partial function φ:Nn+1 ^ N
which lists the elements of #, i.e.,

(i) Vψe<g3keN(λxl9..., *„(?(&, ̂ 1, , xn) =

and

(ii) Vk e N(λxx,..., xHφ(k, xl9...9xn)eV).

1.4 Example. Let <€ = {f:ieN} where f(x) = i for all xeN. Then g:N2^N
defined by g(n, x) = n is an enumeration of # .

The Enumeration Theorem for partial recursive functions of one variable is an
important tool used in almost every proof in this book. What we would like to have
is a recursive enumeration of the class of recursive functions of one variable.
Unfortunately, such an enumeration does not exist (see Exercise 1.10). All that is
needed, however, is & partial recursive enumeration of the class of partial recursive
functions. With this in mind, we now introduce the class of partial recursive
functions.

1.5 Remark. The obstacle to obtaining a recursive enumeration of the class of
recursive functions of one variable lies in 1.2(vi), the application of the least number

1. The Recursive and Partial Recursive Functions 9

operator to obtain new recursive functions. There is no algorithm which will
identify whether or not Vxo> >xn 3y[g(xo, , *my) = 1] This difficulty can be
circumvented by producing an algorithm which assigns natural numbers (called
GodeI numbers) to computations carried out in 1.2(i)-(vi). One then searches for the
least numbered computation which yields g(x0,... ,xn,y) = 1 for some y, say
y = y0, and defines

(y0 if jo is ever found,
f(xθ9 ...,xn) = <

11 otherwise.

Such a procedure was carried out by Kleene, giving rise to the class of partial
recursive functions, £P. This class contains all the recursive functions, together with
some additional functions, none of which are total.

During the 1930's and 1940's, several attempts were made to give a rigorous
mathematical definition of algorithm. One of these definitions was the class of
partial recursive functions described in Remark 1.5. All of the definitions were
eventually shown to be equivalent, and the equivalence of some of the early
definitions prompted Church to propose his thesis, which asserts:

1.6 Church's Thesis. A function is partial recursive if and only if there is an
algorithm which computes the function on its domain, and diverges outside the
domain of the function.

Church's Thesis asserts that the intuitive notion of algorithm is equivalent to the
mathematically precise notion of partial recursive function. The thesis is almost
universally accepted, and its use has become general mathematical practice. We will
be using Church's Thesis freely and without any explicit warning throughout this
book, by describing the computation of a function and automatically assuming that
the resulting function is partial recursive. A rigorous proof could be given in every
case, but would be very tedious.

In this age of digital computers, the reader might feel most comfortable with the
following description of partial recursive functions. A function / is partial recursive
if there is a program for a digital computer (no restrictions on memory size are
placed on such a computer, so that we assume that the computer has available to it
an infinite supply of memory space, only finitely much of which is used at a given
time) such that whenever x is fed as input to the computer, the computer will spew
out/(x) after spending a finite amount of time performing computations as directed
by the program (no restrictions, however, are placed on the amount of time
available) if x e dom(/), and the computer will give no answer (perhaps computing
forever) if xφdom(f).

To this point, we have only considered functions from Nk into TV for some k > 0.
Shoenfield [1971] has noted that Nk and N can be replaced by any spaces, i.e.,
domains which can effectively be placed in one-one correspondence with N.
Henceforth, any space will be acceptable as either the domain or range of a recursive
function. Typical spaces which we will be using later are mentioned in the next
example.

1.7 Example. The following are spaces:
(i) Nk, the set of all λ -tuples of natural numbers, for all k ^ 1.

10 I. Recursive Functions

(ii) N<ω, the set of all finite sequences of natural numbers. Henceforth we will
denote N<ω by <9ζ and call an element of £f a string.

(iii) Sff={σeSf: σ(ή) < f(ή) for all n e N such that σ(«)|}, where/: N -> N is a
recursive function and /(x) / 0 for all x e N. Sfs is called the space of f-valued
strings. If / is the constant function f(x) = c for all x, then 5£ will be used in place of
£ff. Thus £f2 is the space of all finite sequences of 0s and Is.

The following notation will be used:

1.8 Definition. Let σ, τeSf be given. We say that σ ^ τ if for all ieN, if σ(ί)i then
τ(i) | and σ(i) = τ(ί). Given/: N -• N, we say that σ c / i f for all /e TV, if σ(/)| then
σ(/) = / (0 <= will denote c and ^ lh(σ) = |{/: σ(/)|}| is the length of σ. σ * τ is the
string of length lh(σ) + lh(τ) defined by

(σ(x) if x < lh(σ),
σ * τ(x) = •<

v |τ(jc - lh(σ)) if lh(σ) ^ x < lh(σ) + lh(τ).

In the next section, we will discuss relative recursiveness. We will then be able to
classify arbitrary functions f:N -• TV on the basis of how much additional
information is required (from an oracle) in order to compute /

1.9-1.13 Exercises

1.9 The class of primitive recursive functions is the smallest class of functions
containing the functions mentioned in 1.2(i)-(iii) and closed under the operations of

(i) Show that there is a recursive enumeration of the class of primitive recursive
functions of one variable. (Hint: Recursively assign Gόdel numbers to com-
putations, and define the enumeration F(e, x), where λxF(e, x) is the function with
Gόdel number e.)

(ii) Show that there is a recursive function which is not primitive recursive.
(Hint: Diagonalize against an enumeration of the primitive recursive functions.)

1.10 Show that there is no recursive enumeration of the class of recursive
functions. (Hint: If there were such an enumeration, a diagonalization as in 1.9(ii)
would produce a contradiction.)

1.11 Explain why your proof of 1.10 will not generalize to show that there is no
partial recursive enumeration of the class of partial recursive functions.

1.12 Let S be a space.
(i) Show that Sn is a space,

(ii) Show that S<ω is a space.
(iii) Show that there is a T £ S such that T is not a space.
(Hint: Use a cardinality argument after showing that there are only countably

many algorithms.)

1.13 Let S and T be spaces. Show that:
(i) S x T is a space.

(ii) For all neN, [0,ή] x S and S x [0,«] are spaces.

2. Relative Recursion 11

2. Relative Recursion

Recursion Theory classifies total functions on the basis of how much additional
information must be provided by an oracle to compute the given function. This
classification relies on the notion of relative recursion.

Relative recursion is defined by expanding the class of initial functions in
Definition 1.1. We will use this notion in Chap. 2 to form an algebraic structure
from {f:N-+N}.

2.1 Definition. Let/: Nm -• N be given. The class Stf of functions recursive in /is the
smallest class of functions containing/and the functions mentioned in 1.2(i)-(iii)
and closed under the operations of 1.2(iv)-(vi). An element g of Stf is said to be
recursive in / written g < Γ /

Recursiveness i n / or relative recursion, was introduced by Turing [1939]
whose name gave rise to the T in ^ Γ . ^ τ is frequently referred to as Turing
reducibility.

The partial recursive functions, as we indicated earlier, are those partial
functions which an idealized digital computer can compute. The domain of such a
function is the set of numbers which, when fed as input to the computer, will
eventually cause the computer to output a number.

Given / : Nk -• TV, the partial functions computable from f can similarly be
described through the use of a digital computer with access to the oracle f The
notion of computer program is generalized to allow instructions of the form if
f(xu ...,xk)=y proceed to a certain instruction', otherwise, proceed to another
specified instruction. As we proceed through the computation of a partial function g
computable from/to which z has been fed as input, whenever we reach a step in the
program of the type just described above, the computer does something non-
constructive; it asks the/oracle whether/(x l 5 ...9xk)=y, and once the answer is
received from the / oracle, continues the computation utilizing the information
provided by the oracle. Complete knowledge of / allows us to compute g(z)
whenever g(z)l, so g is computable f rom/ Futhermore, if g(z)[, then since any
computation is completed in finitely many steps, only a finite amount of
information about / i s used.

2.2 Remark. There is also a version of Church's Thesis for relative recursion which
will be used freely throughout this book. It asserts that the partial functions
computable from /are exactly those for which there exists an algorithm using a n /
oracle as above to perform the computation.

It will frequently be more convenient to use sets than functions when discussing
relative recursiveness. This is easily accomplished by identifying a set with its
characteristic function, which we define as follows:

2.3 Definition. Let A c N. The characteristic function of A, χA, is defined by

ίO if xφA
XA(Π) = <

[I if xeA.
More generally, a relation R^ Nk will be identified with its characteristic function

12 I. Recursive Functions

χR, defined by

if R(xu ..., xk) is false,

2.4 Definition. A relation R is said to be recursive in the function/if χR is recursive

in/

2.5 Remarks. A summary of the history of relative recursion appears in Kleene and
Post [1954]. Three versions appear in the literature, all of which were later proved
to be equivalent. They were formulated by Turing [1939] generalizing the machines
introduced by Turing [1937] Kleene [1943] extending the definition of recursive
functions; and Post [1948] extending the concept of canonical sets which was
introduced in Post [1943].

2.6 Exercise. Let/, g:N -+ Nbe given such that {/:/(/) φ g(ί)} is finite. Show that

3. The Enumeration and Recursion Theorems

Two basic theorems of Recursion Theory are stated in this section. The first of
these, the Enumeration Theorem, will be used in virtually every proof in this book.
The Recursion Theorem will be used to enable us to simplify proofs of certain
theorems. Complete proofs or detailed sketches of the proofs of these theorems can
be found in Soare [1984], Rogers [1967], Cutland [1980] and Kleene [1952]. A
nice proof of the Recursion Theorem can also be found in Owings [1973].

The Enumeration Theorem asserts the existence of a function φ(σ, e, x, s) which
uniformly induces a whole class of enumerations. The definition of φ(σ, e, x, s)
reflects the following intuition. A computer is programmed, with e coding the
program. The input x is then fed to the computer, and the computer then performs s
steps as directed by the program. During these s steps, the computer may come
across program instructions of the form iff(x) = y proceed to a certain instruction,
and if f{x) Φ y proceed to another specified, but different instruction. When faced
with such a choice, the computer asks "is σ(x) = yT\ If x ^ lh(σ), then there will be
no output. If x < lh(σ), then σ answers the question for / and the computation
continues. If there is no output from the computer after s steps, the computation
ceases and φ(σ,e,x,s)]. If a number is outputted by the end of the sih step,
φ(σ, e, x, s)l and is set equal to this output.

3.1 Enumeration Theorem. There is a partial recursive function φ\9* x N3 -• N
with the following properties:

(i) {Use property)

Vσ,τeyVe,x,s,yεN(σ c τ&φ(σ,e,x,s)l = y-• φ(τ,e,x9s)[= y),

i.e., if a number is given as output, then oracle information extending the original
information will not alter the output.

3. The Enumeration and Recursion Theorems 13

(ii) (Permanence property)

^σe^^e,x,s,t,yeN(s ^ t&φ(σ,e,x,s)l = y ^ φ(σ,e,x,t)[= y),

i.e., once a number is given as output, additional steps do not change this output.
(iii) (Uniform enumeration property) Given f: N -• N and Θ:N -+ N computable

from f then there is an eeN such that for all x, yeN

θ(x) = y «-* 3σ 3s(σ c /& φ(σ, e, x, s)l = y),

i.e., for every partial function θ computable from f there is a program coded into φ
which computes θ. (Note that ifθ is not given but rather defined by the above formula,
then θ is computable from f)

(iv) (Recursiveness property) The domain of φ is a recursive subset of Sf x N3

(since s bounds the length of a permissible computation).
(v) (Uniform coding property) Given a sequence {θi'.ieN} of functions comput-

able from f: N -• N such that the definition ofθt is given by a finite set of instructions
using parameter i, then there is a recursive function g such that for all x,yeN

θi(x) =y~lσ3s(φ(σ,g(ί),x,s)i = y&σ ς=/),

i.e., if the definitions of a class of functions are given uniformly recursively, then there
is a recursive function which gives codes for programs computing each of these
functions.

3.2 Remark. Let φ be the function given by the Enumeration Theorem. For all
Θ:N^N, define the functional Φθ by

(i) Φθ(e,x)=yo3σe<?(σ c θ&φ(σ,e,x,\h(σ))l = y).

Then Φθ is computable from θ, and Φf provides an enumeration of $f, uniformly in
/. In particular, if / is any recursive function, then Φf is a partial recursive
enumeration of the class of partial recursive functions. I f / = 0, then we write Φ in
place of Φf.

For the remainder of this book, φ will denote the function given by the
enumeration theorem, and Φθ will be defined as in 3.2(i). For each e e N, we will also
fix the function Φθ

e = λxΦθ(e, x).
Property 3.1(v) is known as the s-m-n Theorem. Another way of stating this

theorem is as follows: Let h(x,y) be a function computable from/. Then there is a
function g computable from/such that for all xeN, h(x,y) = Φ^(x). Thus, for
example, if h(x, y) = x, then there is a recursive function g such that for each x e N,
g(x) is an index for the constant function x as a recursive function.

The Recursion Theorem is a basic theorem about the enumerations mentioned
in Remark 3.2. It is frequently referred to as the Fixed Point Theorem.

3.3 Recursion Theorem. Let the recursive function h:N —• Nbe given. Then there is an
eeN such that Φ{ = Φ[(e) for all f: N-• N.

14 I. Recursive Functions

3.4 Definition. If Φ{ = Φ[{e) then Φ{ is called a fixedpoint (of the enumeration Φf)
for A.

We will be using the Recursion Theorem in the following way. Given a function
f:N-+ N and eeN,we will start with the partial function Φ{ and, uniformly in e, we
will recursively construct a partial function Φ[{eγ An application of the Recursion
Theorem will allow us to choose an e such that our starting function Φ{ and our
constructed function Θ{(e) are identical. Thus in certain situations, the Recursion
Theorem allows us to construct a function while simultaneously using information
about the function in its construction. By the uses of the Recursion Theorem, the
information used about the function will have to be specified at an earlier stage,
although this fact is hidden in the actual applications.

3.5 Remark. The Enumeration and Recursion Theorems were discovered by Kleene
(seeKleene [1952]).

3.6-3.8 Exercises. The definitions in 3.6 and 3.7 describe recursive procedures
which define one partial recursive function in terms of another. For each definition,
apply the Recursion Theorem to obtain a fixed point. Is this fixed point a total
function? What is the fixed point?

if /i = 0,

3.6 Φm(n) = {Φe(n-\) if n > 0&Φe(n - l)j,

otherwise.

3.7 φh (n) = \ .
1 * otherwise.

3.8 Prove the Recursion Theorem. (Hint: Given meN, define

\ΦΦrn(m)(x) if Φ m (m) | ,\j/(m,x) =
(t otherwise.

By the uniform coding property, find a recursive function g such that
ψ(m, x) = Φg{m)(x) for all m and x. Given a recursive function /, let e be a Gόdel
number for fg. Show that n = g(e) is a fixed point for/.)

