
Chapter VII

Rank

Stability theory arose from Morley's investigation of NI-categorical theo-
ries, where he introduced the notion of the rank of a type in an cj-stable
theory. From this beginning, Shelah and others developed a number of
different rank notions to investigate more complicated (e.g. stable and su-
perstable) theories. In this chapter we will investigate these various rank
functions and their relationships to nonforking. It will become clear that
our entire machine could have been constructed on the basis of rank. There
are two reasons that we did not do this. In the first place rank is actually a
finer tool than nonforking. We will show that for a rank function R satisfy-
ing certain axioms (in a superstable or ω-stable theory), p is a nonforking
extension of q exactly if R(p) — R(q) However, the rank codes additional
information that is lost by the dichotomy 'forks or doesn't fork.' That is, if
p is a forking extension of q we can ask how much less is R(p) than R(q}.
This additional information plays an important role in some branches of
stability theory (e.g. [Cherlin, Harrington, & Lachlan 1985]). But, in the
basic study of free extensions the additional information obscures the is-
sues. More importantly, no equally simple definition of nonforking in terms
of rank holds for stable theories. Rank also provides more information be-
cause it allows one to compare two types neither of which extends the
other.

In Section 1 we exhibit some axioms for rank and show that any rank
which satisfies these axioms induces the nonforking relation. In Section 2
we describe a number of the important rank functions. In Section 3 we
prove some theorems illustrating the greater power of the rank notion.

1. Ranks and Forking

We describe here the properties that the notion of free extension satisfies
when we define p7q if q C p and R(p) = R(q}, where R satisfies the axioms
given below. We show that these properties of the resulting freeness relation
completely characterize the nonforking relation on stable theories.
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1.1 Axioms For Rank. Let R be a map which associates with each p in
S(A) (for A a subset of M) an ordinal R(p) which is called its rank.

i) If / is an elementary map then R(p) = R(fp).
ii) If p C q then R(q) < R(p).

iii) For each B containing domp there is at least one q G S(B) with

R(q) = Λ(P)
iv) If p G S(Λ) there is a finite subset A0 C domp with R(p) = β(p|A0).
v) There is a cardinal λ such that any type p has at most λ mutually

contradictory extensions with the same rank as p.

1.2 Notation. If R is a rank satisfying the axioms of 1.1, we denote by
ΪR the notion of freeness given by: p is a free extension of q if p extends q
andΛ(p) = R(q).

7χ is defined on complete types but we extend it to incomplete types by
saying q is free over A if for some complete q' extending #, q'7^q'\A. It is
now easy to verify the following lemma.

1.3 Lemma. If R satisfies the axioms in 1.1 then TR is a freeness relation
obeying the isomorphism convention (II. 1.2), the first monotonicity axiom
(II. 1.5 MI), the extension axiom (II. 1.14 E\)J and the full local character
of freeness axiom (II. 1.21). Moreover, there is a cardinal λ such that no p
has more than λ mutually contradictory free extensions.

Note that the condition on the number of free extensions is implied by
the axiom asserting that types over models are stationary (in the presence
of the second monotonicity axiom).

Now we show that the only relation satisfying these axioms is the relation
of nonforking for stable theories. We have shown that nonforking satisfies
these axioms (and others) in Sections III.3 and III.4.

1.4 Theorem. // 7 satisfies the properties listed in Lemma 1.3 then T is
superstable and 7 is the nonforking relation.

Proof. Clearly the bound on the number of extensions in rank and the local
character of freeness imply that T is stable in μ for all μ > λ + |T| (by
counting the types over A). Now suppose q7p with p G S(A). Extend q to
a global type q with q7p. Since all conjugates over A of q are free over p
there at most λ of them. By Lemma IV. 1.14, q and, a fortiori, q do not
fork over A.

Conversely, suppose q is a nonforking extension of p G S(A). Extend q
to q a global type which does not fork over A. Also extend p to p a global
type with p7p. By the first part of the proof, p does not fork over A. Thus
by the conjugacy lemma p and q are conjugate over A. Thus q7p and by
monotonicity q7A.

Note that the symmetry and transitivity properties now follow from the
axioms listed in Lemma 1.3 since we know they hold of the only relation
which satisfies those axioms.



158 VII. Rank

There is no ordinal valued rank function which is denned on all types
exactly if T is a stable theory. However, a slight relaxation of the conditions
in Lemma 1.3 describes the properties of a freeness relation which imply
that the underlying theory is stable and the relation is nonforking.

1.5 Exercise. Show that if iv) of 1.1 is weakened by requiring the cardi-
nality of the set A to be less than |Γ|, in Theorem 1.4 we can still conclude
that T is stable and 7 is the nonforking relation. (rngR is a linear order.)

1.6 Historical Notes. The first axiomatic approaches to rank were in
[Baldwin & Blass 1974] and [Lascar 1976]. Theorem 1.4 is derived from
[Lascar 1976]. Another useful account is [Harnik &; Harrington 1984].

2. A Plethora of Ranks

This section is devoted to the definitions of a number of rank functions
and the verification that they satisfy the axioms discussed in Section VII. 1.
There are a number of minor variants of the definitions but we forgo the
tedious discussion of equivalences among these variants. For details see
[Shelah 1978].

The most important rank functions are Morley rank, [7-rank, and con-
tinuous rank (Shelah-degree). The Morley rank of each type in a countable
theory is defined if and only if the theory is ω-stable. The [7-rank and con-
tinuous rank are defined for all complete types exactly if T is superstable.
We describe below the distinctions among these three ranks. In short, con-
tinuous ranks and Morley ranks are defined on formulas; the rank can be
extended to complete types, [/-rank is defined only on complete types but
it enjoys an additivity property which facilitates calculating the rank of
the type of a pair of elements. One reason for the more satisfactory analy-
ses of theories which are categorical in some infinite power is that on such
theories Morley rank and [/-rank coincide.

Most of the ranks we discuss can be defined either directly on types or
on formulas. We will define the rank on formulas when possible and then
extend to types by setting R(p) = mϊ{R(φ) : φ £ p}. This automatically
guarantees that each type has a finite subtype of the same rank, thus
establishing the local character of dependence for the associated freeness
relation.

Morley originally defined rank for a complete type over a set by an ex-
tension of the Cantor-Bendixson rank of the Stone space. In fact, if M is
ω-saturated and p G S(M) then RM(P) is exactly the Cantor-Bendixson
rank of p in S(M). However, we prefer to define the rank directly on formu-
las. We give first a definition which specializes to both the original Morley
rank and to the important local version considered in Section III.l. We
require some further notation.
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2.1 Notation. Let Δ be a collection of formulas of the form φ(χ-,y). We
denote by C(Δ) the collection of finite conjunctions of substitution in-
stances (/>(z,ά) of formulas in Δ.

The two most important uses of this notation occur when Δ is the
collection of all n-ary formulas for some n and when Δ = {</>(x; 17) , -«0(x; y)}
for some single formula φ. By Exercise III. 1.3 this second case is the same
as considering an arbitrary finite set of formulas (instead of just one).

2.2 Definition ((Δ,μ)-Rank). Let 0(z;α) be a formula, μ a cardinal, Δ a
set of formulas and a an ordinal. The (Δ, μ)-rαnA;, R&, of a formula φ(x',(ϊ)
is defined as follows.

;α)) = -1 iff h
;ά)) > 0 iff (= (3x)0(z;α)

(x;α) > α + 1 iff for each fc < μ, *(«,&) holds:

There exists a sequence of formulas 0t(x;St ) for i < fc with
0i(x;άi) € C(Δ) such that βΔ(0(x;ό) Λ 0;(z;α;)) > α and
where the formulas {^(x ά) Λ ̂ (x α^) : i < k} are pairwise ^a^
contradictory.

• RΔ(Φ(X-, a)) > δ where δ is a limit ordinal iff ΛΔ(0(x; α)) > /? for each
/?<£.

• RΔ(Φ(X',CL)) = 7 if 7 is the least ordinal β with #A(0(x;a)) ^ /?•

Note that if RΔ(Φ(X; a)) = a then there is a least m < μ so that there is
no sequence of formulas 0^(x;Z^) for i < m + 1 satisfying *(α, m 4- 1). Such
an m is called the degree of 0(x;ά) and denoted D^(φ(x\a)}. This notion
is denoted Rn(p, Δ,μ) in [Shelah 1978], where the n indicates that only
formulas with n free variables are ranked. We have suppressed the explicit
mention of μ assuming that it will be clear in context.

2.3 Definition, i) (Morley rank) If Δ is the collection of all formulas
and μ — ω we call the resulting rank Morley rank and denote it by

ii) (local rank) If Δ is a finite set of formulas and μ is 2, ΛΔ is the local
rank R studied in Section III.l. We often code Δ by a single formula
φ and speak of 0-rank.

iii) If Δ is a finite set of formulas and μ is ω, RΔ is called simply (Δ, ω)
rank.

In this chapter for finite Δ, RΔ denotes local rank unless we explicitly
say otherwise.

It is now straightforward to verify the following result by induction.

2.4 Lemma. Let T be stable. For any finite Δ and any p, RΔ(P) is de-
fined. IfT is ω-stable then RM(P) ώ defined for any p. If μ is infinite and
condition υ) is restricted to Δ-types then each RΔ satisfies conditions i)
through υ) of Axiom 1.1.
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The next exercise asks for an example showing the necessity of assuming
μ is infinite to satisfy condition iii). Exercise 2.6 illustrates another aspect
of the same point.

2.5 Exercise. Show that condition iii) may fail for local rank.

2.6 Exercise. Show that RM(Φ V Ψ) = max(RM(Φ), RM(Ψ))

2.7 Exercise. Compute RM(X=X) for the three theories REF^, CEF^,
and ACF0.

Exercise 2.8 provides a naive illustration of the difficulty in satisfying
Axiom l.lv) for all types with a Δ-rank for a Δ which does not contain
all formulas.

2.8 Exercise. Show that if T is the theory of a single equivalence relation
with infinitely many infinite classes, p is the unique 1-type over the empty
set, and Δ is {x = y} then p has unboundedly many incompatible extensions
qi with £Δ (φ)

The following definition and theorem provide a rank for stable theories.
Note however that the values of the rank function are sequences of integers
rather than ordinals.

2.9 Notation. If p C g, q is a free extension of p for finite sets of formulas
(written q7fp) if for every finite Δ, R&(q) = RΔ(P)

The proof of the following theorem approximates that of Theorem 1.4.
We must replace Axiom 1.1 iv) by the observation that if we define

Rf(p) = (RA(p) : Δ a finite subset of F(L))

then every type has a subtype with the same rank which is over a set with
cardinality at most \T\.

2.10 Theorem. Let T be a stable theory. If p C. q then q does not fork
over domp iff q7fp .

Proof. By Lemma IV. 1.14 it suffices to show that for some λ, p has at most
λ extensions ς» with qi7fp. Since T is stable, for each finite Δ there are
only finitely many Δ-types of extensions with the same Δ-rank. Thus there
are at most 2l τl x \A\\T\ extensions of p to complete types with the same
rank.

Now we consider a measure of exactly how much a type can be made to
fork. This rank was introduced by Lascar who originally defined it as the
least connected (see below) rank function. It differs significantly from the
other ranks we discuss because although every type has a subtype over a
finite set with the same rank, there may not be a single formula with the
same rank. Accordingly, we define this notion for complete types over some
subset of the monster model.

2.11 Definition. For p £ S(Λ) we define the U-rank (also called the Lascar
rank) of a type p, U(p), by induction.
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• U(p) > 0 iff p is consistent.
• U(p) > β + 1 iff there exists B containing domp and q G S(B) such

that p C q and U(q) > β and q forks over A.
• U(p) > δ for a limit ordinal δ iff C/(p) > β for each /? < δ.
• U(p) = a if a. is the least ordinal 7 such that C7(p) ^ 7.

2.12 Exercise. Show that if T is superstable the [7-rank of each type is
defined.

The following notions distinguish Morley and Lascar rank. We say an
ordinal-valued rank function is connected if the range of its restriction to
complete types forms a connected subset of the ordinals under the order
topology. Thus, we have

2.13 Definition, i) The rank function R is connected if for every type
p with R(p) > α, there is a complete type, p1', extending p with
R(p') = a.

ii) The rank function R is continuous if for every set A and ordinal α,
{p € S(A) : R(p) > a} is a closed subset of S(A).

2.14 Exercise, i) Show Morley rank is continuous and t/-rank is con-
nected.

ii) Show that Morley rank may not be connected and [/-rank may not
be continuous. (Hint: Example 2.17 is germane.)

Now we define another notion of rank in a completely different way
from [/-rank. These ranks share the property that if T is stable they are
defined for all types precisely when T is superstable. The next notion was
called infinity rank in [Shelah 1978] and degree (not to be confused with the
Morley degree) when Shelah introduced it in [Shelah 1971]. The crucial fact
about this continuous rank is that it assigns a rank to formulas rather than
to types. The advantage of [/-rank is the additivity properties discussed
below.

2.15 Definition. The continuous ran/:, RC, of a formula 0(x;ά) is defined
by induction as follows.

• Rc(Φ(x', a)) > 0 iff (3x)0(x; α).
• Rc(φ(xm,a)) > β + 1 iff there exists a formula ψ(xm,y) and sequences

Ci for i < (2 |7Ί)+ such that Rc(Φ(x',a) Λψ(x\c»)) > β for each i and
the set of formulas {-0(x; c^)} is n-inconsistent for some n.

• Rc(φ(x;a)) > δ for a limit ordinal δ just if Rc(φ(x',a)) > β for each
β<δ.

Rc(Φ(x'^}) = Ί if 7 is tne least ordinal β such that Rc(φ(x',a)) ^ β.

Shelah actually makes the bound in ii) to be |T|+. The present definition
yields the same result with fewer combinatorial difficulties. The delicate
relation between various versions of this notion is discussed in Chapter II
of [Shelah 1978]. The next theorem indicates the relative value of Rc and
U. In one direction we are restricted to finite ordinals.
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2.16 Theorem. For each formula φ(χ-,y), each a, and each natural num-
ber n, Rc(φ(x',a)) > n iff there exists a p G S(a) with </>(z;α) G p and
U(p) > n. For any ordinal a, if there exists such a p with φ(x;ά) G p and
U(p) > a then Rc(φ(x',a)) > a.

Proof. Suppose Rc(φ(x',a)) > n + 1. Then there are a formula ^(x l/) and
sequences Ci for i < (2'τ')+ such that Rc(φ(x;a) Λ ψ(χ-,Ci)) > n and with
{ 0(z;Cι): i < (2\τ\)+} n-inconsistent. By the pigeonhole principle there is
an infinite subset of the Ci which realize the same type over a. That is, for
some Ci (wlog CQ)Ψ(X',CQ) divides over α. But then if q is any completion
of {0(x, α) Λ ^(x; CQ)} to a complete type over a U CQ, q forks over α and
by induction U(q) > n. Thus q\ά is the required member of S(a) with
U(q\a)>n+l.

Since we have shown in Lemma V.3.9 that a complete type which forks
contains a formula which divides the converse is easy.

This lemma is best possible in a sense which illustrates the difference
between U being based on complete types and RC being based on formulas.

2.17 Example. For any a < NI there is a theory Ta with RC(X = x) = a
but for every p, U(p) is finite. We construct the Ta by induction on a. If α
is finite there is nothing to prove. If we have Tα, let Tα+ι be the theory of
an equivalence relation with infinitely many infinite classes, each of which
is a model of Ta. If δ is a limit ordinal let T^ be the theory of the disjoint
union of models of the Tα for α < δ.

The next theorem describes two important properties of continuous rank
which we will exploit in the next section.

2.18 Theorem, i) RC is the least continuous rank function.
ii) // [p] > [q] (in the fundamental order) then Rc(p) > RC(Q)-

Theorem 2.18 i) is proved by a routine induction; Theorem 2.18 ii) follows
directly from the definition (using Section V.3).

2.19 Exercise. Show that if R is a continuous rank function and T is
superstable (in particular, if R — RC) then there is a complete type with
maximal β-rank.

As we have seen on many occasions one of the major problems in this
subject is to relate the behavior of singletons to the behavior of pairs. This
problem arises again for rank. The behavior of Morley rank in this situation
is extremely complicated ([Lachlan 1980]). Lascar rank is better behaved.

2.20 Theorem. For any 6, c in a model of a superstable theory

U(t(c; A U 5) + U(t(b\ A)) < U(t(b~c-, A)) < U(t(c; A U 5)) Θ tf(ί(5; A)).

Here Θ denotes the natural sum of ordinals. That is, to add two ordinals
put them in Cantor normal form and add them as polynomials in ω. Note
that natural sum agrees with ordinary arithmetic on finite ordinals. If Ί>[A c
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then the second inequality becomes an equality. For the proof of this theo-
rem see [Lascar 1976]. This inequality has been extensively exploited. See,
for example, [Berline &; Lascar 1986] and [Cherlin, Harrington, &; Lachlan
1985].

2.21 Historical Notes. For further information see [Lascar 1976], [Lach-
lan 1980], [Shelah 1978], or [Pillay 1983a]. Pillay's book has a more detailed
introductory survey which includes a fuller proof of Theorem 2.16. Morley
rank was introduced in [Morley 1965]. If T is categorical in either NI or NO?
Morley rank and [/-rank agree [Lascar 1976]. Moreover, in such theories
the rank of every type is finite. For NI-categorical theories this was first
proved in [Baldwin 1973]. Later, more accessible, proofs appear in [Poizat
1978] and [Zilber 1974]. The proof for N0-categorical theories is in [Cherlin,
Harrington, &; Lachlan 1985]. In fact, if T is unidimensional then Rc and
U are equal and finite [Saffe 1984].

3. Ranks and Stable Groups

The major goal of this section is to prove the theorem of Cherlin, Shelah,
and Macintyre that a superstable field is algebraically closed. The proof
given here rests ultimately on the ability to compare the ranks of two
types over the same set. Thus, we exploit one of the advantages of rank
over forking which we mentioned at the beginning of this chapter. We will
somewhat disguise this fact by expounding Poizat's notion of the stratified
order which provides a nice framework for formulating the result.

The proof of the main theorem requires three major steps. We already
know from Section III.5 that the additive group of a superstable division
ring is connected. The model theoretic task in this section will be to show
that this implies that the multiplicative group of the division ring is con-
nected. Knowing that both groups are connected, an algebraic proof due
to Macintyre yields the theorem.

The fundamental insight is that the action of a group on itself by (left)
multiplication preserves rank. To make this idea precise we define the trans-
late and the inverse of a type. As in Section III.5, by a 'group' we mean any
structure which includes a group operation among its definable operations.

3.1 Definition. Let M be a group, α E M, and let c € M realize the
type p 6 S(M). Then αp, the left translate of p by a is ί(αc M). That is,
ap = {φ(a~lx',m): φ(x',m) E p}. Similarly, p"1 = ί(c-1; Af).

Clearly, the operation of left translation by elements of M induces an
equivalence relation on S1(M) which preserves any of the rank functions
we have discussed (except the local ranks). But the relation is too fine; we
also want to identify types which are only potentially translates of each
other. The following notion captures this idea.
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3.2 Definition. If M,TV \= Γ,p 6 Sl(M),q G Sl(N) then the stratum
of p is at least that of g, written s(p) > s(q), if for every formula of the
form φ(yx\~z), whenever φ is represented in p(x) then φ is represented in

q(x). That is, if for some a and 6, φ(ax;b) G p then for some a' and fc ,

0(α'z;6 ) G </.

The partial order which results by identifying types p and q if s(p) > s(q)
and s(q) > s(p) is called the stratified order. We call the equivalence class
of p under this relation the stratum of p.

3.3 Exercise. Show that if q < p in the sense of the fundamental order
then s(q) < s(p). Show the converse fails.

3.4 Exercise. Show that if φ(x\y] is represented in p and s(p) > s(q) then
φ(zx',y) is represented in q. (Remember φ(x',y) is φ(\x\y].) In particular,
all translates of a type are in the same stratum.

3.5 Exercise. Show that there are at most 2'τ' elements in the stratified
order.

3.6 Theorem. Suppose p G S1(M), q G Sl(N) and s(p] > s(q). Then there
is an a G Aut(Λί) and an a G M such that p C aa(qM).

Proof. Extend L by adding a unary predicate P, names for the elements of
M and new constants a and c. We first show that there is a type q\ such
that qι ~ q and p > aq\. Let Γ be the following set of sentences:

ΓUΓ|PU{P(α)}
U {(3y)[P(y) Λ φ(ac\y)} : φ(x\y) is represented in p}
U {(Ξ17)[P(17) Λ φ(c;y}] : φfay) is represented in q}

U {(Vy)[P(y) -^ ~^Φ(c'^y)} : if Φ(χΊy) 'ιs not represented in q}.

Note that if φ(x',y) is represented in p then φ(zx;w} is represented in q.
With this in mind it is easy to see that any finite subset of Γ is satisfiable
by interpreting P as the universe of TV, a as an appropriate element of TV,
and c as a realization of q. Then the required q\ is £(c; P(Mι)) if M\ |= Γ.

A similar compactness argument shows that for any r and p, if p > r
there is an extension r\ of p with rι ~ r. Apply this argument to p and aq\
to get a model TVi D M and r2 G S(Nι) such that r2 ̂  αςri and p^r^. Let
c realize a~~lr<2 and let </2 = £(c; TVi). Then #2 — q-

Let p be a nonforking extension of p to Λt, g a nonforking extension
of q to M, and ^2 a nonforking extension of q% to M. Then g c± g2 so by
Theorem IΠ.2.36 there is an automorphism a of Λt with a(q) = fa and so
p C aa(qM) as required.

The following exercise restates the omitted compactness argument in the
last proof.

3.7 Exercise. Show that p > q implies that p is contained in a conjugate
of a nonforking extension of q.

We deduce the following crucial property from this result.
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3.8 Corollary. Suppose s(p) = s(q); then if R is any one of RM, U, or
Re, R(p) = R(q). Moreover, R(q) = R^1).

Proof. All of these ranks are preserved by left translation.

Note that this result does not hold for all local ranks because apφ is
not always a 0-type. Our aim now is to identify types of maximal stratum
with types of maximal rank. This will have a number of useful corollaries,
the first being the existence of types with maximal [/-rank. To save space
we give the most direct proofs for superstable theories. Some of the results
hold for the stable case.

3.9 Lemma. Let G be a group and suppose T = Th(G) is superstable.
There is exactly one maximal stratum.

Proof. Fix a strongly ω-saturated model of T. Since T is superstable, there
is a p £ Si (M) with maximal continuous rank. As s(q) > s(p) implies q > p
(in the fundamental order), which implies RC(Q) > Rc(p) by Corollary 2.18,
we have that the stratum of p is maximal. We want to show that if Rc(q) —
RC(P) then s(q) = s(p). We first show that if Rc(q) = RC(P) then s(q~l) —
s(p). Applying this observation with p = q yields s(q) = s(q~l) and then
applying it to p and q~1 yields the theorem.

To see that if Rc(q) — RC(P) then s(q~l) = s(p), let a realize p and b re-
alize q with a |M b. We first claim that a [M ab. For this, choose N D M U α
with b JMuα N. Now Rc(t(ab\ N)) = Rc(t(bm, N)) since ab is definable from
NUb. But Rc(t(b',N)) is maximal so ab [M N. In particular, ab [M &
as claimed. This allows us to choose M1 D M U ab with M1 [M a. De-
note ί(α M') by pi. Now, b~la~l G M1 and b'la~lpι = t(b~l',M'}. Thus
s(t(b-l-,M')) = s(pi) = s(p) which is maximal. But q'1 C t(b~l;M') im-
plies s(t(b~l\M'}} < s(q~l) implies s(q~1) = s(p) and we finish.

By emulating the proof of the existence of maximal elements in the fun-
damental order, Lemma III.3.11, and then refining the previous argument
one can prove the following stronger result of Poizat.

3.10 Exercise. Show that if T is the theory of a stable group then there
is a unique maximal stratum.

3.11 Exercise. Show that if T is the theory of a superstable group then
the types in the maximal stratum do not fork over the empty set.

3.12 Corollary. Let G be a group and suppose T — Th(G) is superstable.
There are types of maximal U-rank.

Proof. The types in the maximal stratum must have maximal [/-rank. For,
s(p) < s(q) implies U(p) <U(q).

Our next step is to link the connectivity property discussed in Section
III.5 with the number of types of maximal stratum. The following exercise
leads to the easy half of the connection.

3.13 Exercise. Show that if </>(x;m) defines a subgroup of M with finite
index then φ(zχ-,y) is represented in every type over M.
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3.14 Lemma. If M contains a proper definable subgroup of finite index
then there is more than one type in the maximal stratum.

Proof. Let 0(z;m) define a proper subgroup H with finite index in M.
Now, if e denotes the identity of the group and α G M — H, φ(aχ-,m) and
φ(eχ-, m) occur in distinct types of maximal stratum.

To show the converse of this lemma we require a little more notation.

3.15 Definition, i) Let M \=T where T is a theory of groups and let p
be a type (not necessarily complete) over M. The stabilizer of p is
Fp = {aeM:ap = p}.

ii) For each formula φ(x',y), let φ(x,z,y) denote φ(zχ-,y).

3.16 Lemma. For any p G S(M) and any formula φ, Fp. is a definable

subgroup of M. If p has maximal stratum then [M : Fp~] < ω.

Proof. The required definition is:

χ(u) = (Vy)(Vz)[dφ(z;y) ~ dφ(uz;y)].

Now, [M : Fp.] = \{ap^ : a G M}\. But since p and thus ap is in a maximal
strata, each api extends to a global type which does not fork over the
empty set. Each of the types is definable over every model of T. Thus, the
number of translates of p is bounded by 2'τ'. But then by compactness the
number of translates of p? must be finite.

3.17 Corollary. If M is connected there is a unique type of maximal stra-
tum.

Proof. By Lemma 3.16, if p has maximal stratum, then for each φ, Fp = M.

Thus all types of maximal stratum are equal (since we can extend to a
model where they are translates of each other).

3.18 Exercise. Show that if p G S(M), then Fp is defined by an infinite
family of formulas. (That is, by an intersection of infinitely many definable
sets.)

The concept of an infinitely definable subgroup has been exploited ex-
tensively ([Berline & Lascar 1986] and [Hrushovski 1986]).

3.19 Theorem. IfT is the theory of a super stable structure which admits
two group structures then one is connected if and only if the other is con-
nected.

Proof. We have shown that the group is connected if and only if there is
only one type in the associated maximal stratum. But by Corollary 3.17
the types in the maximal stratum for the two operations are the same,
namely, the types of maximal [/-rank.

We showed in III.5 that the additive group of a superstable division ring
is connected. Now we can conclude:
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3.20 Corollary. If M is a superstate division ring, both the additive and
multiplicative groups of M are connected.

We turn now to the algebraic information necessary to conclude the proof
of the main theorem. The following theorem can be found, for example, in
[Lang 1971] or Chapter 23 of [Adamson 1982].

3.21 Theorem. Let K be an extension of prime degree, q, of the field F
such that F is the fixed field of the automorphism group of K and xq — 1
splits in K. Let p be the characteristic of K.

i) If q = p then K is generated over F by the solution of an equation
xp — x = a for some a E F.

ii) If q ̂  p then K is generated over F by the solution of an equation
xq = a for some a G F.

In the first case K is called an Artin-Schreier extension of F and in the
second a Kummer extension. Recall that a field F with characteristic p^O
is perfect if every element of F has a pth root in F and a Galois extension
of a field is an algebraic extension which is both normal and separable.

3.22 Lemma. // F is a superstable field then F is perfect and has no
Artin-Schreier or Kummer extensions.

Proof. Let h(x) be either of the following two maps.

i) x »-> xp — x (if the characteristic of F is p > 0).
ii) x H-V xn for z^O an element of F where n > 1 is an arbitrary natural

number.

Now, h is a definable endomorphism of the additive group of F in the
first case, and of the multiplicative group of F in the second. In each case
the kernel of h is finite. Since we have just shown that both groups are
connected, Theorem IΠ.5.25 shows that in each case h is surjective. The
surjectivity of the first map implies that F has no Artin-Schreier extension
and the surjectivity of the second that F is perfect and has no Kummer
extension. This yields the lemma.

3.23 Theorem. // F is a superstable field then F is algebraically closed
or finite.

Proof. Assume for contradiction that F is an infinite superstable field which
is not algebraically closed. By the previous lemma, F is perfect and so it
has a Galois extension of some finite degree n. Consider all pairs of fields
(F, K) such that (*) F is an infinite superstable field and K is a proper finite
dimensional Galois extension of F. Choose such a pair with the degree, q,
of K over F minimal.

We claim q is prime and xq — 1 splits over F. If q is not prime, choose
an r which divides q and let FI be the fixed field of an element of order
r in Gal(K/F). Since FI is a finite dimensional extension of F, FI is also
superstable and so the pair (Fi, K) contradicts the minimal choice of q.
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Thus q is prime. Now, let K\ be the splitting extension of xq — 1 over F.
Then the degree of K\ over F divides q — 1, so by the minimality of </,
KI = K, as required.

Now Lemmas 3.21 and 3.22 yield a contradiction unless q = 1 and we
finish.

Theorem 3.23 has been strengthened by Cherlin to remove the hypothe-
sis that F is commutative. We will not give the full argument for this result
here. The basic theme of the proof is to show that the division ring D is fi-
nite dimensional over a subfield, F. One algebraic result and an application
of Theorem 3.23 then yield the result. Many of the basic ideas in finding
a large Abelian subgroup of a stable group are contained in the following
theorem of Reineke.

We rely in the next proof on two standard group theoretic facts. If
all elements of a group have order two then it is Abelian. There is a 1-1
correspondence between the conjugates of an element a and the cosets of
CG(O). We write [α,6] for the commutator, a~lb~lab of a and b.

3.24 Theorem. // the theory of the group G is strongly minimal then G
is Abelian.

Proof. We will apply at various points in the proof the following strong
consequences of assuming that G is strongly minimal. First, G can have no
infinite definable proper subgroup, H (as H and any coset of H would be
disjoint infinite sets). In particular, G is connected. Since G is superstable,
we conclude from Exercise III.5.23 that any finite normal subgroup of G
is contained in Z(G). Since there are no infinite definable subgroups, we
have, in fact, that every definable normal subgroup of G is contained in
£(£)._Thus, Z2(G) = {a : V6[α,6] G Z(G)} = Z(G). It is now easy to see
that G = G/Z(G) is centerless and strongly minimal.

Let α^l € G. Then, CQ(O) is finite. This easily implies that a has finite
order (since all powers of a commute with α) and that Cα, the conjugacy
class of α € G is infinite (by the second remark before the theorem). Since
{Ca - a^l} partition G — {!}, all nonidentity elements of G are conjugate.
This implies that they all have the same order, /, which is prime. For
otherwise, we have elements of different orders that are conjugate. Since
we finish if / is two, we may assume that / is odd.

For some 6, bab~l =a~l. Thus, (bab~l)~l = ba~lb~l = a. It is now easy
using this fact to show by induction that bkab~k equals α if A: is even and
α"1 if k is odd. Thus, blab~l = a~l. Since, the order of b is /, we conclude
that a = a~l and thus the theorem.

We omit the proofs of the long string of generalizations of this result,
[Baur, Cherlin & Macintyre 1979], [Cherlin 1978], [Poizat 1981], and just
state the strongest result which is due to Lascar and Berline [Berline &
Lascar 1986].

3.25 Theorem. If G is a superstable group and U(G) > ωa, then G con-
tains a definable Abelian subgroup H with U(H) > ωa.
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Assuming this result we finish the proof of Cherlin's commutativity the-
orem.

3.26 Theorem. An infinite superstable division ring D is an algebraically
closed field.

Proof. Without loss of generality, we may assume D is NI-saturated. Let
U(D) = ωak + β with β < ωa. Let H be a definable Abelian subgroup of
D* with U(H) > ωa whose existence is guaranteed by Theorem 3.25. Let
DI = CD(H] and let F be the center of D1.

We next show that D is finite dimensional over F. Since H C F*,
U(F) >ωa. We claim that if dι,...,dm are F-linearly independent el-
ements of D then the {/-rank of d\F + 4- dmF is U(F)m which is
at least ωam. Thus, m is at most fc. Let DQ be any model containing
{di,..., dm}. For any m-tuple a = (GI, . . .,αm) from F, α is algebraic over
DQ U {dι«ι H h dmαm} and diαi H h dmαm is algebraic over DQ U α.
So the types of diαi + ... dmαm and a over jD0 have the same [/-rank. But

f/(ί(α; Do)) < ΣWfc; A>)) < m - t/(F).
ί

Moreover, if the α^ are independent realizations of the type of maximal
[/-rank (= U(F)) then equality holds and we conclude the claim.

To conclude the argument we require two facts from algebra. The first is
an elementary property of tensor products; the second appears in [Herstein
1975].

i) Let Z C F C D be division rings (with Z a field). As vector spaces,
dimz D = dimF(D ®z F). (cf. [Lang 1971])

ii) If the division ring D is finite dimensional over the maximal subfield
F and Z = Z(D) then F ®z D « Mn(F) for some n. (This follows from
the proof of the Corollary to Theorem 4.2.1 in [Herstein 1975].)

From the claim, we have that D is finite dimensional over F. Without
loss of generality, we may assume that F is a maximal subfield of D. By
ii), we have D <®z F « Mn(F) is finite dimensional over F. But then, by
i), and since D « D ®z %, dim^ D is finite. Thus Z is infinite. Since Z is
a definable subfield of D, Z inherits the superstability of D. This implies
Z is algebraically closed by Theorem 3.23. Now any element α € D — Z
satisfies a polynomial over Z and since α centralizes Z, Z and α generate a
subfield of D. As Z has no finite algebraic extensions we have the theorem.

3.27 Exercise. Show that for any of the rank functions considered if α [Q b
thenΛ(t(α;G)) <Λ(ί(α6;G)).

3.28 Historical Notes. This section comes primarily from [Cherlin &
Shelah 1980] and [Poizat 1981]. Macintyre [Macintyre 1971a] had earlier
proved that every α -stable field is algebraically closed. Further important
developments in this direction can be found in [Berline 1983] and [Berline
& Lascar 1986] The account of Cherlin's result that a superstable division
ring is commutative, is taken largely from [Berline & Lascar 1986]




