
Part B

Dependence and Prime Models

In this part of the book we focus on ways to 'generate' a model of a theory.
Of course, the most natural notion of generation is closure under functions.
However, we are interested in constructing elementary submodels and it is
easy to see that the addition of Skolem functions destroys many model
theoretic properties including, in particular, the stability hierarchy. For
example, there exist ω-stable theories with no complete ω-stable Skolem-
ization. Thus we turn to more general notions. One such idea is known to
model theorists as the 'algebraic closure' of a set A\ it consists of those
points which lie in finite sets defined by formulas with parameters from A.
Except in the extreme case of a strongly minimal set, this notion lacks the
exchange (symmetry) property of a good dependence relation. A next at-
tempt is to adjoin those points which realize a principal type over A. Here
too, the full symmetry property is lacking but a reasonable substitute (cf.
Section IX.3) holds. However, the requirement that every set have a closure
with respect to this relation which is a model of T is extremely strong. In
fact, the only known nontrivial sufficient condition for every set to have a
closure with respect to this relation is the assumption that the theory is
countable and ω-stable. It is necessary to consider some further variants in
order to find a notion of closure which is both strong enough to be useful
and which applies to a wide class of theories. In this part of the book we
give a general treatment of several such properties.





Chapter IX

Atomic and Prime Models

The first four chapters of this book discussed generalizations of the no-
tion of independence. We remarked in Chapter II that one feature of this
generalization is that we can no longer define 'dependent' as merely 'not
independent'. We must instead develop an apparatus to study 'generation'.
Since the early 1960's it has been clear that the proper notion of 'submodel
generated by A in the category of structures and elementary embeddings' is
'model prime over A'. It turns out, however, that in classifying the models
of a first order theory, it does not suffice to investigate arbitrary models of
the theory; the detailed study of saturated models of several sorts is essen-
tial. For each of these classes of models an appropriate notion of generation
(of 'prime over') must be developed. This chapter is devoted to developing
such notions.

We will discuss various concepts of prime and atomic models in this
book. 'Prime' is a category theoretic concept: M is prime over A in the
category K if every /f-embedding of A into a member N of K can be
extended to a ίί-embedding of M into TV. 'Atomic' is a logical notion.
Let I be a collection of types. Then, M is I-atomic over A if for every
ra G M, there is some q G / with q C £(m;A) such that q \- t(m',A).
Let K be the category of models of a countable first order theory T with
elementary embeddings as morphisms and let AT be the collection of single
formulas. It was realized in the early 1960's that the concepts, '/f-prime
over 0' and 'countable and AT-atomic over 0' are identical. Vaught used
this equivalence to prove theorems characterizing prime models and proved
that any two prime models of a countable theory are isomorphic. Morley
noticed that the atomic component of the equivalence is useful in omitting
types and applied this observation in proving his categoricity theorem.

A third aspect of 'primality' turns out to play an important role. Mor-
ley's construction of atomic models produces not only a structure which is
atomic but one which has been built up in a specific way. This construction
of the model corresponds to what we call a 'strictly prime' model. The proof
of the uniqueness of strictly prime models is comparatively straightforward.
If the countable theory T is stable and admits prime models over all sets we
will prove in Chapter X the more difficult assertion that prime and strictly
prime coincide and thus deduce the uniqueness of prime models.
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In the first section below we sketch the results for the 'classical' case.
Then we discuss the situation from a more abstract point of view. In Sec-
tions 2 and 3 we develop a set of axioms for primality (or generation) to
complement the earlier axioms for independence. In Section 4 we prove the
uniqueness of strictly prime models for all our notions simultaneously. In
Chapter X we use the properties of independence to show the uniqueness
of prime models for these notions in a countable stable theory.

The last two sections of this chapter are devoted to two notions of iso-
lation which do fit precisely into the general scheme of isolation notion we
developed in Section 2. In one sense, the failure of these notions to fit the
more general rubric is purely technical; they do fit in the scheme of [Shelah
1978]. But there is a thematic reason for the difference. Neither of these
notions of 'isolation' admit a natural notion of 'prime'. Section 5 concerns
locally atomic models. We show that one can find a locally atomic model
over any set if T is a stable theory. We apply this concept in Section 5 to
the proof of two cardinal theorems. In Section 6, we describe the notion of
F-isolation and use it to show that a stable but not superstable theory has
2λ models of power λ in each uncountable cardinality λ.

1. Elementarily Prime Models

We deal in this section with prime models over sets for countable theories.
We first develop Vaught's characterization of prime models over the empty
set as atomic models. Then we turn to the existence question for prime
models over arbitrary sets. There are two ways to find prime models over
the empty set (or indeed over arbitrary countable sets). The first, which
appears in [Vaught 1961], uses the omitting types theorem to construct a
model which omits the nonprincipal types and thus is atomic. This method
depends essentially on the countability hypothesis. The second method,
which is used almost exclusively here, is to build up the model guaranteeing
that it is atomic during the construction. This method was introduced by
Morley [Morley 1965] and this entire chapter is devoted to amplifications
of the idea.

1.1 Definition, i) The model M is prime over A if every elementary em-
bedding of A into a model N of T can be extended to an elementary
embedding of M into TV.

ii) The model M is a prime model of T if M is prime over the empty
set.

iii) The theory T admits prime models if there is a prime model over
every set A.

For example, the algebraic numbers are the prime model of the theory
of algebraically closed fields; the natural numbers are the prime model
of 'true arithmetic'. This purely categorical definition is expressed by the



1. Elementarily Prime Models 189

following diagram (Fig. 1). However, there are equivalent definitions of a

M » N

ϋ

A

Fig. 1. M is prime over A.

logical character. We need some further notions in order to express them.
Recall from Chapter I the notion of an isolated type.

1.2 Definition. Let p G S(A). Then p is principal or isolated if there is
a single formula φ(x',ά) G p such that φ(x',a) \- p. That is, for all ψ G p,
Ύh(A) \-(Vx)[φ(χ-,a) ^ ψ(x)}.

Note that this is exactly the same as saying p is an isolated point in the
topology on S(A) induced by Stone duality, that is, the topology where
each basic open set is of the form Uφ = {p : φ G p}.

We denote by AT the set of all single first order formulas (with param-
eters anywhere in M).

1.3 Definition. The model M is atomic over A if for each finite sequence
ra G M, t(m\A) is an isolated type. M is atomic if M is atomic over the
empty set.

The immediate significance of these definitions is given by

1.4 Theorem. M is a prime model of T if and only if M is atomic and
countable. Moreover, any two countable atomic models are isomorphic so if
T has a prime model it is unique.

Proof. For one half of the theorem, we rely on the omitting types theorem.
If M realizes a nonprincipal type then M is not prime as there is also a
model TV of T which omits p. For the converse, we are given a countable
atomic model M and a model TV; we want to elementarily embed M in TV.
Let M = {πii : i G ω}. Now construct the embedding / by induction. Say
φo(x) generates ί(mo;0). Since T is complete T f= (3x)φo(x). Let /(mo)
be any element of TV such that TV |= φo(mQ). Suppose we have defined /
on {mi : i < n} so that (M,m0,... ,ran-ι) = (M, /(m0),..., /(mn_ι)).
Let Φ(XQ, . . . , xn) generate ί(mo, - ., mn\ 0). By the induction hypothesis,
TV |= (Ξ^)(/>(/(mo),... ,/(m n_ι),ΐ/). Choose any witness for this formula
as /(mn). To establish the 'moreover' clause, replace this 'forth' argument
by a 'back and forth' argument.

1.5 Exercise. Prove the moreover clause in the last theorem.

1.6 Exercise. Show that if MI and M% are prime models over the count-
able set A then MI « M^ by an isomorphism which fixes A.
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We have shown that any theory T has at most one prime model over the
empty set. The attempt to describe those theories which have prime models
over the empty set leads easily to a sufficient condition (Definition 1.13)
for a theory to have a prime model over any set; the uniqueness question
is more difficult. We now consider how to construct atomic models over
sets. The actual construction plays a vital role. That is, we will show in
Section 5 that any two prime constructive models are isomorphic, while
leaving open the the possibility that there are prime models which are not
constructible. An argument like that for Theorem 1.4 shows that for any
set A (even uncountable) two atomic models over A are Loo^-equivalent
over A. No such general argument can show the models are isomorphic
(even assuming they have the same cardinality). In Chapter X, invoking
the notions of freeness as well as isolation, we will show that if T is stable
and has prime models over all sets then prime models over sets are unique.

1.7 Definition. A construction C over a set A is a sequence (GJ : j G J)
such that for each j, t(cf,A U Cj) is isolated. The set B is constructible
over A if B = A U (c3 : j G J) for some construction C.

It is somewhat anomalous that the set B which is constructible over A
contains A while the actual range of the constructing sequence may not.
The following exercise shows this is only an apparent difficulty.

1.8 Exercise. Show that if B is constructible over A by C, there is a
construction C' over A such that {c^ : j G J} = B.

It is essential to remember that a construction is a sequence and not
just a set. For example, any embedding of a sequence of order type ω
into a model of the theory of dense linear order (without endpoints) is a
construction but an embeddding of a sequence of order type ω + 1 is not.

1.9 Lemma. If B is constructible over A then any elementary monomor-
phism of A into a model of T can be extended to an elementary embedding
of B into that model. Thus, if M is a model which is constructible over A
then M is prime over A..

1.10 Exercise. Prove Lemma 1.9.

Our next goal is to show that if B is constructible over A then B is
atomic over A. This relies on the following key property of isolation.

1.11 Lemma (Transitivity Property). Let BCA. Ift(d', A) is isolated and
for each ceA-B, £(c; B) is isolated then for each ci^A-B, t(d^cι B)
is isolated. In particular, t(d\B] is isolated.

Proof. For some c G A - B, let φ(x;c) G F(B) generate t(d; A). Fix ci G A
and suppose ^(2/1^2/2) generates ί(cι^c; B). Now, the formula

generates ί(3~cι;B). For, suppose χ G F(B) and \= χ(d~cι). Then,

1=
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Since it is clear that a union of a chain of structures atomic over A is
atomic over A, we can rephrase this as

1.12 Theorem. If C is constructive over A then C is atomic over A.

We have seen how to extend a set A to a set B which is atomic over A.
Can we find a B which is the universe of a model and with \B\ not much
greater than \A\Ί The following property of a theory guarantees that such
a model B exists with |β| = |A| 4- |Γ|.

1.13 Definition. The isolated types are dense in S(A) if for each formula
φ(x,a) there is a principal type p G S(A) with φ(x\a) G p. The theory T is
atomistic if the isolated types are dense in S(A) for every subset A.

Thus, the theory T is atomistic just if for each A C Λl, the Boolean
algebra F(T) is atomic.

The following argument is similar to the proof in Lemma III. 1.7 and
Exercise III. 1.8 that a theory is ω-stable if and only if it is stable in all
infinite powers.

1.14 Theorem. IfT is a countable ω-stable theory then T is atomistic.

Proof. If T is not atomistic there is a formula φ(x; a) such that no atom
intersects φ(M a). Choose by induction ψs(x',as) for s G 2<ω so that both

and
(3x)[ψs(x',as) Λ -^s~o(s;άβ-o)]

are true in Λl. We can find such a ψs- o because ^s(α; αs) is not an atom. Let
ψs~ι be -« ŝ-o There are 2**° types over the countable set {as : s G 2<ω}
so T is not ω-stable.

However, ω-stability is by no means a necessary condition for atomicity.
For example, the theories of dense linear order without endpoints and REF^
are atomistic. On the other hand, CEFω is a glaring example of a stable
theory which is not atomistic (since it doesn't even have a prime model
over any singleton). It is possible to construct examples of No-categorical
theories which are not atomistic.

1.15 Exercise. Show that if T is an N0-categorical theory then T admits
prime models over finite sets. That is, for every finite subset, A, of Λt there
is a prime model of T over A.

1.16 Exercise. Let T be the theory of a dense linear order without end-
points but with a unary predicate P which picks out a dense codense subset.
Show that T is N0-categdrical but that if A = P(M) is an infinite set there
is no prime model over A. (This example is due to Steinhorn.)

1.17 Theorem. IfT is atomistic, then for every A there is a model M of
T with \M\ — \A\ + \T\ which is constructible over A.
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Proof. Suppose that C is a substructure of a model of T and enumerate
the consistent members of F\(C) as (φi: ί < \C\ + |T|). Choose a sequence
(ai : i < \C\ + |T|> such that t(a^C U d) is isolated in S(C U d) and
Φi G t(di',C U Ci). This is possible because T is atomistic. For any (7, let
G(C) = C\j{ai:i< \C\ + |T|}. Now for the A of the theorem, for each n let
Gn+l(A) = G(Gn(A)}. Letting M = \J{Gn(A)} completes the construction.

1.18 Exercise. Show that if the countable theory T is atomistic then for
every A C N (= T there is a prime model over A.

1.19 Exercise. Show that if S(0) is countable then T has a prime model.

1.20 Exercise. Show that if a countable theory T has prime models over
every countable set then it has prime models over all sets.

1.21 Exercise. Show that if T is a small countable theory then T admits
prime models over all finite sets.

1.22 Historical Notes. Call a model M algebraically prime over A if ev-
ery embedding (not necessarily elementary) of A into a model, TV, of T
extends to an embedding of M into TV. Abraham Robinson introduced the
notion of prime models in [Robinson 1956]. However, he worked in the con-
text of model complete theories so the distinction between algebraically and
elementarily prime models was obscured. Most of this section is taken from
Vaught's beautiful paper [Vaught 1961]. The extension to prime models
over sets was made by [Morley 1965]. The contrast between algebraically
prime and elementarily prime is explored in [Baldwin & Kueker 1981].

2. The General Notion of Isolation

We give here a semi-abstract treatment of the notion of generation. The
key to such a treatment is to describe what it means for a sequence to
be in the model 'generated' by a set. The most primitive notion of this
sort requires the sequence to be given by a term. Increasingly more general
notions require the sequence to be in a finite set definable with parameters
from the given set or to realize a principal type generated by a formula with
parameters from the given set. Shelah gives in Chapter IV of [Shelah 1978]
an axiomatic treatment to include many such notions. Our approach here
is to extend directly from the last idea. We will deal with several extensions
of the word 'formula' but consider a sequence to be 'generated' by a set if
all its relations to that set are determined by a 'formula' over the set.

Our approach to isolation is more concrete than that in [Shelah 1978].
We proceed by discussing three families I of 'sets of formulas'. We express
the idea that α is generated by B by saying £(α; B) is implied by some
member of I whose domain is contained in B. At this level of generality we
are able to handle the most important among the notions Shelah discusses.
We can generalize somewhat more by replacing 'p is implied by a member
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of I' by some other relation. (Thus, in Section 5 we study the notion given
by 'p is locally implied by a member of I'.)

As in Chapter II, for each of the exercises in this section all of the
preceding axioms may be used unless the exercise expressly says otherwise.
We require the following convention.

2.1 Notation. If q has the form t(c\ A) then dom* q — dom q = A; if q has
the form stp(c, A) then dom* q = A.

2.2 Definition. A collection of I-formulas is one of the following collec-
tions:

i) ATλ is the collection of all types containing fewer than λ first order
formulas.

ii) SETλ is the collection of all types which are over a set of power less
than λ.

iii) Sλ is the collection of all types which are almost over a set of power
less than λ.

We let I vary over SETλ, ATλ, and Sλ Each of these sets of types is
given with a cardinal parameter λ which is referred to as λ(I). We often
abbreviate AT^0 by AT and Sκ(τ) by S. Thus, if I is ATλ, an I-formula is
a type p with \p\ < X. In particular, if I is AT^0, which we often abbreviate
as AT, then an I-formula is an ordinary first order formula.

These notions correspond to those introduced by Shelah as follows: ATλ
to FJ, SETλ to FJ, and Sλ to Fj*. To obtain some of Shelah's more exotic
notions in this framework we must generalize the notion of implication.
Thus, the set F[ on page 155 of [Shelah 1978] would come from SETλ

by replacing 'implies' by 'does not fork over'. We have not investigated
exactly what properties of the implication notion are needed to make such
generalizations work.

In his more abstract treatment Shelah takes the following property as
the definition of A (I).

2.3 Exercise. For each collection of formulas I, A (I) is the least cardinal
such that for each p £ /, | dom* p\ < A (I).

2.4 Exercise. AT^0 is the notion discussed in Section IX.1.

The following properties are easily seen to hold for each I.

2.5 Proposition. Every set I of formulas satisfies the following closure
conditions.

i) I is closed under isomorphism.
ii) Ifq € I then any type (or strong type) obtained by changing the order

or names of variables in q is also in I.
iii) Any subtype of a type (strong type) in I is in I .
iv) Every type consisting of a single first order formula is in I.
v) //λ(I) is regular then I is closed under increasing unions of length

less than A (I). More generally, if the consistent type p = \Jpi, with
each Pi el for i < cf(λ(I)), then p G I.
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2.6 Exercise. Show every algebraic type is in I.

Note that ATλ C SETΛ and if λ > |Γ|, ATλ = SETλ.
The distinctions between the several variations on the term 'isolated'

made in the next definition are extremely important. Pay particular atten-
tion to the distinction between 'isolated over' and 'isolated by'.

2.7 Definition, i) The type p is I -isolated by q G I if q \- p.
ii) The type p is l-isolated over A if for some q € I , q \- p and dom* q

is contained in A.
m) The type p is l-isolated by A if for some q G I , q \- p and dom* q = A.
iv) The type p is I -isolated if for some q G /, p is I-isolated by q.

Ifp = £(c; B) is I-isolated over A and \A\ < λ(I), note that stp(c-, A) \- p.
(If I = SEΊΆ or ATλ we can replace sίp(c; A) by t(c\ A).) Moreover if p
is I-isolated by A then |A| < λ(I). This last conclusion fails if 'by A is
replaced by Over A\

2.8 Exercise. Use Lemma IV.3.12 to show that ί(α B) is S-isolated by
C C B if and only if stp(a; C) \- stp(a\ B).

There are several monotonicity and continuity properties which are eas-
ily seen to hold for any notion of isolation.

2.9 Exercise (Montonicity). If p C q C r and r is I-isolated by p then q is
I-isolated by p.

2.10 Exercise. (First Continuity Property) If (pi : i E a) is an increasing
sequence of types, each pi is I-isolated, and a < cf(λ(I)) then \Jpi is I-
isolated.

This result easily yields the following more useful formulation.

2.11 Exercise. If \F\ < cf (λ(I)) and for each Je F, t(a-,B(jJ) is I-isolated
then ί(α; B U F) is I-isolated.

2.12 Exercise. (Second Continuity Property) If (pi : ̂  € α) is an increasing
sequence of types, po is complete, each pi is I-isolated over £, and \B\ < λ(I)
then (Jpi is I-isolated over B.

2.13 Exercise. Show the necessity of restricting the cardinality of J or B
in the continuity properties. (Hint: consider £(v/2; Q) in the theory of dense
linear order.)

2.14 Exercise. Suppose ί(α B) is I-isolated and b e B. Show t(a^b',B)
is I-isolated.

Now we extend the notion of a tuple being isolated over a set to embrace
'the set B is isolated over the set A.' Since each set of I-formulas is closed
under permutations of the variables, whether t(b',A) is isolated over A
depends on the set enumerated by 6, not on the particular enumeration.
As usual we extend the notion to infinite sets by imposing a requirement
of finite character. Note, however, that just because every finite sequence
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from B is isolated over A, it does not mean that £(£?; A) is actually isolated
over A. (Consider the case when |^4| and \B\ are both much greater than
λ(I).) Accordingly, we introduce a new term: I-atomic.

2.15 Definition. Let A C B. If each finite sequence b from B is I-isolated
over A then B is I-atomic over A. If, in addition, B is the universe of a
model M, we say M is an I-atomic model over A.

Although the following notion is introduced as a technical tool, it has a
life of its own. A number of notions in stability theory can be profitably
investigated by looking at the construction rather than the result. We will
see this distinction at several stages in the proof of the uniqueness of prime
models. Another example is Shelah's use of F£ as a way of describing
independent families of models (cf. Section 6 and [Shelah 1978]).

2.16 Definition. An I-construction over A is a sequence E = {βj : j G J}
such that for each j G J, PJ = t(βj\ A U Ej) is I-isolated. When I is under-
stood we frequently simply say construction.

We sometimes write an I-construction as {(βj, Bj) : j G J}, where PJ is
I-isolated by Bj and B3: c A U Ej, if we need to keep track of the 'witnesses'
to the isolation of PJ over AU Ej.

To avoid double subscripts when quantifying over the elements of an
I-construction, when x — βj for some j, we write Pr(x) for the set of βi
with i < j and Bx for the witness to the isolation of t(χ-, A U Pr(x)).

The set C is I- constructive over A if C = A U E for some I-construction
E. Note, however, that a construction is a sequence; thus when we refer to a
construction we know both the order of construction and the way in which
the PJ were isolated during the construction. We will frequently write Cj
for A\JEj.

2.17 Lemma. Suppose λ(I) is regular. If B is I-constructive over AcB
andCcB then there is a C' with \C'\ < |C|+ + λ(I) such that CcC'CB
and A U C' is I-constructive over A.

Proof. For any set X C B let X' = \J{BX : x G X}; let Xn+l = X\J (Xn)f

and let X* = |J{*n : n < ω}. Note that |A"*| < λ(I) + |X|+. Now C7* is the
required subset of B.

As in the previous section, we want the result of any construction to be
atomic over the original set. The following axiom specializes to Lemma 1.11
by letting I = AT and setting A = B.

2.J.8 Transitivity Axiom. Let B C A and let \B\,\C\ < λ(I). Suppose
t(d', A U C) is I-isolated by B U C and for each ϋ G C, t(c\ A) is I-isolated
by B then for each c G C, t(d^c; A) is I-isolated by B.

2.19 Exercise. Show that if λ(I) is regular then the transitivity axiom
is implied by the following simpler formulation. If t(d', A U C) is I-isolated
over A U C and for each c G C, £(c; A) is I-isolated over B then for each
c G C, t(d^c; A) is I-isolated over B.
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To verify that SETλ satisfies the transitivity axiom, we need only the
following lemma.

2.20 Lemma. If B C A, ί(d; B U C) \- ί(d; AUC) and for each ceC,
t(c\ A) is implied by £(c; B) then for any c' G C7 t(d^c'; B) |— £(d^c'; A).

Proof. Fix c' £ C and a formula φ(x,y\~a) such that [= φ(d,c'\a). Since
£(d;5 U C) (̂  £(<M U C) there is a formula ψ(x,tf;b,cι) and a G! in
C with [= 0(d,c';&,cι) and f= ^(z,c';6,ci) — > φ(χ-,cf,a). Now, because
ί(c^cι B) J— ί(c'^cι A), we can choose a formula χ(y,^;6ι) such that

h=χ(c',cι;&ι) and

Now the formula (3^)(χ(|/,^, 61) Λ τ/;(x,^,5,^)) is in t(d^c'-, B) and implies
0(x,^;α). Choosing such a formula for each 0(x,y;α) G ί(d"^c/;-A) shows
ί(d~^£)M(^c';A).

2.21 Exercise. Prove that if A is regular the transitivity axiom holds for
SETλ and for ATλ.

In Section 3 we discuss in more detail the transposition axiom (Axiom
V.I of [Shelah 1978], Axiom IX.3.8_here): If ί(ά~6;C) is I-isolated by D
then ί(ά; C U 6) is I-isolated by D U b. The following exercise shows that in
the presence of the transposition axiom we obtain another simplification of
transitivity.

2.22 Exercise (Weak Transitivity). Show that if I satisfies the transposi-
tion axiom and the weakening of the transitivity axiom obtained by assum-
ing that ί(d; A U C) is isolated by C rather than B U C then I satisfies the
transitivity axiom, transitivity of isolation weak transitivity of isolation

In Section 3 we follow the treatment in [Pillay 1983a] and verify the
transitivity axiom for SA by first verifying the transposition axiom and
then the simpler version of transitivity. Illustrating the power of TeQ, we
give here a direct proof (due to Shelah) of transitivity for SΛ

2.23 Lemma. For every λ, S \-isolation satisfies the transitivity axiom.

Proof. As assumptions we have

i) stp(d] B U C) |- ί(d; A\JC) and
ii) stp(C-,B) |

We must show that for any c G C,

stptfΓc\B) \- tζdΓc A).

Translating to Γeq by Theorem VIII. 1.10 we have

i); i^(3;cl(BUC)) h £e q(d;cl(AuC)) and
ii)'
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Since cl(B) is algebraically closed, types and strong types over cl(J5) (in
Leq) are interchangeable. Applying Lemma IV.3.16 (in Teq) we have

ίeq(cl(βUί7);β) \-te(*(d(BuC);A).

To use Lemma 2.19, we rewrite and and apply monotonicity to get

i)" *eq(d; cl(5) U d(B U C}) \- ίeq(d; c\(A) U d(B U C)) and
ii)" te«(cl(B\jC)',cl(B)} |- £eq(cl(£ U C) cl(A)).

By Lemma 2.19 (used in Γeq), for any e E d(B U C),

Applying Lemma IV. 3. 16 in the other direction, we have

stp(d^e-,B) \- t(d^e-,A)

and we finish.

We return to the exposition of the general theory of isolation relations.

2.24 Theorem. Let I satisfy the transitivity axiom and suppose λ(I) = λ
is regular. If C is I-constructible over A then C is I-atomic over A.

Proof. We proceed by a series of observations.
i) If £(&; A) is I-isolated then A U b is I-atomic over A. This is immediate

from the transitivity axiom. Specifically, a typical element of A U b has the
form a^b where a G A. Certainly, ί(α; A) is I-isolated over A, say by α, and
by hypothesis, t(b',A) is I-isolated over A by some B. If B' = B U a then
by the transitivity axiom, t(~a"~^b', A) is I-isolated over A by 5', as required.

ii) Suppose A\ C A% C ^3, A% is I-atomic over A% and ^2 is I-atomic
over AI] then AS is I-atomic over A\. Suppose c E A$ and let p = ί(c; ̂ 2).
Then there is a j9_C ^2 with \B\ < X and p is I-isolated by β. For each
b G 5, let <3£ = ί(6; AI) and choose β^ C AI with |β |̂ < λ such that q^

is I-isolated by B-^. Let B0 = U{β^ : b G 5}. Since λ is regular, \BQ\ < λ.
Now p is I-isolated over BU BQ by the monotonicity property and for each
d € B, t(d\ AI) is I-isolated over B^ so by the transitivity axiom, ί(c^d; A)
is I-isolated over B0 for each d G £?. Thus, by i) AS is I-atomic over AI.

iii) The theorem now follows easily by induction on the length of the
construction.

Note that the regularity of λ(I) is needed for the second step.
The following notion tells us when in a construction we have realized

'enough' types.

2.25 Definition. The set C is I-saturated if for every B C (7, whenever
p E S(B) is I-isolated then p is realized in C. A model M is I-prime over A
if every elementary embedding of A into an I-saturated model, TV, can be
extended to an elementary embedding of M into TV. If M is I-constructible
over A and I-saturated we say M is strictly I-prime over A. If for each
A C Λt there is an I-prime model over A, we say T admits I-prime models.
A0(I) denotes the cardinality of the I-prime model over 0.
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Shelah calls the notion we refer to as strictly I-prime, I-primary. An
I-saturated model need not be I-prime.

Thus, if T is the theory of algebraically closed fields of characteristic
zero, the SETκ0-prime model of T is the algebraically closed field with
transcendence degree NO over the rationale.

2.26 Exercise. Show that any model of REF^, indeed of any theory, is
AT-saturated, but REF^ has no AT-prime model over the empty set.

The usual notion of λ-saturation is just I-saturation when I is SETλ.
For I = ATλ we get the notion of a λ-compact model. With this definition
we can link the notion of S-isolation introduced in this section with the
concept of strong saturation considered in Section III.2. The next lemma
verifies for SΛ the following observation (which obviously holds for ATλ
and SETλ). The model M is I-saturated if and only if every consistent
I-formula over M is realized in M.

2.27 Lemma. If X > κ(T), the model M is strongly λ-saturated iff M is
Sχ-saturated.

Proof. Suppose first that M is strongly λ-saturated. We have to show that
if A C M, \A\ <_λ, and q is almost over A then q is realized in M. Let c
realize q and let d realize an extension of q to a type over A U c which does
not fork over A. Then t(d', A U c) is finitely satisfiable almost over A. In
particular, t(d\ A U c) is finitely satisfied in M. By the definition of strong
λ-saturation, t(d', A\Jc) and a fortiori q is realized in M.

For the converse, suppose \B\ < X and £(c; B) is finitely satisfied in M.
That is, c IM B. Since λ > 7c(T), we can choose ACM with \A\ <λ such
that B [A M and c IA_M. Then by transitivity c [A B. Now let d G M
realize stp(c\ A)._Then d [A B and c [A B and they realize the same strong
type over A, so d realizes £(c; B) as required.

Recall that the existence of prime models in Section 1 depended on the
density of principal types. The next axiom extends this idea to the general
case.

2.28 Existence Axiom. If p is an I-formula over A C B then there is a
q G S(B) such that q is I-isolated by an I-formula QQ which implies p.

For SETλ and ATλ this axiom can be simplified by saying any I-formula
extends to an I-isolated type. The actual formulation is more clumsy be-
cause of the difficulty in describing an 'extension' of a type almost over A.

2.29 Exercise. Show the Existence Axiom implies that for every A and
every consistent formula φζx a) there is a p G S(A) which is I-isolated over
some subset of A and with φ(x',~a) G p.

2.30 Exercise. Show that if p G S(A), B C A C C, and p is I-isolated
over B then there is a q G S (C) such that p C q and q is I-isolated.

2.31 Exercise. Show that if T is ω-stable (and countable), T satisfies the
Existence Axiom for AT.
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It is somewhat more difficult to verify the Existence Axiom for SΛ The
key observation is that if A C B and p G S(A) has no extension to a type
in S(B) which forks over A then for any c realizing p, stp(c; A) |— stp(c-, B).

2.32 Theorem. For λ > /c(Γ), SA satisfies the Existence Axiom.

Proof. Let A C B and let p = stp(c;A) for some c. Let po = t(c;A). If
suffices to find a type p' with the domain of p' equal to A1 with yl C A' C B
and \A'\ < A such that p0 ^ P' and no extension of p' to a complete type
over B forks over A'. For, then if d realizes a nonforking extension of p7 to
a type over £, stp(d',A') is the required QQ. To find p', choose inductively
a set of pairs (p^, Ai) with ^4 = AQ C A» C .B and pi C pi+1 such that pt +ι
forks over ̂  = dompt and for each i, |Ai| < /c(T) + λ. Using the local
character of forking it is easy to construct such a sequence. However, by
the definition of κ(T) it must cease with some (pt,Ai) for i < κ(T) and pi
is an appropriate p7.

2.33 Exercise. If T is superstable, prove the Sκ(χ)-isolated types are
dense in S(A) for each A. (Hint: For each formula ψ(χ a) such that φ-+ψ,
minimize Rc(φ(x',b)) )

2.34 Exercise. If I satisfies the Existence Axiom, C is I-saturated if every
p £ S(C) which is I-isolated is realized in C.

2.35 Exercise. Show that if C is AT-saturated and T is atomistic then
C is a model of T.

We want to construct for any Λ, an I-saturated B containing A and,
if possible, of the same cardinality as A. To describe such a construction
we require one further invariant. This invariant allows us to discuss the
construction of S-saturated models in terms of the realization of ordinary
types.

2.36 Definition. //(I) is the least cardinal p such that any set D which
satisfies the following condition on D and p is I-saturated. If B C Z), \B\ < p,
and q 6 S(B) is I-isolated then q is realized in D. If no such p exists,
μ(I) = oo.

μ(I) is an entirely different notion from the μ(T) discussed in Sec-
tion III.4.

2.37 Exercise. Show μ(AΎκ) < K and μ(SETκ) < K.

Thus μ(I) < λ(I) in two of the common examples. However, for SΛ, this
inequality is no longer always true. The obstruction arises from the fact
that a complete type p over a set A may be implied by many different
strong types over finite subsets of A.

2.38 Exercise. Show that if T is REF^, then μ(S) = NI.

2.39 Lemma. μ(S) = /c(Γ) + NI-
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Proof. Let λ = κ(T) + NI Fix a D such that if B C D, q G S(-B), and \B\ < X
and q is ^-isolated then g is realized in D. Let C C D and suppose p G S(C)
is S-isolated by A. We must show p is realized in D. By Lemma 2.27
choose an extension p of p to S(D) which is also S-isolated. Without loss
of generality, we may assume p is S-isolated over A. Let a G Λt realize p.
Now choose (βi : i < ω) C D such that i(e^; A U i?t ) = ί(α; A U i?t ). Since for
each i < ω, |A U £7»| < λ, we may choose the e» G D. Now, as in Theorem
V.2.2, eω realizes p.

Now we show that if the Existence Axiom holds, T admits I-prime mod-
els.

2.40 Theorem, i) If I satisfies the Existence Axiom and μ(I) < oo then
every set A is contained in an I-saturated B which is I-constructible

over A and with \B\ <\A + 2|"(I)+IΓI.
ii) ////(I) = No then \B\ < \A\ + N0

Proof, ί) For any set C define C' as follows. Enumerate all types p such
that for some D with D C C, and \D\ < μ(I), p G S(D). Note that the

niunber of such types is less than max(|C|<μΦ,μ(I)lτl). Build a sequence
E = (βi : i < a) by letting each e» realize an extension of the iih such
type to a complete type over Ei\JC which is I-isolated. Such an extension
is guaranteed by the Existence Axiom. Let C' = C U E. Now define by
induction (CΊ : 7 < μ(I)+) wfth CQ = A and CΊ+\ = C'Ί and taking unions
at limits. By the definition of μ(I), C ,^+ is I-saturated. Note that by

induction \CΊ\ < hi x μi^+l71! so |Cμ(I)+| < |A + 2|^I)+IΓI.

ii) Under the additional hypothesis, \C'\ < max(|C|,μ(I)) = \C\ -h NO-
Thus, |B |< |Λ | + N0

Of course, for AT if we can construct I-saturated models containing A
at all, we can require their cardinality to be the same as max{|A|, |T|}. But
such a strong cardinality restriction is easily seen to fail if we extend even
to ATM l.

2.41 Exercise. Show that if T is countable, A0(S) < 2*V

2.42 Corollary. // 1 satisfies the Existence Axiom then for every set A

there is a strictly I-prime model M over A with \M\ < (\A\ + 2)lΓl+μ(I).

Note that if I satisfies the Existence Axiom, every I-saturated structure
is a model. In particular, if B is I-prime over A, then B is a model.

2.43 Exercise. The AT^ -prime model over the empty set of the theory of
infinitely many independent unary predicates has power of the continuum.

2.44 Exercise. The S^0-prime model of REFω has power 2*V

2.45 Exercise. Show if T is an uncountable theory such that for every
A C Λt, F(A) is atomistic then T admits AT-prime models over all sets.

It is easy to prove the following result by induction.
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2.46 Theorem, i) IfB is I-constructive over A and CO A is I-saturated
then there is an elementary embedding of B into C.

ii) If B is I-constructive over A, and B is I-saturated then B is I-prime
over A.

We can also show that every I-prime stucture is I-atomic.

2.47 Theorem. If B is ϊ-prime over A, then B is I-atomic over A.

Proof. Choose an I-saturated set C containing A which is I-constructible
as in Theorem 2.40. Then B can be embedded into C and C is I-atomic
over A by Theorem 2.24 so B is I-atomic over A.

It is not nearly so easy to show that if B is I-prime over A then B is
I-constructible over A. This has been shown only for countable stable theo-
ries which admit prime models over all sets. Indeed, the following question
remains open. Let T be a countable stable theory and let M be prime over
A (in the usual, AT, sense). Must M be AT-constructible over Al

2.48 Exercise (Sacks). The countable first order theory T is quasi-totally
transcendental (q.t.t.) if for each A the subset of S(A) consisting of points
whose Morley rank is less than oo is dense in S (A). Show that if T is q.t.t.
AT still satisfies all the properties it was shown to satisfy for an ω-stable
theory T in this section. (Only the Existence Axiom is nontrivial.) Conclude
that T admits prime models over sets.

2.49 Exercise. Suppose p G S(A) is AT-isolated and the multiplicity of p
is finite. Show that for any c realizing p, stp(c', A) is realized in every model
containing A.

2.50 Exercise. Show that an increasing union of sets which are I-atomic
over A is I-atomic over A. Conclude that if A C N there is a maximal subset
of N which is atomic over A. Show that the analogous result, replacing
atomic by constructive fails.

2.51 Historical Notes. The importance of discussing several notions of
isolation was discovered by Shelah. He presents two such families is [Shelah
1970] and [Shelah 1978]. This section is primarily a translation of Sections
IV. 1 and IV.2 of [Shelah 1978]. Shelah's Chapter IV contains not only a
larger collection of isolation relations but a valuable chart summing up the
properties of the various notions.

3. Bookkeeping Axioms for Isolation Relations

This brief section introduces some 'bookkeeping' axioms for isolation no-
tions. We separate them from the axioms in Section 2 because they are
somewhat more technical and are required only for the uniqueness as op-
posed to the existence of prime models. In the main these axioms deal with
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the continuing problem of how our various properties behave with respect
to the concatenation of two sequences. That is they attempt to capture the
relation between the isolation of the types £(c; A) and t(d; A) separately
and the isolation of t(c^d; A). We began this discussion for isolation with
the transitivity axiom in Section 2. The necessity to justify these axioms
could be regarded as a defect in our notation.

We show that under certain conditions if N is prime over A and b £ N
then TV is prime over A U 6. Note that the obvious statement of a symmetry
principle for isolation, 'If £(α; A(Jb) is I-isolated thenj(6; AUα) is I-isolated'
is false. This principal obviously fails if a £ A and b realizes a nonisolated
type over A U α. The following example is a little more complex.

3.1 Exercise. Consider Ehrenfeucht's example [Vaught 1961] of a theory
with 3 countable models: Th(Q, <, 0,1,2,...). Let M be the model of T with
α the least upper bound of {0,1,2,...} and b > a. Show ί(6; α) is AT-isolated
but £(α; b) is not.

3.2 Exercise. Find an example of two sequences α and 6 and a set A such
that both t(a;A) and t(b', A) are AT-isolated but £(ZΓ^6; A) is not.

We can, however, weaken this version of the symmetry property and
obtain a principle both useful and true.

3.3 Symmetry Axiom for Isolation. If £(α;B)_is I-isolated by C C B
and ί(5; B) is I-isolated by D C B then ί(ά; B U 5) is I-isolated by C iff
t(b\ B U α) is I-isolated by D.

Remember that we formulated I-isolation in terms of ί\—' and a col-
lection of I-formulas. The difficulty with symmetry comes not from ς|—'
but from the difficulty in making the set of formulas in the hypothesis an
I-formula. The key to seeing that the symmetry principle holds is to realize
the notation t(A; C} \- t(A; C(JD) disguises the role of D. Remember that
t(A', C U D) may be thought of as a collection of sentences with names for
the elements of A, (7, and D. The side of the semicolon on which a partic-
ular name appears changes our view of the name but not its role in the set
of sentences. Thus, Diag(A U B) and t(A; B) contain the same formulas. In
more detail, consider the meaning of the statements:

t(A\ B) \- t(A\ BUG) and t(C\ B} \- t(C\ B U A).

The first means:

Γ U Diag(β U C) U t(A\ B) \- t(A; B U C).

The second means:

T U Diag(£ U A) U t(C; B} (- t(C\ B U A).

Consideration of the latter two statements should easily show you that the
first two are equivalent. In our earlier notation all of these statements mean
t(A B}A-™t(C;B}.

3.4 Exercise. Verify that AT satisfies this axiom.
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3.5 Lemma. AT A satisfies the symmetry axiom.

Proof. From the hypotheses of the symmetry axiom, we have p |— £(α; B]
and q \- ί(6; B\Ja) where p C t(a; C),qC £(ft; £)) for some (7, £> contained
in B and |p|, |<?| < λ. That is,

^ U Diag(£ U α) |- f (5; £ U α).

But then,
p U Diag(£ U 5) |- ί(ό; S U ft)

since Diag(£ U 6) |- q and p U Diag(£) |- Diag(β U α). Thus, t(ά £ U 6) is
ATλ-isolated by C.

Note that in the proof we did not use the hypothesis that t(b]B) is
I-isolated; it is required for the converse.

Invoking Teq we proved the strong form of the transitivity axiom for SΛ
in Lemma 2.23. Using a rudimentary form of symmetry for strong types,
we will verify the weak version of transitivity for SΛ Recall from Exercise
2.22 that in the presence of transposition the two forms of transitivity are
equivalent. Now we formally introduce the axiom of transposition and verify
that it holds for ATλ, SETλ, and SΛ With the aid of transposition we
will show that symmetry holds for SA We require two preliminary lemmas.

3.6 Lemma. stp(a;B) |— stp(a-,B\Jc) implies stp(c-,B) \- stp(c]B\Jά).

Proof. The hypothesis yields that for any c' realizing stp(c\ J3), c' IB a. The
lemma follows since strong types are stationary.

3.7 Lemma. //£(5; A U C} is Sχ-isolated by C and for each c€C, ί(c; A)
is Sχ-isolated by B then for each c E C, ί(d^c; A) is Sχ-isolated by B.

Proof. We want to show that stp(d^c', B) \- £(cΓ"c; A) for each c G C. By
Lemma 3.6, it suffices to show that for each ά E A,

stpfa B) \- stp(a-, B U C U d).

To see this, fix α E A. By hypothesis, stp(c; B) \- stp(c; A) so by Lemma
3.6,_θίp(α;B) |- stp(ά\B U c). But, stp(d;C] \- stp(d\A\jC) so clearly
stp(d', B\JC) |- stp(d;_A\jC). For any α G A, by Lemma 3.6 again, θίp(α; B(J
C) \- stp(a-, B U C U d). But then s£p(α; B) \- stpfa BUCUd).

We often make use of the observation that t(a^b) and ί(ά ft) carry the
same information. When dealing with isolation we must be a little fussy.
We encode this fussiness in the transposition axiom.

3.8 Transposition Axiom. If t(a^b', C) is I-isolated by D then £(α; C U
ft) is I-isolated by D U ft.

3.9 Lemma. The transposition axiom holds for SEΎχ .

Proof. _Let p = t(ά~b;C) and fix q G S(D) such that q \- p. Let <?' be
{0(x; 6) : φ(x; y) € q}. Clearly ςf h t(ά; C U 6).
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3.10 Exercise. Verify that AΎK satisfies the transposition axiom.

The verification of this axiom for SA is only slightly more difficult.

3.11 Lemma. SΛ obeys the transposition axiom.

Proof. Note that 8tp(ά±D\Jb) = stp(a'-,D U 6) implies jLemma IV.3.19)
stp(a^b',D) = stp(a'^b',D). This, injurn, implies t(a^b',C) = t(a'^b;C)
which implies £(α; C U 6) = t(a!\ D U V) and we finish.

3.12 Lemma. The symmetry axiom holds for S\.

Proof. We have 8tp(a;C) \- stp(a',B\Jb) and stp(b',D) \- stp(b;B). We
want to show stp(b-,D) \- stpfaB \Ja). Clearly, stp(a\C] \- stp(a'LB Uδ)
implies stp(ά', B) \- stp(a\ BUb). But then, Lemma 3.6 yields stp(b', B) \-
stp(b', B U a). As, sίp(6; D) \— stp(b', B) we have the result.

If λ(I) is regular, we can extend the transposition axiom.

3.13 Lemma (Generalized Transposition). Suppose I satisfies the trans-
position axiom, \C\ < λ(7), λ(I) is regular, andaUC is ϊ-atomic over B
then £(α; B U C) is l-isolated.

Proof. By the transposition axiom, for each c G C £(α; B U c) is I-isolated.
By the first continuity property (Exercise 2.10) we have the result.

With the aid of the transitivity axiom, we can prove a converse to the
transposition axiom which allows us to decompose sequences for isolation
just as we did for independence in Chapter II.

3.14 Lemma. Suppose I satisfies the transposition and transitivity ax-
ioms. Then the following are equivalent.

i) t(a^b;A) is I-isolated over B.
ii) £(α; A U b) is l-isolated over B\Jb and t(6; A) is I-isolated over B.

Proof. The result is immediate from the axioms cited.

3.15 Historical Notes. Most of this material is from Chapter IV of [She-
lah 1978]. The proof of transitivity for S without recourse to Teq is taken
from Chapter 8 of [Pillay 1983a]. The proof here of symmetry for ATλ
seems to be the natural attack. The more complicated argument used here
for SA was used by Shelah in both cases.

4 Uniqueness Of Strictly Prime Models

In this section we prove, assuming that λ(I) is regular, that if M and TV are
both I-constructible over A and I-saturated, that is, if M and N are strictly
I-prime over A, then M and N are isomorphic over A. In Chapter X, we will
invoke properties of the freeness relation to show that this result extends
to prime models over A if T is a countable stable theory which admits



4. Uniqueness Of Strictly Prime Models 205

prime models. In particular, these arguments yield that prime models for
two of the categories we have discussed in detail, AT-prime and S-prime,
are unique, at least when the theory is countable and stable.

Since strictly prime models are prime it is immediate that two strictly
prime models over a set A can each be embedded in the other. Thus,
by the Schroder-Bernstein theorem they have the same cardinality. We
want to extend this Schroder-Bernstein phenomena from the category of
set mappings to the category of elementary embeddings. We will construct
a back-and-forth to create the isomorphism.

There are three steps to the argument showing that there is a unique (up
to isomorphism over A) I-saturated, I-constructible model over A. We first
note that this result holds outright if the construction is not too long. Then
we show how to break an arbitrary construction into pieces to which the
first argument applies. Finally, we stitch the pieces together by the general
methods of back-and-forths. The next two lemmas combine to prove, in
Theorem 4.3, the 'short' case of the theorem. They follow easily from the
generalized transposition property (Lemma 3.13) and we leave them as an
exercise.

4.1 Lemma. If E = (ei : i < a) is an I-construction over A, C C. E,
\C\ < A(I)? and A (I) is regular then (eι : i < α) is an I-construction over
AUG.

The following somewhat weaker conclusion also holds: D = E — C =
(dj : j < δ) is constructive over A U C.

4.2 Lemma. If E = (βi :i < a) is an I-construction over A and B C E
with \B\ < λ(I)) and λ(I) is regular then B is I-constructible over A.

4.3 Theorem. If M and N are strictly I-prime over A and \M\ < λ(I)
then M « N.

4.4 Exercise. Prove Lemma 4.1, Lemma 4.2, and Theorem 4.3.

4.5 Exercise. If \E\ < λ(I), λ(I) is regular, and E is constructive over A
then E is constructible over A under any wellordering of E with ordinal
less than λ(I).

4.6 Exercise. Show that although the rationale may be constructed as an
AT-prime model of the theory of dense linear order, there are wellorderings
of type greater than ω under which they are not constructible.

4.7 Exercise. Suppose \A\, \B\ < λ(I) and A (I) is regular. Show that if
B C N for some N which is I-prime over M U A, then if TV' is a strictly
I-prime model over M\JB and A C AT', AT7 is strictly I-prime over M U A.

We are able to show the isomorphism exists in Theorem 4.3 because each
initial segment of a short construction is sufficiently nice. For the general
case, it suffices by [Kueker 1970] to find a set, J, of partial isomorphisms
between M and N each with cardinality less than M such that J is closed
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under increasing unions with cardinality less than cf(|M|) and J satisfies
the following back and forth conditions.

(V0 E J)(Vm g dom0)(30ι € J)(gι 3 0 Λ ra E dom0ι)

E

The actual construction of J will require further restrictions on the domains
of the partial isomorphisms. That is, we must find some nice subsets of a
construction such that if the domain and range of a partial isomorphism are
nice then it can be extended. The crucial step in establishing uniqueness is
to see that any subset of a construction is contained in a nice set which is
not much larger than itself. The criteria for B being a nice subset of the
construction of E over A is that both B should be constructive over A
and E - B should be constructive over A U B. The following definition
provides a more concrete way to identify such subsets.

4.8 Definition. If {(βi, Bi) : i < a} is a construction over A, then a subset
C C E is dosed (relative to the construction E) if for each βi G C, Bi C

If C is a closed subset of the construction E then we can reorder the
construction and put C first. More formally:

4.9 Notation, i) Let E — (βi : i < a) and suppose C C E. Then <c is
the following linear order on α.

a) If βi G C and e3 E E - C then i <c j.
b) Restrict the ordering < to C and to E — C.

ii) Let 7 be the ordinal of <c restricted to C and write C — {ci : i < 7}.
Let D denote E - C = {di : i < δ }. Define maps f:δt-+a and 0 : 7 1-> α
by f ( i ) = j if €j = di and g(i) = j if βj = c^.

It is easy to see that if C is a closed subset of the construction E over
A then C U A is constructive over A by {{c;, -Bg(<)> : i <c Ί}- We proceed
to the somewhat harder fact that in this situation E U A is constructive
over A U C.

4.10 Lemma. If C is a closed subset of the construction E over A then
E — C = D is constructible over A U C by {{dy, #/(.?)) j<δ}

Proof. We have to show that for each j < δ, PJ = t(df, A U C U D3 ) is
I-isolated by B/y). For this, we fix j and show by induction on k < 7
that t(df,Dj U A U Ck U £/(») is I-isolated by Bf(jy Since CO = 0, the
ground case of the induction is trivial. The second continuity property
described in Exercise 2.12 guarantees that the condition is preserved at
limit ordinals. So suppose k = I + 1. If Ck preceded dj in the original ordering
the result is clear by monotonicity. So suppose f(j) < g(k) and thus that
Bf(j) C Ck U DJ : U A with t(ck', A U <?/ U JD>+ι) I-isolated. By induction,
ί(dj ; DJ (JCi U A) is I-isolated by Bf(jγ Applying 3.3 (the symmetry axiom
for isolation) t(dj , Dj U Ck U A) is I-isolated by Bf(j) as required.
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4.11 Corollary. If E is constructive over A and C C C' C E with C and
C' dosed, then C' is closed in the construction (dj : j < δ ) of A U D over
AUG. Thus A\JC' is constructible over A\JC.

Proof. By Lemma 4.10, t(dj\ A U C U Dj} is I-isolated by Bf(jy Since <c

agrees with < on D, JB/yj C D3 : U C U A.

It is even easier to see that if E is constructible over A, C is closed in
E, and D C E — C is closed in the <c-ordered construction of E — C over
A U C then C \J D is closed in £.

We now state the main theorem of this section. We then sketch the proof,
indicating two lemmas which we still must prove. Then we will prove those
two lemmas.

4.12 Theorem. Let E and F be l-prime and I- constructible over A. If
A (I) is regular then E is isomorphic to F over A.

Proof. We noticed in Theorem 4.3 that it suffices to consider the case \E\>
A (I). Let J be the collection of partial ^-isomorphisms between E and F
such that each g G J satisfies the following conditions.

i) dom g is a closed subset of E.
ii) rng g is a closed subset of F.

iii) I dom 0| < \E\

We must show that J is closed under the union of increasing chains with
cardinality less than cf(|£7|) and that J satisfies the following back and
forth conditions.

(V0 G J)(Ve £ dom0)(30ι G J ) ( g l ^.g/\e

(V0 G J)(V/ g rng0)(Ξ0ι G J)(<?ι D </Λ / G rng^).

The closure under increasing chains is immediate. In order to treat the
successor stages we have to show each point can be embedded in a small
closed set (Lemma 4.12) and then use the results on short sequences to
extend the map to the closed sets. The following lemma is a slightly refined
version of Lemma 2.17.

4.13 Lemma. Suppose A (I) is regular. Let E = {(βi,Bi) : i < ot} be a
construction over A and D C E with \D\ < A (I). There exists a closed
subset C of E with D CC and \C\ < A (I).

Proof. Define (d :i < ω) by induction: C0 = D, C^+i = \j{Bj : βj G C»}
and let C = \Ji<ωCi. Clearly, if λ(I) > N0 then \C\ < λ(I). If λ(I) - N0,
define a partial order < on C by: βi is immediately below βj if and only
if βi G BJ. It is easy to see that (C, <) is a finite branching tree with no
infinite branch, so, by Kόnig's lemma, the tree has only finitely many nodes

and so \C\ < N0

There is one more crucial lemma (Lemma 4.14) which enables us to
conclude Theorem 4.12. To apply Lemma 4.14 to the proof of Theorem



208 IX. Atomic and Prime Models

4.12, let B from Lemma 4.14 be A U rng g = A U dom 0, where we identify
the domain and range of g via g.

4.14 Lemma. Suppose λ(I) is regular. Let E and F be I-constructive and
I-saturated over B and e G E. There is a partial B-isomorphism g between
E and F with e G dom g and such that both dom g and rng g are closed, and
|dom0|<λ(I).

Proof. We will define an increasing sequence of maps (gι :i <ω) such that,
denoting dom& by Ci and rng^ by JDt , we have e G CO, |C;|, |A| < λ(I),
and C<2i (Dzi+i) is closed in E (F). Choose by Lemma 4.13 a closed subset
Co containing e with |Co| < λ(I). Let go map Co into F and let D-ι
be empty. Suppose (/&, Ck and DI for fc < 2i, / < 2i have been chosen
as required. We will construct D^i, D^+i, C^+i, and C2ι+2 Let
be the range of g^. Choose by Lemma 4.13 a set D<2i+ι containing
which is closed and with |Z?2t+ι| < λ(I). Since F is constructive over B
and |Z?2t| < λ(I), by Lemma 4.1 F is constructive over B U D H. Since
|Z?2z+ι — Dzi\ < λ(I) by Lemma 4.2, D^+i — D^i is constructive over
BuDzi. So by Theorem 2.46 there is an (B U £>2t)-embedding of B U D2i+1

into E. Call this map, which extends g<n, g^+i- Let C2i+ι be the image of
this map and construct 621+2 by Lemma 4.13. Now, g = U& is the required
map.

4.15 Historical Notes. A full discussion of the history of the uniqueness
theorem for prime models is given in Section X.3 We only mention here
that the straightforward proof for strictly prime models is due to Ressayre
(unpublished).

5. Locally Atomic Models

One of the principal difficulties in the study of general stable theories is
the lack of prime models over arbitrary sets. This section is devoted to a
substitute notion, locally atomic models. We develop a notion of L-atomic
such that every subset of M for a countable stable theory can be embed-
ded in an L-saturated model. Unfortunately, there is no natural algebraic
version of this notion of atomicity. That is, there does not seem to be a
reasonable meaning for the phrase locally prime. However, as we will see in
this section, locally atomic models are very useful for proving two cardinal
theorems. They work well for this purpose because locally atomic models
allow one to omit nonprincipal Δ-types for finite sets of formulas Δ and this
is exactly what is needed for two cardinal theorems. Moreover, we will be
able to use the existence theorem proved in this section to partially extend
results about u -stable theories to small superstable theories. Throughout
this section T is stable.

The development here can not be given as a straightforward example
of the type of isolation relation considered in Section IX.2. Shelah [Shelah
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1978] developed a rubric which included both examples. However, to sim-
plify the earlier exposition we used a scheme into which this notion does
not fit very well. In this context we must modify our scheme somewhat.
We define the class of L-formulas to be exactly the set AT of first order
formulas. We vary the notion of isolation by substituting a weakened form
of implication.

5.1 Definition. Let T be a countable stable theory. The type p G S(A)
is L-implied (written |— L ) by p\B for some countable B C A if for every
formula φ(x;y) there is a formula ψφ(x;b) G p\B such that ψφ(χ-,b) \- pφ.
We also say p\B locally isolates (L-isolates) p. Let λ(L) = NI. As in Section
IX.2, we have a corresponding notion of L-atomic. The structure A is L-
saturated if every consistent L-formula over A is realized in A.

We noticed in Section IX.2 the equivalence (for the I discussed there) of
two notions of I-saturation: i) Each type implied by a consistent I-formula
is realized; ii) Each I-formula is realized. Since an L-isolated type need not
be implied by a single L-formula this equivalence does not hold here. This
divergence accounts for the nonuniformity of the proofs of Theorem X.I. 18,
Corollary X.I.19, etc. in the next chapter. Under the notion of L-saturation
which we have chosen every model of a stable theory is L-saturated.

The choice of λ(L) as NI makes λ(L) the bound on the size of an isolating
set so it shares the crucial property of the λ(I) for the other I. This defini-
tion of local isolation differs slightly from the definition of F^ in [Shelah
1978], IV.2. Pillay pointed out that the two definitions are equivalent. The
following exercise verifies this assertion.

5.2 Exercise. Show that the type p G S(A) is L-implied by p\B for some
countable B C A if for every φ(x',y) there is a formula ψφ(χ-,b) G p\B such
that ψφ(χ-,b) \- Pφ where p^ = {φ(x',a) : φ(x',ά) G p}. (Hint: Show that if

•φφ \- p~£ and φ'φ |- p+φ then φφ Λ ψ'φ \- pφ.)

Note that pφ differs from pφ since it does not contain instances of the
negation of φ.

Although the isolating formulas for L-isolation involve only finitely many
parameters we can in general isolate the type of an element only by using
countably many elements.

5.3 Exercise. Show that if p is L-isolated over B, then p is AT^ isolated
over B.

Just as in Definition 2.7 we can define the notions of p being locally
isolated by B or over B.

5.4 Exercise. Verify that L-isolation satisfies the continuity and mono-
tonicity properties elaborated in Exercises 2.10 through 2.14.

To show that every subset of a model of a countable stable theory can be
embedded in an L-saturated model we show that L satisfies the existence
and transitivity axioms. For this task we use the local rank defined in
Definition III. 1.10.
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5.5 Lemma. For any set A and any formula χ(x α) over A, there is a
type p G S(A) with χ(x α) G p and with p locally isolated by a countable
subset of A.

Proof. Fix χ(x;α) G F(A) and an enumeration (φi(x; y):i< ω) of F(T). We
define by induction a sequence of types pn such that p = \Jn<ωPn locally
implies a complete type over A and χ(x α) G p. First, let po = {χ(z ά)}.
If pn has been defined, let pn+ι = Pn U {Ψn&άn}} where ψn is chosen so
that Λ(pn+ι,0n) is minimal among all consistent extensions of pn over A.
It suffices to show that for any ^(x c) G ̂ (A), if p U ψ(x;c) is consistent
then for some n < u>, pn \- t/>(x;c). For, then p has a unique consistent
extension <j G 5(A) and p |—χ, #. To see this, fix such a ψ(x',c) and let
t/>(x;17) be </>m. If pm+ι U -ι^(x c) is also consistent then both that type
and pm+ι U ψ(x;c) have ranks at least as great as R(p<m+ι,Φm) by the
choice of pm+ι. But this contradicts the definition of R(pm+ι,φm)

5.6 Exercise. Show that for uncountable T, we can define L-isolation as
we did for countable languages but that we must take |T|+ for λ(L).

5.7 Lemma. L-isolation satisfies the transitivity axiom.

Proof. Assume we have B C A such that p = t(d; A U (?) is locally isolated
over B U C and for each c G (?, ί(c; A) is locally isolated over B. We must
show that for any c' G (?, £(cΓ"c'; A) is locally isolated over B. That is, for
any formula </>(x,|/;2) we must find a formula ψ(x,y',V) over B such that if
(= 0(3,c';ά) with α G A then |= ^(x,y;5) -* 0(x,^;_α). We have a formula
χ(x; 61, Ci) such that χ(x; &ι, Ci) —»• 0(x; c, ά) where 61 G B and GI G (? since
£(d; A U (?) is locally isolated over B U (?. Moreover, there is a φι(y,~z; 62)
such that |= 0ι(c,cι;&2) and

(= [0ι(y,^;62) ̂  ((Vx)χ(x,6ι,^) -> 0(x,y,άι))]

since t(c^cι; A) is locally isolated over β. Now, (3z)φι(y,~z, 62) Λχ(x, &ι,^)
is the required formula V>(x,y; 6) where 6 = 61 "62-

Recall Definition 2.36 of μ(I). The following exercise depends crucially
on our definition (Definition 5.1) of L-saturation.

5.8 Exercise. Show that μ(L) = NQ

Now by a proof like that of Theorem 2.40 we can deduce

5.9 Theorem. // T is a countable stable theory then every set A is con-
tained in a modelM with \M\ < \A\ + No which isL-saturated andL-atomic
over A.

L-isolation does not satisfy the transposition property (Axiom 3.8).
Thus, the proof of the uniqueness of strictly prime models given in Sec-
tion 4 does not work for this notion.

5.10 Exercise. Verify the failure of the transposition property by consid-
ering the theory, Γ, of an infinite set. If M (= T and m G M, then t(M; 0)
is L-atomic but £(ra;M — {m}) is not L-isolated.
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5.11 Exercise. Show that if Γ is the theory of infinitely many indepen-
dent unary predicates, T has 2**° non-isomorphic models which are all
L-constructible over the empty set.

Now we use this construction to prove the two cardinal theorem for stable
theories. This will complete the proof of Morley's categoricity theorem from
Section 1.3.

5.12 Definition. The theory T admits the pair of cardinals (/c, λ) if for
some formula φ(χ-, m) and some model M of T, \M\ = K and |0(M, m)| = λ.
We also say, T has a (/c, λ) model.

5.13 Theorem. // a countable stable theory admits some pair (/c, λ) with
K > λ then it admits any pair (/c7, λ') with κr > λ1.

Proof. Assuming the hypothesis, it is easy to show by the Lδwenheim-
Skolem theorem that there is a pair of models M, N of T with |M| = \N\ =
λ' such that TV is a proper submodel of M but φ(N,n) = φ(M,n) for some
ή £ TV. We will show how to construct from any such pair of models a
third model M' which is a proper elementary extension of M but with
φ(M',n) = φ(N,n). With this in hand it is easy to construct by induction
on a < K1 a chain of models Ma such that for all α, φ(Ma,n) = φ(N,n).
The union of this chain demonstrates that T admits (/c7, λ7).

To construct M7, let a be an arbitrary element of M — TV and let c
realize the nonforking extension over M of £(α;TV). We claim that for any
formula t/>(z, m, y) over M, if |= (3y)(ψ(c, m, y) Λ φ ( y , n)} then for some c7 in
</>(TV, ra), |= ψ(c, m, c'). To see this, let d define t(a; TV). For every n1 G TV, if
|= (3y)(ψ(a,ή',y) /\φ(y,n)) then for some c0 GTV, |= ι/>(α,n7,co) Λ0(co,ή).
Thus

(Vz)[d((3y)ψ(x,z,y)Λφ(y,n))[z,y] -+ (3y)(φ(y,n) Λ d ( ψ ( x , z , y ) ) [ z , y ] ) ]

is true. Since this formula also holds of c we establish the claim.
Now let M7 be locally atomic over M U c. If some element d of M7 — TV

satisfies </>(rf,ή), then by local atomicity there is a formula ^(c,m, x) such
that f=^(c,m,x) —>0(z,m) and t=t/>(e,m, x) -+x^nior each n in φ(N,n).
But this contradicts the choice of c and we finish the theorem.

5.15 Exercise. Verify the first sentence of the proof of Theorem 5.14.
(Hint: Let M witness that T admits (/c, λ). Choose an elementary submodel
of M which contains φ(M,m) but has cardinality λ. Add to the language a
unary predicate to pick out this submodel and then apply the Lόwenheim-
Skolem theorem.)

5.16 Exercise. Prove that any countable stable theory which admits a
two cardinal model admits (α;ι,α;). Apply the technique from Theorem
5.14 to build a chain of models but replace the use of locally atomic models
by an application of the omitting types theorem.

We can extend the two cardinal theorem to uncountable languages as
follows. Recall that Vaught's two cardinal theorem for cardinals far apart,
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[Vaught 1965], asserts that if a theory T has a (/c, λ) model with /c >
then T has a (tf',λ') model for any pair κf > X' > \T\. The key step in
Vaught's proof is to show that in the Skolem theory of T the set of sentences
which express the following properties is consistent. First, {(cn : n < ω)} is
a set of order indiscernibles in L(T}. Second, if U denotes the distinguished
predicate and c, c' are increasing sequences of the indiscernibles which sat-
isfy {/, then for any Skolem function r, τ(c) = τ(c'). Since every reduct of
a stable theory T to a countable language is stable, we can easily establish
the consistency of this set of sentences by appealing to the two cardinal
theorem for countable stable theories. We have outlined the proof of the
following theorem.

5.17 Theorem. // a stable theory admits some pair (AC, λ) with /c > λ then
it admits any pair (/c', λ') with K' > X' > \T\.

We pointed out in Exercise 5.6 that the notion of locally atomic models
extends to uncountable languages. Using this observation there is another
approach to the two cardinal theorem for uncountable theories.

5.18 Exercise. Derive Theorem 5.17 by a proof in the style of the proof
given for Theorem 5.14.

5.19 Historical Notes. The study of two cardinal theorems began with
Vaught's proof [Vaught 1961] that an NI -categorical theory could not have
a two cardinal model. He deduced this result from the transfer princi-
ple (tt,λ) i—» (NI,NO) which he showed holds for an arbitrary countable
first order theory in that same paper. Vaught [Vaught 1965] and Mor-
ley [Morley 1965a] then independently showed that for a countable theory
T, (2ω,ω) «-> (/c,ω) for any /c. Attempts to extend these results to arbi-
trary first order theories led via the Chang two cardinal theorem [Chang
& Keisler 1973] to problems which are more set theoretic than model theo-
retic in character. Shelah [Shelah 1969] and Lachlan [Lachlan 1972] restored
the subject to the realm of model theory by discovering the relevance of
assuming that the theory is stable. The general outline of the proof of The-
orem 5.14 comes from [Lachlan 1972]. The exact construction here is from
[Lascar 1973]; a similar version of the proof using conservative extensions
and compactness rather than definability occurs in [Baldwin 1975]. The
concept of a locally atomic model, though not the name, occurs in [Lach-
lan 1972] and [Shelah 1971]. Lachlan dealt only with countable languages
while Shelah included the uncountable case. There are various extensions
of this notion in [Shelah 1978]. The two cardinal theorem for uncountable
stable theories was originally proved by Shelah in his thesis invoking an
absoluteness argument. Harnik outlines five different proofs of the theorem
in [Harnik 1975]. Alan Mekler brought this fairly direct proof to my atten-
tion when he discovered it; Harnik had earlier noted its existence in the
cited paper.
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6. The Number of Models of Strictly Stable Theo-
ries

This section is devoted to a proof that a strictly stable (i.e. a stable but
not superstable theory) has 2λ models of power λ if λ > \T\ and λ is
regular. In Chapter VIII of [Shelah 1978], the result is proved by much
more complicated extensions of the methods here for arbitrary λ > \T\.
The idea of Shelah's proof was discussed in Section 1.5.

Our proof will require three ingredients. The first is the existence of a
certain indiscernible tree if T is stable but not superstable. This was proved
in Theorem III.4.25. The second is the development of the properties of a
further notion of isolation. The third is certain combinatorial facts about
stationary sets.

We begin by describing a notion of isolation which does not fit partic-
ularly well with the scheme we have described in Section 2; however, we
are already very familiar its properties. Throughout this section we assume
that T is stable.

6.1 Definition. The type p E S(A) is FΛ isolated if there is a subset B
contained in A with \A\ < λ such that p does not fork over B. We will write
F f o r F κ 0 .

Shelah calls this notion FΛ-isolation.

Note that we can squeeze this notion into our general scheme by taking
as the set of isolating formulas the collection ATχ but replacing the relation
of provability by the notion q 'pseudoproves' p if p is a nonforking extension
of q. With this in mind we can continue to use the terminology defined in
Sections 2 and 3.

6.2 Exercise. Show that any p is FAC(T)-isolated.

Thus, when discussing countable models the only interesting case is that
of FNO and then only when T is not superstable. It is easy to see that
the basic properties of an isolation relation discussed in section 2 hold for
Fλ-isolation.

6.3 Exercise. Show that for any λ, Fλ-isolation satisfies the monotonicity
and continuity properties discussed in Exercises 2.9 through 2.14.

6.4 Exercise. Deduce the symmetry, transitivity, and transposition prop-
erties of Fλ-isolation from the analogous statements in Chapter III.

The anomaly of suddenly treating as a dependence notion the concept
we have regarded as a notion of independence for much of the book has
no clear explanation. There is one property of the other isolation relations
which is not shared by Fλ and this provides some insight. For any of the
other isolation relations, I, there is a cardinal μ(I) < oo which enables us
(Theorem 2.40), in the presence of the Existence Axiom, to embed each set
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in an I-saturated model. In this case no such cardinal exists and, in fact,
there are no Fλ-saturated models.

However, the Existence Axiom, 2.28, is easily seen to hold for FA- Thus, a
variant of the proof of Theorem 2.40 shows the existence of Fλ-constructible
models over arbitrary sets.

6.5 Lemma. IfT is stable then over A there is an ¥χ-constructive model.

Proof. Enumerate the types over A and realize them in order by an element
which does not fork over its predecessors in the sequence. Iterating this
procedure ω times produces a model of T.

Note that this model is by no means prime in the normal sense.

6.6 Exercise. Show that there are two models of the theory of infinitely
many independent unary predicates which are each F-constructible over
the empty set such that neither can be embedded in the other.

Before proving the main theorem, we require the following combinatorial
notions.

6.7 Definition. A subset C of the cardinal λ is closed and unbounded
(cub) if

i) for every α < λ there is a β E C with a < β, and
ii) if X C C and \X\ < λ then sup(X) G C.

A subset S of λ is stationary if S intersects every cub.

The key facts needed about these sets are contained in the following
lemma. The proof of this lemma can be found in a number of works on set
theory, e.g. [Kunen 1980].

6.8 Lemma. Let X > N0 be regular.

i) The set, AQ, of a < λ with cofinality ω is stationary.
ii) For any strictly increasing continuous function (in the order topology

on X) g from λ to itself, the set

C = {i < X: for all j < i, g(j + ω) < i}

is a cub.

uί) There exist a family of X pairwise disjoint stationary subsets of X.
iv) There exist a family (Wi :i<2x) of stationary subsets of X such that

if i Φ 3 then Wi — Wj is stationary. The same result holds replacing
X by ΛO

Statements i) and ii) of the lemma are fairly straightforward from the
definitions. Statement iii) is a well known theorem of Ulam (See Theorem
1.3.2 in the Appendix of [Shelah 1978] or Corollary 6.12 of [Kunen 1980].)
The following exercises indicate how iv) can be fairly easily deduced from
iii).
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6.9 Exercise. Show there exist a family of 2Λ pairwise incomparable sub-
sets of λ. (That is, subsets satisfying iv) but with Wi —Wj^Q replacing
the requirement that Wi — Wj is stationary.) (Hint: Almost disjoint sets
suffice. Two sets are almost disjoint if their intersection is finite. )

6.10 Exercise. Combine the previous exercise with iii) to obtain iv).

To aid the comprehension of the following complicated argument we fix
a number of notational conventions for this section.

6.11 Notation. Elements of X<ω (finite sequences of ordinals < λ) are
denoted by s or £; elements of λ^ (countable sequences of ordinals < λ) are
denoted by σ or r; elements of λ-ω = λ<ω U λω are denoted by v or η.

We denote by / the structure (λ-ω, C, <) with the indicated universe,
with C interpreted as initial segment relation between functions, and with
< interpreted as lexicographic order.

The following assertion can be easily derived from Theorem IΠ.4.25.

6.12 Lemma. // T is stable but not superstable then for every infinite
cardinal X there is a model M, which contains a set A = {aη : η E λ-ω}
with the following property. For each B C A and each η G Xω, if B contains
{άη\n :n<ω} then t(aη; B) is not F-isolated. Moreover, A is an independent
tree in the sense of Definition II.2.25.

We fix the tree A from Lemma 6.12 for the remainder of this section.

6.13 Theorem. If T is stable but not superstable then for every regular

λ>m/(λ,τ) = 2λ.
Proof. Recall that ΛQ denotes the set of ordinals less than λ which have
cofinality ω. Let W be the set of 2λ pairwise incomparable subsets of ΛQ
guaranteed by Lemma 6.8. For each set of ordinals w G W we define a
model Mw of T as follows. For each δ G AQ fix one strictly increasing
function σ# £ λω which witnesses that cf (δ) — ω. For w € W, let

Γ° = \<ω \j{σδ:δ<Ξ w}.

Let Mw be F-constructible over Aw = {av : v G Iw}. Now if w, u are distinct
elements of W, we will deduce a contradiction from the assumption that
there is an isomorphism between Mw and Mu.

In order to effect this contradiction we will approximate the tree Iw by
the set of functions with bounded range. For any i < λ, /f = U/?<i β-ωΓ\Iw.
Similarly, Ay = {aη:ηel™}.

Now the crucial fact is contained in the following assertion.

6.14 Claim. For anyw^W, Aw isΈ-atomic over A™ if and only if δ £ w.

Proof. This follows routinely from the fact that A is an independent tree.
For, if B C Aw, t(B\ A%] is F-isolated if and only if the downward closure
of B, i.e. {aσ : σ C r Λ άτ G B}, intersects A^ in a finite set. But, if δ £ w,
it easy to check that this condition holds. Moreover, the condition clearly
fails if δ G w.
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Let Mw be constructed by the sequence {c™ : a < X}. Suppose that
t(c™\ Aw U C%) is F-isolated by 1%. (Remember C% is {<$ : β < a}.) Now
we construct the closed unbounded subsets of ΛQ whose intersection will
lead to the contradiction. Let Gw denote the set of a such that for each

6.15 Exercise. Show Gw is the set of a such that A% U C% is the universe
of an F-construction.

Now, it is easy to see that GW,GU and the set S of those a such that
g maps A™ U C™ onto A% U C% are closed unbounded sets. Thus there is
an ordinal δ in Gw Π Gu Π S Π w and so not in u. This δ will yield the
contradiction.

We first argue that Mu is F-atomic over A% U C$. Claim 6.14 implies,
that Au is F-atomic over A£. Since δ G Gu, C™ is F-atomic over AJf. We
can prove from the definition of Gu by induction on the length of C% that
C% [A% Au. Now by transitivity of the nonforking relation, Au is F-atomic
over A$ U C$. By transitivity of isolation we conclude Mu is F-atomic over
A%(JC$. In particular, t(g(c%6)', A%\JC$) is F-isolated. But this contradicts
the assumption that g is an isomorphism. For, since δ £ S, we can assume
that g maps A% U C£ to A% U C^ and £(ασ5 A% U C^) is not F-isolated. As,
if it were, we could apply the fact that δ € Gw to see that C™ is F-atomic
over A$ which implies by Theorem II.2.5 that Cg Uα^ is F-atomic over A$.
But this contradicts the fundamental fact about the construction, Claim
6.12, that t(as]A^) is not F-isolated since δ G w.

6.16 Corollary. If T is a stable but not superstable theory the function
/(/c, AT) which gives the number of models of T of power K, is increasing.

Proof. Observe that the previous proof actually shows that if λ is a regular
cardinal less than or equal to AC then I(κ,,AT) > 2λ. Thus, for regular
cardinals we have the maximum number of models and the function does
not decrease at a singular cardinal.

6.17 Historical Notes. This proof given here is the proof of Theorem
VIΠ.2.7 of [Shelah 1978]. The contrast with proofs using Ehrenfeucht-
Mostowski models which dominate Chapter VIII of [Shelah 1978] is dis-
cussed in Section 1.5. Pillay [Pillay 1981] provides a very nice exposition of
the Ehrenfeucht-Mostowski version of the proof when λ is regular. Hodges
[Hodges 198?] is writing an exposition of Shelah's approach to the nonstruc-
ture results. Conversations with Jurgen Saffe greatly aided my writing of
this section.




